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ABSTRACT

We study the transition to turbulence in a flat plate boundary layer by means of visibility analysis of velocity time-series extracted across the
flow domain. By taking into account the mutual visibility of sampled values, visibility graphs are constructed from each time series. The latter
are, thus, transformed into a geometrical object, whose main features can be explored using measures typical of network science that provide
a reduced order representation of the underlying flow properties. Using these metrics, we observe the evolution of the flow from laminarity
to turbulence and the effects exerted by the free-stream turbulence. Different from other methods requiring an extensive amount of spatio-
temporal data (e.g., full velocity field) or a set of parameters and thresholds arbitrarily chosen by the user, the present network-based
approach is able to identify the onset markers for transition by means of the streamwise velocity time-series alone.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106455

I. INTRODUCTION

Turbulence arises from laminar fluid motion following the
growth of small perturbations of the velocity profile. The interest in
the study of transition is well motivated by the physical and industrial
implications associated with the appearance of turbulence, which are
pre-eminently linked to increased momentum transfer and drag.
Important efforts in this sense are directed toward understanding, pre-
dicting, and ultimately controlling transition.

In this work, we focus our attention onto transition in the bound-
ary layer of a flat plate with zero pressure gradient. In this setup, transi-
tion usually follows two routes. In one case, the laminar profile first
develops Tollmien–Schlichting waves, whose secondary instabilities then
lead to the breakdown to turbulence. In contrast to this orderly pathway,
the second case occurs when turbulence in the free stream exerts a verti-
cal forcing on the boundary layer and triggers the transition. This route
is termed bypass transition and will be the focus of this work. Bypass
transition takes place as follows: initially, the perturbations in the free
stream generate large-scale perturbations of the streamwise velocity, i.e.,
streaks, inside the laminar boundary layer. Indeed, while outside the
boundary layer the turbulence spectrum has a broadband nature, inside
the boundary layer only low frequency perturbations appear, due to
shear-sheltering. The secondary instability of streaks generates turbulent
spots that are advected by the mean flow and grow in size, until their
growth andmerging results in the full onset of turbulence.1

While for the orderly transition the onset of turbulence and its
spatial location can be somewhat predicted and a definition of a critical

Reynolds number is usually accepted, in the case of bypass transition
the problem is complicated by the chaotic nature of the forcing intro-
duced by the free stream turbulence, so that the onset of turbulence
also depends on the turbulent intensity.2,3 In general, the onset of tur-
bulence is influenced by different key factors, such as the system
geometry, the surface roughness, the external flow condition (most
notably the pressure gradient and the already mentioned freestream
turbulence). Simplified criteria have been proposed, relying on deter-
mining a critical ratio between the production term inside streamwise
velocity streaks and viscous dissipation. A closely related problem to
the prediction of transition is that of the determination of the spatio-
temporal location of the turbulent–non-turbulent interface (TNTI).
The identification of the TNTI in its simplest forms relies on the
observation that certain flow field quantities usually assume different
range of values in turbulent and laminar regimes.4–6 As such, provid-
ing an indicator function and a threshold value should, in theory, suf-
fice to accurately discriminate between laminar and turbulent regions
of the domain. Vorticity is a characterizing feature of turbulence, but
its use as an indicator function is problematic due to the presence of
free-stream turbulence or laminar regions where vorticity is present
nonetheless, such as the streaks in the turbulent boundary layer. Other
choices for the indicator function rely on the presence of velocity fluc-
tuations to act as a discriminant between turbulent and laminar flow.
A common choice in flat plate boundary layers is the sum of the wall-
normal and spanwise velocity fluctuations jv0j þ jw0j. Still, the fact
that the intensity of the velocity fluctuations is strongly dependent on
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the distance from the wall complicates the choice of an appropriate
threshold. Methods such as Otsu’s7 can be used to determine an
appropriate threshold at different wall-normal heights, but the choice
can be prone to error and an extensive knowledge of the flow field is
necessary.8

More recently, and fueled by the increasing availability of high-
resolution flow simulations and experiments, several data-driven
approaches have been proposed, with the main goal of discerning the
various states present in a transitional boundary layer and the key pro-
cesses that govern the shift of the flow field between these states.9,10

