
22 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An effective approach for total completion time minimization subject to makespan constraint in permutation flowshops /
Pastore, Erica; Alfieri, Arianna. - In: ENGINEERING OPTIMIZATION. - ISSN 0305-215X. - (2024).
[10.1080/0305215X.2024.2302909]

Original

An effective approach for total completion time minimization subject to makespan constraint in
permutation flowshops

Taylor and Francis preprint/submitted version

Publisher:

Published
DOI:10.1080/0305215X.2024.2302909

Terms of use:

Publisher copyright

This is an Author’s Original Manuscript of an article published by Taylor and Francis in ENGINEERING OPTIMIZATION
on 2024, available at http://wwww.tandfonline.com/10.1080/0305215X.2024.2302909

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985738 since: 2024-02-16T10:00:58Z

Taylor and Francis



ARTICLE TEMPLATE

An effective approach for total completion time minimization subject

to makespan constraint in permutation flowshops

E. Pastorea and A. Alfieria

aDepartment of Management and Production Engineering, Politecnico di Torino, Turin, Italy

ARTICLE HISTORY

Compiled January 2, 2024

ABSTRACT
This article addresses the permutation flowshop scheduling problem with the ob-
jective of minimizing the total completion time subject to a makespan constraint.
As the makespan is related to system utilization while the total completion time
is related to the waiting time (and hence to the work in process (WIP)), in real
contexts, focusing on both total completion time and makespan allows to find a
good trade-off between WIP and utilization. Two local search algorithms are devel-
oped and, by using an extensive computational experience on literature benchmark
instances, they are proved to be able to find good solutions both for regular and
no-wait flowshops.

KEYWORDS
Scheduling; makespan; total completion time; permutation flowshop

AMS CLASSIFICATION
90C27; 90B35; 90C11

1. Introduction

Flowshops are among the most adopted layouts in production systems, especially in
contexts with sufficiently large product volumes and low product variety.

When volumes are really large and no more than two or three very similar product
types are manufactured, synchronous lines are used. In these systems, the production
is paced by an interconnecting conveyor system. No work in process (WIP) can accu-
mulate at the different stations and the production control logic is implicitly included
in the conveyor system control. They are quite expensive and inflexible and typically
used for high-throughput final assembly.

When the variety is larger but still limited, and the production volumes for each
product type are still quite large (thus not allowing for an effective and efficient use of
product layouts as job shops), asynchronous lines can be adopted. In such lines, the
part advancement between the different stations is not synchronized. Stations need
buffering capacity to accommodate the resulting WIP, and planning and scheduling
techniques are to be used for their management.

In both cases, how to manage the line (by controlling the conveyor system or by
adopting scheduling approaches) strictly depends on the performance measure to be

CONTACT E. Pastore. Email: erica.pastore@polito.it



optimized. When respecting due dates is crucial, the minimization of the number of
late jobs or job delay should be considered (Allahverdi, Aydilek, & Aydilek, 2016).
Instead, in capital intensive systems that need to work at maximum capacity, system
management should avoid, or minimize, inactivity periods.

If due dates are not relevant, the most common performance measures are the total
completion time and the makespan (Pan & Ruiz, 2013; Reza Hejazi & Saghafian,
2005). Minimizing the total completion time implies letting each job finish as soon as
possible, thus improving the service level offered to customers. As it is related to the
average waiting time, it is also related to the average WIP, due to Little’s law (Little,
1961). Thus, it is usually a crucial performance measure in all the industries in which
inventory space is limited and/or holding costs are relevant. Instead, the makespan
considers the completion time of the last job of the schedule, hence, it is strictly related
to the utilization rate. In fact, the sooner the last job completes, the more resources
are kept working, i.e., the smaller is the idle/inactivity time and, hence, the higher the
utilization rate (which is the ratio between the working time and the total available
time).

Usually, total completion time and makespan are separately considered, and only
few examples in the literature address them together, as it will be discussed in the next
section. However, in real contexts, focusing on both of them at the same time allows
for keeping the WIP (and the related space/cost) under control while not loosing too
much from a utilization perspective. This is particularly relevant in all the systems
producing high value items with capital intensive resources, such as the automotive
and the semiconductor industries.

This article considers both the total completion time and the makespan in flow-
shops, by addressing the minimization of the total completion time with a constraint
on the maximum allowed makespan (i.e., on the minimum allowed utilization). In-
deed, reducing the impact of WIP is usually a more sensible performance measure in
terms of costs and inefficiency; however, low utilization is generally not appreciated in
companies. Both the cases of no-wait and regular (i.e., systems without the no-wait
condition) flowshops are considered. No-wait condition refers to the impossibility for a
job to wait between one operation and the next, i.e., once the job is started, all its oper-
ations need to be performed one after the other with no waiting time in-between. This
situation can be related to space unavailability between each pair of workstation or
it can more likely be due to technological reasons (e.g., Aydilek, Aydilek, Allahverdi,
and Allahverdi (2022); Na, Ahmed, Nemhauser, and Sokol (2014); Pastore, Alfieri,
and Castiglione (2023); Yuan, Jing, Huang, Ren, et al. (2013)). Also, a permutation
flowshop is considered, i.e., each machine processes the jobs with the same identical
sequence. The problem is mathematically formulated, and heuristics algorithms are
designed for its solution and tested on literature available benchmark instances.

The reminder of the article is organized as follows. In section 2, the most relevant
literature on scheduling problems related to the one addressed in the article is revised,
and the contribution of the article is stated. Section 3, 4 and 5 present the mathe-
matical model, the solution algorithms and discuss the achieved results, respectively.
Finally, section 6 concludes the article.

2. Literature Review

The literature on scheduling problems minimizing either the makespan or the total
completion time is vast (Aydilek, Aydilek, & Allahverdi, 2021; Pan & Ruiz, 2013;

2



Reza Hejazi & Saghafian, 2005). Schedules that minimize both the makespan and the
total completion time are usually referred to as ideal schedules (Coffman, Sethuraman,
& Timkovsky, 2003), however they exist only for a subset of problem instances with
specific characteristics (Jiang, Lee, & Pinedo, 2021). In the literature restricted to
flowshop systems, authors considered these two performance measures together either
by (i) optimizing them in a bi-objective environment, or (ii) by optimizing them in
a single-objective weighted sum of total completion time

∑
j cj and makespan cmax,

or by (iii) using a constrained optimization in which one of them is optimized in the
objective function (o.f.) while the value of the other is limited by using a constraint.
Given two objective functions A and B, the mathematical representation of the three
optimization alternatives are: (A,B) for the bi-objective optimization, (αA + βB)
for the single-objective weighted sum, and E(A|B) for the constrained optimization
(T’kindt & Billaut, 2006).

