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Abstract
In many complex molecular systems, the macroscopic ensemble’s properties are controlled by
microscopic dynamic events (or fluctuations) that are often difficult to detect via
pattern-recognition approaches. Discovering the relationships between local structural
environments and the dynamical events originating from them would allow unveiling
microscopic-level structure-dynamics relationships fundamental to understand the macroscopic
behavior of complex systems. Here we show that, by coupling advanced structural (e.g. Smooth
Overlap of Atomic Positions, SOAP) with local dynamical descriptors (e.g. Local Environment and
Neighbor Shuffling, LENS) in a unique dataset, it is possible to improve both individual SOAP-
and LENS-based analyses, obtaining a more complete characterization of the system under study.
As representative examples, we use various molecular systems with diverse internal structural
dynamics. On the one hand, we demonstrate how the combination of structural and dynamical
descriptors facilitates decoupling relevant dynamical fluctuations from noise, overcoming the
intrinsic limits of the individual analyses. Furthermore, machine learning approaches also allow
extracting from such combined structural/dynamical dataset useful microscopic-level
relationships, relating key local dynamical events (e.g. LENS fluctuations) occurring in the systems
to the local structural (SOAP) environments they originate from. Given its abstract nature, we
believe that such an approach will be useful in revealing hidden microscopic structure-dynamics
relationships fundamental to rationalize the behavior of a variety of complex systems, not
necessarily limited to the atomistic and molecular scales.

1. Introduction

The macroscopic behavior of complex systems is often influenced by fluctuations that, while being
fundamental for comprehending the systems’ dynamics, are challenging to detect and control. This also
holds true at the molecular scale, where phenomena such as nucleation, defect propagation, and phase
transitions are intricately linked to these fluctuations. The integration of advanced molecular descriptors
with machine learning (ML) has been playing a key role in analyzing molecular trajectories, contributing to a
better understanding of diverse nanoscale systems, ranging from atomistic to supramolecular levels [1–11].
Standard human-based descriptors, tailored for building detailed analyses and investigating specific systems
like, i.e. ice-water interfaces [12] or metal clusters [13, 14], have increasingly left more and more space to
abstract descriptors, [15–21] often combined with supervised and unsupervised ML methods [1–10]. These
ML-based techniques offer valuable insights into the structural and dynamical properties of the systems.
[5–10] While human-based approaches provide an accurate comprehension of intrigued physical–chemical
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mechanisms, they heavily rely on in-depth prior knowledge of the system, limiting their transferability. On
the contrary, the use of abstract descriptors allows more general representations and outlines a broader
picture of the system behavior, eventually managing a large amount of high-dimensional data which are
often difficult to rationalize. Widely recognized approaches based on dimensionality reduction principles
(e.g. linear principal component analysis (PCA), kernel-PCA [22], t-distributed stochastic neighbor
embedding [23]), are frequently employed to extract information from such descriptors related dataset, then
classifying the reduced dataset with diverse clustering methods (e.g. kmeans [24], Gaussian mixture models
(GMM) [25], DBSCAN [26], HDBSCAN [27]) to facilitate its interpretation. However, when relying on
structure-based descriptors, these approaches have limitations: while they effectively detect dominant
structural environments in the system, they may fail to capture local time-dependent events that are sparsely
observed within the trajectory. These transitions, although statistically insignificant, have revealed a crucial
role in the overall behavior of the system [28, 29]. The absence of an adaptive resolution that allows to catch
non-dominant events presents two challenges: firstly, it leads to a loss of information by failing to detect
fluctuations within the system, and secondly, these fluctuations may be inaccurately classified within the
dominant clusters, thereby contaminating them.

In recent studies, we have developed dynamic descriptors that are very efficient in capturing the local
dynamic environments of atoms in complex molecular systems from structural information/identity-based
information. [28, 29] By monitoring these descriptors over time along the trajectory, we can effectively
capture dynamic behaviors, including local and sparse events within the system. In particular, we introduced
a dynamical descriptor, Local Environments and Neighbors Shuffling (LENS) [28], which considers the
interacting particles as distinct individuals monitoring how much the list of neighbor particles (of each
particle i) changes over time, for example at each sampled∆t. As follows, LENS provides information on the
reshuffling of the local neighbor’s environments surrounding each unit i in the system along the trajectory.
However, at the same time, a descriptor like LENS retains very limited structural information: if, e.g. the
neighbor units rearrange locally, while remaining within the neighborhood in∆t, LENS would not detect
any signal (such events are vice-versa well captured by structural descriptors such as tSOAP [29]). Thus,
while LENS can detect the local dynamics of the system, it does not allow to determine, e.g. the specific
structural environment from which dynamic events originate.

Here we demonstrate how, combining structural (SOAP [15]) and dynamical (LENS [28]) descriptors, it
is possible to obtain an improved characterization of the system. We compose a dataset where the SOAP
spectra (n components each) are augmented with the LENS descriptor (an additional dimension), leading to
significant technical and scientific advantages. Firstly, (i) it enables the separation of sparsely observed, but
relevant, dynamic events/environments (e.g. fluctuations) from the noise in the SOAP dataset. As a result,
(ii) the interpretation of SOAP and LENS (combined) not only provides a more accurate complete
characterization, but the two descriptors improve each other: the addition of LENS yields an enhanced SOAP
structural classification. Furthermore, (iii) this allows identifying unique microscopic structure-dynamics
relationships, showing e.g. which local SOAP structural environments generate a certain type of dynamical
event along the sampled molecular dynamics (MD) trajectory. In this work we demonstrate the efficiency
and abstraction of this approach on diverse molecular systems, employed herein as case studies.

