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Figure 1. Overview of AffordanceCLIP. Our AffordanceCLIP unlocks the hidden affordance understanding capabilities within CLIP.
Traditional techniques rely on task-specific supervised training, limiting them to a closed set of actions. Our key insight is that CLIP,
instead, already embeds knowledge on how humans interact with objects, without the need for explicit finetuning. This enables open-
vocabulary reasoning about a vast range of potential actions. Our open-vocabulary approach demonstrates promising performance in
zero-shot, paving the way for broader and more flexible affordance understanding.

Abstract
Humans show an innate capability to identify tools to

support specific actions. The association between objects
parts and the actions they facilitate is usually named af-
fordance. Being able to segment objects parts depend-
ing on the tasks they afford is crucial to enable intelli-
gent robots to use objects of daily living. Traditional su-
pervised learning methods for affordance segmentation re-
quire costly pixel-level annotations, while weakly super-
vised approaches, though less demanding, still rely on
object-interaction examples and support a closed set of
actions. These limitations hinder scalability, may intro-
duce biases, and usually restrict models to a limited set
of predefined actions. This paper proposes Affordance-

CLIP, to overcome these limitations by leveraging the im-
plicit affordance knowledge embedded within large pre-
trained Vision-Language models like CLIP. We experimen-
tally demonstrate that CLIP, although not explicitly trained
for affordances detection, retains valuable information for
the task. Our AffordanceCLIP achieves competitive zero-
shot performance compared to methods with specialized
training, while offering several advantages: i) it works with
any action prompt, not just a predefined set; ii) it requires
training only a small number of additional parameters com-
pared to existing solutions and iii) eliminates the need for
direct supervision on action-object pairs, opening new per-
spectives for functionality-based reasoning of models.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Our daily lives are filled with objects and tools that we ef-
fortlessly manipulate to achieve goals. Our natural ability
to link visual properties of an object (shape, material, and
parts) with the actions it affords demonstrates a deep con-
nection between perception and action. A concave shape,
for instance, immediately suggests the ability to hold liq-
uids, regardless of whether it is a cup or a coconut shell.

In artificial intelligence, the problem of associating func-
tionality with objects is known as affordance grounding
[2, 8]. It aims at locating the regions of an object that can
be used to carry out a given action. To date, standard ap-
proaches [4, 6, 11, 24, 30] attempt to solve this problem
with supervised learning, relying on manually annotated
datasets to teach models about object functionalities. Each
object in the picture should be provided with multiple seg-
mentation masks, one for each “part” of the object associ-
ated with functional tasks [24, 28]. In the case of a glass, we
may imagine to have the edge associated to the action drink
and the handle with the action hold. This paradigm, while
effective, presents practical limitations due to the resource-
intensive nature of acquiring pixel-level annotations. Rec-
ognizing the need for more scalable and practical solutions,
alternative techniques [13, 18, 19, 27, 34] formulated the
affordance problem as a weakly supervised task, where the
focus shifts towards learning object affordances through the
observation of human-object interaction images [3]. For ex-
ample, a model might learn how to swing a baseball bat after
observing multiple images of humans grasping the bat (see
Fig. 1, top-left).

Even though the annotations are simplified, we argue
that weakly supervised approaches come with several lim-
itations. First, these approaches mainly work with images
representing a single object (e.g. a foreground baseball bat
alone), limiting their use in real-world scenes with multi-
ple objects. Additionally, they are trained on a closed-set of
affordance actions (i.e. 36 on the popular AGD20K [18]),
and cannot be used in an open vocabulary setting with arbi-
trary actions. Finally, in order to avoid introducing culture-
dependent biases, they require a representative number of
examples to learn from. For instance, the ways of carrying
bags or chopping vegetables can be heavily influenced by
the cultural habits [29].

In this paper we investigate whether it is possible to
transfer affordance knowledge without direct supervision
on a predefined set of classes. Our intuition relies on the
observation that large pre-trained models may have already
learnt how humans interact with functional objects by look-
ing at millions of images. Even without datasets explicitly
focused on affordances, these models potentially hold the
key to identify affordances across a broader spectrum of ac-
tions than what can be achieved with annotated datasets. To
assess the validity of this hypothesis, we experiment with

CLIP [31], one of the most popular large Vision-Language
model. However, unlocking affordance knowledge from
CLIP is non-trivial, as it aligns the image representations
with textual descriptions on a global level, discarding spa-
tial information. This makes its embeddings unsuitable for
the affordance grounding task, which requires to localize
specific object details depending on the textual prompt.