The following review of the literature is limited to flowshop systems in which the
makespan and the total completion time are considered together, and addressed with
one of the three optimization alternatives.

Table 1 reports a summary of the revised articles (rows) and related characteristics
(columns). The first two columns identify the reference of the addressed article and
its problem according to Graham’s notation (Graham, Lawler, Lenstra, & Kan, 1979).
Articles dealing with multi-objective functions are identified by a check mark on col-
umn multi-obj. (with additional w.s. meaning that the single-objective weighted sum is
considered). For each article, columns cmax and

∑
j cj identify whether the makespan

(cmax) and the total completion time (
∑

j cj) are in the objective function (o.f.) or

in a constraint (Constr), respectively. The no-wait condition, the use of permutation
flowshops, and the inclusion of setup times are identified by columns nwt, prmu and
setup, respectively. The last column (other) reports additional relevant characteristics
of the studied problem. The last two rows of the table summarize the characteristics
of the problems studied in this article.

As shown in Table 1, all the articles addressing regular or no-wait flowshop schedul-
ing problems consider the permutation case, as this largely simplifies the structure
of the problem. The permutation assumption is not made in Buddala, Mahapatra,
and Singh (2022); M. Marichelvam, Geetha, and Tosun (2020); M. K. Marichelvam,
Prabaharan, and Yang (2014), as they consider hybrid or flexible flowshops. All of them
developed meta-heuristic algorithms to solve the problem. Specifically, M. K. Marichel-
vam et al. (2014) and M. Marichelvam et al. (2020) considered an hybrid flowshop
system with αcmax + β

∑
j cj as o.f., while Buddala et al. (2022) addressed a flexible

bi-objective flowshop problem.

The flowshop scheduling problem with bi-objective function including the mini-
mization of cmax and

∑
j cj has been mainly addressed by developing heuristic or

meta-heuristic algorithms. The majority of the literature addressing this problem have
considered regular flowshops, except for Laha and Gupta (2016), which focused on no-
wait systems and proposed a Hungarian penalty-based construction heuristic. The
special case of the two-machine flowshop system has been studied by Jiang, Lee, and
Pinedo (2023), which developed approximation algorithms valid when processing times
are proportionate, job ordered or machine ordered. Some of the most recent stud-
ies that addressed the case of m machines are: Balasundaram, Valavan, and Baskar
(2014); M. Marichelvam, Tosun, and Geetha (2017); Pasupathy, Rajendran, and Suresh
(2006); Pugazhenthi and Anthony Xavior (2013); Ravindran, Selvakumar, Sivaraman,
and Haq (2005); Zangari, Mendiburu, Santana, and Pozo (2017); Zhao, He, and Liu

3



(2017). All these authors developed heuristic and meta-heuristic methods to solve the
Fm|prmu|(cmax,

∑
j cj) problem. A more comprehensive review of this problem can be

found in M. Marichelvam et al. (2017). Other studies included more specific character-
istics, among which He, Li, Zhang, and Cao (2019) considered sequence-independent
setup times and minimized a multi-objective function that includes: makespan, total
completion time, total production cost, and idle time.

In other articles, the two objective functions are combined in a single weighted sum
of makespan and total completion time. Among them, Allahverdi and Aldowaisan
(2002) and Ye, Li, and Nault (2020) considered no-wait flowshops. While Allahverdi
and Aldowaisan (2002) proposed a branch and bound algorithm for the special F2
case and some heuristics for the general Fm case, Ye et al. (2020) proposed a trade-
off balancing heuristic for the Fm case. Regular flowshops, instead, have been ad-
dressed by various authors as, for example, Cheng, Tadikamalla, Shang, and Zhang
(2015); Nugraheni, Abednego, and Saputra (2022); Rajkumar and Robert (2019); San-
jeev Kumar, Padmanaban, and Rajkumar (2018); Wang and Zhang (2015). Cheng et
al. (2015) considered the special case of F2 systems, by finding dominance rules, devis-
ing polinomially-solvable cases and proposing a branch and bound algorithm. All the
others developed heuristic and meta-heuristic algorithms to solve the problem with a
more general Fm system.

Other studies considered constrained optimization problems for addressing two ob-
jective functions together in permutation flowshops. Aydilek and Allahverdi (2012);
Framinan and Leisten (2006); Nagano, de Almeida, and Miyata (2021) considered the
case of minimizing the makespan subject to a total completion time constraint (Ay-
dilek & Allahverdi, 2012; Nagano et al., 2021) or to a maximum tardiness constraint
(Framinan & Leisten, 2006). Instead, Allahverdi, Aydilek, and Aydilek (2018, 2020,
2022) considered the problem of minimizing the total tardiness subject to a makespan
constraint.

To the authors’ knowledge, only four articles considered the minimization of the
total completion time subject to a makespan constraint (Allahverdi & Aydilek, 2013,
2014; Almeida & Nagano, 2023; Cheng, Tadikamalla, Shang, & Zhang, 2014). Among
these, Allahverdi and Aydilek (2013, 2014); Almeida and Nagano (2023) studied the
no-wait case, while Cheng et al. (2014) the regular case. Allahverdi and Aydilek (2013)
proposed a heuristic algorithm to set a feasible upper-bound for the makespan con-
straint, and developed a heuristic algorithm (PAL) based on sequence permutation and
a genetic algorithm to solve the Fm|nwt|E(

∑
j cj/cmax) problem. Their results on ran-

domly generated instances showed that PAL algorithm outperforms the genetic one.
The same problem with non-zero setup times has been addressed by Allahverdi and
Aydilek (2014); Almeida and Nagano (2023), which considered sequence-independent
and sequence-dependent setup times, respectively. Allahverdi and Aydilek (2014) de-
veloped ad-hoc heuristics, among which insertion based, genetic, simulated annealing
and differential evolution algorithms. Instead, Almeida and Nagano (2023) compared
the best algorithms found in Allahverdi and Aydilek (2013) and Allahverdi and Ay-
dilek (2014) with four new heuristics based on destruction and construction phases
and acceptance criteria. The permutation flowshop system with zero setup times is
considered by Cheng et al. (2014), which minimized the total completion time subject
to a makespan constraint, and addressed the special case of deteriorating jobs (i.e.,
job processing times increase with the increase of the starting time). They proposed
two algorithms based on pairwise interchange of jobs and a branch and bound algo-

4



rithm using dominance rules to reduce the dimensions of the search tree. Polynomial
time solvable cases are identified and the proposed algorithms are tested on randomly
generated instances.