2. Results

As a first case study, we focus on a copper Cu(211) face-centered cubic (FCC) metal surface recently
demonstrated to possess non-trivial internal atomic dynamics. Metals are known to display interesting
dynamic behavior even well below the melting temperature [30, 31]. For example, when simulated at T =
600K, the Cu(211) FCC slab of figure 1 exhibits a surface with structurally diverse environments, as made
evident by a simple coordination analysis, and a non-trivial internal atomic dynamics (figure 1(a), right:
dynamical atomic rearrangements). Unveiling the underlying mechanism behind such dynamics is essential
to understand the properties of these metal systems [32–34]. Moreover, the comprehension of
structural-dependent features plays a fundamental role in practical applications such as heterogeneous
catalysis, mechanical properties, etc [35–38]. SOAP-based and LENS-based ML analyses have been recently
employed to analyze MD simulation trajectories of metals below the melting temperature (including,
e.g. copper surfaces as that of figure 1) [9, 28, 29]. Although a structural-descriptor-based analysis, such as
that one using SOAP combined with dimensionality reduction and density-based clustering, captures the
most prevalent and dominant conformation domains within the system, a pure LENS analysis based on the
reshuffling of the neighborhood over time, catches the dynamical features of the system (see figure 1(b)).

Here, we investigate a Cu(211) FCC copper slab using a preexisting MD trajectory composed of N =
2400 atoms simulated via a DeepMD-based potential [39] for 150 ns (see Cioni et al [9] for details). To
examine both the structural and dynamical properties of the Cu(211) system, we firstly adopted a similar
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Figure 1. Flow of the analysis. (a) FCC 211 copper slab snapshots colored by atom coordination (excluding bulk) at t = 0 ns and
after 75 ns of an MD trajectory at T = 600K. (b) LENS and SOAP: given the local neighborhood (cyan sphere) of each atom (red
atom) in the system, LENS tracks the identity of the neighbor atoms within it (no information on their geometrical organization
is retained), while SOAP captures their structural arrangement (without tracking their identity: it is a permutationally-invariant
description). (c) SOAP-based analysis of Cu(211) system. Left: Hierarchical Clustering based dendrogram (from an HDBSCAN∗

classification, see figure S1(a)) and dendrogram cutting, defining the merged macro-clusters. Middle: PCA of the SOAP dataset
(first two principal components), colored based on the detected macro-clusters. Right: chord diagram (fluxes) and transition
probability matrix for the dynamical transitions between the macro-clusters (SOAP environments). Bottom: surface MD
snapshots where atoms are colored based on the classification: bulk atoms in green, sub-surface in orange and red, surface
‘valleys’ in yellow, faces in cyan, and edges in blue. (d) LENS analysis of Cu(211) at 600K. Left: LENS time-series and
classification [28]. Right: chord diagram (fluxes) and transition probability matrix. Bottom: MD snapshots with atoms colored
based on the LENS clusters: more/less dynamic atoms in brighter/lighter colors. (e) Scheme of the SOAP&LENS combined data
set: the SOAP power spectrum of each particle at every time step (pti) is combined with the LENS scalar value calculated at the

subsequent time-interval (δt+∆t
i ), obtaining a new dataset χt

i .

bottom–up protocol as described in the study by Cioni et al [9]. This strategy includes, as a first step, a
representation of the system via the SOAP descriptor. One SOAP spectrum is extracted for each of the 900
atoms (three top-most layers, although the SOAP spectra also consider the presence of the 1500 bottom-side
atoms as neighbors, they are not included in the analysis because we are interested in the dynamics of the
surface [9]) in 482 snapshots taken every∆t= 0.3 ns along 145 ns of MD simulation, for a total of 482×900
spectra. A PCA is then used to reduce the dimensionality of the SOAP spectra dataset, considering the first
n-PCA components in order to retain at least 99.5% of the variance (see table S1 in supporting information
for details). Unsupervised clustering algorithm (HDBSCAN∗[27] or GMM [25]) can be finally adopted to
rationalize the data and to identify the dominant atomic environments on the surface (colored clusters in the
PCA of figure S1(a)). From the atoms’ transition between the clusters over time, we compute a transition
probability matrix. This reports the probability of an atom that is in a certain cluster at time t to remain in
the same environment at time t+∆t (i.e. after∆t: the temporal resolution of our analysis) or to undergo
transition into a different cluster (see figure S1(a) for the micro-clusters transition matrix). From the
transition probability matrix, we construct a Hierarchical Clustering based dendrogram merging the clusters
with high dynamic interconnection (figure S1(a)). The dendrogram is cut in order to retrieve only
meaningful clusters, colored accordingly in the PCA plot of figure 1(c), where only the first two PCA
components are reported. The results demonstrate how SOAP can successfully distinguish diverse structural
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environments within this system, including the bulk (green), subsurface (orange and red), surface valleys
(yellow), faces and edges (cyan and blue), identified in different colors in figure 1(c). The dynamic
interconnections between the various clusters (atomic environments) on the surface are also represented by
the cord diagrams in figure 1(c) on the right: in these cord diagrams the dimensions of the arcs stand for the
population of the various clusters, while the dimensions of the strings connecting them give visual
information on how pronounced the atomic flow is in∆t, and thus on their dynamic interconnection.
Moreover, we also obtained the transition probabilities matrix (% to undergo transition in∆t= 0.3 ns)
between the Hierarchical Clustering -merged clusters (figure 1(c) right).