Despite this, CLIP rich exposure to complex scenes and
descriptive natural language suggests that it implicitly em-
beds local image semantics and concepts in its intermediate
feature maps [42]. In this work, we address the challenge
of extracting this latent affordance grounding knowledge in
a zero-shot manner, i.e. without fine-tuning on datasets that
explicitly focus on affordance localization task.

To this end, we start from a frozen CLIP model and we
introduce a lightweight Feature Pyramid Network (FPN)
[14], which gradually refines CLIP global descriptor with
fine-grained spatial information from early layers of the vi-
sual encoder. To avoid introducing task-specific biases, we
propose to train the FPN on the proxy task of referring im-
age segmentation [36, 37, 39, 43], which provides binary
masks of objects, referred by a textual prompt. Training
on fine-grained segmentation masks exclusively for objects,
our approach distills CLIP global understanding into pixel-
level embeddings without direct action-affordance associa-
tions.

Our results demonstrate that our FPN enables the extrac-
tion of latent knowledge embedded in CLIP for zero-shot
affordance grounding. We achieve competitive results w.r.t.
existing supervised or weakly-supervised methods, with the
additional benefits that: i) we don’t need any sort of super-
vision on actions-objects pairs; ii) we are not bounded to
a fixed set of actions and our method can work with open-
vocabulary prompts; iii) our method introduces a very lim-
ited number of learnable parameters w.r.t. existing solu-
tions. Summarizing, our contributions are the following:
• We demonstrate the feasibility to solve affordance seg-

mentation without explicit (weakly-)supervised training;
• We showcase how large pre-trained Vision-Language

models can naturally handle any action prompts;
• To adapt CLIP global descriptors to a dense task without

finetuning, we propose a lightweight, low-overhead Fea-
ture Pyramid Network to extract multiscale, spatial fea-
tures while retaining language-aligned embeddings.

2. Related works
Affordance Grounding The task of affordance ground-
ing has gained increasing attention in computer vision,
seeking to identify image regions that suggest potential
interactions between humans and objects. Several works
[4, 6, 11, 24, 30] have proposed to tackle the problem
through supervised approaches, learning to identify rela-
tionship maps between local object regions and their as-
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Figure 2. Overview of the proposed AffordanceCLIP. Left: We train a lightweight FPN to obtain dense feature maps from CLIP. Given
an image, and a textual query referring an object, a frozen CLIP model extracts visual and linguistic features. Then, our FPN gradually
refines the output visual vector with fine-grained spatial details, in order to retain both spatial information and local image semantics.
Finally, a contrastive loss encourages pixel-level embeddings within the GT mask of the object to align with the corresponding linguistic
features. Right: At inference, AffordanceCLIP can be directly queried with any textual prompt to obtain zero-shot affordance predictions.

sociated affordances. However, more recently there has
been a consistent effort in searching alternative strategies
to mitigate the challenges of collecting costly and exten-
sive annotations. [34] introduced an innovative weakly su-
pervised approach for affordance detection. By solving an
Expectation-Maximization problem [5], their methodology
relies on a sparse set of key points for weakly supervised
affordance detection. [27], instead, proposes to use affor-
dance labels only, to extract the interactions directly from
videos. Notably, [18] annotates the first large-scale af-
fordance dataset - AGD20K, with affordance/object cate-
gories and part-level annotations, serving as a benchmark
for evaluating the efficacy of different methodologies. Ex-
isting weakly supervised object localization and affordance
grounding methods [13, 18, 19] are mainly based on class
activation mapping [41] (CAM). Unlike traditional meth-
ods, our solution avoids the requirement for task-specific,
weakly-supervised data by utilizing the knowledge trans-
ferred to vision-language models during large-scale pre-
training.

