
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Topological obstruction to the training of shallow ReLU neural networks / Nurisso, Marco; Leroy, Pierrick; Vaccarino,
Francesco. - ELETTRONICO. - (2024), pp. 1-23. (Intervento presentato al  convegno NeurIPS 2024: Thirty-Eighth
Annual Conference on Neural Information Processing Systems tenutosi a Vancouver (CA) nel Tuesday Dec 10 through
Sunday Dec 15).

Original

Topological obstruction to the training of shallow ReLU neural networks

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993534 since: 2024-12-11T09:42:27Z

NeurIPS



Topological obstruction to the training of shallow
ReLU neural networks

Marco Nurisso
Politecnico di Torino & CENTAI Institute

Torino, 10100 - ITALY
marco.nurisso@polito.it

Pierrick Leroy
Politecnico di Torino

Torino, 10100 - ITALY
pierrick.leroy@polito.it

Francesco Vaccarino
Politecnico di Torino

Torino, 10100 - ITALY
francesco.vaccarino@polito.it

Abstract

Studying the interplay between the geometry of the loss landscape and the optimiza-
tion trajectories of simple neural networks is a fundamental step for understanding
their behavior in more complex settings. This paper reveals the presence of topo-
logical obstruction in the loss landscape of shallow ReLU neural networks trained
using gradient flow. We discuss how the homogeneous nature of the ReLU acti-
vation function constrains the training trajectories to lie on a product of quadric
hypersurfaces whose shape depends on the particular initialization of the network’s
parameters. When the neural network’s output is a single scalar, we prove that these
quadrics can have multiple connected components, limiting the set of reachable pa-
rameters during training. We analytically compute the number of these components
and discuss the possibility of mapping one to the other through neuron rescaling
and permutation. In this simple setting, we find that the non-connectedness results
in a topological obstruction, which, depending on the initialization, can make the
global optimum unreachable. We validate this result with numerical experiments.

1 Introduction

Training a neural network consists of navigating the complex geometry of the loss landscape to reach
one of its deepest valleys. Gradient descent and its variants are, by far, the most commonly used
algorithms to perform this task. While technically correct, the standard picture of the parameter space
as Euclidean space with the trajectory rolling down the loss’s surface in the steepest direction towards
a minimum is slightly misleading because different choices of parameters can be observationally
equivalent i.e. encode the same function [10]. The observational equivalence of parameters shape
the loss landscape by imposing specific geometric structures on the parameter space. Minima are
not isolated points but high-dimensional manifolds with complex geometry [17, 9, 41] and the loss
function’s gradients and Hessian are constrained to obey some specific laws [45, 27]. Gradient-based
optimization methods, where the parameters are updated by performing discrete steps in the gradient’s
direction, are thus very much dependent on the symmetry-induced geometry [12, 29].

In this work, we provide a topological perspective on the constraints induced by some groups of
network symmetries on the optimization trajectories. Topology is a field of mathematics that studies
the properties of a space that are preserved under continuous deformations. Our main goal is to find
and quantify in topological terms the impossibility of the training trajectories to freely explore the
parameter space and get from any initialization to an optimal parameter. This idea is formalized in
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the topological notion of connectedness and, in particular, with the 0-th Betti number, which counts
the number of connected components the space is composed of. The presence, or the absence, of
topological obstructions in the parameter space does not depend on the particular loss function or the
training data but is intrinsic to the interplay between the geometry and the topology of the parameter
space under the action of groups of symmetries inducing observationally equivalent networks.

Main contributions. Our main contributions are the following.
1. We find that, for two-layer neural networks, the gradient flow trajectories lie on an invariant

set, which can be factored as the product of quadric hypersurfaces.
2. We analytically compute its Betti numbers, i.e., the number of connected components, holes,

and higher-dimensional cavities.
3. We find that the invariant set can be disconnected when the network’s output dimension is 1,

leading to a clear topological obstruction.
4. We find that the obstruction is caused by “pathological” neurons that cannot change the sign

of their output weights when trained with gradient flow.
5. We discuss the relation between the invariant set and the network’s symmetries, finding that

if we consider permutations, the number of effective connected components scales linearly
in the number of pathological neurons.

6. We perform numerical validations on controlled toy scenarios, displaying the effect of
obstruction in practice.

2 Related work

A large body of work studies gradient flow and gradient descent optimization of one hidden layer
networks with homogeneous activations. Convergence properties have been found for wide networks
[36, 42] with bounded density at initialization [31]. The implicit regularization provided is studied
under various assumptions on: orthogonal input data [4], initialization scale [30, 4], wide (overpa-
rameterized regime) and infinitely wide [6], linearly separable data [30, 44]. Deeper linear networks
[24] have also been studied.

These works focus on proving convergence and understanding which (optimal) solution is found,
whereas our work investigates the shape of the optimization space and focuses on cases where the
optimum might not be reachable from a given initialization.

Closer to our work, Safran et al. [38] studies two-layer ReLU binary classifiers with single input and
output, counting the number of their piecewise-linear components after training. Eberle et al. [13]
focuses on the differential challenge posed by the ReLU activation function and studies properties
like the uniqueness of the solution of a gradient flow differential equation for a given initialization.

ReLU activation is a nonnegative homogeneous function, meaning that particular weight rescalings
do not change the neural network’s function. This is at the heart of the counterargument to flatness
measures made by Dinh et al. [10], which shows that the Hessian eigenvalues can be made arbitrarily
large in this way. Neyshabur et al. [34] explores the effect such rescalings can have on the gradient
and proposes a rescaling-invariant regularization. Generally speaking, neural networks possess
symmetries [20], and symmetries influence the geometry of training. Du et al. [12] studies how
symmetry leads ReLU networks to automatically balance the neurons’ weights. Kunin et al. [27], Zhao
et al. [50] studies how it constrains the gradient and Hessian matrix, leading to conservation laws
w.r.t. gradient flow and Tanaka et al. [45] leverages it to propose a network pruning scheme. Ziyin
[51] studies general mirror-reflect symmetries of the loss function and their effect on the weights of
the trained network. Other conserved quantities stem from batch normalization’s scale invariance
[23, 46]. The transition from gradient flow to finite step size gradient descent breaks the conservation
laws, resulting in altered trajectories [14, 2, 27, 43].

Numerous works have explored the geometry and topology of the loss landscape to obtain insight
into a neural network’s training behavior. Motivated by the striking experimental observation that low
loss points can be connected by simple curves [11, 18] or line segments [39, 16, 15], a large body of
literature tries to understand this phenomenon of mode connectivity under the topological lens of
the connectedness of the loss function’s sublevel sets [17, 35, 26], especially for overparameterized
neural networks [9, 8, 41]. Another line of work approaches the connectivity of minima from another
point of view, studying the presence [49, 37, 47] or absence [28] of spurious minima, i.e. minima
which are not global. Bucarelli et al. [5] analytically derives bounds on the sum of the Betti numbers
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of the loss landscape’s sublevel set. Topological data analysis methods have also been exploited to
numerically study the shape of the loss landscape [1, 22].

3 Setup and preliminaries

3.1 One-hidden layer neural network

Unless otherwise stated, all vectors are column vectors, that is, x = (x1, . . . , xd)⊺ ∈ Rd ≅ Rd×1. Let
us consider a two-layer neural network f(⋅, θ) ∶ Rd → Re specified by the function

f(x; θ) =W (2)σ(W (1)x), (1)

where x ∈ Rd is the input, θ = (W (1),W (2)) with W (1) ∈ Rl×d and W (2) ∈ Re×l are the parameters,
σ ∶ R → R is the component-wise activation function and l is the number of neurons in the hidden
layer. Notice that we consider a network with no biases, as it allows us a discussion with lighter
notation. The case with biases is discussed in Appendix E.