Separately, we also perform a LENS analysis on the same 482 snapshots extracted by the same MD
trajectory. A LENS analysis of the system reveals intriguing surface events that are not captured (or
highlighted) by the static SOAP-based analysis of structure as described above. Specifically, a few Cu atoms
are seen to detach from the crystalline structure of the Cu(211) surface and to diffuse on it very fast. On the
one hand, since these diffusing atoms are characterized by a high rate of reshuffling of their neighbors, they
are clearly identified by LENS as a separate environment in the dataset (figure 1(d)). On the other hand, a
comparison of figures 1(c) and 1(d) shows how, since these points are sparse and have negligible statistical
weight in the dataset, these are overlooked in a pattern recognition approach such as that, e.g. of figure 1(c).
In particular, in the SOAP analysis of figure 1(c), it is possible to note that the diffusing atoms (magenta in
figure 1(d)), are merged to the SOAP cluster identifying the edges of Cu(211) surface. To address this
limitation, here we developed a combined approach based on the basic assumption that a structural
environment at a certain time might influence the dynamical events within the subsequent time interval. As
shown schematically in figure 1(e), starting for example at time t1, a SOAP spectrum pt1i is computed for
each particle i in the system. We also calculate its LENS value for the immediately subsequent time interval
δt2−t1
i . By including the LENS term as an extra-component into each SOAP power spectrum, we thus obtain a
new vector χt1

i = (pt1i , δ
t2−t1
i ) containing information on the structural properties in the neighbor

environment surrounding atom i at time t1 and its evolution in the subsequent time interval t2 − t1. The
SOAP spectrum and LENS scalar component are opportunely normalized to have the same weight in the
dataset (see Methods for details). Iterating this procedure for the whole trajectory, we thus obtain a new
dataset (SOAP&LENS dataset) comprising N= Nparticle ×Nframes vectors, each one of dimension n+ 1,
where n is the SOAP spectrum dimension (structural information) and 1 the LENS (dynamical) component.
Such updated dataset effectively contains information on the instantaneous environments surrounding each
particle i and how they are prone to change over time at the resolution∆t (0.3 ns) of our analysis.

This method allows us to delineate a new concept for classification, as reported in figure 2. On the left
side, figure 2(a) shows the PCA of the SOAP dataset projected onto the first two PCA components. On the
right side, figure 2(a) shows the same projection for the new SOAP&LENS combined dataset (see Methods
section for additional details). Notably, while the majority of the data has an almost identical distribution on
the two PCAs, a distinct cloud of points appears as evidently separated from the rest in the combined dataset
(top-right: highlighted by the red circle). Shown in figure 2(b), unsupervised HDBSCAN∗ clustering
combined with Hierarchical Clustering based merging (in general, any other suitable clustering algorithm,
e.g. GMM, DBSCAN, kmeans, would also work) reveals that such a separated domain on the SOAP&LENS
PCA identifies a distinct, specific local environment. Note that the clustering parameters used for the
analyses of figures 1(c) and 2(b) are exactly the same (see methods for details). This comparison shows how
the classification of figure 1(c) (SOAP only) is enriched via the detection of a new LENS environment
identified by the pink color (highlighted by the arrows in the transition matrix and chord diagram of
figure 2(b)). As done for both the SOAP and LENS independent analyses, we can reconstruct the evolution of
the detected environments by following the atomic environment belonging to all atoms at every time step
(see the chord diagram and transition probability matrix in figure 2(b), right).

This analysis based on combining SOAP and LENS in a unique dataset offers distinct advantages over the
purely SOAP-based approach. The decoupling of this additional pink LENS environment not only provides a
more complete description of what happens in the Cu(211) surface at 600K, but also improves the statistical
precision in the classification of the SOAP environments. In fact, in differentiating the structural from the
dynamical environments, the detection of the SOAP atomic environments in the SOAP&LENS dataset
benefits from a reduced error. Notably, the PCA area identified by the red oval in figure 2(b), which
corresponds in this analysis to a well-defined LENS atomic environment, merges into the SOAP atomic
environments in the PCA of figure 1(c), creating errors and increased uncertainty. In this sense, when
combined, two distinct descriptors such as, e.g. SOAP and LENS, complement and improve each other.
Furthermore, such an approach also allows tracking the origin of local dynamical (LENS) fluctuations
occurring on the surface, outlining microscopic structure-dynamics relationships. The off-diagonal entry in
the matrix of figure 2(b) representing the transition of atoms from the edge atomic environment (in blue) to
the pink (LENS) environment (∼0.1 % probability) reveals that those atoms diffusing with high-speed on the
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Figure 2. Combined SOAP&LENS analysis of a Cu(211) surface at 600 K. (a) Left: first two PCA components of the SOAP power
spectra of the Cu(211) system. Right: first two PCA components of the SOAP&LENS combined descriptor: the new cloud of
points emerging in the PCA projection of theχ vector is highlighted by the red circle. (b) SOAP&LENS based analysis of Cu(211)
system. Left: hierarchical clustering based dendrogram (from an HDBSCAN∗ classification, see figure S2(a)) and dendrogram
cutting, defining the merged macro-clusters (accordingly to clusters in figure 1(a), except for a new pink cluster). Middle: PCA of
the SOAP&LENS dataset (first two principal components), colored based on the detected macro-clusters and chord diagram
(fluxes). Right: transition probability matrix for the dynamical transition between the macro-clusters, highlighting the new
cluster in pink. (c) Trajectory of an atom detaching from an edge, running on the surface, and re-entering into the edge. The
trajectory is shown both on the PCA plot and on the snapshots, colored from blue to yellow according to the time evolution. (d)
Three surface MD snapshots colored based on the classification: bulk atoms in green, sub-surface in orange and red, surface
‘valleys’ in yellow, faces in cyan, edges in blue and pink atoms detaching from the edges and running on the surface (an example
of this process is reported in the zoom below).