Dense prediction from Vision Language Models The
shared visual-language embedding space learned from
image-text pairs has enhanced open-world detection [16,
20, 23] and segmentation tasks [12, 17, 32, 36, 42]. LSeg
[12] uses an image encoder trained on labeled segmen-
tation data, which generates pixel-wise embeddings that
align with the CLIP text embedding of the correspond-
ing segmentation label. Fine-tuning methods like CRIS

[36], CLIPSeg [17] and DenseCLIP [32] utilize an im-
age decoder to create relevancy maps guided by CLIP text
embeddings and the CLIP image encoder. However, the
small datasets typically used for fine-tuning often limit the
model’s broader language understanding. MaskCLIP [42]
extracts dense patch-level features from CLIP’s image en-
coder without breaking the visual-language associations.
Analogously, our approach directly leverages the multi-
modal representation learned by CLIP, without any finetun-
ing of its original parameters.

3. Method

This research investigates the potential of CLIP, a power-
ful pre-trained multimodal model, to identify affordances of
objects in an image (i.e. affordance grounding). Our frame-
work leverages CLIP pre-trained image-language align-
ment, refining its output to obtain fine-grained spatial in-
formation for accurate localization.

We build on a frozen CLIP model to extract visual and
language features, preserving its rich understanding of the
relationship between images and text. However, as CLIP
processes the image through a deep neural network, the
output visual vector loses precise spatial information about
where objects are located in relation to each other. Instead,
intermediate feature maps extracted by the visual encoder
retain both spatial information and local image semantics
[42]. To recover this spatial information, we introduce a
Feature Pyramid Network (FPN) [14] that operates on the
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Figure 3. Qualitative results. Given an image and action, we show our model’s prediction and the corresponding Ground Truth.

CLIP visual encoder at different depths. This FPN gradu-
ally integrates spatial details back into the global visual vec-
tor, allowing the model to recover crucial object localization
information. Finally, inspired by CLIP original training, we
introduce a contrastive learning objective to transfer CLIP
image-level reasoning capabilities at the pixel level. The
overall architecture is shown in Fig. 2.

3.1. Feature extraction

As feature extractor, we rely on the pre-trained backbone
of CLIP to extract semantically aligned visual and textual
representation for each input image and corresponding af-
fordance expression.

Image encoder Given an input image I ∈ RH×W ×3, we
extract visual features from an image encoder. Specifically,
we employ the frozen ResNet-101 [9] of CLIP [31] to ob-
tain FS ∈ RC , where C is the CLIP output dimension. This
vector represents a compressed encoding of the image vi-
sual content. Additionally, we also consider the hierarchical
feature volumes F1 ∈ RH

8 × W
8 ×C1 , F2 ∈ R H

16 × W
16 ×C2 and

F3 ∈ R H
32 × W

32 ×C3 , where Ci represents the channel dimen-
sion at stage i and H and W are the height and the width,

respectively. These features progressively encode higher-
level abstractions of the image content.

Text encoder Given the textual query t, we extract the to-
kenized expression T ∈ RL, with L being the length of the
expression. Note that the tokenization is obtained though
lower-cased byte pair encoding (BPE) with 49152 vocabu-
lary size and that the sequence is augmented by adding a
global sentence representation token [CLS] and the end
of sequence token [EOS]. A Transformer [35] modified
by [31] processes T to extract the linguistic features F i

T ∈
RL×C , where C is the number of channels. The activation
of the global contextual token [CLS] is further processed
to generate the global textual representation FQ ∈ RC .

3.2. Recovering spatial details

The output vector FS of CLIP visual encoder captures the
global context of the image but lacks the fine-grained details
required for highlighting specific objects or regions. Pixel-
level information is essential for the system to accurately
identify contact points, to determine the relative positions
of objects, and to analyze their orientations.

To this end, we introduce a lightweight Feature Pyramid
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Network (FPN) that enriches CLIP output vector with de-
tailed spatial information. Given the hierarchical nature of
feature maps, where higher-context information is encoded
progressively with lower spatial resolution, we propose to
utilize the visual features extracted from the frozen image
encoder (F1, F2, F3) to augment the CLIP output vector
FS . Our approach involves an incremental fusion of lower-
resolution features with higher-resolution ones, beginning
with FS .

To ensure compatibility across feature dimensions, both
the global vector and the hierarchical visual features are first
projected into a common representational space C ′. Specif-
ically, given FS and the features Fi, we compute the pro-
jected features:

F ′
S = Conv3×3(FS) (1)

F ′
i = Conv3×3(Fi), i = 1, 2, 3 (2)

where Conv3×3 denotes a convolution operation with ker-
nel size 3, followed by a Batch Normalization and ReLU
activation.

