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Abstract
One of the main paradigms of Industry 5.0 is represented by human-robot collaboration (HRC), which aims to support 
humans in production processes. However, working entire shifts in close contact with a robotic system may introduce new 
hazards from a cognitive ergonomics perspective. This paper presents a methodological approach to monitor the evolution 
of the operator’s psychophysical state noninvasively in shifts of a repetitive assembly process, focusing on stress, mental 
workload, and fatigue. Through the use of non-invasive biosensors, it is possible to obtain objective information, even in real 
time, on the operator’s cognitive load and stress in a naturalistic manner (i.e., without interrupting or hindering the process). 
In the HRC setting, recognition of the operator’s psychophysical state is the first step in supporting his or her well-being 
and can provide clues to improve collaboration. The proposed method was applied to a case study aimed at comparing shifts 
performed both manually and with a cobot of a repetitive assembly process. The results showed significant differences in 
terms of process performance evolution and psychophysical state of the operator. In particular, the presence of the cobot 
resulted in fewer process failures, stress and cognitive load especially in the first phase of the work shift. The case study 
analyzed also showed the adequacy of noninvasively collected physiological data in providing important information on the 
evolution of the operator’s stress, cognitive load, and fatigue.

Keywords Human-robot collaboration · Industry 5.0 · Physiological data · Repetitive assembly · Cognitive ergonomics · 
Process failures

Abbreviations
ECG  Electrocardiogram
EDA  Electrodermal activity
EEG  Electroencephalography
HRC  Human-robot collaboration
HRV  Heart rate variability
PPG  Photopletismogram
PSNS  Parasympathetic nervous system
SCL  Skin conductance level

SCR  Skin conductance response
SNS  Sympathetic nervous system

1 Introduction

Human-robot collaboration (HRC) has spread as a new 
approach whereby humans and collaborative robots (also 
called cobots) work together in a shared environment. By shar-
ing space, time and goals, HRC may leverage the strengths of 
both parties to achieve better results productivity and quality 
performances [1–3]. In manufacturing, collaborative robotics 
mainly finds application in assembly processes. In a collabo-
rative assembly process, tasks are allocated between humans 
and cobots, working symbiotically to assemble a product [4, 
5]. The main issues present in an assembly process involve not 
only physical ergonomics and operator safety, but also cogni-
tive aspects. Optimization of cognitive ergonomics may enable 
reduction of errors, improvement of performance and facilita-
tion of operators’ decision-making process [6]. Collaborative 
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robotics has the potential to provide not only physical but also 
cognitive support to the operator.

Extensive research has shown that HRC encompasses 
a wide variety of dimensions, including human factor [7]. 
Fatigue and stress are gaining increasing attention as they may 
result in poor performances of operators in manufacturing pro-
cesses, as well as impacting their well-being. For this reason, it 
is important to be able to monitor the psychophysical state of 
operators by obtaining information noninvasively and without 
hindering their work [8]. In addition, the implementation of 
cobots may improve both quality of the production system 
and humans’ well-being, but to date the study of the effects 
of HRC in repetitive assembly processes has received limited 
attention [9, 10].

This paper aims to explore the evolution of the psycho-
physical state (focusing on stress, cognitive load, and fatigue) 
and performance of operators during continuous interaction 
with a collaborative robot in a repetitive assembly process. 
In addition, a naturalistic and noninvasive approach to gather 
information about the operator’s psychophysical state is also 
emphasized.

An experimental setting involving 4 h assembly work-shifts 
of a case-study product (i.e., a tile cutter) was designed and 
implement. The assembly work-shifts were performed both 
manually and with the support of a cobot, in order to highlight 
potential effects of HRC. Three main aspects were analyzed:

 i. Number and type of process failures, to address the 
evolution of process quality and humans’ performance 
over time.

 ii. Physiological responses (i.e., electrodermal activity 
and heart rate variability) collected noninvasively, 
to measure stress, cognitive load, and fatigue experi-
enced in prolonged repetitive assembly processes.

 iii. Relationship between process failures and physiologi-
cal responses, to explore the influence of process fail-
ures on operator psychophysical state.

This paper is organized as follows. Section 2 presents a 
literature review on HRC in industrial contexts, providing 
also details on the use of physiological data. In Sect. 3 the 
experimental methodology proposed and adopted is described 
in detail. Section 4 shows the main results, analyzing process 
failures and physiological responses. The main findings are 
summarized and discussed in Sect. 5. Finally, Sect. 6 contains 
conclusions and future works.

