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κ-statistics approach to optimal transport waveform inversion
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Extracting physical parameters that cannot be directly measured from an observed data set remains a great
challenge in several fields of science and physics. In many of these problems, the construction of a physical
model from waveforms is hampered by the phase ambiguity of the recorded wave fronts. In this work, we present
an approach for mitigating the effect of phase ambiguity in waveform-driven issues. Our proposal combines
the optimal transport theory with the κ-statistical thermodynamics approach. We construct an energy function
from the most probable state of a system described by a finite-variance κ-Gaussian distribution to introduce an
optimal transport metric. We demonstrate that our proposal outperforms the classical frameworks by considering
a nonlinear geophysical data-driven problem based on a wave equation numerical solution. The κ-generalized
optimal transport metric is easily adapted to various inverse problems, from estimating power-law exponents to
machine learning approaches in quantum mechanics.
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.The transportation theory was first formalized by Monge
[1] to study the optimal allocation of resources by redistribut-
ing mass [2]. However, Monge’s formulation of the optimal
transport (OT) problem is an ill-posed problem, which means
that the solution (if it exists) is not unique. Later, Kantorovich
introduced a well-posed relaxation of the OT problem pro-
posed by Monge by defining the Wasserstein distance (also
known as Kantorovich-Rubinstein metric) between two prob-
ability distributions [3]. In recent years, transport optimization
has been applied in several areas such as quantum mechanics
[4–6], statistical physics [7–9], machine learning [10–12],
geophysics [13–15], and ecology [16–18].

To illustrate, in a general context, the idea behind the OT
framework, suppose that there are N1 tungsten mines in Rio
Grande do Norte, a state of Brazil, that serve N2 factories
within Brazilian territory to produce, for instance, efficient
electrical conductors. Let us assume that the N2 factories
use all the tungsten ore produced by the N1 tungsten mines.
What is the optimal transport plan for the distribution of the
tungsten ore between each mine and each factory that leads
to a minimal transport cost? This practical problem, although
simple to pose, is remarkably difficult to solve.

In the Kantorovich-Rubinstein formulation, if we con-
sider two sets of points �1 = {xi, i = 1, 2, . . . , N1} and �2 =
{y j, j = 1, 2, . . . , N2}, each point xi ∈ �1 (y j ∈ �2) is repre-
sented by a “mass” function, namely, μ(xi ) [υ(y j )]. In this
approach, it is assumed that the mass is conserved and that the
total mass is equal to 1,

N1∑
i=1

μ(xi ) =
N2∑
j=1

υ(y j ) = 1, (1)

*sergio.dasilva@polito.it
†giorgio.kaniadakis@polito.it

to satisfy the probability axioms. So the OT problem is for-
mulated as the following optimization task [2]:

W (μ, υ ) = min
G∈�(μ,υ )

∑
i, j

Gi, jCi, j, (2)

where W is the transport cost (also known as the optimal total
cost), �(μ, υ ) is the set of transport plans G given by

�(μ, υ ) =

⎧⎪⎨
⎪⎩

Gi, j � 0 ∀ (i, j),∑N2
j=1 Gi, j = μ(xi ) ∀ i,∑N1
i=1 Gi, j = υ(y j ) ∀ j,

(3)

and C is a cost function which maps each pair (xi, y j ) to
[0; +∞]. The transport plan G specifies for each pair (x, y)
how many “tungsten particles” from μ(x) should be trans-
ported to υ(y). Thus, solving the OT problem (2) is equivalent
to finding the optimal transport plan Gopt that minimizes the
optimal total cost W between μ and υ for a given cost func-
tion C.

It is worth emphasizing that for two complete and sepa-
rable metric spaces X and Y whose marginal distributions
are μ and υ, respectively, the set of transport plans �(μ, υ )
represents the set of all joint probability measures on X × Y
for μ(x) ∈ P (X ) and υ(y) ∈ P (Y ). The well-posed relax-
ation of Monge’s problem presented in (2) is usually referred
to as the Wasserstein distance W (μ, υ ), which is a metric
defined between probability measures in a space P (X × Y ).
For instance, the metric space P (X × Y ) formed by the sets
of probability measures μ and υ with finite moments of or-
der p ∈ [1,∞) for N1 = N2 = N) has been used in physical
problems, such as the p = 1 and p = 2 cases, respectively, in
Refs. [19,20], for studying the energy flow between collider
events. Formally, the so-called p-Wasserstein distance is given
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by [2]

Wp(μ, υ ) = min
G∈�(μ,υ )