Machine-learning techniques are a broad category of data analysis
tools commonly employed to analyze and classify large datasets and
discover underlying relations, whose application to fluid mechanics is
gaining traction. Some of the most promising applications in the field
of transitional flows regard the classification of flow states using unsu-
pervised deep learning approaches. The main merit of unsupervised
approaches lies in eliminating the need for a priori defined classifiers
and/or threshold values, which are instead obtained by the learning
algorithm itself. On the other hand, these approaches need extensive
training on large datasets, thus requiring the knowledge of the entire
velocity field and possibly also of reduction techniques to feed the
unsupervised classifiers with treatable data in which the underlying
relations are more easily discovered. Moreover, the very large number
of parameters usually contained in a machine generated model makes
somewhat difficult to obtain a clear physical interpretation of the fea-
tures of classifiers, which would be useful to drawn more general con-
clusions about the nature of the studied flow.

An alternative to data-driven approach comes from dimensional-
ity reduction techniques that, when applied to turbulent flows, are able
to extract key information from an otherwise extremely complex flow
field. Along with more established methods, such as proper orthogonal
decomposition, the application of techniques derived from graph the-
ory has seen a wealth of promising applications to fluid dynamics
recently.11,12 Graphs, or networks, are mathematical objects composed
of a set of nodes and a set of the interactions entertained by the nodes;
they are suited to represent large, and complex, dynamical systems, of
which they can capture the essential behavior.13 Network-based meth-
ods have been applied to fluid flows to investigate the correlation
between the velocity at different points in space14 or at different
Lagrangian trajectories,15,16 vortical interactions,17,18 the proximity of
particle trajectories,19,20 and their transition probability between sub-
sets of the domain.21–23

Time-series analysis in the context of network-based methods is
particularly relevant, as the structure of time-series originating from
highly complex systems is hardly captured by statistics alone. Several
approaches to extract the information contained in time-series have
been proposed.24 Network analysis based on recurrence and on the
analysis of cycles has been employed to study the transition between
stable and unstable states in turbulent combustion.25–29 The visibility
graph, which maps the steps of a time-series into the nodes of a net-
work whose connection is determined on the basis of mutual visibil-
ity,30 has been employed in the analysis of turbulence, especially for
fully developed channel, boundary layer flows, and jets.31–35

In this work, we apply the visibility graph to time-series extracted
from a numerically simulated transitional flat plate boundary layer.
The visibility graph retains the underlying structure of the process gen-
erating the time-series itself and highlights the presence of key patterns

retained by it. Moreover, the information contained inside the visibil-
ity graph can be condensed into scalar metrics using tools derived
from network theory, which we will show to be sensitive to the features
of time-series. Thus, we are able to identify the key elements that pre-
cede and trigger transition and to provide a thorough description of
the spatial evolution of transition.

The paper is organized as follows. In Sec. II, the numerical simu-
lation is detailed, the visibility graph method and the relevant network
measures are introduced, and the properties of time-series are corre-
lated with those of the visibility graph by means of the parametric
analysis of a synthetic time-series. In Sec. III, the results are detailed,
including a discussion on the application of the present method to
badly resolved data. Finally, in Sec. IV concluding remarks are given.

II. METHODS
A. Transitional boundary layer dataset description

We apply the visibility graph analysis to velocity time-series
extracted from a numerically simulated transitional boundary layer.
The velocity fields have been made available through the John Hopkins
Turbulence Database. The data are obtained via a direct numerical sim-
ulation of the flow over a flat plate of thickness 2L with an elliptical
leading edge and a zero mean pressure gradient across the streamwise x
direction. The origin (x¼ 0) of the domain is located at the leading
edge of the plate; this location is excluded from the stored dataset,
which instead starts at approximately x ¼ 30L. A sketch of the simula-
tion domain is shown in Fig. 1. The Reynolds number ReL based on the
half-thickness of the plate, the free-stream velocity U1, and the fluid
viscosity � is ReL ¼ U1L=� ¼ 800. The flow at the inlet is fully turbu-
lent and is generated from a distinct simulation of homogeneous turbu-
lence. The turbulence intensity at the inlet is about 3%, which is
enough to trigger bypass transition. At the lower boundary, which is a
solid wall, the no-slip condition is imposed, while along the spanwise
direction periodicity is used. At the top of the domain, the boundary
condition is actively controlled to satisfy continuity and keep the zero
pressure gradient. The size of the domain, with respect to the plate
half-thickness is Lx � Ly � Lz ¼ ð969:8465� 26:4844� 240ÞL, with
y and z being the wall-normal and spanwise directions, respectively.
The number of grid points in physical space at which the solution is
stored is Nx � Ny � Nz ¼ 3320� 224� 2048. Each time series is
composed of Nt ¼ 4701 time-steps for a total time stored
T ¼ 1175L=U1; the resulting time step is Dt ¼ 0:25L=U1. A snap-
shot of the streamwise velocity field at y¼ 0.43 is shown in Fig. 2(a).
Further details on the numerical procedure employed can be found
elsewhere.1,36,37