2  Literature review

HRC has received considerable attention in recent years. 
HRC involves humans and robots sharing the same work-
space and time in order to pursue a common goal and work 
simultaneously [11]. The great potential of this technol-
ogy lies in the possibility to combine the dexterity of the 
human operator with the repeatability and precision of 
the robot [1, 2]. However, the coexistence of humans and 
cobots in the same workspace has raised several safety 
concerns thus leading to a wide variety of methodolo-
gies to improve it [12–14]. In this regard, ISO standards 
(i.e., ISO 10218-2:2011 [15] and ISO/TS 15066:2016 
[16]) were also established to ensure safe operations in 
human-robot collaboration tasks. The main safety haz-
ards involved in HRC include physical contact and col-
lision, pinch points and trapping, robot speed and force. 
The most commonly used strategies to mitigate these haz-
ards involve limiting robot speed and force, implementing 
proximity sensors or vision systems to avoid collisions, or 
integrating corrective actions systems that lead to collision 
avoidance without stopping the robot operation [17, 18].

Safety represents only one of the variables that can 
impact the efficiency of a collaborative assembly process. 
Gervasi et al. [7] introduced a framework summarizing 
several critical dimensions to be considered in evaluating 
HRC (i.e., autonomy, information exchange, team organi-
zation, adaptivity and training, task, human factors, ethics 
and cybersecurity). A multidimensional approach is also 
followed by Hoffman [19] who proposed a methodology 
for assessing HRC fluency by making use of a set of objec-
tive metrics (human idle time, robot idle time, concurrent 
activity) and other subjective metrics related to human 
perception of the cobot. Kokotinis et al. [20] recently pro-
posed a tool for evaluating HRC quality, based on met-
rics related to human (e.g., safety, ergonomics, and trust), 
robot (e.g., autonomy, manipulation ability, and costs), and 
interaction (e.g., interaction ability, workspace and time 
sharing).

In the field of HRC evaluation, there is a growing inter-
est in the analysis of cognitive aspects and affective states 
involved, with special attention to stress and mental work-
load [9, 21, 22]. To enhance quality, Ahmed et al. [23] 
highlighted the importance of controlling both human and 
process parameters and their influence on assembly qual-
ity. A similar approach was followed by Quenehen et al. 
[24] who assessed quality of different human-robot col-
laboration modes through an energy expenditure model 
taking into account economic and ergonomic indicators. 
Some classic metrics used in case studies are based on 
participants’ performance, such as the number of errors, 
occurrence of conflicts, task completion rate, and response 
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time [25]. Another method is to obtain subjective feed-
back through questionnaires and surveys, mainly focused 
on reporting perceived workload, anxiety, pleasantness, 
situation awareness, and so on. Some of the most widely 
used tools in this area include the System Usability Scale 
(SUS) [26], Self-Assessment Manikin (SAM), NASA-TLX 
[27], Subjective Workload Assessment Technique (SWAT) 
[28], and Instantaneous Self-Assessment of workload 
(ISA) [29]. Compared to performance-based metrics, the 
use of questionnaires or surveys is particularly suitable in 
evaluating the interaction with a robot in the case of tasks 
with a qualitative nature and rather limited duration [30]. 
However, a limitation is their use in contexts where there 
is interest in analyzing the evolution of the user experi-
ence in more complex and longer duration tasks [31]. In 
fact, in these cases, obtaining subjective feedback would 
imply task interruption, which can potentially undermine 
the naturalistic setting of an experiment. One way to cir-
cumnavigate this obstacle is to collect and analyze physi-
ological data from users.

2.1  Physiological data analysis in HRC

In recent years, the exploitation of physiological data to 
obtain objective information concerning cognitive activity 
and affective state of users involved in HRC has received 
increasing attention. [8, 32]. Khamaisi et al. [33] developed 
a comprehensive approach to identify potential stressful 
situation for workers, combining questionnaires, operators’ 
feedback and the analysis of psycho-physiological responses. 
Similarly, Gervasi et al. [34] explored how different robot 
configurations may impact user experience collecting also 
physiological response.

It is possible to derive information about a user’s psycho-
physical state through the analysis of physiological param-
eters such as heart rate [35, 36], blood pressure [37], skin 
conductance [38, 39], respiratory rate [40], pupil dilation 
[41], electroencephalography (EEG) [42], and electromyo-
graphy (EMG) [30].

The collection of physiological data is accomplished 
using biosensors that are usually applied to humans. Espe-
cially in manufacturing, the implementation of noninvasive 
wearable biosensors proves to be crucial in order to obtain 
information about the operator’s state [31]. This would also 
allow to not hinder the operator during dynamic processes 
and to maintain as naturalistic as possible the data collec-
tion setting.

Heart activity and electrodermal activity (EDA) are 
among the physiological parameters most commonly used 
in HRC to monitor cognitive activity and stress and with 
high potential for real-world application in manufacturing 
settings [8]. This potential stems mainly from (i) the wide-
spread of noninvasive wearable biosensors (e.g., wristbands) 

for monitoring heart activity and EDA, (ii) a not-particularly 
high difficulty in analyzing and interpreting their signals, 
and (iii) a relatively low implementation cost.