(∑
i, j

Gi, j ||xi − y j ||p

)1/p

, (4)

where || · || denotes the norm.
The OT theory has also been used in various physical ap-

plications for estimating model parameters [21–24] in which
the cost function is linked to a law of error. For example,
the cost function associated with the quadratic p-Wasserstein
metric with p = 2, W2

2 (μ, υ ), is obtained by maximizing a
Gaussian distribution by assuming that independent errors
εi, j = xi − y j obey Gaussian statistics [25]. In fact, a cost
function is closely linked to the statistical interpretation given
to the variables [26–28]. From a statistical physics point of
view, this is because the most probable state is the one with
the highest multiplicity (i.e., the lowest-energy state). Thus,
determining the most likely state of a system is equivalent to
minimizing an energy function (or cost function).

In this work, we introduce a Wasserstein distance based on
a non-Gaussian cost function that arises from the κ-statistical
thermodynamics approach [29–33]. In this regard, we assume
that the errors �ε = {ε1, ε2, ε3, . . . , εN } are independent and
identically distributed (iid) by a κ-generalized Gaussian dis-
tribution with finite variance (or κ-Gaussian distribution) as
follows [34]:

Pκ (εi ) = 1

Zκ

expκ

( − βκε
2
i

)
, (5)

where

expκ (y) = (
√

1 + κ2y2 + κy)
1
κ (6)

is the κ-exponential function [29] and

Zκ =
(

2

2 + |κ|

)
�(1/|2κ| − 1/4)

�(1/|2κ| + 1/4)

√
π

2|κ|βκ

(7)

and [35]

βκ = (1 + |κ|/2)

|2κ|(2 + 3|κ|)
�(1/|2κ| − 3/4)�(1/|2κ| + 1/4)

�(1/|2κ| + 3/4)�(1/|2κ| − 1/4)
(8)

are defined for |κ| < 2/3. In the limit κ → 0, the κ-Gaussian
distribution (5) becomes the standard Gaussian distribution
(β0 ≈ 1/2 and Z0 ≈ √

2π ). In Fig. 1, we present plots of the
κ-Gaussian distribution for typical κ values, where the black
curve refers to the standard Gaussian distribution (κ → 0).

Since the errors are assumed to be iid by the power-law
tailed distribution in Eq. (5), we can obtain the κ-cost function
by computing the most probable state using the maximum
likelihood:

Cκ (m) ∝ max
m

Lκ (m) :=
N∏

i=1

Pκ (εi(m)), (9)

where Lκ denotes the likelihood function and m is the model
parameter. We notice that maximizing the likelihood function
is equivalent to minimizing the negative log likelihood:

Cκ (m) ∝ min
m


κ (m) := − ln[Lκ (m)], (10)

FIG. 1. Probability plots of the κ-Gaussian distribution (5) for
some κ values, in which the black curve depicts the standard Gaus-
sian distribution (κ → 0), in (a) a linear plot and (b) a semilog plot.

where


κ (m) = N ln(Zκ ) −
N∑

i=1

ln
{

expκ

[ − βκε
2
i (m)

]}
. (11)

Once N ln(Zκ ) is constant, note that minimizing the neg-
ative log-likelihood function is equivalent to minimizing the
second term of 
κ , so we can define the κ-cost function for
any data-driven problem as follows:

Cκ (m) = −
N∑

i=1

ln
{

expκ

[ − βκε
2
i (m)

]}
, (12)

where ε denotes the error (the difference between modeled
data and observed data). We notice that in the classical limit
κ → 0, the κ-cost function converges to the classical energy
function: C0(m) = 1

2

∑N
i=1 ε2

i (m).
In addition to representing a non-Gaussian behavior, the

κ-cost function (12) is robust concerning the existence of
possible erratic measurements and discrepant observations
(outliers). To verify the sensitivity of the κ-cost function to
erratic data, we compute the influence function, which is
defined as [36]

ϒκ := ∂Cκ (ε; mj )

∂ε
, (13)
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FIG. 2. (a) κ-cost function (14) for typical κ values, in which
the black curve depicts the classical cost function (κ → 0). (b) The
plot of the derivative of the κ-cost function Cκ (also known as the
influence function).

where Cκ (ε; mj ) represents the κ-cost function for a given
model mj , which can be written as

Cκ (ε; mj ) = Cκ (ε) = −
N∑

i=1

ln
[

expκ

( − βκε
2
i

)]
, (14)

which is depicted in Fig. 2(a). A cost function is said to be
robust if ϒ → 0 under ε → ±∞ and not robust if ϒ → ±∞
under ε → ±∞ [36]. The influence function associated with
the κ-cost function for a given ε is then given by

ϒκ =
{

2βκε√
1+κ2β2

κ ε4
for 0 < κ < 2/3,

ε for κ = 0.
(15)

Analyzing Eq. (15), we notice that if there is an outlier (ε →
∞), the influence function tends to infinity in the classical
limit κ → 0, as depicted by the black curve in Fig. 2(b). In
contrast, the influence function in the case 0 < κ < 2/3 is
robust since ϒ → 0 when ε → ∞, illustrated by the dotted
blue and dashed red lines in Fig. 2(b).