At this stage, we can directly execute the feature fu-
sion operation. The global vector, F ′

S , is initially fused
with the lowest-resolution feature map, F ′

3. The fusion
process then continues by progressively integrating higher-
resolution feature maps, F ′

2 and F ′
1. Formally, we compute

the features F O
i as:

F O
1 = F ′

1 + Up(F ′
S) (3)

F O
i = F ′

i + Up(F O
i−1), i = 2, 3 (4)

where Up is a parameter-free upsampling operation that in-
creases the resolution of F O

i−1 and F ′
S .

To obtain the final visual feature, we project the C ′-
dimensional feature representation into the CLIP original
feature space C. Formally, given the feature F O

3 , we com-
pute the output feature F O ∈ RH

8 × W
8 ×C as follows:

F O = Conv1×1(F O
3 ) (5)

where Conv1×1 denotes a convolution operation with ker-
nel size 1, followed by a Batch Normalization and ReLU
activation.

3.3. Affordance Head

By keeping CLIP frozen, the visual-text alignment is pre-
served. While CLIP condenses the visual content into a
single embedding aligned with a holistic description of the
image, through our FPN we expand this representation to
a higher resolution, in which individual pixels are seman-
tically aligned with text. Hence, given the resulting visual

features and a textual embedding, the corresponding activa-
tion map can be computed with a simple matrix multiplica-
tion.

Formally, the activation map Ypred ∈ RH×W is obtained
via matrix multiplication between the output of the text en-
coder (FQ) and the output of the FPN (F O):

Ypred = FQ · (F O)T , (6)

where T denotes the transpose operation.

3.4. Pixel-Text Contrastive Training

In its pre-training, CLIP employs a contrastive loss to learn
a semantically rich joint representation space for images
and their corresponding textual descriptions. The idea is
to minimize the distance between the correct image-text as-
sociations (i.e. their embeddings are pushed closer in the
shared space), while maximizing the distance of negative
pairs in a batch of images. On the other hand, dense pre-
dictions tasks such as ours require pixel-level information
to delineate the object referred by the query.

Our FPN is tasked with extracting this information from
CLIP intermediate features. To do so, we apply the same
concept of CLIP pre-training, and adopt a contrastive ob-
jective on our spatially augmented visual features, to dis-
till CLIP global representation into pixel-level embeddings.
Thus, we use a pixel-text contrastive loss [36, 37], to force
the FPN to structure the resulting visual features in such a
way that pixels referred by the query are precisely localiz-
able (see Fig. 2).

Formally:

Li
con =

{
− log σ(Y i

pred) i ∈ P,

− log(1 − σ(Y i
pred)), i ∈ N ,

(7)

Lcon = 1
|P ∪ N |

∑
i∈P∪N

Li
con, (8)

where P and N denote the class of “1” and “0” in the
ground truth, |P ∪ N | is the cardinality, σ is the sigmoid
function.

4. Experiments

4.1. Datasets

Following [13], we evaluate AffordanceCLIP on AGD20K.
To assess CLIP’s zero-shot performance in affordance
grounding, we strictly avoid using any form of supervision
(fully or weakly) derived from this dataset. While CLIP en-
coders are kept frozen, the Feature Pyramid Network (FPN)
requires training to bridge CLIP’s image-level reasoning to
pixel-level predictions. For this reason, we train the FPN
exclusively on the RefCOCO/+/g dataset [22, 25, 40], a
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State-of-the-Art from Relevant Tasks
Test A (Seen) Test B (Unseen)

KLD↓ SIM↑ NSS↑ KLD↓ SIM↑ NSS↑
Fully Supervised Affordance Grounding

AffordanceLLM [30] - - - 1.463 0.377 1.070

Weakly Supervised Object Localization*

EIL [21] 1.931 0.285 0.522 2.167 0.227 0.330
SPA [33] 5.528 0.221 0.357 7.425 0.169 0.262
TS-CAM [7] 1.842 0.260 0.336 2.104 0.201 0.151

Weakly Supervised Affordance Grounding

Hotspots [26] 1.773 0.278 0.615 1.994 0.237 0.577
Cross-view-AG [18] 1.538 0.334 0.927 1.787 0.285 0.829
Cross-view-AG+ [19] 1.489 0.342 0.981 1.765 0.279 0.882
Locate [13] 1.226 0.401 1.177 1.405 0.372 1.157

Zero-shot Affordance Grounding

AffordanceCLIP 1.628 0.335 0.791 1.812 0.301 0.760

Table 1. Comparison to state-of-the-arts methods on AGD20K dataset. Following LOCATE [13], we include state-of-the-art methods from
a relevant task - weakly supervised object localization. Results of * are taken from [18]. (↑/↓ means higher/lower is better).

popular benchmark for referring image segmentation. Ref-
COCO/+/g focuses on segmenting objects, described in nat-
ural language, rather than affordances. Note that the pro-
vided GT are binary masks, whereas in the downstream task
the objective is to obtain continuous activation maps high-
lighting affordance regions.