Heart monitoring is a common method used in fitness 
and working contexts for assessing user experience [43]. It 
is quite easy and cheap to implement and can be performed 
by electrocardiography (ECG) or photopletismography 
(PPG) (Fig. 1). Heart rate is regulated by sympathetic and 
parasympathetic inputs and can vary according to the body’s 
physical needs [44]. It is also modulated by numerous fac-
tors, such as stress, psychological state, physical activity, 
medications, hormonal status, and illness. Heart rate vari-
ability (HRV) represents the variation in the time interval 
between heartbeats (called R-R intervals) and has been used 
in several studies to objectively assess psychological stress 
[45]. HRV is reported to be an index of the influence of 
both the parasympathetic nervous system (PSNS) and the 
sympathetic nervous systems (SNS). PSNS is referred to 
as the part of the nervous system responsible for “rest and 
digest” activities, i.e., responsible for the internal functions 
when resting and relaxing [46]. PSNS has opposite func-
tions to those of the SNS, basically undoing the work of 
SNS after a stressful situation. SNS is the division of the 
autonomic nervous system that mediates the neuronal and 
hormonal response to stress and arousal, commonly known 
as the “fight or flight” response [47].

Regarding heart activity, SNS stimulation leads to an 
increase in blood pressure and heart rate, while PSNS stim-
ulation leads to a decrease in them. In healthy individuals, 
high resting HRV indicates balanced activation of the SNS 
and the PSNS [44]. This variability, indeed, reflets the ability 
of the cardiovascular system to rapidly adjust and cope with 
uncertainty and sudden environmental changes [45]. During 
acute stress, activity of the SNS increases and the PSNS is 
suppressed, leading to an imbalance that leads to a lower 

Fig. 1  Example of electrocardiography (ECG) or photopletismogra-
phy (PPG) signals with R-R intervals [49]



22 Production Engineering (2024) 18:19–33

1 3

HRV. Upon dissipation of the stress source, HRV returns to 
the initial state of balanced activation.

EDA, sometimes also known as galvanic skin response or 
skin conductance, refers to the measurement of the continu-
ous changes in the electrical conductance (i.e., capacity to 
conduct a flow of electrical current) of the skin in response 
to sweat secretion by the eccrine sweat glands [48].

The eccrine sweat glands (Fig.  2a) have a secretory 
segment (located in the skin hypodermis) innervated by 
sudomotor fibers connected to the SNS. Upon activation of 
the SNS, the sweat gland duct fills with sweat, which in turn 
increases skin conductance due to ions contained in sweat. 
Therefore, EDA is considered a marker of SNS activity, 
which is related to stress and arousal [48].

Changes in EDA can be decomposed in short term (pha-
sic) or relatively long lasting (tonic) (Fig. 2b) [50]. Pha-
sic component reflects rapid changes in the EDA within a 
few seconds, called skin conductance responses (SCRs), 
resulting from an underlying sympathetic reaction. These 
reactions can be induced by external stimuli, e.g., stress-
ors. Therefore, their analysis can provide information on the 
level of arousal and stress. Tonic component, also called 
skin conductance level (SCL), corresponds to slow changes 
in the EDA resulting from the tonic activity of sympathetic 
innervation of the eccrine sweat gland. Prolonged stress and 
increase of cognitive load are typically associated to a slow 
increase of EDA, i.e., an increase of SCL.

3  Methodology

In this section, a methodology is proposed to noninva-
sively study the user’s experience and psychophysical state 
(i.e., stress, cognitive load, and fatigue) during shifts in an 

assembly process. In order to investigate also the potential 
support of a cobot in repetitive assembly processes, 4 h shifts 
of a tile cutter assembly process were designed and imple-
mented at the “Politecnico di Torino” at Mind4Lab [52]. 
The study involved twelve participants (six males and six 
females) between the ages of 20 and 25 who had no prior 
experience with cobots.

A more detailed description of the methodology and 
assembly process will follow in the next sections.

3.1  Case study: tile cutter assembly process

 Participants were asked to assemble repetitively a tile cut-
ter. Each participant performed the assembly process in two 
4 h sessions, one in a manual setting (Manual) and the other 
in conjunction with a cobot (HRC). The order of the two 
modalities was randomized for each participant. In HRC 
modality, the UR3e cobot [53] was used. Participants were 
briefed on the cobot’s actions and automatic emergency 
stop on impact (i.e., power and force limiting safety sys-
tem). Figure 3a and b show the final assembled product and 
the components, respectively. Figure 4 shows the assem-
bly workstation with the UR3e cobot and supports for the 
assembly. Table 1 contains the list of the operations for both 
the HRC and Manual modalities and shows the agent per-
forming them. The assembly of the tile cutter can be broken 
down into 4 macro-phases:

1. The assembly of the base holders.
2. The assembly of the cutting mechanism.
3. The insertion of rail rods into the cutting mechanism and 

the joining with the base.
4. Completion of the tile cutter screwing the handle.

