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a b s t r a c t 

The challenge of energy storage is a pivotal consideration in 

renewable energy-based power systems. Hydrogen emerges 

as a highly promising alternative or complementary solu- 

tion to electric batteries, showcasing its potential for long- 

term and high-capacity storage. In this context, energy sys- 

tem modeling and optimization has gained prominence as 

an indispensable research tool, aiding in the processes of de- 

signing, sizing, and managing the day-to-day operations of 

renewable energy systems integrated with a hydrogen stor- 

age unit. However, the gathering of reliable and accurate 

techno-economic data emerges as time-consuming tasks, and 

the lack of standardized reference data introduces variabil- 

ity in model results. This variability arises from inconsistent 

input parameters rather than the physics or complexity of 

energy systems, leading to potentially erroneous results and 

misguided policy recommendations. Recognizing the need for 

comprehensive and transparent datasets, we introduce this 

open data techno-economic repository. The dataset is metic- 

ulously designed to encompass key technologies essential 

for hydrogen production, compression, storage, and utiliza- 

tion within a power-to-power system. Specifically, techno- 

economic data are reported for electrolysers, fuel cells, bat- 

tery energy storage systems, hydrogen compression units, 

and hydrogen storage vessels. The learning curves and cost 

functions embedded in this paper, delineating investment 

costs as a function of production scale up and size, are de- 
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rived directly from the raw data, providing a nuanced under- 

standing of the economic landscape. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC license 

( http://creativecommons.org/licenses/by-nc/4.0/ ) 
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pecifications Table 

Subject Energy 

Specific subject area Techno-economic data for green hydrogen production, compression, storage, 

and utilization 

Type of data Table 

Raw, Processed 

Data collection Literature survey (databases, reports from national and international 

institutions, peer-reviewed journal articles) 

Data source location Raw data sources are listed in this article and in the data repository 

Data accessibility Repository name: Zenodo Data - Techno-Economic Data for Hydrogen 

Storage-Based Microgrids 

Data identification number: 10.5281/zenodo.12784515 

Direct URL to data: https://zenodo.org/records/12784516 

. Value of the Data 

• The dataset encompasses the power-to-power hydrogen-based systems designed for the in-

tegration of microgrids and renewable energy communities. 

• This dataset serves as a valuable resource for modelling hydrogen-based systems, especially

for techno-economic assessments in stationary applications. 

• All recordings adhere to a standardized format with consistent units and currencies. This uni-

formity allows for swift comparison across various sources and ensures a dependable method

for validating both model inputs and outputs. 

• Generalized cost functions have been derived to establish a benchmark for similar studies in

the modelling of hydrogen-based systems, encouraging the adoption of open data principles.

. Background 

This dataset is developed to support energy system modeling of hydrogen-based renewable

nergy systems, aiding in the design, management and optimization of energy systems that in-

egrating hydrogen technologies, such as microgrids, energy communities, and positive energy

istricts. 

It assists in modeling hydrogen production, storage, and utilization, as well as complete

ower-to-power solutions. 

The repository provides comprehensive coverage of techno-economic data of key hydrogen

echnologies, including electrolyzer, hydrogen compression, storage and power fuel cells. It also

ncludes battery energy storage systems (BESS), which are often required to better optimize the

anagement of surplus renewable generation. The database offers detailed data for energy mod-

ling, covering investment and operational costs, energy efficiency, technology lifetime, and op-

rating parameters, collected through extensive literature review and normalized into standard

nits. 

By presenting investment cost functions derived from size-based raw data, the dataset en-

ances transparency and supports scientific reproducibility. This initiative aims to advance

nowledge and encourage collaboration towards sustainable and efficient energy solutions. Ad-

itionally, this dataset offers insights into capital expenditures, cost trends, and scaling behav-

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.5281/zenodo.12784515
https://zenodo.org/records/12784516
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iors, making it a valuable resource for modeling and analyzing the techno-economic aspects of

power-to-power technologies. It serves as a foundation for researchers, policymakers, and indus-

try stakeholders to advance the development and deployment of these crucial technologies in

the transition to a sustainable energy future. 