AGD20K dataset [18] provides a collection of 20,061
images captured from a third-person perspective (exocen-
tric) and 3,755 images from a first-person perspective (ego-
centric). These images are annotated with labels for 36 dif-
ferent affordances, which represent the potential objects in-
teractions. The AGD20K dataset is designed to evaluate
model performance under two settings: Seen and Unseen.
In the Seen setting, the categories of objects in the training
and test sets are identical. Conversely, the Unseen setting
contains novel object categories during testing. Notably,
this distinction only applies to methods from the weakly or
fully supervised category. In our work, we do not use the
any supervision from the affordance dataset and therefore,
both splits represent unseen object categories for our model.
To reflect this, we use a revised nomenclature: Test A cor-
responds to the original Seen setting (1675 images), while
Test B corresponds to the original Unseen setting (540 im-
ages).

RefCOCO, RefCOCO+, and RefCOCOg [22, 25, 40]
datasets are widely used benchmarks for evaluating object
reference understanding in images. RefCOCO comprises
142,209 short (3.6 words on average) textual descriptions
for 50,000 objects in 19,994 images. RefCOCO+ intro-
duces a greater challenge with 141,564 descriptions focused

purely on appearance-based referencing, deliberately ex-
cluding location words. RefCOCOg expands the scope with
104,560 longer (8.4 words average) and more complex re-
ferring expressions, derived using crowdsourcing through
Amazon Mechanical Turk. These expressions reference
54,822 objects across 26,711 images.

4.2. Evaluation metrics

Following [13, 18, 19, 30], we evaluate our model in terms
of Kullback-Leibler Divergence, Similarity and Normalized
Scanpath Saliency.

Kullback-Leibler Divergence (KLD) metric quantifies
the discrepancy between the predicted affordance distribu-
tion (M ) and the ground truth distribution (M ′).

KLD (M, M ′) =
∑

i

M ′
i log

(
ϵ + M ′

i

ϵ + Mi

)
, (9)

Similiary (SIM) measures the intersection between the
predicted affordance map (M ) and the ground truth (M ′).

SIM (M, M ′) =
∑

i

min (Mi, M ′
i) , (10)

where
∑

i Mi =
∑

i M ′
i = 1.

Normalized Scanpath Saliency (NSS) measures the cor-
respondence between the prediction map (M ) and the
ground truth (M ′).
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Methods Params (M)

EIL [21] 42.41
SPA [33] 69.28
TS-CAM [7] 85.86

Hotspots [26] 132.64
Cross-view-AG [18] 120.03
Cross-view-AG+ [19] 82.27
Locate [13] 6.50
AffordanceCLIP 2.71

Table 2. Comparison of learnable parameters.

NSS (M, M ′) = 1
N

∑
i

M̂ × M ′
i , (11)

where N =
∑

i M ′
i , M̂ = M−µ(M)

σ(M) . µ (M) and σ (M) are
the mean and standard deviation, respectively.

4.3. Implementation Details

We initialize the text and image encoder with CLIP, adopt-
ing ResNet-101 as visual encoder. The FPN is trained for
1 epoch with a batch size of 32 on a combination of Ref-
COCO, RefCOCO and RefCOCO+ images. Input images
are resized to 416 × 416, following [36, 37]. We use Adam
optimizer with a learning rate of λ = 0.0001.

5. Results
5.1. Comparison with State-of-the-art

In order to provide a comprehensive benchmark, we con-
sider state-of-the-art methods on the affordance grounding
task under varying supervision levels: fully supervised and
weakly supervised. Additionally, following LOCATE [13],
we include results from state-of-the-art methods from the
related task of weakly supervised object localization. Re-
sults are presented in Tab. 1.