2.1. Contribution

This article addresses the permutation flowshop scheduling problem in both the reg-
ular and the no-wait conditions with the aim to minimize the total completion time
subject to a makespan constraint. Using Graham’s notation (Graham et al., 1979),
the addressed problems are: Fm|prmu|E(

∑
j cj/cmax) and Fm|nwt|E(

∑
j cj/cmax).

As shown by Table 1 and discussed in the literature review section, this is the first
attempt in the literature of addressing the regular Fm|prmu|E(

∑
j cj/cmax) problem.

In fact, Cheng et al. (2014) considered the same problem; however, they limited the
study to the case of deteriorating jobs. Instead, the no-wait Fm|nwt|E(

∑
j cj/cmax)

problem has been already addressed by Allahverdi and Aydilek (2013); thus, the nu-
merical results will be compared with their results.

Two local search algorithms are developed to solve the problem. The first algorithm
considers a sliding-window neighbourhood structure, while the second considers swap
neighbourhoods. Both local search algorithms are able to deal with both no-wait and
regular systems. They are compared with the methods proposed in Allahverdi and
Aydilek (2013), which have also been adapted for the regular flowshop in this article.
The algorithms are tested on Taillard’s benchmark (Taillard, 1993), and the results
show that the proposed local search algorithms are more efficient than the state-of-
the-art.

3. Mathematical formulation

The considered system is a flowshop composed by m machines and n jobs. Each job j
(j = 1, . . . , n) has a processing time on machine i (i = 1, . . . ,m) defined as pj,i ∈ R+.

In the following, the MILP formulation of the addressed problem, based on posi-
tional variables, is proposed. In the model,M is the set of machine indexes {1, . . . ,m},
J is the set of job indexes {1, . . . , n}, and P is the set of all the possible positions
{1, . . . , n} where a job can be scheduled. The maximum makespan value is denoted as
K.

The decision variables are:

• xj,k ∈ {0, 1}: binary variable equal to 1 if job j ∈ J is scheduled at position
k ∈ P , 0 otherwise;
• ck,m ∈ R+: completion time of the job at position k ∈ P on machine m ∈M ;
• cmax ∈ R+: makespan.

The MILP is as follows:

5



T
ab

le
1.
:
S
u
m
m
ar
y
of

th
e
st
at
e
of

th
e
ar
t.

A
r
ti
c
le

G
r
a
h
a
m

n
o
ta

ti
o
n

o
p
ti
m

iz
a
ti
o
n

c
m

a
x

∑ j
c
j

n
w
t

p
r
m
u

se
tu

p
o
th

e
r

B
u
d
d
a
la

et
a
l.
(2
0
2
2
)

F
F
m
||c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

M
.
K
.
M
a
ri
ch

el
v
a
m

et
a
l.
(2
0
1
4
)

F
H
m
||c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

M
.
M
a
ri
ch

el
v
a
m

et
a
l.
(2
0
2
0
)

F
H
m
|h
u
m
.f
.|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

h
u
m
a
n
fa
ct
o
rs

L
a
h
a
a
n
d
G
u
p
ta

(2
0
1
6
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
✓

J
ia
n
g
et

a
l.
(2
0
2
3
)

F
2
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
o
rd

er
ed

/
p
ro
p
o
rt
io
n
a
te

jo
b
s

B
a
la
su

n
d
a
ra
m

et
a
l.
(2
0
1
4
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
M
.
M
a
ri
ch

el
v
a
m

et
a
l.
(2
0
1
7
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
P
a
su

p
a
th
y
et

a
l.
(2
0
0
6
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
P
u
g
a
zh

en
th

i
a
n
d
A
n
th

o
n
y
X
a
v
io
r
(2
0
1
3
)

F
m
|p
r
m
u
|C

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
R
a
v
in
d
ra
n
et

a
l.
(2
0
0
5
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
Z
a
n
g
a
ri

et
a
l.
(2
0
1
7
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
Z
h
a
o
et

a
l.
(2
0
1
7
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓

o
.f
.

o
.f
.

✓
H
e
et

a
l.
(2
0
1
9
)

F
m
|p
r
m
u
,s

ij
k
|c

m
a
x
,∑ j

c j
,I
T
,p
r
o
d
.c
o
st

✓
o
.f
.

o
.f
.

✓
✓

A
ll
a
h
v
er
d
i
a
n
d
A
ld
o
w
a
is
a
n
(2
0
0
2
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
✓

Y
e
et

a
l.
(2
0
2
0
)

F
m
|n
w
t|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
✓

N
u
g
ra
h
en

i
et

a
l.
(2
0
2
2
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
R
a
jk
u
m
a
r
a
n
d
R
o
b
er
t
(2
0
1
9
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
S
a
n
je
ev

K
u
m
a
r
et

a
l.
(2
0
1
8
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
C
h
en

g
et

a
l.
(2
0
1
5
)

F
2
|p
r
m
u
,d
et
.|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
d
et
er
io
ra
ti
n
g
jo
b
s

W
a
n
g
a
n
d
Z
h
a
n
g
(2
0
1
5
)

F
m
|p
r
m
u
|c

m
a
x
,∑ j

c j
✓
(w

.s
.)

o
.f
.

o
.f
.

✓
le
a
rn

in
g
eff

ec
t

N
a
g
a
n
o
et

a
l.
(2
0
2
1
)

F
m
|n
w
t|E

(c
m

a
x
/
∑ j

c j
)

o
.f
.

C
o
n
st
r

✓
✓

A
y
d
il
ek

a
n
d
A
ll
a
h
v
er
d
i
(2
0
1
2
)

F
m
|n
w
t|E

(c
m

a
x
/
∑ j

c j
)

o
.f
.

C
o
n
st
r

✓
✓

F
ra
m
in
a
n
a
n
d
L
ei
st
en

(2
0
0
6
)

F
m
|p
r
m
u
|E
(c

m
a
x
/
T
m

a
x
)

o
.f
.