3. Data Description 

This paper details the dataset available in the linked repository [ 1 ], which encompasses

the techno-economic parameters of equipment used in power-to-power plants. This includes

water electrolysis for green hydrogen production, compression units, storage tanks, fuel cells

and battery energy storage systems. The data was gathered through a literature review cov-

ering publications from 2014 to May 2024. The search was conducted in English using three

online bibliographic sources to ensure comprehensive coverage of relevant materials: Scopus

( https://www.scopus.com/ ), Google Scholar ( https://scholar.google.com/ ) and the Google search

engine ( https://www.google.com/ ). For each technology assessed, we selected documents that

provided at least one estimate of uninstalled capital costs (CAPEX). These selected documents

were then thoroughly analyzed through full-text review to extract the necessary data. Addition-

ally, during this process, we identified and included further relevant materials referenced in the

collected documents. Finally, we reviewed all entries in the database to ensure the absence of

obvious duplicate reports or errors. 

This dataset contains 20 sheets within a single Excel file. The first two sheets, named “Con-

stants” and “References”, respectively, summarize the constant values used in the data elabora-

tion (such as inflation rate, hydrogen, lower heating value (LHV), higher heating value (HHV) and

density, and currency conversion factors) and the references of the collected data, categorized

into peer-reviewed journal articles and report/other online sources and databases. Additionally,

there are nine sheets, each ending with the suffix “_raw”, that compile the collected data as

reported in the referenced literature for the analysed technologies: 

1. PEMEC_raw: Proton Exchange Membrane Electrolyser (PEMEC). 

2. AEL_raw: Alkaline Electrolyser (AEL). 

3. other_EL_raw: this sheet includes Solid Oxide Electrolyzer Cell (SOEC) and Anion Exchange

Membrane Electrolyser (AEM). These technologies are less mature and have less data avail-

able in literature. 

4. PEMFC_raw: Proton Exchange Membrane Fuel Cells (PEMFC). 

5. SOFC_raw: Solid Oxide Fuel Cells (SOFC). 

6. other_FC_raw: this sheet includes Phosphoric Acid Fuel Cells (PAFC), Molten-Carbonate Fuel

Cells (MCFC), and Alkaline Fuel Cells (AFC). These technologies are less mature and have less

data available in literature. 

7. compressor_raw: hydrogen compression units. 

8. H2_tank_raw: hydrogen storage tanks. 

9. Li_BESS_raw: Lithium-ion Battery Energy Storage Systems (BESS). 

Table 1 outlines the main references from which were sourced the technological and eco-

nomic data. 

The dataset includes key technical and economic parameters essential for modelling and

analysing the techno-economic aspects of power-to-power technologies, offering detailed in-

sights into capital expenditures, conversion efficiencies and technologies lifetime. An overview

of the collected data is provided in Table 2 . 

The other nine sheets in the Excel file display the processed data. Specifically, for each raw

data sheet, there is a corresponding “_actualized” sheet where the data has been processed to

ensure consistency and comparability across different studies and sources. This includes adjust-

ing for inflation to reflect 2024 values based on the average annual inflation rate for the Eu-

ropean Union [ 94 ], converting costs from various currencies to euros [ 95 ], and standardizing

units of measurement. Moreover, learning curves have been derived to illustrate the expected

https://www.scopus.com/
https://scholar.google.com/
https://www.google.com/
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Table 1 

List of sources for technical and economic data per technology and number of values collected for each technology. 

Technology References Number of datapoints 

PEMEC [ 2–40 ] 114 

AEL [ 3–5 , 7–9 , 12–21 , 23–26 , 32 , 33 , 35–38 , 41–43 ] 110 

Other electrolyser technologies [ 9 , 12 , 23 , 33 , 35–37 , 44–52 ] 38 

PEMFC [ 19 , 27 , 30 , 32 , 40 , 53–59 ] 124 

SOFC [ 19 , 56 , 57 , 59–63 ] 41 

Other fuel cell technologies [ 19 , 60 , 63–72 ] 24 

Compressor [ 14 , 19 , 28–31 , 38 , 40 , 68 , 72–84 ] 70 

H2 tank [ 14 , 19 , 26 , 31 , 33 , 34 , 38 , 42 , 43 , 53 , 75 , 76 , 78 , 79 , 81 , 82 , 85 , 86 ] 71 

Li BESS [ 26 , 30 , 34 , 40 , 44 , 63 , 87–93 ] 258 

Table 2 

Technical and economic parameters of raw data included in the dataset across technologies. 

