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Comparing artifact removal techniques for daily-life
electroencephalography with few channels

Pasquale Arpaia1,2,3, Egidio De Bendetto1,2, Antonio Esposito2,4,
Angela Natalizio2,4, Marco Parvis4, and Marisa Pesola2

Abstract—This paper proposes a comparison between artifact
removal techniques applied to real electroencephalographic data.
The aim was to investigate the most suitable technique for artifact
removal with a focus on wearability, portability, and low cost of
the final system. A particular focus was thus put on the usage of
few channels as a key feature to develop wearable and portable
low-cost devices. Recent techniques relying on artifact subspace
reconstruction or its Riemannian modification were considered
along with more classical ones based on independent component
analysis and principal component analysis. Different cut-off
parameters were investigated in order to compare aggressive
artifact removal to less aggressive one. The considered artifacts
were divided into four categories: eye blinking, eye closing, eye
moving, and muscle artifacts. Moreover, uncontaminated signal
epochs were taken into account during the analysis for checking
out if the artifact removal technique was affecting them too. The
root means square error was exploited as the metric for assessing
artifact removal. Results from three subjects suggest that artifacts
subspace reconstruction is the most effective one, even when
down to four channels are taken into account. Moreover, the
results pave the way to the design of an hybrid technique to
be applied when less than four channels are available for the
analysis. Finally, optimization of the cut-off parameters should
also be furtherly investigated.

Index Terms—electroencephalography, artifact removal, brain-
computer interface, wearable, portable, low cost.

I. INTRODUCTION

Electroencephalography (EEG) is a widely spread and con-
solidated neuroimaging technique for acquiring the human
brain activity. The reason behind that is the EEG non-
invasiveness, ease of use, and possibly wearability, portability,
and low cost. Due to its flexibility, EEG has shown great
potential in both clinical and research contexts [1]. In clinical
practice, EEG is a powerful diagnostic and monitoring tool.
On the other hand, the development of new smart technology
based on direct communication between the human brain and
a machine is a popular idea in various fields of research.

A specific research area of interest is thus the brain-
computer interface (BCI) field [2]. A BCI is a measurement
system relying on brain signals acquisition and processing,
usually providing a functional connection between the user
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and a device. Recently, the interest in wearable and portable
EEG-based BCI systems has grown in targeting daily-life
applications. Different EEG acquisition systems exist for that
purpose, and each system presents peculiar measurement accu-
racy as well as number of channels. The most recent EEG-BCI
systems rely on wireless headsets available on the market [3].
The non-invasive EEG records the electrical activity from a
region of cortical neurons by placing surface electrodes on
the scalp [4]. Small size, efficient power handling, and simple
montage are further requirements for portable devices.

In this framework, daily-life applications are still limited
because of the need to enhance EEG measurement. Indeed,
in out-of-the-lab environments, EEG signals are greatly con-
taminated by interference and noises from both endogenous
and exogenous sources [3]. In particular, physiological ar-
tifacts consist of undesired interference from other body
processes [4], [5]. Literature mostly considers eye-related,
cardiac, and muscular artifacts, while less relevant ones are
sympathetic skin responses, skin perspiration, and respiration.
Non-physiological artifacts, instead, include both environmen-
tal and experimental noises [6]–[8]. A typical environmental
artifact is the line interference at 50Hz or 60Hz. Meanwhile,
electromagnetic and radio frequency interference can arise
from nearby instrumentation. In addition, incorrect procedural
setup and inappropriate actions of untrained users can also
lead to experimental artifacts [4], [5].