✓
C
o
n
st
r.

o
n
m
a
x
im

u
m

ta
rd

in
es
s

A
ll
a
h
v
er
d
i
et

a
l.
(2
0
1
8
)

F
m
|n
w
t|E

(∑ j
T
j
/
c m

a
x
)

C
o
n
st
r

✓
✓

m
in
.
to
ta
l
ta
rd

in
es
s

A
ll
a
h
v
er
d
i
et

a
l.
(2
0
2
0
)

F
m
|n
w
t,
s i

j
|E
(∑ j

T
j
/
c m

a
x
)

C
o
n
st
r

✓
✓

✓
m
in
.
to
ta
l
ta
rd

in
es
s

A
ll
a
h
v
er
d
i
et

a
l.
(2
0
2
2
)

F
m
|n
w
t|E

(∑ j
T
j
/
∑ j

c j
)

C
o
n
st
r

✓
✓

m
in
.
to
ta
l
ta
rd

in
es
s

A
ll
a
h
v
er
d
i
a
n
d
A
y
d
il
ek

(2
0
1
4
)

F
m
|n
w
t,
s i

j
|E
(∑ j

C
j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
✓

✓
A
lm

ei
d
a
a
n
d
N
a
g
a
n
o
(2
0
2
3
)

F
m
|n
w
t,
s i

j
k
|E
(∑ j

c j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
✓

✓
se
q
u
en

ce
-d
ep

en
d
en

t
se
tu

p
s

A
ll
a
h
v
er
d
i
a
n
d
A
y
d
il
ek

(2
0
1
3
)

F
m
|n
w
t|E

(∑ j
c j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
✓

C
h
en

g
et

a
l.
(2
0
1
4
)

F
m
|p
r
m
u
,d
et
.|E

(∑ j
c j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
d
et
er
io
ra
ti
n
g
jo
b
s

T
h
is

a
r
ti
c
le

F
m
|p
r
m
u
|E
(∑ j

c j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
F
m
|n
w
t|E

(∑ j
c j
/
c m

a
x
)

C
o
n
st
r

o
.f
.

✓
✓

6



min
∑
k∈P

ck,m (1)

s.t.
∑
j∈J

xj,k = 1 ∀k ∈ P (2)

∑
k∈P

xj,k = 1 ∀j ∈ J (3)

c1,1 =
∑
j∈J

xj,1pj,1 (4)

ck,i ≥ ck,i−1 +
∑
j∈J

xj,kpj,i ∀k ∈ P, i ∈M − {1} (5)

ck,i ≥ ck−1,i +
∑
j∈J

xj,kpj,i ∀k ∈ P − {1}, i ∈M (6)

cmax = cn,m (7)

cmax ≤ K (8)

xj,k ∈ {0, 1} ∀j ∈ J, k ∈ P (9)

ck,i ∈ R+ ∀i ∈M,k ∈ P (10)

Constraints (2) and (3) state that each position is assigned to a single job, and each
job is assigned to one position, respectively. Constraint (4) forces the job in the first
schedule position to start at time zero on the first machine. Constraints (5) and (6)
are the flowshop timing constraints, establishing the completion time of each job on
each machine. Constraint (8) imposes an upper bound K for the makespan, which is
computed in (7). Finally, (9) and (10) define the domain of the decision variables.

To consider no-wait schedules, constraints (5) become:

ck,i = ck,i−1 +
∑
j∈J

xj,kpj,i ∀k ∈ P, i ∈M − {1} (11)

4. Solution algorithms

Two local search algorithms are developed for the problem introduced in the previ-
ous sections, i.e., the minimization of the total completion time with a constraint on
the makespan in permutation flowshops. The algorithms are based on the swap and
on the sliding window neighbourhood structures, respectively. Both are fed with the
same initial solution, which is found by a NEH-inspired heuristic. The two proposed
algorithms can both be used for regular and no-wait conditions, by adapting the way
the makespan and the total completion time of a schedule are computed. For each
incumbent solution π, the makespan and the total completion time are numerically
calculated both for the regular and for the no-wait permutation flowshops.

The upper bound valueK for the makespan constraint is found with the K-algorithm
(KA) proposed in Allahverdi and Aydilek (2013) (which has also been adapted, in this
article, for the regular flowshop case). The solution found by the K-algorithm is called
πKA in the following.

7



4.1. Initial solution

The initial solution π is generated by a NEH-based heuristic, called NBH in the article.
Such heuristic minimizes the weighted sum of the makespan (cmax) and the total
completion time (ctot). Its objective function is as follows:

OFNBH = α cmax + (1− α)ctot. (12)

Algorithm 1 NEH-based Heuristic algorithm (NBH)

Input: K,πKA
Output: πNBH

1: πNBH ← πKA;
2: c∗tot ← total completion time of of πKA;
3: for all a ∈ {0.8, 0.6, 0.4, 0.2} do
4: α← a;
5: π ← NEH(a);
6: cmax,π ← makespan of solution π;
7: ctot,π ← total completion time of of π;
8: if cmax,π ≤ K and ctot,π < c∗tot then
9: c∗tot ← ctot,π

10: πNBH ← π
11: end if
12: end for

Th pseudo-code of NBH is reported in Algorithm 1. It starts from the initial solution
found by the K-Algorithm (πKA). For various values of the parameter α, i.e., the
various weights of the objective function in equation (12), the NEH algorithm (Nawaz,
Enscore Jr, & Ham, 1983) is used to find an incumbent solution π. The final solution
πNBH is the best feasible solution among the found incumbents. The structure of the
NEH algorithm is the standard one by Nawaz et al. (1983); however, the evaluated
objective function at each iteration is the one reported in equation (12).

4.2. Sliding window local search

One of the key elements in a local search algorithm is the definition of the neighbour-
hood, i.e., of the set of solutions close to the incumbent to be analyzed to look for
possible improvements.

In the sliding window local search algorithm, the neighbourhood N 1
π,ψ,wP

of an
incumbent solution π is defined by an initial position ψ and a size parameter wP . The
neighbourhood is composed of all the solutions that can be obtained by fixing all the
positions of π not included in the job-window π(wP , ψ), where π(wP , ψ) is the index
set of jobs located in the consecutive positions ψ,ψ + 1, . . . , ψ + wP − 1 of π. As an
example, given a problem with n = 8 jobs, the neighbourhood N 1

π,4,3 of the solution
π = [j1, j2, j3, j4, j5, j6, j7, j8] starting at position ψ = 4 and of size wp = 3 is shown in
Table 2. In the table, the job-window is highlighted in bold.