Parameter Code Unit Description 

References reference – Bibliographic reference or 

source for which the data was 

extracted 

Reference years report_year 

estimation_year 

– Year of the report and year of 

data estimation 

Specific technology technology – Technology to which the 

reported data pertains 

Nominal size nominal_power 

nominal_capacity 

nominal_gravimetric_capacity 

nominal_volumetric_capacity 

kW 

kWh 

kg/h 

kg 

m3 

Nominal capacity metrics 

representative of the 

technology size 

Pressure maximum_working_pressure 

minimum_pressure_in 

maximum_pressure_out 

bar Pressure levels representative 

of the operating conditions of 

the technology 

Efficiency efficiecy_HHV 

efficiency_LHV 

specific_consumption ther- 

mal_efficiency_cogeneration_LHV 

total_cogeneration_efficiency 

compression_efficiency 

charge_efficiency 

discharge_efficiency 

round_trip_efficiency 

% 

kWh/kg 

Efficiency metrics relevant to 

the reported technology 

Capital Expenditure CAPEX 

CAPEX_input 

CAPEX_output_LHV 

CAPEX_output_HHV 

CAPEX _H2_power 

CAPEX_power 

CAPEX_H2_flow_rate 

CAPEX_equipment 

CAPEX_gravimetric 

CAPEX_volumetric 

CAPEX_energy 

currency/kW 

currency/(kg/h) 

cur- 

rency/equipment 

currency/kg 

currency/m3 

currency/kWh 

Capital expenditure metrics 

related to the technology 

Operational 

Expenditure 

OPEX_percent_CAPEX 

OPEX_LHV 

OPEX_HHV 

OPEX_kW 

%CAPEX 

currency/(kWh/yr) 

Operating expenses metrics 

representative of the 

technology 

Cost for equipment 

replacement 

replacement_costs %CAPEX Costs associated with 

equipment replacement 

Reported currency currency €
US$ 

A$ 

£

Currency denomination for 

costs 

( continued on next page ) 



E. Rozzi, F.D. Minuto and A. Lanzini / Data in Brief 56 (2024) 110795 5 

Table 2 ( continued ) 

Parameter Code Unit Description 

Lifetime lifetime_hours 

lifetime_years 

lifetime_cycles 

h 

yr 

cycles 

Lifetime metrics of the 

technology 

System availability availability % Annual availability of the 

technology 

Other parameters Cogeneration 

projected_poduction_capacity 

vessel_class 

energy_to_power_ratio 

depth_of_discharge 

self_discharge 

Y/N 

units/yr 

- 

h 

% 

Other characteristics of the 

reported technologies 

 

 

 

 

 

reduction in costs as technologies mature and production scales up. The final result of capital

expenditure is expressed in euros per unit of size, actualized and projected to 2024 values. 

Finally, the cost functions, based on available size data, provide insights into how costs are

anticipated to decrease with increasing system sizes 

4. Experimental Design, Materials and Methods 

Raw data were processed to standardize data and ensure comparability across different

sources. A summary of the data reported in the “_actualized” sheets is presented in Table 3 . 

When a range is proposed in the raw data, it is substituted by the mean value of the bounds

in the processed data. The average inflation rate was calculated by the mean value of the infla-

tion factors between the report year and the reference year (2024). 
Table 3 

Processed data included in the dataset across technologies. 

Parameter Code Unit Description 

Reference years estimation_year – Year of the data estimation 

Inflation rate avg_inflation_rate % Average inflation rate 

between report year and 

reference year (2024) 

Nominal size nominal_power 

nominal_capacity 

kW 

kg 

kWh 

Standardization of the 

nominal size units 

Efficiency efficiency 

round_trip_efficiency 

%LHV 

% 

Standardization of the 

efficiency units 

Capital Expenditure CAPEX currency/kW 

currency/kWh 

Standardization of CAPEX 

units 

Operational Expenditure OPEX %CAPEX Standardization of OPEX 

units 

CAPEX actualization CAPEX_actualized Currency2024 /kW Actualization of the CAPEX 

at 2024 

CAPEX currency conversion CAPEX_EUR €2024 /kW Conversion of the original 

currency into euros 

CAPEX projection to 2024 CAPEX_EUR_learning_curve €2024 /kW Projection of the 

CAPEX_EUR to the 

reference year 2024 

CAPEX based on cost 

functions 

CAPEX_EUR_cost_function €2024 /kW Estimation of the CAPEX 

based on the system size 

Pressure working_pressure_status 

minimum_pressure_in 

maximum_pressure_out 

Pressurized/Atmospheric 

bar 

Status of the system’s 

operating pressure 
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The average learning curve index was derived by fitting the actualized CAPEX data, expressed

n euros, as a function of the data estimation year (Yest imat ion ). The fitting coefficients CAP EXre f 

nd exp were obtained by minimizing the root mean square error (RMSE) between the CAP EXEUR

ata and the values estimated by the learning curve function defined in Eq. (1) . Then, the av-

rage yearly learning index (Ilearning ) for each year ( Y ) relative to 2024 was computed using

quation Eq. (2) . This index is subsequently used in Eq. (3) to compute the CAPEX projections

or 2024 ( CAP EXEUR lear ning cur v e ). 