In this work, following [12], we focus on the case where σ is homogeneous, namely σ(x) = σ′(x) ⋅ x
for every x and for every element of the sub-differential σ′(x) if σ is non-differentiable at x. The
commonly used ReLU (σ(z) = max{z,0}) and Leaky ReLU (σ(z) = max{z, γ} with 0 ≤ γ ≤ 1)
activation functions satisfy this property.

We call parameter space the vector space Θ = {θ = (W (1),W (2)) ∣W (1) ∈ Rl×d,W (2) ∈ Re×l}.
It will also be convenient to examine the single hidden neurons and their associated parameters for
the following discussions.
Proposition 1. For the two-layer neural network defined in Equation (1). Let
k = 1, . . . , l, let (e11, e12, . . . , ell) be the canonical basis of Rl×l and Θk =
{θk = (ekkW (1),W (2)ekk) ∣ (W (1),W (2)) ∈ Θ} ⊂ Θ, then Θ = Θ1 ⊕⋯⊕Θl.

Details of the proof are provided in Appendix A. Fixing k ∈ {1, . . . , l}, we can consider Θk as
the parameter space of the k-th hidden neuron, which consists of the inputs and output weights of
neuron k, namely the rows and columns of W (1) and W (2), respectively. For simplicity, when we
work in Θk, we write W

(1)
k ∶= ekkW (1) and W

(2)
k ∶=W (2)ekk. Interestingly, the decomposition of

Proposition 1 only holds for two-layer neural networks and will be crucial to the formulations of this
paper’s results.

3.2 Symmetries and observationally equivalent networks

It is well known that the properties of the activation function heavily influence the geometry of the
parameter space Θ. The activation function’s commutativity with some classes of transformations
can result in the latter having no effect on the function implemented by the neural network. This
means that, in general, the mapping from the parameter space to the hypothesis class of functions is
not injective. Following the terminology in Dinh et al. [10], we say that two parameters θ1, θ2 ∈ Θ
are observationally equivalent, if they encode the same function f(⋅; θ1) = f(⋅, θ2) and write θ1 ∼ θ2.

In the case of homogeneous activations (ReLU or Leaky ReLU), we describe two kinds of transfor-
mations that send a parameter θ into an observationally equivalent one.

Neuron rescaling. The input weights of a hidden neuron can be rescaled by a positive scalar α > 0
provided that its output weights are rescaled by the inverse α−1 (top panel of Figure 1a). We formalize
this as the action of the group R+ of positive real numbers on Θk:

T ∶R+ ×Θk → Θk

(α, θk)↦ Tα(θk) = (α ⋅W (1)
k ,

1

α
⋅W (2)

k ) .
(2)

This action can be naturally extended to the space of all parameters by considering the possibility of
rescaling all hidden neurons simultaneously by different factors. If α = (α1, . . . , αl) ∈ Rl

+

Tα(θ) = (diag(α)W (1),W (2)diag(α)−1). (3)

3



Figure 1: a. Depiction of the two group actions acting on the space of the network’s parameters:
the neuron rescaling of Equation (2) (top) and the neuron permutation of Equation (4) (bottom).
b. Depiction of the geometry of the parameter space induced by the rescaling invariance of ReLU
networks. The dotted lines denote the orbits T (θ) while the solid lines represent the invariant sets
H(c) associated with θ and the one associated with its rescaled version θ′. Notice how the gradient
of the loss g(θ) is tangent toH(c) and orthogonal to T (θ).

Given that σ(az) = aσ(z) when a ∈ R+, we see how θ ∼ Tα(θ).
We write T (θ) to denote the orbit of a parameter θ under the action of T , i.e. the set of all parameters
obtained from θ by arbitrarily rescaling the neurons T (θ) = {Tα(θ) ∶ α ∈ Rl

+}.

Permutations of the neurons. Besides rescaling, we can obtain an observationally equivalent
network by permuting the hidden neurons in such a way as to preserve their input and output weights
(bottom panel of Figure 1a).

Given the symmetric group on l elements Sl of the permutations of {1, . . . , l}, we write the action

P ∶Sl ×Θ→ Θ

(π, θ)↦ Pπ(θ) = (RπW
(1),W (2)R⊺π).

(4)

where Rπ is the l × l row-permutation matrix associated to the permutation π.

Given that the activation function σ is applied component-wise, we have that it commutes with Rπ,
namely

f(x;Pπ(θ)) =W (2)R⊺πσ(RπW
(1)x) =W (2)R⊺πRπσ(W (1)x) =W (2)σ(W (1)x) = f(x; θ)

and thus Pπ(θ) ∼ θ because R⊺π = (Rπ)−1.

Having defined these two actions, we say that θ and θ′ are observationally equivalent by rescalings
and permutations if θ′ can be obtained from θ by a finite sequence of actions of T and P or,
equivalently thanks to Lemma 3 in the Appendix, if there exists a rescaling α and a permutation π

such that θ′ = Pπ ○ Tα(θ). In this case, we write θ
rp∼ θ′.

3.3 Conserved quantities and the invariant hyperquadrics

The presence of symmetries in the neural network’s parameter-function map results in a specific
geometric structure in the loss landscape. Let indeed D = {(xi, yi) ∈ Rd ×Re}N

i=1 be a training set
of N input-output pairs and fix a loss function L ∶ Θ → R which depends on the parameters only
through the output of the neural network (1), that is

L(θ) = 1

N

N

∑
i=1

ℓ(f(xi; θ), yi) (5)

where ℓ ∶ Re ×Re → R is differentiable. In this work, as empirical risk minimization, we consider the
continuous time version of the gradient descent (GD) algorithm (with learning rate h > 0)

θt+1 = θt − h∇θL(θt) (6)
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named gradient flow (GF), and defined as

d

dt
θ(t) ∈ −∇θL(θ(t)) ∶= −g(θ(t)) (7)

where ∇θL(θ(t)) is the Clarke sub-differential [7] which takes into account the parameters θ where
L(θ) is non-differentiable. Given that the loss function L depends on the parameters only through f ,
its value at θ must be constant over the orbit T (θ). This, together with the fact that the gradient of a
differentiable function at a point is orthogonal to the level set at that point, means that

g(θ) ⊥ T (θ) (8)

at any parameter θ where L(θ) is differentiable, as represented in Figure 1b. This orthogonality
condition constrains the possible values of the gradient and, by extension, the possible gradient flow
trajectories. In particular, as proven in Liang et al. [29], Tanaka et al. [45], Equation (8) is equivalent
to

d

∑
i=1

W
(1)
ki g

(1)
ki −

e

∑
j=1

W
(2)
jk g

(2)
jk = 0 ∀k = 1, . . . , l. (9)

For convenience of notation, we define, for k = 1, . . . , l, the following bilinear forms on Θ, which
help us describe the geometry induced by the rescaling symmetry. If θ = (W (1),W (2)) and η =
(V (1), V (2)), we define

⟪θ, η⟫k =
d

∑
i=1

W
(1)
ki V

(1)
ki −

e

∑
j=1

W
(2)
jk V

(2)
jk (10)

which, notice, only depends on the k-th row of W (1) and k-th column of W (2) meaning that we can
equivalently see it as a bilinear form on Θk. Θk, together with ⟪⋅, ⋅⟫k is a pseudo-Euclidean space.