metal surface come from the surface edges (see movie S1). After their creation and diffusion, such diffusing
pink atoms are then again reabsorbed into the surface edges (∼6.4 % probability). The large imbalance
between the probabilities for the creation and annihilation of these LENS diffusing atoms (figure 2(b) right,
∼0.1% vs.∼6.4%) indicates that the emergence of such fast atoms is a rare event. Yet, it is clear that detecting
such diffusing atoms is key for understanding the behavior of the system. Figure 2(c) provides an example of
the structural variation of an atom undergoing such transition, following its trajectory both on the PCA plot
and along the MD. The atom’s trajectory is color-coded based on the MD simulation time, from dark blue to
yellow, showing atoms that after residing within the surface edges (dark blue lines, example snapshot 1),
detach and diffuse on the surface becoming part of this pink LENS environment (green lines, example
snapshot 2), and then being reabsorbed into the edges (yellow lines, example snapshot 3). Figure 2(d) shows
a complete representation of the Cu(211) surface colored based on corresponding SOAP&LENS
environments. In contrast to the snapshots of figures 1(c) and (d), this comprehensive approach captures all
the key SOAP as well as LENS environments, providing a more complete characterization of this system.

By combining these two descriptors, it becomes evident that the motion of atoms diffusing on the surface
(pink atomic environment) originates from fluctuations within the SOAP environment, which defines the
edges of the surface (blue atomic environment).

We further test our approach on different systems. We carried out a second test on a 309 atoms
icosahedral gold nanoparticle (Au-NP) model, simulated for 2 ns at T = 200K using the Gupta potential [10,
40], (see Methods section for details). In these conditions, this Au-NP was demonstrated to have non-trivial
dynamics [10, 28]. In figure 3(a), a SOAP-based analysis of the MD trajectory reveals the dominant
structural environments within the nanoparticle vertices in blue, surface in lime, sub-surfaces atomic
environments in orange, bulk atoms in red and also surface defects in yellow and rosette in light-green. The
dynamics of these SOAP atomic environments is quantified by the exchange chord diagram and in the
transition probability of figure 3(a) (right). At the same time, analysis of the LENS time series unveils a
crucial insight, overlooked by a pure SOAP analysis (figure 3(b)). After∼180 ns of MD simulation, the
nanoparticle undergoes a sharp local structural transition involving one vertex, which penetrates the surface
generating a distinctive structure known as a rosette (figures 3(a) and (d)): in light-green). Notably, the
creation of a rosette (six symmetrical neighbors around an intruded center) from a vertex (five symmetrical
neighbors) is an event that is known to happen in such icosahedral nanoparticles and that can be observed
experimentally [10, 41]. The LENS analysis shows the emergence of strong signals when the vertex intrudes
and triggers the formation of the rosette (figure 3(b), left). In particular, the magenta colors in figure 3(b)
reveal, after such local transition, the presence of a highly dynamic liquid-like’ region surrounding the
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Figure 3. Combined SOAP&LENS analysis of a cold Au-NP surface at 200K. (a) SOAP-based analysis of the Au-NP system. Left:
hierarchical clustering based dendrogram (from an HDBSCAN∗ classification, see figure S1(b)) and dendrogram cutting,
defining the merged macro-clusters. Middle: PCA of the SOAP dataset (first two principal components), colored based on the
detected macro-clusters, and chord diagram (fluxes). Right: transition probability matrix for the dynamical transitions between
the macro-clusters (SOAP environments). Bottom: two nanoparticle MD snapshots where atoms are colored based on the
classification: vertices in blue, surface atoms in lime, sub-surface in light-green, yellow and orange, and bulk atoms in red. (b)
LENS analysis of Au-NP. Left: LENS time-series and classification. Middle: chord diagram (fluxes) and transition probability
matrix. Right: MD snapshots with atoms colored based on the LENS clusters: more/less dynamic atoms in brighter/lighter colors.
(c) SOAP&LENS based analysis of the Au-NP. Left: hierarchical clustering based dendrogram (from an HDBSCAN∗

classification, see figure S2(b)) and dendrogram cutting, defining the merged macro-clusters, colored according to cluster
classification in figure 3(a), except for a new pink cluster. Middle: PCA of the SOAP dataset (first two principal components),
colored based on the detected macro-clusters, and chord diagram (fluxes). Right: transition probability matrix for the dynamical
transitions between the macro-clusters, highlighting the new cluster in pink. Bottom: three nanoparticle MD snapshots colored
according to the classification: vertices in blue, surface atoms in lime, sub-surface in light-green, yellow and orange, bulk atoms in
red and ‘liquid-like’ region in pink. (d) Trajectory of an atom detaching from a vertex and entering the surface of the nanoparticle
and giving rise to the rosette environment. The trajectory is shown both on the PCA plot and on the snapshots, colored from blue
to yellow according to the time evolution.