B. Visibility graph and network measures

The natural visibility graph maps a discrete time-series (or an
univariate function, in general) into a graph.30 A graphgðn;eÞ is an

FIG. 1. Sketch of the fluid domain. The region bounded by the dashed line indi-
cates the stored portion of the domain.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 104104 (2022); doi: 10.1063/5.0106455 34, 104104-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


object comprising of a set of nodes n ¼ fn1;…; nNg and a set of
links e, each one connecting a pair of nodes of the graph. A common
representation of a graph is the adjacency matrix A 2 RN�N , whose
entries Aij are equal to one if there is a connection between nodes ni
and nj and is zero otherwise.13 The visibility method transforms a
time-series uðtiÞ into a graph by assigning each time step ti to a node
and establishing a link if there is a direct line of sight between the two
nodes. More specifically, two nodes i and j corresponding to time steps
ti and tj are connected if

uðtkÞ � uðtjÞ � uðtiÞ
� � tk � ti

tj � ti
; 8k ¼ i;…; j; (1)

where i< j without loss of generality. The procedure by which links
are formed between nodes is shown schematically in Fig. 2(b).
Geometrically, this corresponds to creating a link between two nodes
if and only if an uninterrupted straight line can be traced between the
corresponding data points, without intersecting any intermediate point
of the time-series. This criterion is found to preserve the properties of
the time-series and to translate its features into recognizable topologi-
cal structures contained in the visibility graph.30

The resulting graph is fully connected (there is a path between all
pair of nodes), undirected (thus having a symmetric adjacency matrix),
and has a number Nt of nodes, equal to the number of steps in the
time-series. The visibility graph is invariant to scale transformations of
the time-series, since its links are defined following only a convexity
criterion. Moreover, unlike methods such as recurrence networks, the
visibility approach does not rely on parameters set by the user (such as
the phase-space threshold distance in recurrence networks).

Network science adopts several metrics that, when applied to
complex graphs (i.e., graphs with a large number of nodes and a non-
trivial interconnection pattern), give a quick glance on the network
properties. We will now enumerate the relevant network measures
employed in this work and, subsequently, explain their relevance in
the context of visibility analysis.

The degree centrality ki of a node is the number of links incident
to that node. Using the adjacency matrix, the degree normalized by its
maximum attainable value (that is the number of nodes N) is

ki ¼
XN

j¼1

Aij

N � 1
: (2)

The degree centrality is one of the most straightforward measures of
centrality of a node, i.e., of its importance in the overall network struc-
ture. In Fig. 2(b), the degree centrality of two nodes is computed.

The clustering coefficient ci is, instead, a measure of the local den-
sity of links around a node. More specifically, it expresses the probability
that two neighbors of node i are themselves connected and, thus, that a
connected triple of nodes is also a triangle.38 It can be calculated as

ci ¼

X

j;m

AijAjmAmi

ki ki � 1ð Þ : (3)

In Fig. 2(b) the computation of the clustering coefficient of the second
node, c2, is exemplified; as its immediate neighbors form a complete
graph, its clustering coefficient is equal to 1.

In order to measure the likeliness of connected nodes, it may be
useful to consider the similarity of certain properties of each node of a
link, i.e., the assortativity of the network. In its most basic form, the
assortativity r can be measured as the Pearson correlation coefficient
of the degree of the two nodes at the ends of a link, computed for all
connected node pairs.39,40 The value of r ranges from �1, indicating a
fully disassortative network, to 1 for fully assortative networks in
which connections take place only between similar (with respect to the
degree centrality) nodes. As an example, nodes 11 and 12 in Fig. 2(b)
(which are marked by their respective time steps, t11 and t12) have
largely different degree centralities, and thus, they contribute to make
the network disassortative.