With the notation given by Equation (10), we see that Equation (9) can be simply rewritten as
⟪θ, g(θ)⟫k = 0 for every neuron k. This condition, akin to orthogonality w.r.t. the bilinear form of
Equation (10), implies that, under gradient flow optimization,

d

dt
⟪θ, θ⟫k = 2⟪θ̇, θ⟫k = −2⟪g(θ), θ⟫k = 0 ∀k = 1, . . . , l. (11)

This result, first obtained in Saxe et al. [40] for linear networks and discussed in Du et al. [12], Liang
et al. [29], Kunin et al. [27], tells us that the rescaling symmetry results in the quantities ⟪θ, θ⟫k being
conserved. This means that the difference between the Euclidean norm of the inputs and the outputs
is constant for each neuron throughout the GF training trajectory. Moreover, under the condition
of homogeneity of the activation function, Du et al. [12] proves that Equation (11) holds even at
non-differentiable points of L and in the case of multiple layers.

Invariant sets. Assume that at the initialization θ0 we have ⟪θ0, θ0⟫k = ck, for all k, then Equa-
tion (11) implies that the GF trajectory will lie on the set characterized by the system of equations
⟪θ, θ⟫k = ck for k = 1, . . . , l. This subset is mapped to itself under the GF dynamics by Equation (11)
(see Figure 1b) and constitutes the main object of our study.

Definition 1 (Invariant set). Given c = (c1, . . . , cl), we call invariant set the subsetH(c) ⊆ Θ given
by the equations ⟪θ, θ⟫k = ck ∀k = 1, . . . , l.

If we look at each single equation (i.e. to each hidden neuron), we see that Equation (11) can be
written as

d

∑
i=1
(W (1)

ki )
2
−

e

∑
j=1
(W (2)

jk )
2
= ck (12)

which corresponds to a hyperquadric (or quadric hypersurface) in Θk. We denote with Q(ck) ⊆ Θk

this hypersurface and call it the invariant hyperquadric associated to the k-th hidden neuron.

Here ck ∈ R takes the role of a label associated with the k-th hidden neuron, which, we see in the
next section, plays a key role in specifying the shape of Q(ck). Figure 2a shows how, for d = 2 and
e = 1, Q(ck) is an hyperboloid with 1 sheet (connected) if ck > 0 and 2 sheets if ck < 0.
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4 Topology of the invariant set

As we discussed above, Equation (11) tells us that gradient flow trajectories can’t explore the whole
space Θ but are constrained to lie on the invariant setH(c). The values of c, in turn, depend on the
initialization and, we see from Equation (12), quantify the balance between the norms of input and
output weights in every hidden neuron.

The goal of this section is to provide a topological characterization ofH(c) that can tell us something
about the presence or absence of fundamental obstructions to the network’s training process. With
obstruction, we mean the impossibility of a GF trajectory to travel freely from one point to the other
in H(c). We refer the reader to Appendix B for an essential overview of some of the topological
concepts that we rely on in the next paragraphs.

Counting high-dimensional holes. Our topological characterization will be framed using Betti
numbers. Betti numbers are well-known topological invariants given by a sequence of natural
numbers that intuitively encode the number of higher-dimensional holes and cavities present in space.
In particular, the 0-th Betti number of a space X , β0(X) corresponds to the number of connected
components of X and thus will be fundamental for our goal of identifying obstructions.

The invariant setH(c) is given as the set of solutions of l polynomial equations of degree 2 sharing
no variables. Furthermore, in the setting of two-layer neural networks, we can leverage the fact that
the parameter space can be decomposed into the parameter spaces of the hidden neurons. This, in
turn, allows us to decompose the invariant set as the product of the neurons’ invariant hyperquadrics,
greatly simplifying our study.
Lemma 1. In a two-layer ReLU neural network, the invariant set H(c) is homeomorphic to the
Cartesian product of the hidden neurons’ invariant hyperquadrics, that is

H(c) ≅ Q(c1) ×⋯ ×Q(cl). (13)

Lemma 1 tells us that we can understand the topology ofH(c) by studying independently its factors.
Moreover, the hyperquadrics we encounter here are well-studied objects for which the next proposition
(proven in Appendix D.2) gives a topological characterization.
Proposition 2. If ck > 0, Q(ck) is a topological manifold homeomorphic to Re × Sd−1. If ck < 0,
Q(ck) is a topological manifold homeomorphic to Rd ×Se−1. If ck = 0,Q(0) is a contractible space.

Leveraging the decomposition of Lemma 1 and the characterization of the factors given by Proposi-
tion 2, we can explicitly compute all the Betti numbers of the invariant set. We give the next result in
terms of the Poincaré polynomial ofH(c), namely the polynomial whose coefficients are the Betti
numbers (see Appendix B).
Theorem 1. Let l+, l−, l0 be the number of positive, negative, and zero components of c, respectively.
The Poincaré polynomial ofH(c) is given by

pH(c)(x) = (1 + xd−1)l+(1 + xe−1)l− (14)

This result, which is proven in Appendix D.3, contains a wealth of topological information as it gives
us the exact number of holes and cavities of any order, depending on the network’s hyperparameters
(d, e) and initialization (l+, l−). In the rest of this work, we focus only on the 0-th Betti number as the
non-connectedness ofH(c) provides a clear obstruction to the GF trajectories.

Connectedness of the invariant set. With regard to the connectedness ofH(c), we can leverage
Theorem 1 to obtain the exact number of connected components.
Corollary 1. The 0-th Betti number β0 of H(c), corresponding to the number of its connected
components, is given by

β0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if d, e > 1
2l+ if d = 1, e > 1
2l− if d > 1, e = 1
2l++l− if d = 1, e = 1

(15)

Proof. This can be directly obtained from the coefficient of degree 0 of the Poincaré polynomial
obtained through Theorem 1.
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Figure 2: a. The invariant hyperquadric Q(ck) of a neuron with two inputs (d = 2) and one output
(e = 1) in the cases where ck < 0 (left) and ck > 0 (right). b. Depiction of the invariant set H(c) in
the case where l− = 2 so that there are 2l− = 4 connected components. C±∓ denotes the connected
component such that s = (±1,∓1). The blue lines separate the different effective components of
H(c).

What we see in Equation (15) is that in most cases, the invariant set is connected, and gradient flow
has no topological limitations in exploring the whole ofH(c). Instead, when the hidden neurons have
only one input or only one output, the space is fragmented into several components whose number
scales exponentially in l+ or l−, respectively.

Let us focus on the more interesting case where d > 1 and e = 1.
Corollary 2. If the output of a two-layer ReLU neural network is a single scalar e = 1, its input has
dimension d > 1, and the initial parameter θ0 is such that ⟪θ0, θ0⟫k < 0 for l− > 0 hidden neurons,
then the setH(c) is disconnected and has 2l− connected components.

This means that neurons initialized with the norm of their outgoing weight strictly greater than their
incoming weights’ norm are responsible for disconnecting the space. We now precisely identify
which connected component a parameter θ belongs to and clarify the meaning of the obstruction.
Proposition 3. Let e = 1, d > 1, and θ ∈H(c) with c such that ck1 , . . . , ckl− < 0 while ck ≥ 0 for all

other k. Let W (2)
− ∶= (W (2)

k1
, . . . ,W

(2)
kl−
) ∈ R1×l− be the row vector whose components are the compo-

nents of W (2) ∈ R1×l associated to ck < 0. Then the vector s(θ) = (sign(W (2)
k1
), . . . , sign(W (2)

kl−
))

identifies uniquely the component θ belongs to, namely: θ and θ′ belong to the same connected
component ofH(c) if and only if s(θ) = s(θ′).