C AP EXlear ning cur v e = C AP EXre f ·
(

Yest imat ion 

2024 

)−exp 

(1)

Ilearning =
CAPEXlear ning cur v e, Y 

CAPEXlear ning cur v e, 2024 
− 1 

2024 − Y 
(2)

C AP EXEUR lear ning cur v e = C AP EXEUR 

[
1 + Ilearning · ( 2024 − Yest imat ion ) 

]
(3)

The CAPEX as a function of size ( CAP EXcost f unction ) was calculated by fitting the CAPEX pro-

ected to 2024 as a function of the standardized nominal size (Sst ). The fitting coefficients

re f , Sre f and exp were estimated by minimizing the RMSE between the CAP EXlear ning cur v e data

nd the values estimated by the cost function defined in the following equation ( Eq. (4) ). 

CAP EXcost f unction =
Cre f Sre f 

(
Sst 

Sre f 

)exp 

Sst 
(4)

Table 4 provides learning curve indices, fitting coefficients of the cost functions along with

heir performance metrics for the reported technologies. 
Table 4 

learning curve indices and cost function coefficients. 

Technology Learning curve index 

[%] 

Performance metrics 

learning curve 

Cost function 

coefficients 

Performance metrics 

cost function 

PEMEC −5.6 % RMSE: 770 

R2 : 0.19 

Cref : 1300 

Sref : 897 

exp: 0.9 

RMSE: 383 

R2 : 0.31 

AEL −4.5 % RMSE: 575 

R2 : 0.10 

Cref : 1039 

Sref : 890 

exp: 0.9 

RMSE: 300 

R2 : 0.34 

PEMFC 0 % RMSE: 2833 Cref : 2911 

Sref : 1137 

exp: 0.92 

RMSE: 2713 

R2 : 0.08 

SOFC 0 % RMSE: 3652 Cref : 719 

Sref : 948 

exp: 0.58 

RMSE: 1918 

R2 : 0.72 

Compressor −5.9 % RMSE: 5586 

R2 : 0.07 

Cref : 1769 

Sref : 2154 

exp: 0.77 

RMSE: 2568 

R2 : 0.41 

H2 tank −7.1 % RMSE: 983 

R2 : 0.07 

Cref : 467 

Sref : 2028 

exp: 0.83 

RMSE: 473 

R2 : 0.22 

Li BESS −5.4 % RMSE: 196 

R2 : 0.30 

Cref1 : 452 

Sref1 : 17 

exp1 : 0.97 

Cref2 : 99 ∗

Sref2 : 106 

exp2 : 0.7 

RMSE: 112 

R2 : 0.45 

∗ Note: For Li BESS, refer to Eq. (21) for details on the cost function coefficients. 
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4.1. Electrolysers 

For electolyser technologies, the following calculations were conducted: 

1. Standardizing nominal size into input power capacity expressed in kW (SEL,st ) according to

Eq. (5) . 

2. Reporting efficiency metrics as a percentage relative to the hydrogen lower heating value

(ηLHV,st ) according to Eq. (6) . 

3. Expressing CAPEX as currency per unit of input power ( CAP EXst ), as per Eq. (7) . 

4. Adjusting CAPEX data to euros 2024 by applying the inflation rate ( CAP EXactualized, 2024 ) and

currency-to-euros conversion factors ( CAP EXEUR ) based on Eqs. (8) and (9) . 

5. Expressing OPEX as a percentage of CAPEX, with the conversion detailed in Eq. (10) . 

6. Setting the system’s operating pressure status to “Atmospheric” if the maximum operating

pressure of the electrolyser is 1 bar, and “Pressurized” otherwise ( Eq. (11) ). {
SEL,st = SEL i f SEL = kW 

SEL,st = SEL ·LHV 
ηLHV,st 

i f SEL = kg 
h 

(5) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ηLHV,st = η i f η = %LHV 

ηLHV,st = η · LHV 
H H V i f η = %H H V 

ηLHV,st = LHV 
η i f η = kW h 

kg 

(6) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

C AP EXst = C AP EX i f C AP EX = currency 
kWinput 

C AP EXst = C AP EX · ηLHV,st i f C AP EX = currency 
kWout put ,LHV 

C AP EXst = C AP EX · ηLHV,st · H H V 
LHV i f C AP EX = currency 

kWout put ,H H V 

(7) 