The pseudo-code of the sliding window local search (SW) is devised in Algorithm
2. The algorithm takes as input: the initial solution πNBH of the NBH algorithm, the
window size wP and a time limit θ. It gives as output the heuristic solution π∗. At
each iteration of the algorithm, the best solution in N 1

π,ψ,wP
is found by using the

MILP (line 5 of Algorithm 2), and stored if it is both feasible and better than the best

8



Algorithm 2 Sliding window local search (SW)

Input: πNBH , K, θ
Output: π∗

1: ψ ← 0;
2: π ← πNBH
3: c∗tot ← ctotπNBH

;
4: while θ is not reached do
5: π ← best solution in N 1

π,ψ,wP
computed by means of MILP

6: cmax,π ← makespan of solution π;
7: ctot,π ← total completion time of π;
8: if cmax,π ≤ K and ctot,π < c∗tot then
9: c∗tot ← ctot,π;

10: π∗ ← π;
11: end if
12: ψ ← ψ + 1;
13: if ψ > n− wP then
14: ψ ← 0
15: end if
16: end while

[j1, j2, j3, j4, j6, j5, j7, j8] [j1, j2, j3, j4, j7, j6, j5, j8] [j1, j2, j3, j4, j6, j7, j5, j8]
[j1, j2, j3, j4, j5, j7, j6, j8] [j1, j2, j3, j4, j7, j5, j6, j8]

Table 2.: Sliding window neighbourhood N 1
π,4,3 of the solution π =

[j1, j2, j3, j4, j5, j6, j7, j8].

solution found so far, i.e., π∗ (lines 8-11). At each iteration, the job-window slides, as
the first job position ψ increases by one unit (line 12). The algorithm stops when the
time limit θ is reached.

In Algorithm 2, incumbents solutions are found by means of MILP (line 5). At each
iteration, MILP is solved to optimality by a commercial solver; in the MILP , the values
of schedule positions outside the job-window are fixed to the values of the best solution,
while the positions inside the job-window are optimized by the solver.

4.3. Swap local search

The local search algorithm based on the swap neighbourhoods is similar to that using
the sliding windows and previously described. The swap neighbourhood N 2

π of a can-
didate solution π is given by all the possible swaps between positions k and l (with
l > k) in π. As an example, given a problem with n = 4 jobs, the swap neighbourhood
N 2
π of solution π = [j1, j2, j3, j4] is given in Table 3. In the table, for each neighbour,

the swap is highlighted in bold. To give an example, in the fist neighbour [j2, j1, j3, j4]
of Table 3 the first two jobs of the schedule (j1 and j2) are swapped (i.e., j1 moves
from position 1 to position 2 of the schedule, and j2 moves from position 2 to position
1 of the schedule).

[j2, j1, j3, j4] [j3, j2, j1, j4] [j4, j2, j3, j1]
[j1, j3, j2, j4] [j1, j4, j3, j2] [j1, j2, j4, j3]

Table 3.: Swap neighbourhood N 2
π of the solution π = [j1, j2, j3, j4].

9



The swap local search mechanism works similarly to SW, and its pseudo-code is
shown in Algorithm 3. At each iteration, the best solution is found by exploring N 2

π

(line 4 of Algorithm 3). Differently from SW, the MILP is not used to explore the neigh-
bourhood as it can be numerically found by modifying the sequence of π. Candidate
solutions are evaluated in terms of feasibility (cmax,π < K) and in terms of objective
function (ctot,π). When the stopping criterion (i.e., the θ time limit) is reached, the
best found solution π∗ is given as output of the algorithm.

Algorithm 3 Swap local search (SWAP)

Input: πNBH , K, θ
Output: π∗

1: π ← πNBH
2: c∗tot ← ctotπNBH

;
3: while θ is not reached do
4: π ← best solution in N 2

π,ψ,wP

5: cmax,π ← makespan of solution π;
6: ctot,π ← total completion time of π;
7: if cmax,π ≤ K and ctot,π < c∗tot then
8: c∗tot ← ctot,π;
9: π∗ ← π;

10: end if
11: end while

5. Numerical results

5.1. Design of experiment

The proposed algorithms are tested on the Taillard benchmark set of instances (Tail-
lard, 1993). This set is composed of 12 problems with different number of jobs n and
machines m. The number of jobs n varies between 20 and 500, while m varies be-
tween 5 and 20. Ten instances are available for each problem, thus the benchmark set
contains a total number of 120 instances.

In the experiment, the proposed swap and sliding window local search algorithms
are compared with PAL algorithm by Allahverdi and Aydilek (2013). Instead, the
K-algorithm by Allahverdi and Aydilek (2013) has been used to set the makespan
upperbound K. Both the algorithms by Allahverdi and Aydilek (2013), designed for
the no-wait problem, have been adapted for the regular flowshop by changing the way
the objective function is numerically computed.

Each algorithm has been run with a time limit θ depending on the problem size,
computed as θ = 60nm

1000 (Alfieri, Garraffa, Pastore, & Salassa, 2023; Balogh, Garraffa,
O’Sullivan, & Salassa, 2022), and measured in seconds. Although in Allahverdi and
Aydilek (2013) PAL algorithm is run with a fixed number of iterations L, in this article,
it has been implemented by letting L vary and by fixing the time limit θ. This makes
the comparison among all the algorithms fair from a computation time standpoint.

The parameter window size (wP ) of the sliding window algorithm has been set to
8 jobs, after preliminary tests, to assure that, on average, the time to explore the
neighbourhood is less than 10 seconds.

All the algorithms have been implemented in Java, and CPLEX 12.10 have been
used as MILP solver. Tests have been run on a Intel(R) Core(TM) i7-8700K CPU
processor at 3.70 GHz, with 32 GB of RAM.

10



(a) Regular flowshop. (b) No-wait flowshop.

Figure 1.: ARPD 95% condifence intervals of the tested algorithms, grouped by
regular/no-wait condition.