Proposition 3, proven in Appendix D.4, implies that s(θ) does not change when we move in C on a
continuous curve such as the one given by gradient flow. This gives us an interesting interpretation
of the topological obstruction: gradient flow cannot change the signs of the outgoing weights of the
hidden neurons k such that ck < 0 (see Appendix G for an intuitive explanation of the phenomenon).
This same observation is also mentioned in Boursier and Flammarion [3]. Proposition 3 extends one
of the results of Boursier et al. [4] which proves that the same also holds when ck = 0 (balanced
initialization).

By also considering Corollary 1, one obtains that a clever initialization of the parameters given by
⟪θ0, θ0⟫k = ck > 0 ∀k = 1, . . . , l can prevent the issue by ensuring the connectedness of the invariant
set. We also find that under common initialization schemes such as Xavier [19] and Kaiming [21] the
probability of having pathological neurons is negligible when the input dimension and number of
hidden neurons is high (see Appendix F).

5 Taking symmetries into account

Corollary 2 states that neurons k such that ck < 0 are “pathological”, in the sense that they are respon-
sible for disconnecting the invariant set into several components, whose number scales exponentially
in the number of those neurons. This result gives us a grim picture of the possibility of actually
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optimizing the neural network: if the initial parameter θ0 is in a particular connected component and
the global optimum θ∗ lies in another, then any gradient flow trajectory will not be able to reach θ∗
because it will be constrained in its connected component.

This result, however, provides us only with a partial picture of the parameter space’s geometry. It is a
priori possible that the training trajectory, moving in its connected component, reaches a parameter ζ ,
which itself is optimal as it is observationally equivalent to θ∗ (ζ ∼ θ∗). In this case, the topological
obstruction given by the non-connectedness would be only apparent.

To take this fact into account, we define the following notion.

Definition 2 (Effective component). Let θ ∈H(c) and C(θ) be its connected component therein. We
define its effective component Eff(θ) as the union of the connected component of all θ′ such that
θ′

rp∼ θ. So that Eff(θ) ∶= ⋃θ′rp∼θ C(θ
′).

Figure 2b gives a picture which clarifies the definition, showing a space with 4 connected components
that has only 3 effective components. If the optimum θ∗ belongs to the same effective component
as the initialization, then it is possible to reach a parameter that is observationally equivalent to it
(through permutations and rescalings).

We present a useful result which tells us that the action of rescaling of Equation (3) can take any
non-degenerate parameter θ ∈ H(c) to any other invariant set H(c′) for every c′ ∈ Rl. This means
that any invariant set can realize all the neural network’s functions.

Proposition 4. For every ck ∈ R and for every θk ∈ Θk such that W (1)
k ,W

(2)
k ≠ 0, there exists a

unique αk ∈ R+ such that Tαk
(θk) ∈ Q(ck). If W (1)

k = 0 and W
(2)
k ≠ 0, then the same holds for

every ck < 0, while, if W (1)
k ≠ 0 and W

(2)
k = 0, it holds for every ck > 0.

The proof can be found in Appendix D.5 with the formula of the specific α which realizes the
rescaling.

The following theorem leverages the power of Proposition 4 to give necessary and sufficient conditions
for θ and θ′ to belong to the same effective component.

Theorem 2. Let d > 1 and e = 1. Let c ∈ Rl and l− be the number of neurons such that ck < 0.
Assume that l− ≥ 1. Let C,C ′ ⊆ H(c) be two distinct connected components of H(c) such that
s(θ) = s, ∀θ ∈ C, and s(θ′) = s′, ∀θ′ ∈ C ′. Then, the following statements are equivalent:

1. for every θ ∈ C there exists θ′ ∈ C ′ such that θ
rp∼ θ′;

2.
l−
∑
i=1

si =
l−
∑
i=1

s′i

The theorem, proven in Appendix D.6, tells us that, while connected components are identified by s,
the effective components are identified only by the values of∑i si or, equivalently, by the distribution
of ±1 in s. Therefore, we find that the number of effective components scales much slower than the
exponential growth of the number of connected components given by Corollary 1.

Corollary 3. The number of effective components ofH(c) is given by 1 + l−.

Proof. Theorem 2 tells us that two connected components C,C ′ belong to the same effective compo-
nent if and only if their associated sign vectors s, s′ ∈ {−1,1}l− have the same sum. The number of
effective components will thus equal the number of different values that the sum ∑l−

i=1 si can have. If
si = 1 ∀i then ∑l−

i=1 s = l−. Each switch of a component to −1 decreases the sum’s value by 2 until it
reaches the minimum −l−. Therefore, the total number of values of the sum will be 1 + l−.

6 Empirical Validation

Task, dataset, and model setup. We display here a toy example, showing how the initialization of
the model can cause a topological obstruction, making the optimum unreachable.

We consider the function F (x1, x2) = −(x1 +x2), which will be our ground-truth. Next, we generate
a dataset of 8000 points (xi, F (xi)) by sampling xi ∼ U([0,1]2). Our model, depicted in Figure 3a)

8



Figure 3: Visualization of the experimental setup described in Section 6. a. The small 2-layer
neural network architecture considered. b. The hidden neurons’ parameter spaces, together with the
invariant hyperquadrics associated with hidden neurons 1 (left) and 2 (right), for an initialization
with topological obstruction (top) and without it (bottom). The colored curves represent the gradient
descent trajectories from initialization θk(0) up to t∗ = 500 optimization steps. c. The loss curves for
the bad (obstructed) and good initializations.

is a one hidden layer neural network with 2 hidden neurons, ReLU activations and no biases. All
the weights are initialized by independently sampling from U([−

√
2,
√
2]). From the task and

the network’s architecture, it is clear that at least one of the output weights has to be negative to
approximate F correctly.

To standardize our results, we apply the rescaling of Proposition 4 and relocate the initial parameters
to an observationally equivalent one in the invariant setH(c) with ck ∈ {−0.1,0.1}, controlling the
sign of the weights on the last layer. We allow ourselves to do these two manipulations to control the
experiments while only marginally modifying the network initialization, avoiding the introduction of
massively unbalanced weights, which could change the dynamics, as shown in Neyshabur et al. [34].
Finally, we train the network using gradient descent on the MSE loss with a small learning rate of
h = 0.01. This limits the variations of ck values to less than one percent along training, giving us a
good approximation of gradient flow.

Results. We initialize different models and collect all states and losses. First, when we initialize
the model with an “unlucky” configuration, namely c = (−0.1,−0.1) (the space has 4 connected
components) and s(θ) = (+1,+1), we find that the trajectories are confined to the positive region
of their invariant hyperquadric, resulting in a poor approximation of F , as we can see in Figure 3b
(top) and in the loss of Figure 3c. Instead, with an initial configuration such that c = (−0.1,+0.1) (2
connected components) and s(θ) = (+1,+1), the model can leverage the connectedness of Q(c2) to
learn F by flipping the sign of the second neuron’s output weight (Figure 3b bottom right).

A more realistic experiment. We present here a further experiment to show how the topological
obstruction can be a hindrance in a more realistic setting. We consider a simple binary classification
task on the well-known breast cancer dataset [48], which we try to solve by fitting a one-layer ReLU
neural network trained to minimize the BCE loss. We vary the number of hidden neurons l and,
for each l, we change the number of non-pathological neurons l+ (neurons with ck > 0) from 0 to
l. We repeat the experiment with 100 different random initializations and show how the model’s
average performance changes when the degree of disconnectedness of its invariant set is varied. The
result, on the left panel of Figure 4, clearly shows the presence of a "gradient" in performance, where
increasing the number of non-pathological neurons decreases the average value of the test loss after
training. The right panel of Figure 4, moreover, shows how the impact of the obstruction depends on
the number of non-pathological neurons and not on their fraction over the total number of hidden
neurons.
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Figure 4: Left. Average test BCE loss of a two-layer ReLU neural network trained on the breast
cancer dataset over 100 different initializations for each pair (l,l+), l = 2, . . . ,9 and l+ ≤ l, of numbers
of hidden neurons and non-pathological neurons. Right. the y-axis displays the percentage of
non-pathological neurons.