rosette, coexisting with a ‘crystalline-like’ domain in the remaining portion of the Au-NP. It is worth noting
how a SOAP analysis alone overlooks such a dynamic surface non-uniformity: for the SOAP descriptor, rich
in structural information, this local dynamical change does constitute a relevant effect. In the SOAP-based
analysis, such a ‘liquid-like’ region is classified together with the crystalline region, as a global surface cluster
(lime color), even if the dynamic behavior of the two regions is different. Therefore, the SOAP description
fails to capture part of the system physics: it incorporates two distinct regions with entirely different
dynamical behaviors into one single cluster characterized by an averaged structural representation.

In figure 3(c), we show the results of SOAP&LENS based analysis, where we combined the SOAP
spectrum of each atom at every timestep with the LENS signal for the same atom at the subsequent∆t. In
this case, the combined analysis reveals that a significant portion of the PCA-reduced data -in particular, that
central region referring to the surface of the nanoparticle (in figure 3(a): in lime)- corresponds to a highly
dynamic LENS environment (figure 3(c): pink). This allows us to disentangle the ‘liquid-like’ region from
the well-defined crystal-like structural domains on the nanoparticle surface. Furthermore, the results of
figure 3(c) demonstrate again how, also in this case, the addition of LENS improves the accuracy in the
detection of the SOAP environments. Comparing of figures 3(a) vs. (c), it is clear how the analysis robustly
distinguishes now the edges (dark green), faces (lime) and vertexes (blue), as well as rosettes (light-green)
and defects (yellow) on the icosahedral nanoparticle surface. Similar to the case of Cu(211), a strong
correlation arises between the ‘liquid-like’ dynamical domain and specific structural environments: the
LENS (pink) cluster in the transition matrix is found connected to the faces (lime,∼3.9%), edges (green,
∼3.4%), vertices (blue,∼2.7%) and especially the rosettes (light-green,∼4.2%) of the nanoparticle. This is
interesting, considering that the pink dynamical region (local ‘melting’ of the nanoparticle surface)
originates from the creation of a first rosette (a defect in the icosahedron).

In figure 3(d), we show an example of a structural variation event that gives rise to the formation of a
rosette structure. This transition is depicted both on the PCA plot and on the snapshots, where the trajectory
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Figure 4. Combined SOAP&LENS analysis of ice-liquid water equilibrium in correspondence of the transition temperature. (a)
SOAP-based analysis of the TIP4P/Ice system. Left: first two PCA plot, colored according to GMM clustering (see Methods
section for details). Right: chord diagram (fluxes) and transition probability matrix of the clusters and its hierarchical clustering
based dendrogram showing the relation within them. Bottom: a snapshot along the trajectory colored based on the cluster
classification, ice molecules in white, liquid water in orange and purple. (b) LENS-based analysis of TIP4P/Ice. Left: LENS
time-series and classification. Middle: chord diagram (fluxes) and transition probability matrix. Bottom: an MD snapshot with
atoms colored based on the LENS clusters, more/less dynamic atoms in brighter/lighter colors. (c) SOAP&LENS based analysis of
the TIP4P/Ice. Left: first two PCA plot, colored according to GMM clustering (see Methods section for details). Right: the chord
diagram (fluxes) and transition probability matrix of the clusters and its hierarchical clustering based dendrogram showing the
relation within them. Bottom: an MD snapshot colored according to the cluster classification: ice molecules in white, liquid water
in red and the interface in cyan. Right: zoom of the interface region. (d) Trajectory of a molecule that undergoes a phase
transition, from liquid water to ice, crossing the interface. The trajectory is reported both on the PCA plot and on the zoomed
snapshots, colored from blue to yellow according to the time evolution. (e) Flow chart of the transitions between the three phases,
colored accordingly, at 5 ns, 10 ns, 20 ns and 30 ns.

of the vertex atom (blue, at 50 ns) is color-coded according to time evolution, ranging from dark blue to
yellow (2µs of MD). This demonstrates how the vertex atom entering into the surface, leads to the
emergence of a ‘liquid-like’ region surrounding the rosette (pink, at 2µs of MD).