Finally, the average (or characteristic) path length L is the average
length of the shortest paths connecting all pair of nodes, that is,

L ¼ 1
NðN � 1Þ

X

i;j;i 6¼j
dij; (4)

where dij is the topological length of the shortest path between nodes i
and j. The average path length is a measure of the typical distance

FIG. 2. (a) Top view of the boundary layer at y¼ 0.48, t¼ 0, streamwise velocity; (b) construction of the visibility graph from a time-series and network measures. Blue points
mark the sampled velocity values uðtiÞ and orange segments highlight the visibility links between pairs of connected nodes. Links connected to the node t11 are colored in
green, to show an example of the degree centrality k11, while the path between node t1 and node t15 is highlighted in red, to highlight an example of a shortest path, d1;15;
finally, the links of the subgraph induced by nodes t1, t2, and t3 is shown in light blue color, to show an example of the local clustering coefficient c2.
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between nodes in a graph and can be used as a way to determine the
effectiveness of a network in transferring information between nodes.
In Fig. 2(b) the shortest path between nodes 1 and 15 is made of four
links, so that d1;15 ¼ 4; in this case, the presence of a clear peak in the
time-series makes topological connection between temporally distant
nodes shorter. We note that if disconnected components are present
in the network, the average path length diverges; as the visibility graph
is fully connected, in our case L is always bounded.

C. Visibility analysis of time-series

The application of the visibility graph formalism to time-series is
known to preserve their structure, in the sense that a relation between
time-series properties and those of the visibility graph can be found.
As an example, periodic time-series result in regular visibility graphs,
random series in random graphs, and fractal series result in graphs
where scale-free features are present.30 More recently, and with appli-
cation to fluid dynamics, the relation between the time-series structure
and network measures (as those presented before) has been explored
in the context of the visibility graph.31–34,41,42 The main rationale
behind these approaches stems from the need to provide a treatable
insight on turbulent or transitional time-series, which are highly com-
plex and need a very fine temporal resolution to be adequately repre-
sented (especially at high Reynolds numbers). By construction, the
visibility graph is invariant under horizontal and vertical rescaling of
the time-series; as such, the overall amplitude of the time-series has no
effect on the derived network measures. On the contrary, the visibility
analysis is highly sensitive to the interplay of different scales inside the
time-series. As will be detailed in the following, the network measures
applied to the visibility graph have the ability to convey the entity of
this interplay. Finally, the visibility graph can be computed from a
time-series with fast algorithms [in OðN logNÞ time, N being the
number of nodes],43 which makes it suitable for use in large datasets.

To establish the properties of the visibility analysis, we now aim
to show the behavior of network measures in response to the features
of the time-series. To do so, we synthetically generated a time-series by
superimposing three out of phase sinusoidal components of different
frequency fi and amplitude /i, a small-scale Gaussian noise and a
larger amplitude Gaussian noise that has a discontinuous support (in
order to mimic the intermittent behavior typical of transitional time-
series). The synthetic time-series has the expression

uðtÞ ¼
X

i¼low;mid;high

Ai sin fit þ /ið Þ þ Anoisew1ðtÞ þ Aburstw2ðtÞ;

(5)

where w1 and w2 are white Gaussian noises and w2 is nonzero only on
a fraction I of the duration of the time-series, which corresponds to
the intermittency of the signal. The support for the intermittent
regions of the synthetic time-series is chosen at random.

In a visibility graph, the nodes situated in large, convex portion
of the time-series have a direct line of sight with a larger number of
other nodes, thus having large degree. Overall, the mean degree

K ¼ 1
N

XN

i¼1
ki ¼

1
NðN � 1Þ

X

i;j

Aij; (6)

of the visibility graph is tightly connected to the amplitude Alow of the
lowest frequency components in the time-series, i.e., those with the
largest scale. All the panels in Fig. 3 show some of the synthetic time-
series used to compute the visibility graph measures. Figure 3(a) shows
how the degree grows as the low-frequency component becomes more
important. Indeed, the preminence of peaks spaced far apart increases
the overall number of links and thus the mean degree; also, we found
that the mean degree is inversely proportional to the frequency flow.