C AP EXactualized, 2024 = C AP EXst · ( 1 + i ) ( 
2024 −Yreport ) (8) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C AP EXEUR = C AP EX i f currency = €

C AP EXEUR = C AP EX · 0 . 92 i f currency = US$ 

C AP EXEUR = C AP EX · 0 . 61 i f currency = A $ 

C AP EXEUR = C AP EX · 1 . 17 i f currency = £

(9) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

OP EXst = OP EX i f OP EX = % CAP EX 

OP EXst = OP EX · ηLHV,st 

CAPEXst 
i f OP EX = currency 

kWhLHV ·yr 

OP EXst = OP EX · ηLHV,st · H H V 
LHV 

CAPEXst 
i f OP EX = currency 

kWhH H V ·yr 

(10) 

{
P r essur e Status = Atmospheric i f P r essur e = 1 

P r essur e Status = Pressurized i f P r essur e > 1 
(11) 

Where PEL is the nominal power of the electrolyser, LHV and HHV are the hydrogen lower and

higher heating values respectively, η is the electrolyser efficiency, and Yreport is the data publica-

tion year. 

Fig. 1 illustrates trends and variations over time in capital costs across PEM and AEL electrol-

ysers, showcasing the decrease in capital costs with cumulative production or development. 

Fig. 2 displays the relationship between capital cost and nominal power, along with cost func-

tion estimates for PEM and AEL electrolysers. 
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Fig. 1. Capital cost range over time for PEM ( left ) and AEL ( right ) electrolysers. 

Fig. 2. Capital cost as a function of nominal power range for PEM ( left ) and AEL ( right ) electrolysers. 
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.2. Fuel cells 

The data processing for fuel cell technologies follows a similar approach as described for

lectrolysers: 

1. Standardizing nominal size into output power capacity expressed in kW (SF C,st ) according to

Eq. (12) . 

2. Reporting efficiency metrics as a percentage relative to the hydrogen lower heating value

(ηLHV,st ) according to Eq. (13) . 

3. CAPEX values are all expressed as currency per unit of output power ( CAP EXst ), and OPEX

data are reported as a percentage of CAPEX. Thus, no additional processing is required for

these parameters. 

4. Adjusting CAPEX data to euros 2024 by applying the inflation rate ( CAP EXactualized, 2024 ) and

the currency-to-euros conversion factors ( CAP EXEUR ) based on Eqs. (8) and (9) . 

{
SF C,st = SF C i f SF C = kW 

SF C,st = SF C · LHV · ηLHV,st i f SF C = kg 
h 

(12)

{
ηLHV,st = η i f η = %LHV 

ηLHV,st = η · LHV 
H H V i f η = %H H V 

(13)

Figs. 3 and 4 depict trends in capital costs over time and nominal size for PEMFC and SOFC

uel cells. 
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Fig. 3. Capital cost range over time for PEMFC ( left ) and SOFC ( right ) fuel cells. 

Fig. 4. Capital cost as a function of nominal power range for PEMFC ( left ) and SOFC ( right ) fuel cells. 

 

 

 

 

4.3. Hydrogen compression units 

The raw data pertaining to hydrogen compression units were processed through the following

steps: 

1. Standardizing nominal size into electrical input power expressed in kW (Scompr,st ) according

to Eq. (14) . 

2. Expressing CAPEX as currency per unit of input power ( CAP EXst ), as per Eq. (15) . 

3. Adjusting CAPEX data to euros 2024 by applying the inflation rate ( CAP EXactualized, 2024 ) and

currency-to-euros conversion factors ( CAP EXEUR ) based on Eqs. (8) and (9) . 

4. Setting the minimum inlet pressure (Pin ) at 1 and the maximum outlet pressure equal to

“N/A” if raw data are not available in the reference report . 