5.2. Results

As all the tested algorithms are run with the same time limit, the comparison is per-
formed on the quality of the solutions.
For the comparison, the average relative percentage deviation ARPD is used. Specif-
ically, for each instance of the benchmark set, the RPD of algorithm k is computed
as

RPDk = 100× OFk −OF ∗

OF ∗ , (13)

where OF ∗ = mink∈KOFk, i.e., OF
∗ is the best solution in the set K of the tested

algorithms. The set of algorithms K includes: the sliding window local search algorithm
(SW), the swap local search algorithm (SWAP), the NEH-based heuristic (NBH), the
PAL algorithm (PAL) (with the fixed time limit and a varying number of iteration
L), and the K-algorithm (KA) by Allahverdi and Aydilek (2013). As Allahverdi and
Aydilek (2013) proved that the best performance for PAL is achieved by setting L = 20
(i.e., by setting a fixed number of iterations equal to 20), Table 4 and Figure 1 also
includes the results of PA20 for reference, even though its computation time is largely
shorter than the fixed time limit used for all the other algorithms.

Table 4 shows the ARPD percentage of the tested algorithms for the regular and the
no-wait flowshops, for each combination of number of jobs n and number of machines
m. For each row, the algorithm with the best performance, i.e., that with the lowest
ARPD value, is highlighted in bold. For each flowshop case (i.e., regular and no-wait),
the two last rows display the ARPD among all the instances (row total) and the
percentage of instances in which the algorithm found the best solution (row % best).
The percentages of such row do not sum to 100% as there are instances in which more
than one algorithm find the best solution. Figure 1, instead, shows the 95% confidence
intervals of the tested algorithms. The graphs are divided for the regular and the no-
wait cases; the KA algorithm is not shown because its ARPD values and confidence
intervals are much larger than the other algorithms, as its average values reported in
Table 4 show.

For the regular flowshop, the proposed local search algorithms (SWAP and SW)
perform better than the others. The results are confirmed by the 95% confidence
interval plot in Figure 1(a), from which SWAP and SW are shown to be statistically

11



Regular flowshop
n m KA PA20 PAL NBH SWAP SW
20 5 23.47% 1.51% 1.51% 4.45% 1.93% 0.04%

10 18.42% 1.82% 1.82% 3.51% 2.03% 0.00%
20 13.86% 1.60% 1.60% 2.98% 1.36% 0.07%

50 5 27.59% 4.57% 3.05% 5.64% 0.96% 0.26%
10 21.87% 2.49% 0.81% 3.40% 1.15% 0.21%
20 18.65% 2.24% 0.99% 2.48% 0.96% 0.37%

100 5 24.24% 6.96% 2.24% 6.31% 0.00% 1.84%
10 20.74% 5.58% 1.53% 3.13% 0.27% 0.81%
20 18.75% 5.07% 0.45% 1.58% 0.43% 0.60%

200 10 20.34% 8.44% 1.34% 4.35% 0.00% 2.98%
20 18.17% 7.15% 0.67% 1.59% 0.00% 0.51%

500 20 15.79% 9.15% 6.44% 2.10% 0.00% 1.77%
total 20.16% 4.71% 1.87% 3.46% 0.76% 0.79%

% best 0% 2% 10% 0% 44% 46%

No-wait flowshop
n m KA PA20 PAL NBH SWAP SW
20 5 30.74% 1.36% 1.36% 4.56% 3.35% 0.26%

10 28.98% 1.94% 1.94% 4.57% 3.39% 0.29%
20 22.58% 0.36% 0.36% 2.63% 1.79% 0.36%

50 5 42.81% 5.61% 1.52% 5.01% 2.33% 1.44%
10 43.43% 6.01% 0.59% 3.48% 2.28% 1.35%
20 41.26% 6.28% 0.81% 2.86% 1.70% 1.11%

100 5 49.65% 17.18% 0.40% 2.85% 0.31% 0.62%
10 51.06% 18.12% 0.00% 4.73% 2.66% 2.92%
20 47.92% 16.27% 0.26% 1.98% 1.48% 0.90%

200 10 55.77% 27.99% 2.36% 1.78% 0.03% 0.71%
20 55.25% 28.00% 4.15% 1.03% 0.21% 0.15%

500 20 67.32% 44.80% 47.61% 0.72% 0.06% 0.14%
total 44.73% 14.49% 5.11% 3.02% 1.63% 0.85%

% best 0% 8% 38% 0% 21% 42%

Table 4.: ARPD values, grouped by regular/no-wait condition, and by n and m factor
levels.

different and less from the other algorithms. Also, there is no statistical difference
between SWAP and SW: a Mann-Whitney test confirmed that the medians of the two
algorithms are statistically equal with a confidence of 97.33 %. Such non-parametric
test is used because the RPD values may not follow a Normal distribution, as they
cannot assume negative values (Costa, Pastore, & Frigerio, 2021). Table 4 shows
that when the problem size increases (i.e., for larger values of n and m), the SWAP
algorithm tends to perform better than all the other algorithms while, if the problem
size is small, the SW achieves smaller RPD values. Interestingly, while SW is affected
by the increasing problem size, SWAP improves its performance. Such behaviour can
be appreciated in Figure 2, which shows how the ARPD values of the tested algorithms
vary with different values of n andm for the regular flowshop. The same happens when
comparing PA20, which worsens for larger values of n, and NBH, which improves (in

12



(a) ARPD grouped by n levels. (b) ARPD grouped by m levels.

Figure 2.: Regular flowshop ARPD values.

(a) ARPD grouped by n levels. (b) ARPD grouped by m levels.

Figure 3.: No-wait flowshop ARPD values.

Figure 2, the PA20 line increases with n, while NBH decreases). Instead, PAL performs
similarly for increasing values of n, but it actually improves with increasing values of
m; it drastically worsens for the most larger problems with 500 jobs and 20 machines.

For the no-wait case, Figure 1(b) shows that SWAP and SW perform better than
PAL; in this case, the difference between the medians of SWAP and SW is statistically
significant, with SW having the lowest RPD values. Table 4 and Figure 3 show that
the tested algorithms perform differently according to the number of jobs n and of
machines m also for the no-wait case. Both PA20 and PAL worsen their performance
when the problem size increases, while NBH and SWAP improve with larger problems.
SW, instead, does not show a monotonic behaviour when the problem size grows. As
for the regular case, the most difficult instances are poorly solved by both PAL and
PA20. This could be related to the initial solutions (i.e., the solutions found by KA)
that are largely less efficient than the initial solutions of SWAP and SW (i.e., the
solutions found by NBH), and to the incapability of PA20 and PAL of escaping local
optima.