For simplicity, from now on, let us consider the space
P (X × Y ) constituted by a set of probability measures with
X = Y ⊂ RN (N ∈ N), with N1 = N2 = N . Considering the
κ-cost function (12) and the classical Wasserstein distance
(2), we define a criterion in a general setting named the κ-

Wasserstein metric, given by

Wκ (μ, υ ) = min
Gi, j

N∑
i, j=1

Gi, jCi, j,κ (16)

subject to

Gi, j � 0,

N∑
j=1

Gi, j = μ(xi ),
N∑

i=1

Gi, j = υ(y j ), (17)

with

Ci, j,κ = − ln{expκ [−βκ (xi − y j )
2]}. (18)

In its most common formulation, the OT metric is ex-
pressed as a function of probability distributions. Let us
represent the probability distributions μ and υ in terms of the
Dirac delta function:

μ(x) = 1

N

N∑
l=1

δ(x − ul ), (19a)

υ(y) = 1

N

N∑
l=1

δ(y − wl ), (19b)

where ul ∈ � and wl ∈ � indicate the location of the data
points defining μ(x) and υ(x). Furthermore, to satisfy the con-
straint Gi, j � 0 in Eq. (17), the coefficients of Gi, j for i = j
must be zero. Thus, the constrained optimization problem in
(16) can be reformulated as

Wκ (μ, υ ) = min
Gi, j

− 1

N

N∑
i, j=1

Gi, jhi, j,κ (20)

subject to

Gi, j � 0,

N∑
j=1

Gi, j = 1,

N∑
i=1

Gi, j = 1, (21)

where

hi, j,κ = ln(expκ{−βκ [μ(xi ) − υ(y j )]
2}). (22)

Obtaining the solution of the optimization problem in (20)
consists of computing a transport plan G that connects points
in P (X ) to correspondents points in P (Y ), which minimizes
optimal total cost Wκ [37].

Hence, the OT in the context of κ statistics is formulated
as a linear sum assignment problem (LSAP) [38], which is,
in essence, a combinatorial optimization task. Therefore, the
κ-Wasserstein distance between two probability distributions
is given by

Wκ (μ, υ ) = min
σ∈�(N )

− 1

N

N∑
i=1

Hi,σ,κ , (23)

with

Hi,σ,κ = ln(expκ{−βκ [μ(xi ) − υ(yσ (i) )]
2}), (24)

where σ is a permutation solution of the LSAP problem
in (20) associated with the transport map G and �(N ) =
{1, 2, . . . , N} denotes an ensemble of permutations.
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The κ-statistics-based OT (23) is more flexible regarding
standard approaches since it appreciates the improvements
provided by κ-Gaussian statistics. Indeed, the κ-Wasserstein
distance (23) suppresses the contributions of large errors εi =
μ(xi ) − υ(yσ (i) ) and magnifies the contributions of small er-
rors for the optimal total cost Wκ since the influence function
associated with Wκ is ϒκ ∝ 1/ε for large errors and ϒ ∝ ε

for small errors, as discussed earlier.
However, the κ-OT metric is defined as matching two

probability distributions, and therefore, this framework (in
this format) is valid only for comparing normalized and
non-negative quantities. Usually, nonpositive measures are
distorted through nonlinear transformations to represent them
as probability functions, which may “manufacture” superflu-
ous information. In fact, several applied physics problems
deal with oscillatory and non-normalized observable quanti-
ties, such as in the analysis of measured signals to estimate
physical parameters in a wide variety of physics problems
[39–43]. In these applications, namely, inverse problems [44],
physical parameters are obtained from the minimization of the
difference between the modeled data and the observed data (or
error).

In this work, to demonstrate the potential of our proposal,
we apply the κ-Wasserstein metric to solving a nonlinear in-
verse problem used in imaging issues known as full-waveform
inversion (FWI) [45–47]. The main goal of FWI consists of
estimating a quantitative model by matching modeled wave-
forms to observed waveforms [48,49]. The model parameters
and the modeled waveforms are the coefficients and the solu-
tion of the wave equation, respectively. Thanks to its ability
to explore the physics provided by wave equations, FWI has
been applied in several areas such as astrophysics [50,51] and
biomedical imaging [52,53].