Fig. 2  a Representation of an eccrine sweat gland and electrodermal activity (EDA) measurement principle [50]. b Example of EDA signal with 
its decomposition in skin conductance level (SCL) and skin conductance response (SCR) [51]
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The assembly of a tile cutter lasted about 240s, leading to 
the production of about 60 products in a 4 h shift. Overall, 
considering all the participants who joined the experimental 
campaign, a total of 720 tile cutter were assembled.

3.2  Process failures

In order to investigate the evolution of human operator’s 
performance over time and the contextual learning rate, the 
occurrence and type of process failures caused by humans 
were collected. In this regard, Table 2 contains a taxonomy 
of possible human process failures for the assembly process 
under analysis. Four main macro-groups of human process 
failures were identified:

• Incorrect part selection (HF1): the operator selects a 
component, screw, nut, or washer that is not required to 
perform the subsequent task.

• Incorrect part positioning (HF2): the operator positions 
a component, screw, nut, or washer in an unsuitable way, 
making it difficult or even impossible to perform the fol-
lowing task.

• Incorrect part assemblies (HF3): the operator incorrectly 
assembles different components.

• Part droppings (HF4): the operator accidentally drops a 
component, screw, nut, washer, or tool.

To investigate potential differences between manual and 
collaborative assemblies in terms of learning rate, the learn-
ing curve of human process failures will be analyzed. Learn-
ing curves have been widely addressed in manufacturing-
related literature. Different learning models were proposed 
over the years, and one of the most common is the power law 
learning curve [54, 55]. In this study, a power law learning 
model will be implemented to investigate the evolution of 
process failures caused by humans in both modalities. The 
aforementioned learning model can be expressed as follows:

where a and b are the model coefficients and represent the 
starting performance and learning rate, respectively, while c 
represents the asymptotic steady-state [56, 57]. In this paper, 
it was assumed c = 0 , since: (i) there are no external con-
ditions preventing the operator from reaching the 0-failure 
scenario, (ii) the number of trials is limited, leading to the 
well-known Wright’s model [58]. In our case, the lower b is, 
the faster the learning and consequently the achievement of 
zero failures. Y  is the response variable, i.e., the process fail-
ures. Trial represents the number of trials performed by the 
operator. The R package “stats” [59, 60] was used for fitting 
learning models thought nonlinear least squares [61] and 
calculating confidence intervals for the coefficient estimates.

In the HRC setting, the occurrence of robot failures 
was tracked. Possible types of failures of the cobot include 
missed or incorrect grasping of a component, dropping a 
component during movement, colliding with objects or 
operator, and system errors/blocks. This kind of information 

(1)Y = a ⋅ Trialb + c

Fig. 3  a Tile cutter and b components of the tile cutter with their tags 
[52]

Fig. 4  Assembly workstation setting with the cobot UR3e
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may provide clues to the operator’s user experience in the 
HRC, and their relationship to physiological responses will 
be explored.

3.3  Physiological signal collection

The noninvasive biosensor Empatica E4 [62] was used to 
collect data on various physiological responses of partici-
pants. Physiological data were then analysed to investigate 
the evolution of stress, fatigue and cognitive exertion of 
human operators performing repetitive assembly processes. 
The device records two types of physiological information: 

EDA data at 4 Hz and heart rate data through PPG at 64 Hz. 
From PPG, R-R intervals were obtained, and the Root Mean 
Square of Successive Differences of R-R intervals (RMSSD) 
was used as HRV index due to its common use as stress and 
fatigue indicator [63].

“Ledalab”, a MATLAB-based software, was used to 
process EDA data. Through Continuous Decomposition 
Analysis (CDA) [64], the EDA signal was decomposed 
into phasic and tonic activity signals. Through the analysis 
of tonic activity (i.e., SCL), information on cognitive load 
evolution can be obtained. In contrast, through the analysis 
of the phasic activity signal, skin conductance responses 

Table 1  Operation list of the tile cutter assembly for both HRC and Manual modality [52]

Phase Operation Allocation

HRC Manual

Phase 1: Assembling the base holders (1) Picking the Base from the tray to assembly area Cobot Human
(2) Assembling components C1a and C1b to either side of the Base. Screwing 

with soft tightening of bolts B1a and B2b (assembly A1)
Human Human

(3) Placing sub-assembly A1 out of the assembly area Cobot Human
Phase 2: Assembling the cutting mechanism (4) Picking component C2 to the assembly area and holding it Cobot Human

(5) Assembling component C3 with component C2 via bolt B2 (assembly A2) Human Human
(6) Assembling blade L1 with component C3 via bolt B3 (assembly A3) Human Human
(7) Assembling component C4 with component C3 via bolt B4 (assembly A4) Human Human
(8) Placing assembly A4 out of the assembly area Cobot Human