For both regular and no-wait flowshops, Table 5 shows the completion time per-
centage improvement of the proposed algorithms (NBH, SWAP, SW) compared to
the state-of-the-art PAL. For each proposed algorithm k, the total completion time
percentage improvement ∆k is computed as:

∆k = 100× OFPAL −OFk
OFPAL

. (14)

13



Regular No-wait
n m NBH SWAP SW NBH SWAP SW
20 5 -2.91% -0.43% 1.43% -3.17% -1.97% 1.07%

10 -1.66% -0.21% 1.78% -2.59% -1.44% 1.60%
20 -1.39% 0.21% 1.49% -2.27% -1.43% -0.01%

50 5 -2.54% 2.01% 2.68% -3.48% -0.83% 0.02%
10 -2.57% -0.34% 0.59% -2.90% -1.70% -0.78%
20 -1.49% 0.03% 0.61% -2.06% -0.91% -0.31%

100 5 -4.00% 2.18% 0.38% -2.44% 0.09% -0.22%
10 -1.59% 1.22% 0.70% -4.73% -2.66% -2.92%
20 -1.13% 0.02% -0.15% -1.72% -1.22% -0.65%

200 10 -2.97% 1.32% -1.62% 0.56% 2.27% 1.60%
20 -0.92% 0.66% 0.15% 2.99% 3.77% 3.83%

500 20 4.08% 6.05% 4.39% 31.77% 32.21% 32.16%

Table 5.: Total completion time percentage improvement of NBH, SWAP and SW
compared to PAL, grouped by regular/no-wait condition, and by n and m factor
levels.

In Table 5, a positive improvement for algorithm k implies that the total completion
time of the solution found by k is lower than that found by PAL, and vice-versa for the
negative case. The percentages of Table 5 confirms the results of Table 4 and Figures
1. 2 and 3.

6. Conclusion

Production systems need to optimize both the total completion time and the makespan
at the shop floor level to achieve competitiveness. In fact, while the total completion
time is related to the waiting time and, hence, to an improvement of the service
level offered to customers and of the delivery lead time, a makespan reduction implies
a higher utilization of machines/resources. In this article, both these measures are
considered in a permutation flowshop scheduling problem. Specifically, the addressed
problem minimizes the total completion time with a constraint on the maximum al-
lowed makespan. Both regular and no-wait flowshops are considered. Two local search
algorithms are proposed, one based on the swap and the other on the sliding window
neighbourhood structures.

The proposed algorithms have been tested and compared with the state-of-the-art
heuristics, and the results showed that both swap and sliding window perform better
than the state-of-the-art algorithms, for both the regular and the no-wait cases. For
the regular flowshop, the two proposed algorithms perform similarly; however, the
swap local search tends to achieve better results when the problem size increases.
For the no-wait case, instead, the sliding window outperforms the swap local search;
however, when the problem becomes larger, the swap guarantees the best completion
time values.

Future research will be devoted to a joint optimization of the completion time and
the makespan, with the aim of exploring scheduling solutions that are effective from
both perspectives.

14



Disclosure statement

The authors have no conflicts of interest to declare.

Data availability

The data that support the findings of this study are available from the corresponding
author, E.P., upon reasonable request.

References

Alfieri, A., Garraffa, M., Pastore, E., & Salassa, F. (2023). Permutation flowshop problems
minimizing core waiting time and core idle time. Computers & Industrial Engineering , 176 ,
108983.

Allahverdi, A., & Aldowaisan, T. (2002). No-wait flowshops with bicriteria of makespan and
total completion time. Journal of the Operational Research Society , 53 (9), 1004 – 1015.

Allahverdi, A., Aydilek, A., & Aydilek, H. (2016). Minimizing the number of tardy jobs on
a two-stage assembly flowshop. Journal of Industrial and Production Engineering , 33 (6),
391–403.

Allahverdi, A., & Aydilek, H. (2013). Algorithms for no-wait flowshops with total completion
time subject to makespan. The International Journal of Advanced Manufacturing Technol-
ogy , 68 (9-12), 2237 – 2251.

Allahverdi, A., & Aydilek, H. (2014). Total completion time with makespan constraint in
no-wait flowshops with setup times. European Journal of Operational Research, 238 (3),
724 – 734.

Allahverdi, A., Aydilek, H., & Aydilek, A. (2018). No-wait flowshop scheduling problem with
two criteria; total tardiness and makespan. European Journal of Operational Research,
269 (2), 590–601.

Allahverdi, A., Aydilek, H., & Aydilek, A. (2020). No-wait flowshop scheduling problem with
separate setup times to minimize total tardiness subject to makespan. Applied Mathematics
and Computation, 365 , 124688.

Allahverdi, A., Aydilek, H., & Aydilek, A. (2022). An algorithm for a no-wait flowshop
scheduling problem for minimizing total tardiness with a constraint on total completion
time. International Journal of Industrial Engineering Computations, 13 (1), 43–50.

Almeida, F. S. d., & Nagano, M. S. (2023). Heuristics to optimize total completion time
subject to makespan in no-wait flow shops with sequence-dependent setup times. Journal
of the Operational Research Society , 74 (1), 362 – 373.

Aydilek, H., & Allahverdi, A. (2012). Heuristics for no-wait flowshops with makespan subject
to mean completion time. Applied Mathematics and Computation, 219 (1), 351–359.

Aydilek, H., Aydilek, A., & Allahverdi, A. (2021). Algorithms to minimize total comple-
tion time in a two-machine flowshop problem with uncertain set-up times. Engineering
Optimization, 53 (8), 1417–1430.

Aydilek, H., Aydilek, A., Allahverdi, M., & Allahverdi, A. (2022). More effective heuristics
for a two-machine no-wait flowshop to minimize maximum lateness. International Journal
of Industrial Engineering Computations, 13 (4), 543–556.

Balasundaram, R., Valavan, D., & Baskar, N. (2014). Heuristic based approach for bi-criteria
optimization of minimizing makespan and total flow time of flowshop scheduling. Interna-
tional Journal of Mechanical & Mechatronics Engineering IJMME-IJENS , 14 (02).

Balogh, A., Garraffa, M., O’Sullivan, B., & Salassa, F. (2022). Milp-based local search pro-
cedures for minimizing total tardiness in the no-idle permutation flowshop problem. Com-
puters & Operations Research, 105862.