The OT-related metrics have been verified to be a powerful
tool to mitigate a critical problem in FWI, namely, cycle
skipping (or phase ambiguity) [54]. Cycle skipping occurs
due to the low-frequency lacuna in the observed data set
and the absence of an adequate subsurface model used as
an initial guess in the FWI process, which generates a misfit
greater than half a wavelength when comparing observed and
modeled waveforms (see, for instance, Eq. (31) of Ref. [45]).
In this context, the use of OT distance has provided notable
progress in image reconstruction via FWI by transforming
the amplitude of the seismic signals into positive quantities
and has been normalized through linear [55,56], quadratic
[57], and exponential-based relationships [58], in addition to
other quite interesting ones [59–61] such as the graph-space
transformation [62–65], the approach used in this work. Such
OT approaches assume that the errors obey Gaussian statistics,
while our proposal is suitable to handle non-Gaussian (and
also Gaussian) errors that arise naturally in nonlinear prob-
lems like FWI.

We consider the two-dimensional acoustic wave equation,
where the modeled waveform is the pressure field ψ , which
satisfies the following equation:

1

c2(�z)

∂2ψs(�z, t )

∂t2
− ρ(�z)∇ ·

(
1

ρ(�z)
∇ψs(�z, t )

)
= fs(�zs, t ),

(25)

where �z ∈ R2 and t denote spatial coordinates and time, re-
spectively, ψs is the pressure field generated by the source
fs at the position �z = �zs, c is the P-wave velocity model,
and ρ represents the density model. The modeled data dmod

are defined by dmod
s,r (t ) = Ss,rψs(�z, t ) = ψs(�zr, t ), where Ss,r

is a sampling operator and the r index represents a receiver
employed in the data acquisition. That is, the modeled data are
the pressure field from Eq. (25) at the position �z = �zr . Indeed,
since FWI compares the modeled wave field with measured
data in a seismic survey (observed data), the sampling op-
erator represents a measurement process (onto receiver r of
source s) since the solution of the wave equation (25) is
computed in the entire physical domain [45].

The comparison between modeled waveforms (modeled
data) and observed waveforms (observed data) is performed
by means of a misfit function. In the classical approach,
FWI minimizes the error in the least-squares sense, in which
the residual data are assumed to obey Gaussian statistics.
However, in various data analysis problems, the errors are
non-Gaussian, for instance, in geomagnetic data sets [66],
vehicle state data [67], and seismic data [68]. Indeed, errors
are seldom Gaussian in nonlinear data-driven problems [69].
In fact, non-Gaussian cost functions have been shown to be
efficient tools to deal with data inversion problems. For this
reason, a wide variety of criteria based on non-Gaussian be-
havior have been introduced in the literature. For instance,
Ref. [70] verified that cost functions based on hyperbolic
secant, Laplace, and Cauchy distributions are less sensitive to
non-Gaussian errors in comparison to the classical approach
based on the Gaussian criterion. The success of each above-
mentioned case is associated with the statistical interpretation
of the long tails of these distributions. Thus, cost functions
based on long-tailed distributions have been applied to solve
many problems, such as the Student’s t distribution [71],
nonparametric statistical distributions [72], and generalized
distributions [73].

In addition, the classical approach suffers from the so-
called cycle skipping (or phase ambiguity) [54]. Such an
issue occurs because the classical approach measure point-
wise the discrepancy between modeled and observed data,
and therefore [as depicted by the black bars in Fig. 3(a)], this
framework is not convex concerning time shifts between the
waveforms caused by kinematic inconsistencies [74].

To employ our proposal to analyze full waveforms (which
are oscillatory and non-normalized) without distorting them,
we represent the waveforms in the graph space. The graph
space is constituted by mathematical structures, namely,
graphs, which are ordered pairs of disjoint sets (V, E ), where
V represents a set of elements of a discrete point cloud called
vertices and E is a subset of V composed of paired vertices,
namely, edges (see, for instance, Ref. [75] for more details).
Here, to solve the κ-OT problem, we consider a waveform
(seismic trace) d (t ) to be a set of ordered pairs {(ti, di ) ∈
R2, i = 1, 2, . . . , N} for di = d (ti ), where ti denotes the time
discretization. In this regard, the graph-transformed repre-
sentation of the seismic trace is defined by the following
transformation:

G : d → G(d) = dG (y, t ),

RN → D(R2), (26)
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FIG. 3. Representation of two discretized waveforms (red and
blue dots), in which the black bars represent the way to compare
them. (a) Point-by-point comparison, on the time axis, between the
waveforms. (b) The link of each vertex from one waveform to another
is computed, considering amplitude and time, by solving a linear sum
assignment problem.

where G represents the graph transformation, D(R2) denotes
the space of probability distributions on R2, d = {di, i =
1, 2, . . . , N} is the discretized waveform, and dG (y, t ) is the
graph-transformed signal which is represented by a sum of
Dirac delta functions:

dG (y, t ) = 1

N

N∑
i=1

δ(t − ti )δ(y − di ), (27)

where y is linked to the amplitude. Figure 3 shows two dis-
cretized waveforms (one represented by red dots and the other

by blue dots) in which each point represents a vertex given
by pairs (t, y). Figure 3(a) illustrates the classical approach
in which the two waveforms are compared point by point on
the time axis, as depicted by the black bars parallel to the
amplitude axis and perpendicular to the time axis. In contrast,
optimal-transport based FWI computes the minimum cost to
link each vertex from one waveform to another, considering
amplitude and time, thus comparing the waveform peak to
peak and valley to valley, among other things, as depicted in
Fig. 3(b).

From a practical point of view, FWI is formulated as a
local optimization problem in which the model parameters
(in our case, the P-wave velocities) are estimated iteratively
using Newton-based methods [45]. Local optimization issues
consist of finding the optimal solution within a neighboring
set of an initial guess (initial model) [76]. Thus, using Dirac
distributions is not suitable because G is not a differentiable
operator. For this reason, we propose a smooth version of
the graph transform based on the approximation of Dirac
functions through κ-Gaussian distributions (5) defined as

Gκ : d → Gκ (d) = dGκ (y, t ),

RN → C∞(R,R+
∗ ), (28)

where C∞(R,R+
∗ ) is the set of strictly positive and infinitely

differentiable functions of (R) and

dGκ (y, t ) = 1

Zκ

N∑
i=1

expκ [−βκ (t − ti )
2] expκ [−βκ (y − di )

2].

(29)
Finally, based on the κ-Wasserstein distance and the graph

representation of a signal in the κ-Gaussian statistics sense,
we introduce the graph-space κ-OT misfit function φWGκ

κ
as

follows:

min
m

φWGκ
κ

(m) :=
Ns∑

s=1

Nr∑
r=1

Cκ

(
dmod

s,r (m), dobs
s,r

)
, (30)

with

Cκ (dmod, dobs) = WGκ

κ

(
dGκ

mod, dGκ

obs

)
, (31)

where dGκ

mod,i = (ti, dmod,i ), dGκ

obs,i = (ti, dobs,i ), and

WGκ

κ

(
dGκ

mod, dGκ

obs

) = min
σ∈�(N )

−
Nt∑

i=1

ln
{

expκ [−βκ (ti − tσ (i) )
2] expκ

[ − βκ

(
dmod

i − dobs
σ (i)

)2]}
, (32)

where σ is a solution of the combinatorial problem in (23),
Ns and Nr are the numbers of seismic sources and receivers
employed in a seismic survey, and Nt is the number of time
samples. It is worth noting that we multiply Wκ (23) by the
factor NZκ since minimizing Wκ is equivalent to minimizing
the product NZκWκ . From now on, we call our proposal the
κ-graph-space optimal-transport FWI (or κ-GSOT-FWI for
short).

To demonstrate the potentiality of κ-GSOT-FWI to over-
come phase ambiguity, we consider, as the true model, a
P-wave velocity model inspired by a typical Brazilian pre-salt
oil region, namely, the Chalda model, which is an area of great
economic interest. Such an Earth model, depicted in Fig. 4(a),
contains a water layer 2 km thick, followed by post-salt rocks,
a salt body, pre-salt layers with an oil region, and bedrock
below. The model consists of 562 and 1282 grid cells in
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FIG. 4. (a) P-wave velocity model used in this study as the true model. The magenta line and the white dots denote the seismic sources
and receiver positions, respectively. The initial model employed in the waveform inversion in the (b) first scenario (good initial model) and in
the (c) second scenario (bad initial model).

the vertical and horizontal directions, which means that our
problem has 720 484 unknown variables.