Phase 3: Assembling the cutting mechanism 
with the base

(9) Picking assembly A2 to the assembly area Cobot Human
(10) Picking assembly A4 to the assembly area Human Human
(11) Inserting rods P1a and P2b into holders of assembly A4 (assembly A5) Human Human
(12) Inserting the assembly A5 into the holders of components C1a and C1b of 

assembly A1
Human Human

(13) Tightening the bolts B1a and B1b (assembly A6) Human Human
Phase 4: Completing the tile cutter (14) Screwing rod P2 into the holder of component C3 of assembly A6 (assem-

bly A7)
Human Human

(15) Picking assembled product and placing it in the tray Cobot Human

Table 2  Taxonomy of human process failures for the assembly process

Group of process failures Process failures Description

HF1 - Incorrect part selection Incorrect component selection The operator picks up a component not needed for the next task
Incorrect screws/nuts/washers selection The operator picks up a screw/nut/washer not needed for the next 

task
HF2 - Incorrect part positioning Incorrect component positioning The operator places a component in a position not suitable to 

perform the next task
Incorrect screws/nuts/washers positioning The operator places a screw/nut/washer in a position not suitable 

to perform the next task
HF3 - Incorrect part assembly Incorrect assembly of components The operator assembles a component incorrectly

Incorrect assembly of screws/nuts/washers The operator uses the wrong screws/nuts/washers to join compo-
nents

HF4 - Parts dropping Dropping of components The operator drops a component
Dropping of screws/nuts/washers The operator drops screws/nuts/washers
Dropping of tools The operator drops a tool
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(SCRs) (i.e., amplitude changes from the SCL to a peak 
of the response) can be identified providing information on 
arousal and stress.

In this study, for each trial, average SCR, SCL and 
RMSSD were computed to investigate the evolution of 
stress, cognitive load, and fatigue [65, 66].

3.4  Experimental procedure

At the beginning, each group of participants was briefed 
about the objectives and the detailed procedure of the experi-
mental study. Secondly, participants were conducted to their 
work-area where they were given detailed information of 
the assembly process to perform. Meanwhile, the participant 
in charge of assembly was equipped with the Empatica E4 
on the left wrist and a 15 min wait period was observed to 
ensure an appropriate adherence of the electrodes, so as to 
acquire reliable EDA data. Next, the participant was asked 
to relax and stand still to record 2 min of “baseline”, i.e., the 
physiological signals at rest. Next, the repetitive assembly 
process was randomly selected in one of the two modalities 
(i.e., Manual or HRC) and began for a 4 h work-shift. A 
10 min break was also scheduled after 2 h of work, in order 
to simulate real-life working conditions. The other two par-
ticipants monitored the whole process by recording process 
failures and product defects. At the end of the 4 h work-shift, 
general unstructured feedbacks on the experiment were col-
lected. In the second shift, the same procedure was followed 
for the remaining modality (i.e., HRC or Manual). There-
fore, each group of participants performed the 4 h work shift 
in both modalities with random order.

4  Results

In this section, the obtained experimental results are 
presented.

4.1  Process failures

Figure 5 shows the evolution of the average number across 
participants of human process failures for both Manual and 
HRC settings. Slightly more failures were present in the 
Manual setting, although there was some overlap between 
the curves. Figure 6 shows the comparison of the fitted 
learning curves with the power law model for each modality. 
The learning curve for the manual modality was found to be 
above that of the HRC modality, highlighting the tendency 
to observe more process failures in the Manual setting. 
This phenomenon provides clues on the cognitive support 
of the cobot for the operator during assembly. In fact, par-
ticipant feedback revealed that the cobot, indirectly with its 

operations, helped the operator in remembering the various 
assembly steps, thus making fewer mistakes.

Table 3 contains the parameter estimates of the power-law 
learning curves. It can be seen that the two learning curves 
have a rather similar learning rate (HRC: b = − 0.3889; 
Manual: b = − 0.3558), while the initial value of average 
process failures is higher in the manual setting (HRC: a = 
0.9398; Manual: a = 1.1444). However, it was not possible 
to conclude that the difference was statistically significant 
since the 95% confidence intervals overlap.