The clustering coefficient also depends strongly on the local con-
vexity of the time-series around a given node. Differently from the
degree centrality, the amount of connected triples and triangles is
mostly determined by the time-steps immediately adjacent to the one
considered, as it is far more frequent to find connections in triples of
temporally close nodes. As such, the global average

C ¼ 1
N

XN

i¼1
ci 2 0; 1½ �; (7)

of the clustering coefficient quantifies the importance of the small-scale
components of the time-series.31 In particular, we observe that the clus-
tering coefficient increases as the amplitude of the small-scale Gaussian
noise Anoise in the synthetic time-series increases [see Fig. 3(b)].

The visibility graph is also suited toward the analysis of the vertical
separation, i.e., the presence of components whose amplitude is mark-
edly different in adjacent regions of the time-series.32 gave an extended
discussion regarding the ability of the assortativity coefficient r to dis-
cern between time-series whose amplitude is homogeneous over time
and those that are not. In particular, when the amplitude of the time-
series is homogeneous and there are no outliers, it is more probable that
similar nodes are connected, leading to highly assortative networks. This
behavior is of outstanding importance in the study of transitional time-
series, which are strongly characterized by their intermittent behavior in
the region where turbulence is not fully developed. Varying the inter-
mittence in the synthetic time-series (that is the percentage of time, cho-
sen at random, in which large-amplitude Gaussian noise is present)
allowed us to study the behavior of the assortativity, as is shown in Fig.
3(c). The “turbulent” component is highly fluctuating, but is still some-
what homogeneous with respect to the underlying laminar component;
accordingly, the assortativity is high. As the intermittency grows the net-
work becomes increasingly assortative until the intermittency reaches
unity (the series becomes fully turbulent), where the assortativity drops
significantly. As already stated, the visibility graph is highly sensitive to
the interplay of the different scales rather than to their actual amplitude.
When the intermittency reaches unity, the laminar component disap-
pears from the time-series and the heterogeneity of the turbulent com-
ponent leads to a decrease in the assortativity.

Finally, the average path length is a measure of the topological
distance between nodes; it follows easily from this consideration that
the presence of localized peaks determines a decrease in the value of L,
as long-distance nodes are more easily connected. As shown in Fig.
3(d), the average path length decreases when the amplitude of the tem-
porally localized Gaussian noise in the synthetic time-series increases.

III. RESULTS
A. Network measures

We computed the visibility graph from time-series of the stream-
wise velocity u from a set of points in the flow domain. In particular,
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for each ðx; yÞ coordinate, we considered time-series from Nz ¼ 120
equally spaced points across the homogeneous z direction of the
domain. For each visibility graph, we computed the relevant network
measures; in the following, we will provide results averaged along z.

Figures 3(a)–3(d) show the four visibility graph measures (K, C,
r, and L) over a grid of (x, y) points that encompass the regions of the
boundary layer where bypass transition takes place. Taking into
account the significance of network measures in the context of the visi-
bility graph, some features of the boundary layer can be readily identi-
fied. As stated before, the turbulent fluctuations in the boundary layer
induces low-frequency, high-amplitude fluctuations of the streamwise
velocity in the inner portion of the boundary layer. The degree central-
ity [Fig. 4(a)], which is sensitive to these low-frequency components,
has a marked peak near ðx; yÞ ¼ ð200; 0:2ÞL, where the low-
frequency amplification induced by shear-sheltering appears to be at a
maximum. As transition spatially progresses, the low frequency streaks
encounter secondary instabilities which effectively enable the transfer
of energy to smaller scales, initiating the breakdown to turbulence.
Using the clustering coefficient [Fig. 4(b)], we are able to locate the
start of this process at around x ¼ 300L in the innermost portion of
the boundary layer, while at higher y values the high-frequency com-
ponents of the time-series acquire stronger importance at higher x.
Transition appears to be initiated in the innermost portion of the
boundary layer. We also note that, in the region where streaks are gen-
erated, the clustering coefficient is at a minimum, as the high-
frequency components of the freestream turbulence are filtered out
and do not exert forcing on the boundary layer flow. Additionally, the
clustering coefficient in the turbulent region of the boundary layer is
slightly higher than in the free-stream, indicating some difference in

the structure of turbulence (regardless of the amplitude, which is
neglected by the visibility graph).