As a last case study, we present the effectiveness of our SOAP&LENS analysis in capturing distinct phases
within a system where ice and liquid water coexist in correspondence of the solid and liquid transition
temperature. We analyzed 50 ns of an atomistic simulation of water modeled with TIP4P/Ice force field,
containing 2048 molecules at equilibrium between the two phases (∼50% ice and∼50% liquid water) at the
transition temperature [28, 29]. A pure SOAP-based (structural) analysis, reported in figure 4(a), can
distinguish the two main phases (ice in white and liquid water in orange and purple). The two clusters in
orange and purple in figure 4(a), correspond to tiny variations of the same environment (liquid water). This
is clearly shown in the probability matrix and in particular in the Hierarchical Clustering based dendrogram,
where the purple and orange atomic environments are very close to one each, and both are in comparison
very far from the white one (see figure 4(a) right). However, recently we have demonstrated that a pure LENS
(dynamic) analysis can detect easily both the ice and water environments, plus also the interface between
them [28]. Figure 4(b) shows the LENS time series, which clearly highlight two distinct statistically relevant
environments, with different dynamics, separated by an interface environment where the ice/liquid water
molecular transitions occur. The flux chord diagram and the probability transition matrix of figure 4(b)
(right) reveal how the ice/liquid phase transition of the molecules takes place through the interface.
Figure 4(c) displays the combined SOAP and LENS in a unique dataset, thereby providing a PCA that is
significantly distorted compared to the SOAP one of figure 4(a). Two main density peaks are evident (in
white and red) corresponding respectively to ice and liquid water. GMM clustering now clearly detects a
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distinct area on the PCA corresponding to the ice-water interface (in cyan). In figure 4(d), we highlighted
one explicatory trajectory (on the PCA plot and on the snapshot) of a water molecule undergoing phase
transition from liquid water to ice, crossing the interface. The flow chart in figure 4(e) provides a qualitative
visualization of the transitions between the various environments considering specific time intervals along
the trajectory (e.g. at 5 ns, 10 ns, 20 ns and 30 ns). Also in this case, the addition of a LENS component to the
SOAP vectors offers a clear advantage over a purely structural analysis (SOAP only). In this specific case, it is
interesting to note how LENS retains large part of the information contained in the system trajectory
compared to SOAP. This is evident, for example, if we compare the cumulative variance contained in the
dataset as a function of the number of principal components of the PCA. In figure S4, we clarify that to reach
the 99% of the cumulative variance of the dataset 8 components are needed in a purely structural SOAP
dataset, while for example, when LENS is embedded into the dataset, with only three components we largely
exceed the 99% of variance. This demonstrates how, in this system, the LENS descriptor might retain more
comprehensive information regarding the key features that characterize the system, compared to the SOAP
descriptor.

In conclusion, this study points out the intrinsic limitations of relying solely on structural descriptors to
comprehend the physics of dynamically evolving systems. By integrating a microscopic dynamic descriptor,
like LENS, with a structural counterpart (e.g. SOAP), we obtain numerous advantages. First, this integration
improves the accuracy of both structural and dynamic classifications, ‘cleaning up’ the noise and reducing
the degeneracy issues intrinsic to both individual analyses. Second, this paves the way for understanding how
given structural microscopic environments within the system can generate specific dynamic behavior
(fluctuations). This opens new routes to learn microscopic-scale structure-dynamic relationships (e.g. those
of figures 2 and 3) that are key to understanding the behaviors and properties of these, and in general of a
variety of complex systems. These results are also reminiscent of general concepts in physics. For instance,
when studying the behavior of a system, the sole positional information of the objects is insufficient to
predict the dynamic behavior of the system at non-zero temperature (e.g. information on velocities is also
needed). Similarly, these results demonstrate how coupling a purely structural parameter like SOAP, which
provides information only on the relative structural arrangements, with a descriptor that is rich in local
dynamic information, offers fascinating insights. We expect that such type of approach, given its abstract
nature, will be highly valuable in characterizing the behavior of complex systems across various domains and
potentially also beyond the atomistic/molecular scale.

3. Methods

3.1. MD simulations and pre-processing
The atomistic model of Cu(211) surface (see figures 1 and 2) is composed of N211 = 2400 atoms. The MD
simulation is conducted at T = 600K via LAMMPS software [42] using a neural network potential built
using the DeepMD platform [39], as described in detail in [9]. The sampled trajectories are 150 ns long. A
total of 502 frames are extracted every∆t= 0.3 ns along the MD trajectory and used for the analysis.

The atomistic model for the icosahedral Au-NP is composed of NAu-NP = 309 gold atoms (figure 3). The
Au-NPmodel is parametrized according to the Gupta potential, [40] and is simulated for 2µs of MD at T =
200K using the LAMMPS software [42] as described in detail in [10]. 2000 frames are extracted every∆t=
1 ns of the MD trajectory and then used for the analysis.

The atomistic Ice/Water interface model of figure 4 is composed of NTIP4P = 2048 water molecules. The
MD simulation is conducted at T = 268K. The TIP4P/Ice water model [43] is used to represent both the
solid phase of ice and the phase of liquid water [39], as described in detail in [28]. The sampled trajectory is t
= 50 ns long, sampled and analyzed every 0.1 ns.