Figure 7 shows the evolution of average across par-
ticipants human process failures categorized into incor-
rect part selections (HF1), incorrect part positionings 
(HF2), incorrect part assemblies (HF3), and part drop-
pings (HF4). No significant differences emerged between 

Fig. 5  Evolution over trials of average human process failures for 
both HRC and Manual modalities

Fig. 6  Comparison of the fitted power-law learning curves between 
HRC and Manual modalities for human process failures
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Manual and HRC modalities, except in incorrect part 
positionings. Observing the curves, more incorrect part 
positionings can be noted in the Manual setting. Several 
failures of this kind were observed during the assembly 
of the cutting mechanism. One of the main difficulties 
encountered by the participants was to correctly position 
the components of the cutting mechanism. Since the cobot 
always presented and held the C2 component in the same 
way, it was easier for the operator to remember how to 
correctly position the other components. This effect is 

also reflected by the coefficients of the learning curves 
(Table 4), where the starting performance was better in the 
HRC modality (HRC: a = 0.3375; Manual: a = 0.7172). 
In addition, this difference was statistically significant as 
there was no overlap between the confidence intervals. The 
learning rate in the Manual setting had a slightly higher 
magnitude (HRC: b = − 0.6073; Manual: b = − 0.5834) 
to compensate for the higher initial gap, however, the dif-
ference with the HRC setting was not significant when 
observing the confidence intervals.

Table 3  Fitted power-law 
learning curve models for 
human process failures

Response variable Modality Coefficient Value Confidence interval (95%)

Human process failures HRC a 0.9398 [0.6605, 1.2191]
b − 0.3889 [− 0.5066, − 0.2712]

Manual a 1.1444 [0.9072, 1.3815]
b − 0.3558 [− 0.4352, − 0.2764]

Fig. 7  Comparison between HRC and Manual modalities for the categories incorrect part selections, positionings and assemblies and part drop-
pings



27Production Engineering (2024) 18:19–33 

1 3

4.2  Physiological response

In order to compare physiological response, data were stand-
ardized for each participant as physiological signals may be 
influenced by personal characteristics. The following for-
mula was used to obtain the z-scores:

where zij and xij are respectively the i-th z-score and 
observation of participant j, xj the sample mean for partici-
pant j, and sj the sample standard deviation for participant j. 
To check for significant differences between the Manual and 
HRC setting the paired t-test was implemented, as the nor-
mality assumption was not rejected by the Shaipiro-Wilks 
[67] test for each response variable.

 Figure 8a shows the evolution of the average SCR across 
participants over the work shift, comparing the Manual and 
HRC settings. It can be noted that in general the Manual set-
ting higher values were observed, implying higher stress for 
participants. This difference was also found to be highly sig-
nificant by the paired t-test (p < 0.001). Observing the trend 
of the average SCR, the Manual setting shows a decreasing 
trend while the HRC setting an increasing one. Initially in 
the Manual setting the stress was quite high, mainly due 
to a learning phase of the task, while in the HRC setting 
it tended to be lower. This was due to the cobot providing 
cognitive support to the participants, helping them to more 
easily remember the assembly steps and how to join cer-
tain parts through its operations. The observed difference in 
terms of stress resulted highly significant in the first half of 
the shift (p < 0.001). However, after about half of the shift, 

(2)zij =
xij − x̄j

sj

Table 4  Fitted power-law 
learning curve models for each 
category of human process 
failure

Response variable Modality Coefficient Value Confidence interval (95%)

HF1 - Incorrect part selections HRC a 0.0699 [0.0003, 0.1394]
b − 0.2756 [− 0.6310, 0.0798]

Manual a 0.1196 [0.0435, 0.1958]
b − 0.3641 [− 0.6098, − 0.1183]

HF2 - Incorrect part positionings HRC a 0.3375 [0.2085, 0.4666]
b − 0.6073 [− 0.8079, − 0.4068]

Manual a 0.7172 [0.5277, 0.9066]
b − 0.5834 [− 0.7172, − 0.4497]

HF3 - Incorrect part assemblies HRC a 0.1760 [0.0690, 0.2829]
b − 0.4516 [− 0.7097, − 0.1934]

Manual a 0.1656 [0.0726, 0.2587]
b − 0.3341 [− 0.5449, − 0.1232]

HF4 - Part droppings HRC a 0.3362 [0.1782, 0.4942]
b − 0.2633 [− 0.4295, − 0.0970]

Manual a 0.2205 [0.1150, 0.3261]
b − 0.1062 [− 0.2596, 0.0471]

Fig. 8  Comparison between HRC and Manual modalities for the 
evolution of the standardized average a SCR and b SCL. Underlying 
trends with confidence bands are highlighted
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the difference between the two settings narrowed until it 
was no longer significant (p = 0.428). The increase in stress 
in the HRC setting may have been caused by the fact that 
the cobot began to be perceived also as a limitation for the 
operator in the second part of the shift. Several participants 
wished that cobot could be faster as they had to wait for the 
cobot concluding its operations to continue with the process, 
consequently reducing the control of the task time.