As a whole, EEG data represent a non-stationary mixture of
desired brain signals and artifacts. Therefore, EEG artifact re-
moval is crucial in properly measuring the neurophysiological
phenomena of interest associated with brain activity. Currently,
artifact removal techniques can be classified into four main
groups [4], [9]:

• regression methods rely on the superposition principle,
and the regression is used to remove artifacts by means of
available reference signals (e.g. electrooculograms), with
the goal to subtract those artifacts from the actual signals
[10];

• filtering methods aim to filter out artifact-related bands
that do not overlap with the signal band, where classical
filters need a-priori knowledge for the artifacts spectral
content, while adaptive filters have adjustable parameters
to optimize [9]. This last filtering methods include the
“artifact subspace reconstruction” (ASR), a novel and
promising adaptive technique [11], as well as its Rieman-
nian modification (rASR) [12]. Overall, filtering methods
are largely exploited in EEG pre-processing;



• blind source separation (BSS) methods estimate signal
sources from the acquired data by assuming a linear
mixing model X = AS [9]. Several BSS algorithms
exist, including the well-known independent component
analysis (ICA) [13], principal component analysis (PCA)
[14], and canonical correlation analysis (CCA). BSS
methods process all the EEG channels simultaneously
and, therefore, they are mostly employed in multi-channel
EEG applications;

• source decomposition methods aim to identify and re-
ject artifact components by decomposing each individual
channel into basic waveforms [9]. Two common examples
are the wavelet transform (WT) [15] and the empirical
mode decomposition (EMD) [16]. In particular, EMD
methods have recently evolved to ensemble empirical
mode decomposition (EEMD) based on additional white-
noise data [17].

Moreover, the interest in hybrid methods, where the mentioned
techniques are combined, is growing more and more and a
recent trend also consists of using neural network [3], [4].

Despite that, current literature has rarely taken into account
artifact removal techniques for a limited number of channels.
Most studies propose artifact removal by relying on many
channels, and this limits the usage of such techniques in
wearable and portable EEG, which is indeed a hot topic [3].
Furthermore, there is no method to be preferred in general for
artifact removal and their limitations are not clearly identified,
especially with respect to the minimum number of needed
channels.

On these premises, this paper provides a comparative anal-
ysis between different artifact removal techniques with a
particular focus on decreasing the number of EEG channels.
This analysis appears essential in understanding if already
the available techniques can be used with a limited number
of EEG channels or if there is the need to develop novel
techniques. Therefore, Section II presents the data and the
methods adopted for the current analysis, while Section III
reports and discusses the inherent results. Conclusions will
follow and some future steps will be addressed.

II. MATERIAL AND METHODS

The main aim of the present study was to compare the effec-
tiveness of consolidated artifact removal techniques and more
recent ones in pre-processing EEG data from few channels.
Hence, the focus was on assessing this effectiveness with a
decreasing number of channels. However, as a side effect,
these analyses could verify the result reported in literature for
a multi-channel scenario. Despite the possibility to employ
simulated data, real EEG data were actually exploited to get
closer to daily-life applications. Therefore, in the following,
the employed data are first introduced and then the proposed
analysis is presented.

A. Dataset

EEG data were selected from a public dataset intended for
testing artifact removal techniques [18]. This dataset provides

data from 13 participants with one recording session each.
Brain signals were recorded with an helmet by Brain Products
[21] with 27 EEG electrodes and 3 EOG electrodes, at a
sampling rate of 200 Sa/s. The subjects sat in front of a screen
to follow instructions for the experimental protocol. Two files
were finally made available for each subject: a file with EEG
records, and a file containing meta-information related to the
record.

Each experimental session consisted of two parts. First a
baseline acquisition was carried out, where the subjects were
asked to focus on a fixed cross on the screen while reciting
the reversed alphabet in their minds. Two 30-second-long
traces were recorded from each subject at the beginning of the
experiment. This baseline block is supposed to contain a small
amount of artifacts and it can be considered pure EEG data.
Secondly, 10 repetitions for nine different artifact conditions
were carried out in random order. Each artifact condition lasted
from 10 s to 30 s. These record thus includes artifacts from
both eye and muscle sources. The triggered eye artifacts were
(i) eye blinking, (ii) eye closing, (iii-iv) fast eye movements
to left and right, and (v-vi) smooth eye movements to left and
right. The triggered muscle artifacts were (vii) talking, (viii)
jaw clenching, and (ix) head flexing. Further details on artifact
conditions can be found in the dataset documentation [18].