7 Conclusions

In this paper, we have given analytical results that clarify the nature of the constraints imposed by
gradient flow on the parameter space of a two-layer neural network with homogeneous activations.
In the case of a single scalar output, which appears in tasks such as binary classification and scalar
regression, we identified initial conditions that lead to a topological obstruction in the form of the
parameter space’s fragmentation into multiple connected components. This is caused by pathological
neurons whose output weights cannot change their sign during training. Moreover, if one also
considers the network’s symmetries under permutations of the hidden neurons, we find that most of
the connected components are equivalent. The number of effective components of the resulting space
scales linearly with the number of pathological neurons, contrasting with the exponential growth of
the number of connected components obtained without considering the permutation symmetries.

As shown in the last numerical experiment, the lack of non-pathological neurons hinders learning, even
when the network’s width is scaled. Our probabilistic analysis outlined in Appendix F, however, shows
that with common initialization schemes, the probability of creating a pathological neuron decreases
rapidly with increased inner layer width. Therefore, the combination of specific initialization schemes
and a large number of hidden neurons (beyond the minimum required to solve a task) appears to make
this obstruction unlikely in practice. This work describes a simple safeguard to avoid obstructions,
which can, for instance, discourage the usage of initialization schemes that result in the proliferation
of pathological neurons.

8 Limitations

The main limitation of the work is the network’s architecture, which is limited to only one hidden
layer. Considering multiple layers, we can still define rescalings and permutations and find invariant
hyperquadrics for each hidden neuron. The issue emerges in the fact that these hyperquadrics are not
“independent” anymore, and the invariant set cannot be factored into the product of the Q(ck). This
intuitively results from the fact that in the multi-layer case, each weight in the hidden layers is shared
by two neurons.

The second limitation is that our study focuses on gradient flow optimization. This idealized situation
doesn’t take into account the fact that moderate step size of gradient descent and stochastic gradient
descent can break the conservation of ⟪θ, θ⟫k and make the parameters drift away from the invariant
set [2]. Moreover, popular optimizers like ADAM [25] update the parameters employing the gradients
at previous iterations so their trajectories will not be constrained to lie onH(c) as we defined it.

The inclusion of regularization terms in the loss function, such as ℓp regularizations, also breaks the
invariance to rescalings.
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A Parameter spaces

Let (e11, e12, . . . , ell) and (e1, . . . , el) be the canonical bases of the spaces Rl×l and Rl, respectively
and

Θk = {(ekkW (1),W (2)ekk) ∣ (W (1),W (2)) ∈ Θ} ⊂ Θ.

Θk, notice, is the subspace of Θ consisting of the weight matrices W (1) with null rows except for the
k-th one, and weight matrices W (2) with null columns except for the k-th one. We can check that
Θ = Θ1 ⊕⋯⊕Θl, because, if Il is the l × l identity matrix, ∑ ekk = Il so that

(W (1),W (2)) =∑
k

(W (1)
k ,W

(2)
k ) =∑

k

(ekkW (1),W (2)ekk).

Moreover, Θ ≅ Θ1 ×⋯ ×Θl via the linear isomorphism

θ = (W (1),W (2))↔ (θk)lk=1 = ((ekkW (1),W (2)ekk))
l

k=1 .

This, we see, is equivalent to decomposing the neural network of Equation (1) into the computations
of the single hidden neurons. Indeed, let f(x; θk) ∶= f(x, (ekkW (1),W (2)ekk)), then, considering
that ekkekk = ekk and that σ(ekkv) = ekkσ(v), it holds that

f(x; θk) =W (2)ekkσ(W (1)x) ∀k = 1, . . . , l.

Therefore ∑k f(x; θk) = f(x; θ).

B Primer on topology

Here, we recall some basic facts about the topology required to understand the paper’s results. A
self-consistent introduction is outside this work’s scope, so we refer the interested reader to more
complete expositions in Munkres [33, 32].

Topological manifold. An n-dimensional topological manifold is a topological space X which lo-
cally looks like the Euclidean space Rn. More formally, for each p ∈X , there exists a neighbourhood
U of p and a homeomorphism mapping U to an open subset of Rn.

Contractible space. A topological space X is contractible if it can continuously deform to a point
p ∈X . This means that there exists a continuous map

F ∶X × [0,1]→X

such that F (x,0) = x and F (x,1) = p for every x ∈X .

Betti numbers. Betti numbers formalize the notion of the hole in a topological space and extend
it to describe higher-dimensional cavities. The general idea is that one can associate a sequence of
Abelian groups named homology groups to any space X , which encodes rich information about the
higher-dimensional cavities in X . For what we are concerned here, the rank of the k-th homology
group is called the k-th Betti number βk(X). βk(X) counts the number of k-dimensional holes in
the space: β0(X) count the number of connected components, β1(X) the number of “circular” holes
and β2(X) the number of voids or cavities.

A contractible space X is connected and cannot have any holes, and thus its Betti numbers are
β0(X) = 1 and βi(X) = 0 ∀i > 0.

Betti numbers are topological invariants, meaning they are preserved when a space is transformed
via a homeomorphism, namely a bijective, continuous map with continuous inverse.

Poincaré polynomials. The Poincaré polynomial of a topological space X is the polynomial whose
k-th coefficient is given by the k-th Betti number

pX(x) = β0(X) + β1(X)x + β2(X)x2 + . . . .
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Künneth formula. Künneth’s theorem describes assembling the homology groups of a Cartesian
product of spaces X ×Y from the homology groups of the factors X,Y . One of its corollaries tells us
that if we care only about Betti numbers, a simple relation holds between the Poincaré polynomials
of X × Y and the ones of X and Y , namely,

pX×Y (x) = pX(x)pY (x).

Types of connectedness. In topology, there are several kinds of connectedness. Two of them are
particularly important for this work.

1.) A topological space X is connected if it cannot be divided into two disjoint non-empty open
sets. If it is not connected, the connected component of a point x ∈ X is given by the union of all
connected subsets of X which contain x.

A topological space equal to the Cartesian product of two spaces X = Y ×Z is connected if and only
if Y and Z are both connected.

2.) A topological space is path-connected if, for every pair of points x, y ∈ X , there exists a
continuous curve γ ∶ [0,1]→X such that γ(0) = x, γ(1) = y. The path-component of x is the set of
all y ∈X such that a continuous curve exists connecting x to y.

This second notion is more relevant to our setting, where we care about the possible destinations of
the optimization trajectories.

Path-connectedness implies connectedness, but not the opposite. There are situations, however, where
these two notions are equivalent. For example, when X is a topological manifold, X is connected if
and only if X is path connected.

Notice that the 0-th Betti number β0(X) counts the number of connected components but, in general,
not the number of path components. With Lemma 2, we prove that these two notions are equivalent
for our object of study.

C Extra propositions and lemmas

Lemma 2. The invariant setH(c) is connected if and only if it is path connected.

Proof. Lemma 1 tells us thatH(c) ≅ Q(c1) ×⋯ ×Q(cl).
Let us focus on a particular Q(ck).
When ck ≠ 0, Proposition 2 tells us that Q(ck) is a topological manifold, and thus, it is connected if
and only if it is path connected.

When ck = 0, Q(0) is not a topological manifold but contractible, implying that it is connected. Let
us prove that it is also path-connected.