The assortativity [Fig. 4(c)] and the average path length [Fig.
4(d)] allow us to investigate the intermittent behavior of the time-
series just before full transition occurs. As already stated, these time-
series are characterized by the passage, in fixed points of the domain,
of turbulent spots. As x grows, the size and frequency of spots grows
and, accordingly, the intermittency of the time-series grows. The
remarkable ability of the assortativity to distinguish between intermit-
tent time-series (even with high intermittency values) and fully turbu-
lent ones allows us to identify a region, located prior to the fully
developed turbulent boundary layer, where intermittency is at a maxi-
mum (but still not unity). This region with high assortativity presents
itself as an almost vertical front located at around x ¼ 380L, which is
followed by a decrease in assortativity. We hypothesize that the region
of maximum assortativity is the region which hosts the turbulent-non
turbulent interface. The average path length has a maximum in the
streaky region, where the low-frequency fluctuations of the streamwise
velocity present no clear, localized peak. Instead, there is a minimum
at around x ¼ 300L and very low y values. The minimum indicates
that time-series in this region present localized peaks and a somewhat
reduced intermittency (the assortativity is also very low in the same
region, indicating a strongly heterogeneous time-series). It is interest-
ing to note that at slightly higher x coordinates the strong increase in
the clustering coefficient takes place; indeed, it is the expansion and
coalescence of localized spots that generates complete transition to
turbulence.

Figure 4(e) shows three time-series extracted from the corre-
sponding, color-coded, points indicated in Figs. 4(a)–4(d) and at

FIG. 3. Visibility parameters of the synthetic time-series: (a) average degree K with respect to the amplitude of the lowest frequency component of the time-series Alow; (b) clus-
tering coefficient C with respect to the amplitude of noise Anoise; (c) assortativity r with respect to the intermittency I; and (d) average path length L with respect to the amplitude
Aburst of localized bursts (I¼ 0.33). Relevant time-series are plotted as insets.
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z¼ 13.95 and, below, the corresponding visibility graph plotted with a
force-directed algorithm.44 The leftmost time-series is taken from the
region of the domain in which turbulent spots are present. Here the
presence of peaks, which are also evident in the graph plot as single
nodes connected with large, separate clusters, contributes to the low
value of L, while the presence of laminar regions determines the high
value of K. To better identify these large clusters we applied the
Louvain partitioning algorithm45 and computed the average size of
communities. In the case of the leftmost time-series, the average clus-
ter comprises 522 nodes. In the central time-series and in its corre-
sponding graph plot, taken near the turbulent-non turbulent interface

where the assortativity r is at a maximum, the hub-spoke organiza-
tion typical of the spotty time-series is less evident, but clusters still
appear visibly larger than in the fully turbulent case due to the con-
tribution of persistent low frequency components (the average
cluster size is 204); consequently, the degree is also slightly larger
with respect to that of the fully turbulent time-series. Finally, in
the rightmost time-series, taken from a region where turbulence is
fully developed, the size of clusters is much smaller (on average,
they comprise 130 nodes). Conversely, here the clustering coeffi-
cient is at a maximum as the high-frequency components are
predominant.

FIG. 4. Visibility graph measures in the transitional boundary layer: (a) Average degree, (b) clustering coefficient, (c) assortativity, and (d) average path length. The boundary
layer height d99 is shown in black, while the average position of the TNTI �xTNTIðyÞ is shown in red. Panel (e) shows three time-series sampled at the corresponding, color-
coded points of the domain; the spanwise coordinate is z¼ 13.95 for all time-series. Below each time-series, the corresponding visibility graph is drawn by a force-directed
algorithm.
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To further complement our results, we added to the plots in
Fig. 4 the boundary layer height d99 (black curves), which is the y coor-
dinate at which the streamwise average velocity is 99% the freestream
velocity, and an approximate location of the TNTI (red curves). To
find the location of the turbulent-non turbulent interface across the
wall-normal coordinate y we used the procedure proposed by.8 In par-
ticular, for each time step of the boundary layer simulation data and at
each wall-normal height, we applied Otsu’s method7 to the sum of the
wall-normal and spanwise velocity fluctuations jv0j þ jw0j in order to
obtain a threshold value (as a function of y and t). Otsu’s method is an
image segmentation technique that identifies the optimal threshold of
a scalar value (the grayscale in images or jv0j þ jw0j in the boundary
layer). In particular, the method achieves the objective of minimizing
the intra-class variance within the turbulent and the laminar regions,
and does so by maximizing the inter-class variance between the
laminar and turbulent regions. Because of the dependence on y of the
wall-normal velocity fluctuations, a global (y-independent) threshold
cannot be provided and Otsu’s procedure has to be applied to isolated
vertical slices of the boundary layer flow, as prescribed by.8 After we
obtained the spatial profile of the TNTI as a surface xTNTIðy; z; tÞ at
different times we averaged the results along time and along z to
obtain an expected average profile of the TNTI, �xTNTIðyÞ.