Regarding the present study, a simpler categorization of
artifacts is proposed. Eye blinking and eye closing were
treated separately. Instead, fast and smooth eye movements
were grouped as eye moving artifacts due to their similarity,
independently of the movement direction. Likewise, all the
muscular artifacts were grouped together in the muscle ar-
tifacts category. Therefore, four different artifact types were
ultimately considered.

B. Analysis

Data from three subjects were analysed in the present work,
namely S01, S02, and S04. The rationale was to carry out
this comparison with the first three subjects of the dataset.
However, S03 was discarded after visual inspection due to
some artifacts identified within the baseline period. Data were
processed in MATLAB© by means of EEGLAB, an open-
source toolbox for EEG analysis developed by Delorme and
Makeig in 2004 [19]. In addition, the plug-in clean rawdata()
plug-in [20] was used to implement artifact removal techniques
reported below.

For each subject, data were pre-processed as follows. First,
the EEG record was imported by the pop loadset.m function.
Then, data were base-normalized and band-pass filtered in the
1Hz to 40Hz frequency range with the pop eegfiltnew.m and
the pop rmbase.m functions. Next, an EEG trace of about
120 s length was obtained from the filtered data. In details,
the pure data condition was entirely preserved as the first
part of the trace (60 s length). For the second part, 60 s of
signal with a type of artifact (eye blinking, eye closing, eye
moving, or muscle artifacts) was randomly selected from the
10 repetitions and by considering a random set of channels.



Therefore, a few-minute-long trace was extracted and saved
as new file.

At this point, four artifact removal techniques were applied
to the epoched data. In some cases, the same technique was
tested with different values of the main parameters. These
values were chosen by relying on literature’s suggestions. On
the contrary, the default values of hyperparameters have been
left unchanged. The three EOG channels were excluded from
the analysis. All the 27 EEG channels were instead used by
randomly removing a channel at each iteration until reaching
two channels. This randomization was done to investigate the
effectiveness of the artifact removal technique independently
of the actually selected channels.

The implemented artifact removal techniques were:
• ASR with an aggressive cut-off parameter k = 15;
• ASR with a non-aggressive cut-off parameter k = 25;
• rASR with an aggressive cut-off parameter k = 2;
• rASR with a non-aggressive cut-off parameter k = 5;
• ICA with 75% rejection threshold for eye and muscle

artifacts;
• ICA with 90% rejection threshold for eye and muscle

artifacts;
• PCA with rejection of the highest variance component.

ASR and rASR were implemented with the clean asr.m func-
tion, ICA was implemented with the runica.m function, and
PCA was implemented with the pca.m function.

Finally, root mean square error (RMSE) was chosen to
assess artifact removal on each segment:

RMSE =

√√√√ 1

N

N∑
i=1

[EEGcorr(i)− EEGcont(i)]
2
, (1)

where EEGcont is the contaminated signal and EEGcorr is
the signal after one of the artifact removal techniques was
applied. It must be noted that RMSE is a suggested metrics for
analysis of simulated EEG data, while there is no consensus
on one evaluation criterion on real EEG data [1]. However,
RMSE has been used in this study to highlight the difference
between the original contaminated signal and the corrected
signal after the artifact removal. Ideally, an RMSE equal to
zero would be desirable for the baseline condition analysis,
because pure EEG epochs should be left unchanged in the
artifact removal process. On the contrary, higher values of
RMSE would be expected for along epochs with artifact
because of the difference between contaminated EEG data and
corrected EEG data.

In addition to the RMSE quantitative assessment, re-
sults were also visually inspected. For that purpose, the
vis artifacts.m function (included in the clean rawdata() plug-
in) was used to display the difference between the contami-
nated signal and the corrected signal.

For each subject, the analysis was repeated 10 times with
random selection of channels. After these 10 runs, the mean
and the standard deviation of the resulted values of RMSE
were computed.