15



Buddala, R., Mahapatra, S. S., & Singh, M. R. (2022). Solving multi-objective flexible flow-
shop scheduling problem using teaching-learning-based optimisation embedded with maxi-
mum deviation theory. International Journal of Industrial and Systems Engineering , 42 (1),
39 – 63.

Cheng, M., Tadikamalla, P. R., Shang, J., & Zhang, B. (2015). Two-machine flow shop
scheduling with deteriorating jobs: minimizing the weighted sum of makespan and total
completion time. Journal of the Operational Research Society , 66 (5), 709–719.

Cheng, M., Tadikamalla, P. R., Shang, J., & Zhang, S. (2014). Bicriteria hierarchical opti-
mization of two-machine flow shop scheduling problem with time-dependent deteriorating
jobs. European Journal of Operational Research, 234 (3), 650 – 657.

Coffman, E., Sethuraman, J., & Timkovsky, V. G. (2003). Ideal preemptive schedules on two
processors. Acta Informatica, 39 , 597–612.

Costa, A., Pastore, E., & Frigerio, N. (2021). The server allocation problem with non-identical
machines: A meta-heuristic approach. Computers & Industrial Engineering , 162 , 107687.

Framinan, J. M., & Leisten, R. (2006). A heuristic for scheduling a permutation flowshop with
makespan objective subject to maximum tardiness. International Journal of Production
Economics, 99 (1-2), 28–40.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and
approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete
mathematics (Vol. 5, pp. 287–326). Elsevier.

He, L., Li, W., Zhang, Y., & Cao, Y. (2019). A discrete multi-objective fireworks algorithm
for flowshop scheduling with sequence-dependent setup times. Swarm and Evolutionary
Computation, 51 .

Jiang, X., Lee, K., & Pinedo, M. L. (2021). Ideal schedules in parallel machine settings.
European Journal of Operational Research, 290 (2), 422–434.

Jiang, X., Lee, K., & Pinedo, M. L. (2023). Bicriteria two-machine flowshop scheduling:
approximation algorithms and their limits. Journal of Scheduling , 1–26.

Laha, D., & Gupta, J. N. (2016). A hungarian penalty-based construction algorithm to
minimize makespan and total flow time in no-wait flow shops. Computers & Industrial
Engineering , 98 , 373–383.

Little, J. D. (1961). A proof for the queuing formula: L= λ w. Operations Research, 9 (3),
383–387.

Marichelvam, M., Geetha, M., & Tosun, (2020). An improved particle swarm optimization
algorithm to solve hybrid flowshop scheduling problems with the effect of human factors –
a case study. Computers & Operations Research, 114 .

Marichelvam, M., Tosun, Ö., & Geetha, M. (2017). Hybrid monkey search algorithm for flow
shop scheduling problem under makespan and total flow time. Applied Soft Computing , 55 ,
82–92.

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A discrete firefly algorithm for the
multi-objective hybrid flowshop scheduling problems. IEEE Transactions on Evolutionary
Computation, 18 (2), 301 – 305.

Na, B., Ahmed, S., Nemhauser, G., & Sokol, J. (2014). A cutting and scheduling problem in
float glass manufacturing. Journal of Scheduling , 17 , 95–107.

Nagano, M. S., de Almeida, F. S., & Miyata, H. H. (2021). An iterated greedy algorithm for
the no-wait flowshop scheduling problem to minimize makespan subject to total completion
time. Engineering Optimization, 53 (8), 1431 – 1449.

Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11 (1), 91–95.

Nugraheni, C. E., Abednego, L., & Saputra, C. S. (2022). Whale optimization algorithms for
multi-objective flowshop scheduling problems. In Eurasia proceedings of science, technology,
engineering and mathematics (Vol. 21, p. 441 – 451).

Pan, Q.-K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime. Computers & Operations Research, 40 (1), 117–128.

Pastore, E., Alfieri, A., & Castiglione, C. (2023). Addressing idle and waiting time in short

16



term production planning. Materials Research Proceedings, 35 .
Pasupathy, T., Rajendran, C., & Suresh, R. (2006). A multi-objective genetic algorithm

for scheduling in flow shops to minimize the makespan and total flow time of jobs. The
International Journal of Advanced Manufacturing Technology , 27 , 804–815.

Pugazhenthi, R., & Anthony Xavior, M. (2013). Optimisation of permutation flow shop with
multi objective criteria. International Journal of Applied Engineering Research, 8 (15),
1807–1813.

Rajkumar, R., & Robert, R. J. (2019). A hybrid algorithm for multi-objective optimization
of minimizing makespan and total flow time in permutation flow shop scheduling problems.
Information Technology and Control , 48 (1), 47–57.

Ravindran, D., Selvakumar, S., Sivaraman, R., & Haq, A. N. (2005). Flow shop scheduling
with multiple objective of minimizing makespan and total flow time. The International
Journal of Advanced Manufacturing Technology , 25 , 1007–1012.

Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan crite-
rion: a review. International Journal of Production Research, 43 (14), 2895–2929.

Sanjeev Kumar, R., Padmanaban, K., & Rajkumar, M. (2018). Minimizing makespan and
total flow time in permutation flow shop scheduling problems using modified gravitational
emulation local search algorithm. Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture, 232 (3), 534–545.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Opera-
tional Research, 64 (2), 278–285.

T’kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: theory, models and algorithms.
Springer Science & Business Media.

Wang, J.-J., & Zhang, B.-H. (2015). Permutation flowshop problems with bi-criterion
makespan and total completion time objective and position-weighted learning effects. Com-
puters & Operations Research, 58 , 24 – 31.

Ye, H., Li, W., & Nault, B. R. (2020). Trade-off balancing between maximum and total
completion times for no-wait flow shop production. International Journal of Production
Research, 58 (11), 3235–3251.

Yuan, H., Jing, Y., Huang, J., Ren, T., et al. (2013). Optimal research and numerical simulation
for scheduling no-wait flow shop in steel production. Journal of Applied Mathematics, 2013 .

Zangari, M., Mendiburu, A., Santana, R., & Pozo, A. (2017). Multiobjective decomposition-
based mallows models estimation of distribution algorithm. a case of study for permutation
flowshop scheduling problem. Information Sciences, 397-398 , 137 – 154.

Zhao, Z.-J., He, X.-Q., & Liu, F. (2017). An improved multi-objective memetic algorithm for
bi-objective permutation flow shop scheduling. In 14th international conference on services
systems and services management, icsssm 2017 - proceedings.

17