Let θk, θ′k ∈ Q(0) and define the curve γ ∶ [0,1]→ Q(0)
γk;θ(t) = t ⋅ θk

such that γk;θ(0) = θ, γk;θ(1) = 0. γk;θ(t) ∈ Q(0) for every t ∈ [0,1] because

⟪γk;θ(t), γk;θ(t)⟫k = t⟪θ, θ⟫k = 0.

Therefore, the segment from θk to 0 belongs to Q(0).
A continuous curve from θk to θ′k can be thus obtained by

γk;θ′γk;θ(t) ∶= {
γk;θ(2t) if t ∈ [0, 1

2
]

γk;θ′(2 − 2t) if t ∈ [ 1
2
,1]

which is continuous because γk;θ(1) = γk;θ′(1) = 0. Therefore Q(0) is path connected.

Finally, if H(c) is connected, then all of its factors Q(ck) are connected, which, in turn, is true if
and only if they are path-connected. A product of path-connected space is again path-connected, and
thereforeH(c) is path-connected. The other implication is true because path-connectedness implies
connectedness, thus concluding the proof.
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Lemma 3 (Interchange of rescalings and permutations). Let θ ∈ Θ, α ∈ Rl
+ and π ∈ Sl, then, if

α̃ = Rπ−1(α)
TαPπ(θ) = PπTα̃(θ). (16)

Proof. Given that
TαPπ(θ) = (diag(α)RπW

(1),W (2)R⊺πdiag(α)−1)
we need to prove that diag(α)Rπ = Rπdiag(α̃).

(diag(α)Rπ)ij =
l

∑
k=1

diag(α)ik(Rπ)kj = αi(Rπ)ij = {
αi if j = π(i)
0 otherwise

.

Let us pick a generic α̃ ∈ Rl
+.

(Rπdiag(α̃))ij =
l

∑
k=1
(Rπ)ikdiag(α̃)kj = (Rπ)ijα̃j = {

α̃j if j = π(i)
0 otherwise

.

Let us consider the inverse permutation π−1 so that π−1(j) = i if π(i) = j. Then, if α̃ = Rπ−1α,

α̃j = απ−1(j) = αi

and thus we get that diag(α)Rπ = Rπdiag(α̃).

D Proofs

D.1 Proof of Lemma 1

Proof. Proposition 1 tells us that the invariant set can be decomposed as the direct sum of the
single hidden neurons’ parameter spaces. This means that, for every θ ∈ Θ, there exist unique
θ1 ∈ Θ1, . . . , θl ∈ Θl such that

θ = θ1 + θ2 +⋯ + θl.
Therefore, we have a linear isomorphism φ ∶ Θ1 ×⋯ ×Θk → Θ

φ ∶ (θ1, . . . , θl)↦ θ1 +⋯ + θl = θ.

The invariant set is a subset of Θ, which is given as the set of solutions of l equations ⟪θ, θ⟫k =
ck k = 1, . . . , l. Notice that each of these equations involves a set of variables that appear only
in that particular equation. These variables are exactly the ones which belong to Θk. In fact
⟪θ, θ⟫k = ⟪θk, θk⟫k.

Therefore, given θ1 ∈ Q(c1), . . . , θl ∈ Q(cl) we have that

φ(θ1, . . . , θl) =
l

∑
k=1

θk ∈H(c).

On the opposite, given θ ∈H(c) we have that

φ−1(θ) = (θ1, . . . , θl) ∈ Q(c1) ×⋯ ×Q(cl).

Therefore,H(c) is in bijection withQ(c1)×⋯×Q(cl) through φ which, being a linear isomorphism,
implies also thatH(c) and Q(c1) ×⋯ ×Q(cl) are homeomorphic.

D.2 Proof of Proposition 2

Proof. Let us consider the three cases separately. If ck > 0, Q(ck) is defined by the equation

d

∑
i=1
(W (1)

ki )
2
−

e

∑
j=1
(W (2)

jk )
2
= ck ⇐⇒ ∥W (1)

k ∥
2

F
− ∥W (2)

k ∥
2

F
= ck,
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where ∥⋅∥F is the Frobenius norm of a matrix, i.e., the square root of the sum of the squares of its
elements. This can be rewritten as

∥W (1)
k ∥F =

√
ck + ∥W (2)

k ∥
2

F
(17)

where
√

ck + ∥W (2)
k ∥

2

F
> 0 because ck > 0. We define the map h ∶ Q(ck)→ Sd−1 ×Re as

h (W (1)
k ,W

(2)
k ) =

⎛
⎜⎜⎜
⎝

W
(1)
k√

ck + ∥W (2)
k ∥

2

F

,W
(2)
k

⎞
⎟⎟⎟
⎠

(18)

where, notice, the first component belongs to the sphere Sd−1 because of Equation (17) and W
(2)
k ∈ Re.

This map is bijective, differentiable and has the following inverse h−1 ∶ Sd−1 ×Re → Q(k)

h−1(u,x) = (
√

ck + ∥v∥2F u,x)
which is differentiable. Therefore, h is a diffeomorphism from Q(ck) to Sd−1 ×Re.

If ck < 0, we write the equation of Q(ck) as

∥W (2)
k ∥2 =

√
−ck + ∥W (1)

k ∥
2

2

where W
(1)
k and W

(2)
k have switched their role to guarantee the term on the right to be positive. The

diffeomorphism is now built analogously to Equation (18) as a map h ∶ Q(ck)→ Se−1 ×Rd.

If ck = 0, we prove that Q(0) is a contractible space. To do that, we exhibit a homotopy equivalence
betweenQ(0) and the point 0, i.e. a continuous map p ∶ [0,1]×Q(0)→ Q(0) such that p(0, θk) = θk
and p(1, θk) = 0 ∀θk ∈ Q(0). The map is defined in the following way:

p(λ, θk) = (1 − λ)θk.
This is continuous and well-defined because

⟪p(λ, θk), p(λ, θk)⟫k = ⟪(1 − λ)θk, (1 − λ)θk⟫k = (1 − λ)2⟪θk, θk⟫k = 0,
meaning that p(λ, θk) ∈ Q(0) for every θk ∈ Q(0) and for every λ ∈ [0,1].

D.3 Proof of Theorem 1

Proof. An implication of the Künneth formula is that the Poincaré polynomial of the Cartesian
product of two spaces is equal to the product of their Poincaré polynomials:

pX×Y (x) = pX(x)pY (y).

Starting from Proposition 2, we can apply this result to Q(ck).

pQ(ck) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pRe(x)pSd−1(x) if ck > 0
pRd(x)pSe−1(x) if ck < 0
1 if ck = 0

(19)

because a contractible space has 1 connected component and all of its other Betti numbers equal to
zero.

Moreover, we know that Rn is contractible for any n and its Poincaré polynomial is pRn(x) = 1. The
Poincaré polynomial of the sphere Sn is given by pSn(x) = 1 + xn.

Equation (19) becomes

pQ(ck) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + xd−1 if ck > 0
1 + xe−1 if ck < 0
1 if ck = 0

. (20)

Given that Lemma 1 tells us that H(c) can be factored into the product of the Q(ck), we apply
Künneth formula and find that

pH(c)(x) = pQ(c1)(x)⋯pQ(cl)(x) = (1 + x
d−1)l+(1 + xe−1)l− . (21)
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D.4 Proof of Proposition 3

Proof. In the following, we exploit Lemma 2 and use the terminology connected and path-connected
interchangeably.