Scompr,st = Scompr i f Scompr = kW 

Scompr,st = Scompr · Z · T · R 

MH2 
· ηst 

· N · γ
γ − 1 

⎡ 

⎣ 

(
Pout 

Pin 

) γ −1 
Nγ

− 1 

⎤ 

⎦ i f Scompr = kg 

h 

N = 

ceil

(
Pout 
Pin 

)
βmax 

(14) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C AP EXst = C AP EX i f C AP EX = currency 
kWinput 

C AP EXst = CAPEX ·Scompr, kg/h 

Scompr, st 
i f C AP EX = currency 

kg/h 

C AP EX = CAPEX i f C AP EX = currency 

(15) 
st Scompr,st compression unit 
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here Z is the hydrogen compressibility factor, T is the temperature at the inlet of the compres-

or, R is the ideal gas constant, MH2 
is the molecular mass of hydrogen, ηst is the compression

fficiency, N the number of compressor stages, γ the diatomic constant factor, and βmax is the

aximum compression ratio set equal to 8. 

The trends in capital costs over time and nominal size for the hydrogen compression units is

hown in Fig. 5 . 

ig. 5. Capital cost range over time ( left ) and capital cost as a function of nominal power range ( right ) for hydrogen

ompression units. 

.4. Hydrogen storage tank 

The following steps were taken to process the raw data for hydrogen storage: 

1. Standardizing nominal size into gravimetric capacity in kg (SH2 tank,st ) according to Eq. (16) . 

2. Expressing CAPEX as currency per unit of storage capacity ( CAP EXst ), as per Eq. (17) . 

3. Adjusting CAPEX data to euros 2024 by applying the inflation rate ( CAP EXactualized, 2024 ) and

currency-to-euros conversion factors ( CAP EXEUR ) based on Eqs. (8) and (9) . ⎧ ⎨ 

⎩ 

SH2 tank,st = SH2 tank i f SH2 tank = kg 

SH2 tank,st = SH2 tank · ρH 2 i f SH2 tank = m3 

SH2 tank,st =
SH2 tank 

LHV i f SH2 tank = kW h 

(16)

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

C AP EXst = C AP EX i f C AP EX = currency 
kg 

C AP EXst = CAPEX 
ρH2 

i f C AP EX = currency 

m3 

C AP EXst = CAPEX 
LHV i f C AP EX = currency 

kWhH2 

C AP EXst = CAPEX 
SH2 tank,st 

i f C AP EX = currency 
tank 

(17)

here ρH 2 is the hydrogen density. 

Fig. 6 illustrates the trend of capital costs for hydrogen storage tanks over time and nominal

ize. 

.5. Battery energy storage systems 

The following steps were taken to process the raw data for Li-ion battery energy storage

ystems: 

1. Standardizing nominal size into energy storage capacity in kWh (SBESS,st ) according to

Eq. (18) . 

2. Setting energy-to-power ratio (hch/dh ) to 1 is this information is not given. 
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Fig. 6. Capital cost range over time ( left ) and capital cost as a function of nominal power range ( right ) for hydrogen 

storage. 

 

 

 

3. Expressing CAPEX as currency per unit of storage capacity ( CAP EXst ), as per Eq. (19) . 

4. Adjusting CAPEX data to euros 2024 by applying the inflation rate ( CAP EXactualized, 2024 ) and

currency-to-euros conversion factors ( CAP EXEUR ) based on Eqs. (8) and (9) . 

5. Standardizing round-trip-efficiency, according to Eq. (20) . {
SBESS,st = SBESS i f SBESS = kW h 

SBESS,st = SBESS · hch,dh i f SBESS = kW 

(18) 

{
C AP EXst = C AP EX i f C AP EX = currency 

kW h 

C AP EXst = CAPEX 
hch,dh 

i f C AP EX = currency 
kW 

(19) 

{
ηR −T = η i f η = ηch · ηdh 

ηR −T = η2 i f η = ηch 
(20) 

The cost function equation, as detailed in Eq. (21) , considers both the energy storage capacity

(Senergy ) and nominal power (Spower ) . 

CAP EXcost f unction =
Cre f1 

Sre f1 

(
Senergy 

Sre f1 

)exp1 

Senergy 
+

Cre f2 
Sre f2 

(
Spower 

Sre f2 

)exp2 

Spower 
(21) 

Fig. 7 depicts the trend in capital costs for battery energy storage systems over time and
across different nominal sizes. 

Fig. 7. Capital cost range over time ( left ) and capital cost as a function of nominal power range ( right ) for BESS. 
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imitations 

A review of relevant literature on investment costs for power-to-gas appliances has revealed

ignificant variability in cost estimations, influenced by factors such as technology, system size,

nd year of installation. Additionally, comparing available data is challenging due to the frequent

missions of critical information, such as system size, included peripherals (e.g., gas condition-

ng), and capacity reference (electric input, lower heating value (LHV) output, higher heating

alue (HHV) output). 
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