All MD trajectories are firstly pre-processed in order to obtain a hdf5 database, containing the data
needed to extract the SOAP spectra and LENS values by using the software cpctools, accessible at: https://
github.com/GMPavanLab/cpctools. For the Cu(211) surface, we computed the SOAP spectra on both the
surface and the bulk (N211 = 2400 atoms in total), removing most of the deep bulk atoms, thus obtaining the
900-atoms system analyzed herein. We analyzed all the atoms of the Au-NP system. In the TIP4P/Ice water
system of figure 4 we computed the SOAP spectra for all the O atoms considering also the H atoms in the
environment, while we did the LENS analysis by considering only the O atoms. In all cases, the analysis is
then conducted by building both the local SOAP environments and the LENS values of each unit within a
sphere of radius rcut (see 1(b)), equal to 6 Å for the Cu(211), 4.48 Å for the Au-NP, and 6Å for the TIP4P/Ice
system.
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3.2. SOAP analysis
To describe the structural environment surrounding each particle within the simulations, we use the SOAP
descriptor. We compute the SOAP spectrum pti representing the local structural environment of each particle
i at every timestep t within a cut-off radius rcut (6 Å for the Cu(211), 4.48 Å for the Au-NP, and 6Å for the
TIP4P/Ice system) through the software cpctools, accessible at: https://github.com/GMPavanLab/cpctools.
The SOAP vectors are generated using describe [44], and both lmax and nmax parameters for spherical
harmonics, and number of radial basis functions are set to 8. The results in a 576-component vector
represent the environments of one particle at a certain timestep for the single species systems in (Cu(211)
and Au-NP), while in a 1728-component vector for the ice/water interface. Then, we applied the PCA
algorithm to each dataset (as implemented in the SciPy python package [45]), reducing the dimensionality of
the representation to the first n-components, in order to reach a certain cumulative variance within each
system, as reported in table S1. To analyze the reduced data of the Cu(211) and Au-NP systems, we applied
the HDBSCAN∗ [27] clustering algorithm set up with min_cluster_size = 80 for the former and
min_cluster_size = 150 for the latter, obtaining 7 and 9 environments, respectively. We used
soft-clustering to assign the point classified as noise to their closer cluster. From the cluster transition
probability matrix (see figures S1(a) and (b)), we found the relations within the environments via
hierarchical clustering algorithm. Then, merging the ones closer than 1 in terms of the chosen metrics
(correlation) and linkage (average), we obtained 6 and 7 macro-clusters respectively for Cu(211) and
Au-NP systems. Regarding the TIP4P/Ice system, we followed a slightly different procedure: indeed, as clear
from the PCA of the SOAP spectra reported in figure 4(a), there are no clear density-based patterns, and
HDBSCAN∗ failed to assign meaningful clusters, as shown in figure S3. Thus, instead of HDBSCAN∗

clustering algorithm, we employed a GMM [25] setting the number of clusters to three, without merging
clusters a posteriori bust still applying Hierarchical Clustering being interested in cluster relations. Then, for
all the systems, we compute the clusters’ fluxes, i.e. the number of particles going from one cluster to another,
following the cluster assignment along the trajectory. The fluxes are visualized as chord diagrams in
figures 1(c), 3(a) and 4(a). The width of the arcs represents the total number of transitions experienced by
each cluster during the simulation, including both self-transitions and those to other clusters. The chords
linking the clusters depict their interconnections, with the extension of the chord’s base indicating the
amount of particles exchanging between connected clusters. The color of the chords indicates the dominant
direction of particle transfer between clusters. Then, normalizing the flux matrices on each row, we obtained
the transition probability, reported in figures 1(c), 3(a) and 4(a).

3.3. LENS analysis
We compute the δi(t) signals for all the systems following a similar procedure reported in Crippa et al [28],
by using the cpctools software accessible at: https://github.com/GMPavanLab/cpctools, and reducing the
noise by using a Savitzky and Golay [46] filter (as implemented in the SciPy python package [45]). Each δi(t)
signal is smoothed using a common polynomial order parameter of p= 2 and a time-window of 20 frames in
the crystalline Cu(211) surface, 100 frames for both the water/ice interface and the Au-NP system. After the
noise reduction, the clustering of the δi data is performed: in the case of Cu(211), the clustering thresholds
are set as previously [28] while for both the Au-NP and the TIP4P/Ice systems are set by means of kmeans
algorithm [24] implemented in SciPy python package [45]. The kmeans algorithm requires the definition of
the number of clusters as an input: in both cases of gold nanoparticle and ice/water interface, we set four and
three clusters respectively, according to the number of macro clusters previously found [28]. Knowing the
cluster assignment, we compute the cluster fluxes, i.e. the number of particles going from one cluster to
another, for each system. The fluxes are reported as chord diagrams of figures 1(d), 3(b) and 4(b),
representing the data as reported above. Then, normalizing the flux matrices on each row, we obtain the
transition probability, reported in figures 1(d), 3(b) and 4(b).

3.4. SOAP&LENS combined analysis
The combined SOAP&LENS descriptor is obtained by following the procedure illustrated in figure 1(e) and
explained in detail in the Results section. The SOAP power spectrum of each particle i at every time step t
(pti) is combined with the subsequent LENS scalar value (δt+∆t

i ), obtaining a new vector χt
i = (pti, δ

t+∆t
i ).

Each SOAP power spectra are normalized on their norm, while the LENS scalar is intrinsically normalized
within zero (no neighborhood changes) and one (the whole neighborhood changes). In this way, while
retaining different information and having two distinct mathematical forms (a high dimensional vector and
a scalar), the two components have the same ‘weight’ in the dataset. This procedure, when iterated
throughout the entire trajectory, results in a new dataset including N= Nparticle ×Nframes vectors. Each vector
contains n+ 1 components: n components representing the SOAP power spectrum and 1 component
representing the LENS value. Starting from this χt