Let us first prove that s(θ) = s(θ′) means that θ and θ′ belong to the same connected component. We
do this by explicitly building a continuous curve δ ∶ [0,1]→H(c) such that δ(0) = θ and δ(1) = θ′.
Let us proceed by leveraging the homeomorphism fromH(c) andQ(c1)×⋯×Q(cl) and consider the
different components of δ in the invariant hyperquadrics associated to each neuron δ = (δ1, . . . , δl).
If ck ≥ 0, we know that Q(ck) is path-connected and therefore we fix δk(t) to any continuous curve
in Q(ck) such that δk(0) = θk and δk(1) = θ′k.

If ck < 0 for k ∈K ∶= {k1, . . . , kl−} ⊆ {1, . . . , l}, we define the curve γi;θ ∶ [0,1]→ Q(cki) with

γi;θ(t) =
⎛
⎝
(1 − t)W (1)

ki1
, . . . , (1 − t)W (1)

kil
, s(θ)i

√
−cki + (1 − t)2∥W

(1)
ki
∥
2

F

⎞
⎠

for every i = 1, . . . , l−.

γi;θ is a continuous curve which connects the point γi;θ(0) = θki with γi;θ(1) = (0, s(θ)i
√−cki).

If we define γ̄i;θ(t) ∶= γi;θ(1 − t), which is the same curve as γi;θ but traversed in the opposite
direction, we can define the curve

δki(t) = γ̄i;θ′γi;θ(t)
i.e. the curve which travels on γi;θ for t ∈ [0, 1

2
] and on γ̄i;θ′ for t ∈ [ 1

2
,1], for i = 1, . . . , l−.

Notice now that δki(0) = θki and δki(1) = θ′ki
. Moreover δki is continuous because

γi;θ(1) = (0, s(θ)i
√−cki) = (0, s(θ′)i

√−cki) = γ̄i;θ′(0)
under the hypothesis that s(θ) = s(θ′).
Finally, we found a continuous curve δ = (δ1, . . . , δl) such that δ(t) ∈ H(c) ∀t ∈ [0,1] and
δ(0) = θ, δ(1) = θ′. Therefore, θ and θ′ belong to the same connected component.

Let us now prove that if θ and θ′ belong to the same connected component, then s(θ) = s(θ′).
Let γ ∶ [0,1]→H(c) be a continuous curve inH(c) such that γ(0) = θ and γ(1) = θ′.
For each k ∈K = {k1, . . . , kl−} such that ck < 0, we know that γk(t) ∈ Q(ck) means that

γk(t) = (γ(1)k1 (t), . . . , γ
(1)
kd (t), sk(t)

√
−ck + ∥γ(1)k ∥

2

F

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ
(2)
k
(t)

)

for some function sk(t) ∈ {−1,1} such that sk(0) = s(θ)k and sk(1) = s(θ′)k.

Assume, by contradiction, that s(θ)k = −s(θ′)k. Assume also that s(θ)k = +1 and s(θ′)k = −1.

Notice that ck < 0 implies that p(t) ∶=
√
−ck + ∥γ(1)k ∥

2

F
> 0.

The function γ
(2)
k (t) = sk(t)p(t), then, is a continuous function such that γ(2)k (0) > 0 and γ

(2)
k (1) <

0 and thus, by the intermediate value theorem, there exists t∗ ∈ (0,1) such that γ(2)k (t∗) = 0.

But γ(2)k (t) ≠ 0 for every t, as sk(t) ∈ {−1,1} and
√
−ck + ∥γ(1)k ∥

2

F
> 0.

Repeating the argument for s(θ)k = −1 we then prove by contradiction that s(θ)k = s(θ′)k for all
k ∈K, thus concluding the proof.

D.5 Proof of Proposition 4

Proof. We have by Equation (10) and Equation (2):

⟪Tα(θ), Tα(θ)⟫k − ck = 0 ⇐⇒ α2
k

d

∑
i=1
(W (1)

ki )
2 − 1

α2
k

e

∑
j=1
(W (2)

jk )
2 − ck = 0
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By renaming A =
d

∑
i=1
(W (1)

ki )2 = ∥W
(1)
k ∥

2

F
, C =

e

∑
j=1
(W (2)

jk )2 = ∥W
(2)
k ∥

2

F
and multiplying by α2

k > 0

we have:

Aα4
k − ckα2

k −C = 0 (22)

Solving for α2
k gives us:

∆ = c2k + 4AC ≥ 4AC > 0

α2
k =

ck ±
√
∆

2A

Given that we want αk > 0, we discard the negative solution. The other is positive because ∆ > c2k
and thus

√
∆ > ∣ck ∣.

αk = ±
√

ck +
√
∆

2A
Of which we keep the positive solution only, with its full expression being:

αk =

¿
ÁÁÁÁÁÀ

ck +
√

c2k + 4∥W
(1)
k ∥

2

F
∥W (2)

k ∥
2

F

2∥W (1)
k ∥

2

F

. (23)

Hence, if α = (α1, . . . , αl) with αk given by Equation (23), we get that ⟪Tα(θ), Tα(θ)⟫k = ck ∀k =
1, . . . , l.

Let us consider now the pathological cases W (1)
k = 0 or W (2)

k = 0.

If W (1)
k = 0,W (2)

k ≠ 0 then A = 0,C ≠ 0. Therefore, we have that Equation (22) becomes

−ckα2
k −C = 0

which has solutions if and only if ck < 0. In that case αk =
∥W (2)

k
∥
F√

−ck
. This means that a hidden

neuron with zero input weights and nonzero output weights can be rescaled only to the invariant
hyperquadrics with ck < 0.

If W (2)
k = 0,W (1)

k ≠ 0 then C = 0,A ≠ 0. Therefore, we have that Equation (22) becomes

α2
kA − ck = 0

which has solutions if and only if ck > 0. In that case αk =
√
ck

∥W (1)
k
∥
F

. This means that a hidden

neuron with zero output weights and nonzero input weights can be rescaled only to the invariant
hyperquadrics with ck > 0.

If W (1)
k = 0 and W

(2)
k = 0, then θk = 0 ∈ Q(0) and it cannot be rescaled to any other invariant

hyperquadric.

D.6 Proof of Theorem 2

Proof. Let us first prove that, if for every θ ∈ C there exists a θ′ ∈ C ′ such that θ rp∼ θ′ then
l−
∑
i=1

s(θ)i =
l−
∑
i=1

s(θ′)i.

First, Lemma 3 tells us that we can interchange rescaling and permutation if we permute the rescaling
factors accordingly. This means we can reduce any composite action of rescalings and permutations
to the action of a single rescaling and a single permutation.
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Let θ ∈ C and θ′ ∈ C ′ such that θ rp∼ θ′. Then there exist α ∈ Rl
+ and π ∈Sl such that

TαPπ(θ) = θ′. (24)

This means that TαPπ(θ) and θ′ belong to the same invariant set and, specifically, to the same
connected component. Therefore,

s(TαPπ(θ)) = s(θ′).
Notice that

s(TαPπ(θ)) = s(Pπ(θ))
because Tα does not change the sign of W (2) as it acts by scaling it by positive factors. Let us focus
on

s(Pπ(θ)) = sign((W (2)R⊺π)−).
If the neurons of θ such that ck < 0 are indexed by k1, k2, . . . , kl− , we will have that the neurons of
Pπ(θ) such that ck < 0 are indexed by π(k1), π(k2), . . . , π(kl−). Therefore

s(Pπ(θ))i = sign(W (2)
π(ki)) = (s(θ)R

⊺
π−)i

for some permutation π− ∈Sl− . Therefore, Equation (24) implies that

s(θ′) = s(Pπ(θ)) = s(θ)R⊺π− .