Figure 8b contains the evolution of the average SCL 
across participants over the trials for both the Manual and 
HRC settings. Overall, in the Manual setting slightly higher 
values were observed, revealing a significant difference by 
the paired t-test (p = 0.0155). It is interesting to note a dif-
ferent behavior of the average SCL between the first and 
second part of the shift. In the first part, significantly higher 
SCL values were observed in the Manual setting (p < 0.001), 
highlighting a greater prolonged use of cognitive resources 
due mainly to having to learn the assembly process. Interest-
ingly, significantly lower values were observed in the HRC 
setting in this phase, providing additional evidence of the 
cognitive support of the cobot. However, as the trials pro-
gressed, the average SCL tended to increase in the HRC 
setting, slightly exceeding the values in the Manual setting 
in the second part of the shift (p = 0.0223). This phenom-
enon points to a gradual increase in prolonged cognitive 
stress mainly due to having to adjust to the pace of the cobot 
when faster or simultaneous actions would have been wel-
come once the operator became familiar with the assembly 
process.

Figure 9 shows the evolution of the average RMSSD 
across the trials, comparing the HRC and Manual settings. 
Both curves show an increasing trend, indicating a gradual 
reduction in initial stress mainly resulting from the learning 
phase of the task. In addition, the two curves tend to overlap 

considerably across trials, implying no significant difference 
between the two modalities in terms of HRV by the paired 
t-test (p = 0.071). Even focusing only on the first and second 
part of the shift, no significant difference emerged (p = 0.092 
and p = 0.370 respectively), although a slight decrease in the 
average RMSSD can be noted toward the end of the shift for 
the HRC setting.

4.3  Relationship between process failures 
and physiological response

In this section, the relationships between process failures and 
physiological response are explored. Figure 10 shows the 
Pearson’s coefficients (ρ) obtained for both Manual and HRC 
settings, as well as the significance level of each coefficient 
obtained through a t-test. A high magnitude of Pearson’s 
coefficient indicates a strong correlation between the two 
variables, while if the value is close to zero the correlation 
is very low.

In the Manual setting, it can be seen that significant cor-
relations emerged only with EDA. The occurrence of fail-
ures by humans generally resulted in a consistent increase 
in SCR (ρ = 0.56) (Fig. 11). This means that process fail-
ures caused rather rapid sympathetic reactions, leading 
to increased stress on the part of the operator. Observing 
the correlations with the different types of human failures, 
incorrect positioning (HF2) and assembly (HF3) contributed 
significantly to the increase in SCR (ρ = 0.46 and ρ = 0.28, 
respectively). Incorrect selection also resulted in an increase 
in SCR, although it was not found significant. This effect is 
related to the realization of having commit a process failure, 
which can cause a rapid reaction (i.e., sympathetic activa-
tion) in the operator, thereby increasing his/her stress. The 
occurrence of failures by humans resulted also in a slight 
significant increase in SCL (ρ = 0.31), i.e., an increase in the 
cognitive load. Looking at the correlations between the dif-
ferent types of human failures, the incorrect assembly (HF3) 
was the one that most affected SCL (ρ = 0.22).

In fact, once realized the incorrect assembly of a compo-
nent, figuring out how to remedy requires a certain amount 
of mental resources that is reflected in the increase of SCL.

In the HRC setting, no significant correlations emerged 
between process failures and physiological responses 
(Figs. 10 and 11). Neither process failures resulting from the 
cobot seemed affect the users’ physiological response. This 
fact suggests that in the HRC setting the observed increases 
in stress, cognitive load, and fatigue may not be attributable 
to process failures, but may arise, for example, from the pro-
cess itself. Thus, the presence of the cobot could mitigate the 
negative effects on the operator due to process failures. From 
previous sections, it should be noted that significantly lower 
mean SCR and mean SCL were observed in the HRC setting 
than in the Manual one, especially in the learning phase in 

Fig. 9  Comparison between HRC and Manual modalities for the evo-
lution of the standardized average RMSSD. Underlying trends with 
confidence bands are highlighted
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which the greatest number of failures were found. These 
results put even more emphasis on the cognitive support of 
the cobot in processes and suggests that the physiological 
response trends observed for the HRC setting can be attrib-
uted to a natural process of operator fatigue during the shift.

5  Discussion

In the case study analyzed, concerning a repetitive assembly 
process, interesting differences emerged in terms of process 
failures and physiological responses of the operator between 
the Manual and HRC setting.

Analysis of the evolution of human process failures 
revealed highly significant differences between the two set-
tings. In particular, there were generally significantly fewer 
failures in the HRC setting, especially in the learning phase. 

From the detailed analysis of the types of human failures, it 
was found that the cobot provided significant support from 
the cognitive point of view especially in avoiding incorrect 
part positionings. In fact, the participants’ feedback showed 
that the cobot’s actions helped to remember the various 
assembly steps especially at the beginning. In addition, the 
fact that the cobot always handed the components in the 
same way created less uncertainty about the correct position-
ing and assembly of the components. From a production rate 
perspective, Manual and HRC settings were comparable.