i representation of the particle local environments, we
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follow the same bottom–up procedure, described above, applied to the pure SOAP dataset. To highlight the
real effect of the LENS component, avoiding biased results, we performed the bottom–up analysis by using
the same parameters. Indeed, upon applying PCA to the SOAP&LENS dataset of each system, we considered
the first n-PCA components to match the PCA variance retained in the SOAP analysis, as reported in table
S1. We apply the clustering algorithm (both HDBSCAN∗ and GMM) to this new reduced dataset, by using
the same parameters (min_cluster_size = 80 for the Cu(211) and min_cluster_size = 150 for the
Au-NP and n_component = 3 for the TIP4P/Ice), and then the Hierarchical Clustering dendrogram cutting
under the same conditions i.e. closer than 1 in terms of the chosen metrics (correlation) and linkage
(average). Details regarding the computational cost of the SOAP and LENS analyses for each system are
reported in table S2 in the supporting information. The data shown in table S2 indicate that the LENS
analysis is approximately one order of magnitude less expensive than the SOAP computation (with a slight
variability depending on the system of interest), when performed under comparable conditions. Thus, the
SOAP&LENS analysis computational cost is comparable to a pure SOAP calculation. While our method is
general and owns the advantage of transferability to diverse systems, some limitations may concern the size
of the system, namely, the number of individuals and frames taken along the simulation trajectory that can
be effectively analyzed. Increasing too much the size (in terms of number of units) and the trajectory
sampling produces an increase in terms of computational cost. Parallelization of this analysis code will help
dealing with this limitation in the next future.
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[16] Pietrucci F and Martoňák R 2015 Systematic comparison of crystalline and amorphous phases: charting the landscape of water

structures and transformations J. Chem. Phys. 142 104704
[17] Behler J 2011 Atom-centered symmetry functions for constructing high-dimensional neural network potentials J. Chem. Phys.

134 074106
[18] Drautz R 2019 Atomic cluster expansion for accurate and transferable interatomic potentials Phys. Rev. B 99 014104
[19] Faber F, Lindmaa A, von Lilienfeld O A and Armiento R 2015 Crystal structure representations for machine learning models of

formation energies Int. J. Quantum Chem. 115 1094–101
[20] Gasparotto P, Bochicchio D, Ceriotti M and Pavan GM 2020 Identifying and tracking defects in dynamic supramolecular polymers

J. Phys. Chem. B 124 589–99
[21] Musil F, Grisafi A, Bartók A P, Ortner C, Csányi G and Ceriotti M 2021 Physics-inspired structural representations for molecules

and materials Chem. Rev. 121 9759–815
[22] Schölkopf B, Smola A and Müller K-R 1998 Nonlinear component analysis as a kernel eigenvalue problem Neural Comput.

10 1299–319
[23] van der Maaten L and Hinton G 2008 Visualizing data using t-SNE J. Mach. Learn. Res. 9 2579–605 (available at: www.jmlr.org/

papers/volume9/vandermaaten08a/vandermaaten08a.pdf)
[24] Lloyd S 1982 Least squares quantization in pcm IEEE Trans. Inf. Theory 28 129–37
[25] Reynolds D 2009 Gaussian Mixture Models (Springer) pp 659–63
[26] Schubert E, Sander J, Ester M, Kriegel H P and Xu X 2017 DBSCAN revisited, revisited: why and how you should (still) use

DBSCAN ACM Trans. Database Syst. 42 1–21
[27] McInnes L, Healy J and Astels S 2017 HDBSCAN: hierarchical density based clustering J. Open Source Softw. 2 205
[28] Crippa M, Cardellini A, Caruso C and Pavan G M 2023 Detecting dynamic domains and local fluctuations in complex molecular

systems via timelapse neighbors shuffling Proc. Natl Acad. Sci. USA 120 e2300565120
[29] Caruso C, Cardellini A, Crippa M, Rapetti D and Pavan G M 2023 TimeSOAP: tracking high-dimensional fluctuations in complex

molecular systems via time variations of SOAP spectra J. Chem. Phys. 158 214302
[30] Spencer M S 1986 Stable and metastable metal surfaces in heterogeneous catalysis Nature 323 685–7
[31] Jayanthi C S, Tosatti E and Pietronero L 1985 Surface melting of copper Phys. Rev. B 31 3456–9
[32] Yamakov V, Wolf D, Phillpot S, Mukherjee A and Gleiter H 2004 Deformation-mechanism map for nanocrystalline metals by

molecular-dynamics simulation Nat. Mater. 3 43–47
[33] Zepeda-Ruiz L A, Stukowski A, Oppelstrup T and Bulatov V V 2017 Probing the limits of metal plasticity with molecular dynamics

simulations Nature 550 492–5
[34] Wang X, Zheng S, Shinzato S, Fang Z, He Y, Zhong Li, Wang C, Ogata S and Mao S X 2021 Atomistic processes of

surface-diffusion-induced abnormal softening in nanoscale metallic crystals Nat. Commun. 12 5237
[35] Koch R, Borbonus M, Haase O and Rieder K H 1992 Reconstruction behaviour of fcc(110) transition metal surfaces and their

vicinals Appl. Phys. A 55 417–29
[36] Wang X-Q 1991 Phases of the au(100) surface reconstruction Phys. Rev. Lett. 67 3547–50
[37] Antczak G and Ehrlich G 2010 Surface Diffusion: Metals, Metal Atoms and Clusters (Cambridge University Press)
[38] Gazzarrini E, Rossi K and Baletto F 2021 Born to be different: the formation process of Cu nanoparticles tunes the size trend of the

activity for CO2 to CH4 conversion Nanoscale 13 5857–67
[39] Wang H, Zhang L, Han J and Weinan E 2018 DeePMD-kit: a deep learning package for many-body potential energy representation

and molecular dynamics Comput. Phys. Commun. 228 178–84
[40] Gupta R P 1981 Lattice relaxation at a metal surface Phys. Rev. B 23 6265–70
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