The action of rescaling and permutation can only reshuffle the label s of the connected component.
This means that

s(θ)R⊺π− = s(θ
′) Ô⇒

l−
∑
i=1
(s(θ)R⊺π−)i =

l−
∑
i=1

s(θ′)i Ô⇒
l−
∑
i=1

s(θ)i =
l−
∑
i=1

s(θ′)i.

Let us now prove the other implication. Let s, s′ ∈ Rl− such that
l−
∑
i=1

si =
l−
∑
i=1

s′i.

Given that their sum is equal, s and s′ have the same number of +1 and −1 and thus there exists a
permutation π− ∈Sl− such that s′ = sR⊺π− .

Let π ∈ Sl be the permutation which permutes the neurons such that ck < 0 according to π− and
leaves the others fixed. In this way s(Pπ(θ)) = sR⊺π− = s

′.

Pπ(θ), however, doesn’t belong toH(c) but to another invariant set given byH(Rπc).
Applying Proposition 4 we can find a rescaling α = α(π) ∈ Rl

+ such that TαPπ(θ) ∈H(c).
Since neurons such that ck ≥ 0, are left unchanged by the permutation, we can apply the proposition
and we rescale them with αk = 1. The permuted neurons are the ones such that ck < 0, namely the

ones whose weights satisfy ∥W (1)
k ∥

2

F
− ∥W (2)

k ∥
2

F
< 0, meaning that W (2)

k ≠ 0.

As noted above, the action of the rescaling doesn’t change the sign vector, and thus

s(TαPπ(θ)) = s(Pπ(θ)) = s′.

If we name θ′ ∶= TαPπ(θ) this result means that we found a θ′ rp∼ θ such that θ′ ∈ C ′, thus concluding
the proof.

E Including biases

Let us consider the case where we include biases. The resulting two-layer neural network can be
written as

f(x; θ) =W (2)σ(W (1)x + b(1)) + b(2), (25)

where b(1) ∈ Rl and b(2) ∈ Re.

To work with this extended set of parameters, we re-define the space

Θ = {θ = (W (1), b(1),W (2), b(2))}
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and the single hidden neuron spaces

Θk = {θk = (ekkW (1)
k , ekkb

(1)
k ,W

(2)
k ekk)}

where the second bias term b(2) does not appear because it is not directly involved with the computa-
tions of the hidden neurons. This means that we can write

Θ ≅ Θ1 ×⋯ ×Θl ×Re

where Re is included to describe the parameters in b(2).

The neuron rescaling action now acts on the biases b(1) as well as the weights:

T ∶R+ ×Θk → Θk

(α, θk)↦ Tα(θk) = (αW (1)
k , αb

(1)
k ,

1

α
W
(2)
k )

(26)

and can be extended to the whole space of parameters

T ∶ Rl
+ ×Θ → Θ

(α, θ) ↦ Tα(θ) = (diag(α)W (1),diag(α)b(1),W (2)diag(α)−1, b(2)).
(27)

Once again, we find that Tαθ ∼ θ.

In this more general case, we can rewrite the bilinear form to include the biases. If θ =
(W (1), b(1),W (2), b(2)) and η = (V (1), p(1), V (2), p(2)), we define

⟪θ, η⟫k =
d

∑
i=1

W
(1)
ki V

(1)
ki + b

(1)
k p

(1)
k −

e

∑
j=1

W
(2)
jk V

(2)
jk (28)

and see that, once gradient flow optimization, we have a conservation condition like the one of
Equation (9)

⟪θ(t), θ(t)⟫k = ck∀t > 0 ∀k = 1, . . . , l.

Once again, we call Q(ck) the hypersurface of Θk which satisfies the equation ⟪θ, θ⟫k = ck and
H(ck) the set in Θ defined by ⟪θ, θ⟫k = ck ∀k = 1, . . . , l.
With this in mind, it is not hard to extend the results of Proposition 2 and Theorem 1 which turn out
to be slightly modified.

Proposition 5. If ck > 0, Q(ck) is a topological manifold homeomorphic to Re × Sd. If ck < 0,
Q(ck) is a topological manifold homeomorphic to Rd × Se−1. If ck = 0, Q(0) is contractible.

In this case, we can factor the space of parametersH(c) as

H(c) ≅ Q(c1) ×⋯ ×Q(cl) ×Re,

where the last factor is due to the freedom in choosing the values of b(2).

Proposition 6. Let ck ≠ 0 ∀k = 1, . . . , l. Let l+, l−, l0 be the number of positive, negative and zero
elements of c, respectively. The Poincaré polynomial ofH(c) is given by

pH(c)(x) = (1 + xd)l+(1 + xe−1)l− (29)

Corollary 4. The 0-th Betti number β0(c) ofH(c), corresponding to the number of its connected
components, is given by

β0(c) = {
1 if e > 1
2l− if e = 1 (30)

The result we obtain is similar to Corollary 1 although slightly modified by the fact that having a
single input neuron does not cause H(c) to become disconnected anymore. In the case of e = 1,
therefore, the picture presented in the main text is left unchanged.
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Figure 5: Probability of the topological obstruction as a function of the number of input d and hidden
l neurons, when the initial weights are sampled with Xavier normal (left) and Kaiming normal (right)
initialization schemes.

F Probability of obstruction

Let us consider the following question: what is the probability of having a disconnected invariant set
given a realistic initialization?

Consider a one-layer ReLU neural network with e = 1 and assume that the weights are sampled inde-
pendently of one another from a normal distribution W

(1)
ki ∼ N (0, σ2

1) ∀k, i , W (2)
k ∼ N (0, σ2

2) ∀k, j.
From Corollary 2 we know that the invariant setH(c) will be disconnected if and only if there exists
a hidden neuron satisfying ∑d

i=1(W
(1)
ki )2 < (W

(2)
k )2. Given independence of the initial weight

sampling, this probability can be computed as

P[obstruction] = 1 − P[
d

∑
i=1
(W (1)

ki )
2 > (W (2)

k )
2]l = 1 − (F1,d(dσ2

1/σ2
2))l,

where F is the cumulative distribution function of the Fisher-Snedecor distribution.

Having obtained this general expression, we can specify it to two common initialization schemes.

• We obtain Kaiming initialization [21] with σ2
1 = 2/d, σ2

2 = 2/l resulting in P[obstruction] =
1 − F1,d(l)l.

• We obtain Xavier normal initialization [19] with σ2
1 = 2/(d + l), σ2

2 = 2/(1 + l) resulting in
P[obstruction] = 1 − F1,d(d+ldd+l )

l.

We plot these two expressions in Figure 5. We can see how, for large values of d, the probability of
obstruction quickly falls to 0 for any number of hidden neurons. Instead, we see an opposite trend
for small values of d: the probability of disconnectedness grows with l. Moreover, it is interesting
to notice that the region of high obstruction probability is much larger for Xavier initialization than
for Kaiming initialization, further showing why the latter is preferred when working with ReLU
networks.

G Intuition on the occurrence of obstruction

We can give some intuition on why there is no obstruction for multiple outputs. First, we consider
a single hidden neuron k, with d incoming weights and a single output e = 1. If the neuron is
pathological, we have that

d

∑
i=1
(W (1)

ki )
2
< (W (2)

1k )
2
.

Since the weights W (a)
ij (t) are continuous curves in time, for W (2)

1k to change sign, its value needs to
pass through 0 but, under the condition above, this cannot happen its square is always positive.
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Consider now multiple outputs e > 1, resulting in the conservation condition being

d

∑
i=1
(W (1)

ki )
2
<

e

∑
j=1
(W (2)

jk )
2
.

Now, any component W (2)
jk can change sign by passing through 0 because the other components can

compensate for it by increasing their magnitude to keep the condition satisfied.
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