Regarding the psychophysical state of operators, the 
information obtained from EDA proved most useful in 
bringing out significant differences between the Manual 
and HRC settings. The presence of the cobot resulted in 
significantly lower values of SCR and SCL, especially in 
the first part of the work shift. Initially, indeed, in the 
Manual setting the average SCR was quite high, which 

Fig. 10  Pearson’s correlation coefficients between process failures and physiological response for both HRC and Manual modalities. Signifi-
cance of the correlation is reported as follows: (*) 0.05 > p ≥ 0.01, (**) 0.01 > p ≥ 0.001, (***) p < 0.001
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highlights a distinctly high stress resulting mainly from 
learning the task. In contrast, significantly lower values 
were observed in the HRC setting, highlighting greater 
relaxation on the behalf of the operator in the learning 
phase. These results further corroborate the cognitive 
support role of the cobot in manufacturing assembly 
processes. As the trials progressed, there was a gradual 
increase in SCR in the HRC setting, although reaching 
values in the average range and similar to those found in 
the Manual setting. In contrast, a fairly significant increase 
was shown in the SCL, leading to values higher than the 
Manual setting toward the end of the shift. This phenom-
enon also emerged in the RMSSD analysis, although it 
was not significant. The increased demand for cognitive 
resources at this stage is due to a process of fatigue and 
slight frustration of the participants. In fact, toward the 
end of the shift several participants would have liked to 
be even more efficient desiring the cobot to be faster in 
performing its operations. This feedback shows the need to 
allow operators to customize and adapt HRC according to 
their needs in order to ensure an optimal and fully profit-
able experience with such technology.

Finally, relating process failures and physiological 
responses revealed further interesting differences between 
the HRC and Manual setting. In the Manual setting, the 
occurrence of human failures resulted in a negative effect 
on the psychophysical state of the operator, translating into a 
consistent increase in SCR (i.e., stress) and a slight increase 
in SCL (i.e., cognitive load). Surprisingly, these effects were 
not significant in the HRC setting. This result suggests that 
the presence of the cobot may also help to contain poten-
tial negative effects on the operator from process failures. 
In addition, the observed stress and cognitive load may 

therefore result from other factors, such as the configura-
tion of the interaction with the cobot [34].

Other assistive technologies, such as augmented reality 
(AR) or artificial intelligence (AI) based vision systems, 
can also provide cognitive support to the human operator, 
contributing to the reduction of failures in the context of 
assembly processes. These tools are particularly suitable for 
guiding the operator in real time, however they can burden 
mental load of operators. Collaborative robots provide both 
physical and implicit cognitive support to the operator, and 
the integration of other assistive technologies can enable the 
provision of more information. However, having to manage 
and process additional information can increase the opera-
tor’s mental load especially on prolonged processes. Fur-
ther investigation of this topic in terms of user experience 
is needed.

Finally, implementation of HRC systems can provide a 
favorable return of investment (ROI) over time, particularly 
when they lead to substantial reductions in quality errors 
and defects, increased production efficiency, and improved 
product consistency [68]. However, it is important to note 
the ROI is highly dependent on the application [69]. Form 
a human-centered perspective, the implementation of HRC 
can relieve operators from repetitive or highly physically 
demanding tasks. This would allow operators to focus on 
more complex, value-added tasks that require problem-
solving and decision-making skills, potentially leading to 
productivity gains and greater satisfaction.

6  Conclusions

This paper aimed to propose a methodology to obtain infor-
mation on the performance and psychophysical state of 
operators in a continuous and noninvasively during entire 
shifts in an HRC production process. An implementation of 
this methodology was shown in a case study of a repetitive 
assembly process of a tile cutter, aimed at comparing shifts 
performed in Manual and HRC modality in terms of physi-
ological response and process failure evolution.

In terms of performance, the use of the cobot implied a 
significant reduction in human failures, such as incorrect 
part positionings or assemblies, highlighting the cognitive 
support of the cobot. This role was further investigated and 
confirmed through the analysis of physiological responses, 
which showed a significant reduction in stress and cogni-
tive load especially in the first half of the work shift. By 
also relating process failures to physiological responses, 
it was observed that in the Manual setting the occurrence 
of failures resulted in a significant increase in stress and 
operator cognitive load. However, these relationships did 
not emerge significant in the HRC setting, suggesting that 
the observed physiological responses may result from other 

Fig. 11  Scatter plot between total process failures and average SCR 
comparing Manual and HRC modalities. Dotted lines, with and confi-
dence bands, represent the relationship between the two variables
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factors, such as the configuration of the interaction with the 
cobot. This result contributes to the need to develop collabo-
rative robotic systems that can meet operator preferences in 
order to fully exploit the supportive role of this technology.

Future work will focus on exploring and implementing 
other noninvasive biosensors to assess their added value on 
understanding the operator’s state. In addition, future work 
will also focus on developing systems that can process real-
time information about the operator’s state to support the 
operator in personalizing HRC.
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