III. RESULTS AND DISCUSSION

The results obtained with EEG data from the subject S01
are shown in Fig. 1-4. Each figure corresponds to a different
artifact removal technique. On the x-axis, the number of
exploited channels is reported, while the y-axis reports the
RMSE in µV. Each curve represents a different condition. The
black curve refers to the baseline segment, which should be
left unchanged. Hence, the desired trend for the black line
would be a constant value close to zero. Then, the yellow
curve refers to the eye closing artifacts, the green one to the
eye moving, the magenta one to the eye blinking, and the
red one to the muscular artifacts. The RMSE value correlates
positively with the artifact amplitude. Higher values of RMSE
would be expected in these cases.

A. Artifact removal results

Fig. 1. ASR with k = 25 applied to S01 data. Black: baseline, yellow: eye
closing, green: eye moving, magenta: eye blinking, red: muscle artifacts.

Fig. 1 shows the performances of ASR when the cut-off
parameter is k = 25, but compatible results were obtained
with k = 15. The RMSE for baseline condition appears close
to the ideal trend, namely it remains constantly below 5 µV.
Interestingly, the ASR implementations are able to remove
all four artifacts type even when decreasing the number of
exploited channels. However, there in an increase of the stan-
dard deviation highlighting a greater performance oscillation
when less channels are considered. Results also suggest that,
when the number of channels reaches 3, the ASR becomes less
effective. In particular, ASR is not able to correctly remove
eye movements (green line) and eye closing (yellow line).

Regarding the rASR, the fluctuations shown in Fig. 2
indicate that it less stable than the ASR. Moreover, though the
baseline remains almost unchanged down to 10 channels, then
the inherent RMSE significantly arises. Then, the artifact re-
moval appears less effective than ASR for eye closing (yellow
line) and eye movements (green line) even in the multi-channel
case. This is especially true for the less-aggressive cut-off
parameter associated with Fig. 2, while the more-aggressive
resulted more effective in removing these artifacts. Overall,



Fig. 2. rASR with k = 5 applied to S01 data. Black: baseline, yellow: eye
closing, green: eye moving, magenta: eye blinking, red: muscle artifacts.

the ASR should be preferred in a few channels setup because
it does not significantly affect the baseline signal. Nonetheless,
it must be noted that the exploited rASR algorithm is still in
a beta development version.

Fig. 3. ICA with th = 90% applied to S01 data. Black: baseline, yellow:
eye closing, green: eye moving, magenta: eye blinking, red: muscle artifacts.

Fig. 3 represent the performance of artifacts removal with
ICA with the less aggressive different threshold. RMSE values
are generally lower than before for all the artifact types,
thus indicating a less effective removal. In particular, the
effectiveness of the less aggressive threshold drops below 8
channels, while it could be seen that the one of the more
aggressive threshold drops at 5 channels. Therefore, as it was
expected from literature, ICA cannot be exploited for few-
channels EEG processing.

Finally, Fig. 4 shows artifact removal with PCA as the
number of EEG channels decreases. Although all the curves
show a constant trend, the RMSE for the baseline segment
is higher than the other techniques (above 5 µV). Therefore,
although effective in artifact removal, the PCA also affects

Fig. 4. PCA applied to S01 data. Black: baseline, yellow: eye closing, green:
eye moving, magenta: eye blinking, red: muscle artifacts.

clean EEG signals. A visual inspection of the signal after
artifact removal with PCA confirmed such an observation.

B. Discussion

Fig. 5. ASR with k = 25 for S02 data. Black: baseline, yellow: eye closing,
green: eye moving, magenta: eye blinking, red: muscle artifacts.

The main aspect taken into account in the present work
is the effectiveness of the artifact removal techniques with
respect to the number of exploited channels. As the number of
channels decreases, ASR proves to be the best artifact removal
choice due to its stability and its capacity to preserve the clean
EEG signal (baseline). The major drawback of rASR and PCA,
instead, is that they also affect the clean signal. Finally, the
ICA is not able to perform in a few-channel setting.