As a seismic source, we consider a Ricker wavelet,
mathematically described by f (t ) = (1 − 2π2μ2

pt2)exp( −
π2μ2

pt2), where μp is the peak frequency. In all experiments,
we employ 161 seismic sources, in line and equally spaced ev-
ery 75 m, at 12.5 m in depth [see the magenta line in Fig. 4(a)].
Furthermore, we consider a Ricker wavelet with μp = 5 Hz,
which has been high-pass filtered to remove energy less than
2.5 Hz to simulate a realistic scenario. For each source, 21
receivers located every 400 m are implanted on the ocean floor
[see the white dots in Fig. 4(a)] to simulate an ocean bottom
node survey [77]. This type of geometry acquisition is not af-
fected by systematic noise caused, for instance, by boat traffic,
water waves, or wind [78]. We set the simulation time to 10 s.

We carried out waveform inversion by employing a
quasi-Newton algorithm known as limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS), a powerful method to
solve large-scale optimization issues [79]. In this approach,
the optimization problem formulated in Eq. (30) is solved by
updating the model m from an initial model m0 according to

mj+1 = mj − α jH
−1(mj )∇φWGκ

κ
(mj ), (33)

for j = 0, 1, . . . , Niter, with Niter being the total number of
iterations, where α is a step length computed through a line
search method [76], H−1 is the inverse of the Hessian matrix
(second-order derivative of φWGκ

κ
), and ∇φWGκ

κ
(mj ) is the

gradient of φWGκ
κ

with respect to the model parameter mj .
Since computing the gradient of the misfit function is

computationally very expensive, we consider the adjoint-
state method to efficiently calculate it [80]. In this approach,
∇φWGκ

κ
(mj ) is computed by cross correlating the forward

pressure wave field ψs [the solution of Eq. (25)] with the
so-called adjoint wave field qs as follows:

∇φWGκ
κ

(m) = −
∑

s

∫ T

0

〈
qs(�z, T − t ),

∂2ψs(�z, t )

∂t2

〉
�z
dt,

(34)
where T denotes the recording time and qs is the solution of
the adjoint-state equation [80]:

1

c2(�z)

∂2qs(�z, t )

∂t2
− ρ(�z)∇ ·

(
1

ρ(�z)
∇qs(�z, t )

)
=

Nr∑
r=1

Fs,r (�zr, t ),

(35)

where Fs,r is the known adjoint source. For a receiver r and a
source s, the κ-related adjoint source is given by

Fs,r (�zr, ti ) = 2βκ

[
dmod

s,r (ti ) − dobs
s,r (tσ (i) )

]
√

1 + β2
κ κ

2
[
dmod

s,r (ti ) − dobs
s,r (tσ (i) )

]4
, (36)

with i = 1, 2, . . . , Nt . We remark that in the classical limit
κ → 0, the latter equation becomes the adjoint-source based
on Gaussian statistics [64].

In this context, we consider two scenarios regarding the
initial guess (initial model): (i) In the first one, we use the
P-wave velocity model illustrated in Fig. 4(b) as the initial
model, which was constructed by applying a Gaussian filter
with a standard deviation of 200 m on the true model, namely,
the “good initial model.” (ii) In the second scenario, we con-
sider an initial model very far from the true one, namely,
the “bad initial model,” which was constructed by applying
a Gaussian filter with a standard deviation of 800 m, which is
depicted in Fig. 4(c). The bad initial model does not present
the main geological structures of the true model, generating
cycle-skipped data. Figure 5 shows some seismograms (also
known as receiver gather) which are formed by sets of seismic
traces associated with the first receiver on the left and all the
seismic sources. Figure 5(a) shows the observed data, and
Figs. 5(b) and 5(c) show modeled data related to the bad initial
model and the good initial model. We notice that in bad initial

FIG. 5. Seismograms of the first receiver on the left and all the
seismic sources. (a) shows the observed data, and (b) and (c) show
modeled data related to the bad initial model and the good initial
model, respectively.
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FIG. 6. First scenario. Reconstructed models, after 50 L-BFGS iterations, from (a) the classical approach, (b) l1-norm framework,
(c) Cauchy criterion, and our proposal with (d) κ = 0, (e) κ = 0.1, (f) κ = 0.2, (g) κ = 0.4, (h) κ = 0.5, and (i) κ = 0.6.

model case [Fig. 5(c)], several seismic events are missing,
which causes cycle skipping.

In all experiments, we consider 50 L-BFGS iterations.
For each scenario, we applied our proposal by considering
κ = 0.0, 0.1, 0.2, 0.4, 0.5, and 0.6. In addition, we also con-
sider the classical approach based on the least-squares method
and robust methods based on the l1 norm [81] and Cauchy
criterion [70].