First, we note that the variation of the network measures takes
place inside the boundary layer, at y coordinates lower than d99, while
in the free-stream the measures remain mostly stationary. Moreover,
the expected position of the turbulent-non turbulent interface using
Otsu’s thresholding is clearly superimposable to the regions where net-
work measures signal the transition to fully developed turbulence. In
particular, the region of maximum assortativity and the TNTI intersect
in a wide range of y coordinates, indicating that the assortativity mea-
sures, as was hypothesized before, incipient transition. It is also worth
noting that the spike of the clustering coefficient in the innermost
region of the boundary layer is located slightly before the expected
location of the interface, possibly indicating that to some extent the
transfer of energy to smaller scales precedes full transition.

B. Sensitivity analysis

We now aim to assess the response of the visibility analysis to the
decrease in spatial and temporal resolution. In particular, we will pro-
vide results that are averaged along a reduced number of points along
z and results obtained using subsampled time-series. The analysis of
subsampled time-series is relevant because it may provide useful
insight in the analysis of data with lower resolution, such as experi-
ments having sparser data acquisition setup or LES simulations over
complex 3D geometries.

Panels from Fig. 5(a) show the network measures averaged using
only 10 points along z (instead of Nz ¼ 120 used precedently); we also
plotted the location of the TNTI computed using Otsu’s method and
its standard deviation along z (dashed lines). The overall trends of the
measures across the domain are preserved. In particular, a peak of the
assortativity is still present near the transition region, making this
measure suitable for a local determination of the TNTI. Network
properties do not change significantly along the homogeneous direc-
tion of the domain.

Figures 5(b) and 5(c) show the network measures obtained from
subsampled time-series. Starting from the full time-series, comprising
of Nt time-steps, we constructed the subsampled time-series by taking

one out of D points, so that uD
i ¼ uDi. We thus obtained subsampled

time-series which are effectively deprived of the highest frequency
components. The effect of the subsampling from the perspective of the
visibility graph is a result of both the elimination of a fraction of the
original data and of the reduction in the number of nodes.

In Fig. 5(b), the four network measures (K, C, r, and L) obtained
from a subsampled time-series with D ¼ 5 are shown. The degree cen-
trality has been normalized with the correct number of nodes, which is
Nt=D. Even if 80% of the original information contained in the time-
series is lost, the visibility measures of the subsampled time-series are
tightly related to those of the full ones. All the previously identified
spatial patterns are preserved through the subsampling. The degree
centrality is left mostly unchanged, as the subsampling procedure
affects only slightly the larger timescale in the time-series (which are
the ones that influence the degree centrality); moreover, the decrease
in the number of nodes can be fully accounted for by normalization.
The clustering coefficient, while retaining the previously found spatial
trends (most notably, the presence of a minimum around x¼ 200),
increases everywhere in the domain. While the removal of the high-
frequency components triggers a decrease in the clustering coefficient
at a fixed number of time-steps [see Fig. 3(b)], this seems to not be the
case when the number of time-steps is decreased. Moreover, it appears
that the increase in the clustering coefficient has the same magnitude
in regions of the domain where the time-series are dominated by either
low- or high-frequency components, indicating that the reduction of
the number of nodes has the most prominent effect on the visibility
graph structure. The assortativity appears to be slightly reduced every-
where, although not by much. Moreover, the spatial location of its
maximum, which we correlated with the location of the TNTI, appears
to be located at slightly lower x coordinates. We hypothesize that this
is due to the loss of information occurring because of the subsampling,
which makes it impossible to distinguish a time-series with a high
value of the intermittency I from a fully turbulent one. Finally, the
average path length L diminishes everywhere as the lesser number of
nodes is correlated with a reduction of the shortest path lengths.
Around x¼ 200 the average path length of the full time-series presents
a peak, which is progressively smoothed as the subsampling parameter
D increases. In that region of the domain the dynamics of the flow is
dominated by low-frequency streaks and turbulent spots are mostly
yet to appear, which, in the fully sampled case, leads to high values of
L. It appears that fine-structure changes like those induced by the sub-
sampling considerably affect the structure of the visibility graph
obtained from time-series of streaky flow.