Results were confirmed by analysing the EEG data from
the subject S04, while slight differences are remarkable for
the subject S02, which has a less clean EEG signal in the
baseline period. As a consequence, when the ASR technique
is applied on EEG signals of S02, the RMSE values are
higher than those of S01. This is reported in Fig. 5. Moreover,



the standard deviation associated with the few-channels case
is even greater than the S01 one, and the effectiveness of
artifacts removal appear unclear in such a case. Despite that,
visual inspection of the signals suggests a still effective artifact
removal. As an example, Fig. 6 shows EEG signals before
(red) and after (blue) artifacts removal for S02. In there, the
ASR with k = 25 applied to a random channel is considered,
its application to the baseline period (a) is compared to the
removal of the muscle artifact segment (b). It can be seen
that the baseline segment contains some artifacts corrected
by ASR technique. In accordance with literature, the muscle
artifact removal results appears less effective, because a main
requirement for the ASR is a clean baseline.

Some general considerations can be finally derived from
these results. First, it can be noted that the RMSE associated
with the muscle artifact segment is systematically higher for
all the techniques except ICA. This can be explained by the
larger noise amplitude of muscle artifacts if compared to
other artifact types, which eases the removal by ASR, rASR,
or PCA. Eye-related artifacts have also been successfully
removed from all techniques in multi-channel EEG, while the
few-channel case is less neat. Standard deviation generally
increases when the number of channels is diminished, hence
performance is less stable. The obtained standard deviation
values can be also explained by the location of the selected
electrodes in the few-channels setting. Indeed, if the randomly
selected electrodes are on the frontal lobe, eye-related artifacts
removal will be more effective, while the RMSE will be lower
when the considered electrodes are not largely affected by
those artifacts. This observation was also confirmed by visual
inspection of different channels.

In conclusion, it is worth mentioning that the four consid-
ered techniques require different execution times. The execu-
tion of each technique during the analysis on subject S01 was
timed at each iteration as the number of exploited channels
decreased. The chosen value of the main parameter of a
technique did not affect the execution time. On the contrary, it
was observed that a higher number of channels implies longer
execution times. In detail, PCA is the fastest technique and
has a minimal dependence on the number of channels, with an
average execution time of 0.46± 0.01 s. In general, ASR and
rASR have comparable execution times, slightly longer than
PCA. The average execution time of ASR is of (1.04±0.34)s,
while rASR has an average execution time of (0.93± 0.23)s.
Finally, ICA has an average execution time of (9.88± 4.86)s.
In conclusion, ICA performs 10 times slower than the other
considered techniques. On the other hand, ASR is suitable for
online processing due to its low execution time.

IV. CONCLUSION

In this paper, a comparative analysis between artifact re-
moval techniques has been carried out on real EEG data.
The goal was to investigate the most suitable technique for
artifact removal with a special focus on a few-channel setting,
which would pave the way to develop low-cost wearable
devices. This study is considered a preliminary analysis of

these techniques, which allows both to confirm the literature
knowledge regarding the multi-channel case and then test the
techniques effectiveness in the less-treated few-channel case.

Four artifacts removal techniques were taken into account.
In particular, ICA and PCA are well-known in literature, while
ASR and its Riemannian modification (rASR) are more recent
ones. Two different cut-off parameters were used for ASR,
rASR, and ICA, in order to also test different levels of aggres-
siveness for the artifacts removal. To assess the effectiveness
of each technique, the RMSE between the contaminated EEG
signal and the corrected one was exploited. Results from three
subjects suggest that ASR generally outperforms the other
technique, independently of its aggressiveness. Interestingly,
ASR remains effective with fewer channels, down to about
four employed channels. Such results were also confirmed
by visual inspection. In addition, ASR would also be more
suitable for online processing if compared to the widely used
ICA.

By relying on these results, further aspects can be studied
in the future. First, optimizing the cut-off parameter and other
hyperparameters of the algorithm would be desirable. Then,
the design of an ASR-based hybrid technique could enhance
the performance in order to expand its applicability to 2 or
3 EEG channels. Finally, another important open question
concerns the reliability of RMSE as a performance indicator
for real EEG data, which has been currently used along with
visual inspection.

In conclusion, this study identifies ASR as a very promising
artifact removal technique, whose potential in few-channel
daily-life applications needs to be further explored.
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