Figure 6 shows the waveform inversion results of the first
scenario, in which Figs. 6(a)– 6(c) refer, respectively, to the
classical approach and l1-norm-based and Cauchy-based FWI,
while Figs. 6(d)–6(i) show the reconstructed models using
our proposal with κ = 0.0, 0.1, 0.2, 0.4, 0.5, and 0.6. From
a visual examination of Fig. 6, we notice that all approaches
provide satisfactory velocity models, which means they are
very close to the true model [Fig 4(a)]. Such results were
already expected since the good initial model [Fig 4(b)] is very
close to the true one. However, this experiment demonstrates
that all the approaches and algorithms used in this study work
well. Thus, if the initial model is quite accurate, using our
proposal or the classical approach is immaterial in analyzing
no-cycle-skipped data sets.

Since the differences between the reconstructed models,
in the first scenario, are not remarkable, we quantitatively
compare the reconstructed models crec

p with the true model
ctrue

p , using two statistical measures: the linear correlation co-
efficient (R) and the normalized root mean square (NRMS)
rN . The value of R varies between −1 (bad similarity) and 1

TABLE I. Comparative main statistics between the reconstructed
models in the first scenario and the true model

Framework R NRMS

Classical approach 0.9991 0.0082
l1-norm approach 0.9989 0.0089
Cauchy criterion 0.9985 0.0088
Our proposal (κ → 0) 0.9983 0.0097
Our proposal (κ = 0.1) 0.9985 0.0095
Our proposal (κ = 0.2) 0.9988 0.0091
Our proposal (κ = 0.4) 0.9989 0.0087
Our proposal (κ = 0.5) 0.9989 0.0088
Our proposal (κ = 0.6) 0.9989 0.0085
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FIG. 7. Second scenario. Reconstructed models, after 50 L-BFGS iterations, from (a) classical approach, (b) l1-norm framework,
(c) Cauchy criterion, and our proposal with (d) κ = 0, (e) κ = 0.1, (f) κ = 0.2, (g) κ = 0.4, (h) κ = 0.5, and (i) κ = 0.6.

(perfect similarity). The NRMS is an error measure defined
by

rN =
[∑

i

(
ctrue

pi
− crec

pi

)2

∑
i

(
ctrue

pi

)2

]1/2

, (37)

which varies from zero (perfect result model) to ∞ (bad
result model). These statistical measures are summarized in
Table I, where it is notable that the classical approach presents
a reconstructed model with greater correlation (R → 1) and
less error (rN → 0) in relation to the true model. In fact, the
statistical measurements reveal that the reconstructed models
are similar to each other.

Figure 7 shows the waveform inversion results of the sec-
ond scenario, in which Figs. 7(a)– 7(c) refer, respectively, to
the classical approach and l1-norm-based and Cauchy-based
FWI, while Figs. 7(d)–7(i) show the reconstructed models
using our proposal with κ = 0.0, 0.1, 0.2, 0.4, 0.5, and 0.6.
From a visual examination of Fig. 7(a), it is remarkable that
the classical approach fails, as expected, to obtain a satisfac-
tory P-wave model. In fact, the reconstructed model shows
many artifacts in the structures of the first half of the model
(depth less than 4 km), in addition to being unable to identify
the deeper structures, especially in the pre-salt region (around

6 km in depth). Regarding the waveform inversion based on
robust criteria, the reconstructed models, in the second sce-
nario, are better than the classical approach [see Figs. 7(b) and
7(c)]. However, such resulting models present many artifacts,
and therefore, cases based on the l1 norm and Cauchy criterion
produce unsatisfactory models. In contrast, the κ-GSOT-FWI
gives better reconstructed models [see Figs. 7(d)–7(i)]. In-
deed, the reconstructed model comes closer to the true model
as the κ parameter moves away from zero, which means a
greater deviation from Gaussian behavior. In this way, the
κ = 0.6 case presents a reconstructed P-wave velocity model
[Fig. 7(i)] closer to the true model [Fig. 7(a)].

We present in Fig. 8 the first gradients related to the bad ini-
tial model case for the classical approach, l1-norm framework,
Cauchy criterion, and our proposal with κ = 0, 0.1, 0.2, 0.4,
0.5, and 0.6. In Fig. 8(a), we remark that although the classical
approach identifies the deep structures, the classical gradient
is dominated by the imprints of the wave paths in the shallow
regions (up to approximately 4 km depth), badly conditioning
the FWI process. Similar behaviors are also identified in the
case of robust criteria, as depicted in Figs. 8(b) and 8(c).
However, as the κ-value increases, the shallow wave path
related marks are progressively mitigated, and the gradient
information is directed towards updates of all reflective layers,
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FIG. 8. Gradients of the misfit functions employed in the first FWI iteration related to the bad initial model case for the (a) classical
approach, (b) l1-norm framework, (c) Cauchy criterion, and our proposal with (d) κ = 0, (e) κ = 0.1, (f) κ = 0.2, (g) κ = 0.4, (h) κ = 0.5,
and (i) κ = 0.6.

providing a high-resolution image [see, for instance, Figs. 8(h)
and 8(i)].