The panels of Fig. 5(c) show the network measures at a fixed
wall-normal coordinate (y¼ 0.98) and two different subsampling
parameters, D ¼ 2 and 5. With D ¼ 2, even if half the information of
the original time-series is lost, the network properties behave in a simi-
lar manner to the fully sampled ones. In particular, we note that the
assortativity r is mostly unchanged and the peak is located at the same
x-location as in the fully sampled case. Moreover, a peak of L in the
streaky region is still present, indicating that the effects of the subsam-
pling with D ¼ 2 are mostly due to the halving of the number of
nodes.

We performed the same analysis at higher values of D (up to D
¼ 20) obtaining a progressive loss of quality in the network measures.
This is indeed expected, as the loss of information due to the subsam-
pling inevitably reflects on the quality of the visibility graph analysis.
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Nonetheless, if the sampling guarantees that all the relevant scales of
the flow are retained, the qualitative behavior of the results obtained
through the visibility graph is independent from the exact value of the
sampling rate.

IV. CONCLUSIONS

We performed a visibility analysis on time-series obtained from a
numerically simulated transitional boundary layer. After characteriz-
ing the behavior of network measures using a parametric time-series,
we computed these measures for the visibility graphs obtained from

streamwise velocity time-series extracted from the flow domain. The
four metrics, namely, the degree centrality K, the clustering coefficient
C, the assortativity r, and the average path length L are together able to
accurately provide a view on the spatial evolution of the bypass transi-
tion from laminar to turbulent flow, as they encode the interplay of
scales and the transformations occurring due to the onset of
turbulence.

Most notably, we found that the assortativity r, i.e., the Pearson
correlation coefficient between the degree of linked pair of nodes, has
a peak in the region of the domain immediately preceding the rise of

FIG. 5. (a) Degree, clustering coefficient, assortativity, and average path length of the visibility graph at a fixed spanwise coordinate (z¼ 13.95); black lines indicate the values
of d99, while the red lines the average position of the TNTI and the dashed red lines its standard deviation along z. (b) Measures for networks obtained from subsampled time-
series with D ¼ 5 (results are now averaged along Nz ¼ 120 points in the spanwise direction). (c) Network measures from the subsampled time-series at y¼ 0.98 with differ-
ent values of the subsampling parameter D (again, results are averaged along Nz ¼ 120 points).
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developed turbulence and is thus able to act as a reliable onset marker
for transition. This finding is noteworthy since the visibility analysis
does not require any a priori parameter and, most importantly,
because an extensive knowledge of the velocity field is not needed.
Indeed, our results are obtained from the streamwise component u of
the velocity and from single point measurements only. To identify a
time-averaged location of the TNTI using the present approach, one
would only need to compute the assortativity coefficient of visibility
graph from different x coordinates at a fixed wall-normal height y and
spanwise coordinate z and find the location of the peak of r. Our
approach provides results in agreement with more established meth-
ods, such as those based on thresholding physical quantities through
Otsu’s algorithm, but does not need the same extensive knowledge of
the flow field of these methods. Although the thresholding of the indi-
cator function jv0j þ jw0j provides a time-instantaneous location of the
TNTI, it requires the knowledge of the velocity field on at least a slab
of the domain at constant wall-normal height with reasonable resolu-
tion. Moreover, we found that similar results are obtained using sub-
sampled time-series, confirming the robustness of the method with
incomplete data.

The visibility graph methodology appears suited toward the anal-
ysis of flows with abrupt changes in their dynamics. Accordingly, the
current approach can be applied in future works to investigate the
influence of key factors influencing transition to turbulence (such as
geometry, wall roughness, pressure gradient). Moreover, the visibility
approach could be extended to respect temporal causality by including
a directional information into the link definition, thus creating a
directed graph. Past research has shown how this allows the visibility
graph to detect time-series generated by irreversible process and could
be useful to identify and quantify the arising of irreversibility due to
transition to turbulence.46 Overall, network-based methods have an
interesting outlook with regard to application in fluid dynamics, as
they are able to capture the interplay of scales typical of turbulent,
highly complex flows and provide meaningful and consistent results
when applied to highly different cases, such as the laminar, intermit-
tent, and turbulent portions of a transitional boundary layer flow.
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