The black points in Figs. 9(a)– 9(e) show the semilog plot
statistical distributions of the errors (difference between mod-

eled and observed data) before the graph transformation in the
second scenario, which indicates that errors do not, in fact,
follow Gaussian statistics, as depicted by the discrepancy be-
tween the black dots and magenta curves. The red dots refer to

FIG. 9. Statistical distribution of errors associated, in the second scenario, before (red points) and after the graph transformation (black
points) for the κ-GSOT-FWI, with (a) κ = 0, (b) κ = 0.2, (c) κ = 0.4, (d) κ = 0.5, and (e) κ = 0.6, in which the magenta, cyan, and green
curves represent, respectively, the ordinary Gaussian distribution (κ = 0) and κ-Gaussian distribution with κ = 0.4 and κ = 0.6. (f) is a zoom
of the other panels, considering only the error distributions after the graph transformation [black dots in (a)–(e)].
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TABLE II. Comparative main statistics between the recon-
structed models in the second scenario and the true model.

Framework R NRMS

Classical approach 0.9582 0.1083
l1-norm approach 0.9788 0.0825
Cauchy criterion 0.9601 0.0973
Our proposal (κ → 0) 0.9808 0.0684
Our proposal (κ = 0.1) 0.9878 0.0664
Our proposal (κ = 0.2) 0.9881 0.0662
Our proposal (κ = 0.4) 0.9883 0.0648
Our proposal (κ = 0.5) 0.9891 0.0624
Our proposal (κ = 0.6) 0.9950 0.0426

the error distributions after graph transformation. In regard to
this point, we remark that the shapes of the error distributions
before and after the graph transformation are very similar, and
therefore, the Gaussian distribution is not the most suitable
for this one. Furthermore, regardless of the κ value used to
compute the optimal transport, the error distribution after the
graph transformation is “more likely” to be a κ-Gaussian
distribution with κ = 0.6 [see green curves in Figs. 9(a)–9(e)].
Figure 9(f) is a zoom of the other panels, considering only the
error distributions after the graph transformation [black dots
in Figs. 9(a)–9(e)] for a better comparison between them (we
consider different colors for each κ case). We notice that the
error distributions are very similar around the error equal to
zero, which refer to the non-cycle-skipped waveforms. The
main differences are in the tails of the distributions, which in-
dicate seismic phases that skip the cycle. Analyzing Fig. 9, we
observe that the errors are smaller after the graph transforma-
tion, especially in the case with κ = 0.6, where the errors are
more accurately represented (see the good agreement between

the green curves and the black points). In real applications,
testing several κ values to search for the optimal κ parameter
is time-consuming. In this context, we suggest determining
the optimal κ value from the histogram of the residual data,
similarly to what is depicted in Fig. 9.

In this work, we have explored the portability of the κ-
statistical thermodynamics approach in the context of OT
problems for a robust solution of data-driven issues. In this
regard, from the computation of the most probable state using
a κ-Gaussian distribution, we have formulated the OT issue to
deal with oscillatory and non-normalized physical quantities
by employing a graph-transformed representation of temporal
series. To demonstrate the effectiveness of our proposal, we
considered a nonlinear geophysical data-driven problem in a
realistic setting. The results reinforce the fact that the classical
approach fails to obtain good physical models, as well as
frameworks based on thel1 norm and Cauchy criterion. By
contrast, the results summarized in Fig. 7 and Table II revealed
that our proposal mitigates the phase ambiguity effect on
waveform inversion. They also showed that a greater deviation
of the Gaussian behavior better indicates the estimated model,
which in our applications was represented by the κ = 0.6.

From a practical point of view, long and tedious data
processing is necessary to construct a good initial model
to mitigate the phase ambiguity problem, increasing human
subjectivity. In this context, our proposal reduces the depen-
dence on human expertise, which is interesting for automated
approaches for analyzing big data sets in several areas. In
this way, the κ-generalized OT shows great promise to deal
with modern data-driven issues. To conclude, we emphasize
that our proposal is easily adapted to various other inverse
problems, from estimating power-law exponents to machine
learning approaches, as well as to facial image comparison
[8] and collective motion [82].
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