Our results showcase the strong generalization capabil-
ities of AffordanceCLIP on the affordance grounding task.
This suggests that even though CLIP itself was not explic-
itly trained for this task, it has implicitly captured rele-
vant visual features and their relationships to concepts, in-
cluding actions and interactions. Remarkably, Affordance-
CLIP outperforms Weakly Supervised Object Localization
approaches, on both the test splits, and is competitive with
the Affordance Grounding methods that leverage weakly
supervised data. Furthermore, Tab. 2 emphasizes the effi-
ciency of our model. By training only a lightweight Feature
Pyramid Network on top of CLIP, we significantly reduce
the number of trainable parameters compared to competing
approaches. Notably, the FPN, with only 2.71 M parame-
ters, effectively bridges the gap between CLIP’s global im-

age understanding and the pixel-level precision required for
affordance grounding.

Method
Seen Unseen

KLD↓ SIM↑ NSS↑ KLD↓ SIM↑ NSS↑
{F O

1 } 1.917 0.322 0.665 2.171 0.278 0.586
{F O

1 , F O
2 } 1.892 0.329 0.726 2.038 0.297 0.696

{F O
1 , F O

2 , F O
3 } 1.628 0.335 0.791 1.812 0.301 0.760

Table 3. Contribution of different levels of spatial detail from
CLIP’s intermediate ResNet-101 features.

5.2. Ablation study

To analyze the contribution of different levels of spatial de-
tail from CLIP’s intermediate ResNet-101 [10] features, we
conducted an ablation study. Tab. 3 summarizes the results,
where we progressively integrate higher resolution feature
maps into the FPN. Results demonstrate a consistent perfor-
mance improvement as we integrate additional, more spa-
tially detailed features. This suggests that each feature map
provides valuable complementary information, enhancing
the model’s ability to perform accurate localization of af-
fordance regions. This experimental evidence confirms the
value of latent knowledge encoded within CLIP’s interme-
diate representations.

5.3. Qualitative results

In Fig. 3, we present qualitative results that highlight the
remarkable capabilities of AffordanceCLIP. These results
demonstrate the model’s capabilities in two key areas. First,
it accurately localizes the target object within the image,
successfully differentiating it from other visually similar or
contextually related objects. Second, AffordanceCLIP pre-
cisely identifies the specific region within the object where
the queried affordance can be performed. Consider the
query type on: AffordanceCLIP is first of all able to dis-
cern between multiple objects in the image (the mouse, the
laptop, the notebook) to identify the object associated with
the action; then, it disambiguates within the regions of the
object (the display, the keyboard, the touchpad) to identify
the part with which we perform the action.

5.4. Open-Vocabulary capabilities

In Fig. 4 we qualitatively demonstrate the open-vocabulary
capabilities of AffordanceCLIP, by testing our model with
new actions outside those present in the AGD20K dataset.
Results show that our adaptation of CLIP to dense predic-
tions has not compromised its knowledge of open-world
concepts. For example, it can be queried with lock or
draw on without requiring additional human-object inter-
action images or model finetuning for these actions. Due
to its pre-training on complex scenes, CLIP demonstrates
robust performance on in-the-wild images from the Internet
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Figure 4. Open Vocabulary capabilities. Top: AffordanceCLIP is queried with actions outside the 36 of AGD20K dataset. Bottom:
AffordanceCLIP is tested in the wild, on a challenging image from everyday settings.

featuring challenging, everyday settings. For example, in
Fig. 4 (bottom), AffordanceCLIP successfully interprets a
complex bedroom scene containing diverse objects and an
unusual configuration (a bicycle near the bed). Affordance-
CLIP is able to identify the bed when queried with sleep on,
but also the bike if prompted with ride on.

6. Limitations
Despite AffordanceCLIP’s impressive zero-shot affordance
grounding abilities, it does have limitations. Fig. 5 high-
lights some interesting scenarios where it fails. In one case,
when asked to identify a region to write on, the model fo-
cuses on the pencil tip rather than the part of the pencil we
grasp with our hand. This suggests that CLIP has strongly
associated the concept of writing with the tool used for the
action, rather than the part of the object directly manipu-
lated. Another interesting failure occurs when prompted
with ride. AffordanceCLIP correctly locates the bike but
excludes the bike seat. This weaker association between the
seat and the concept of riding may be due to the fact that in
many images used to train CLIP, the seat is often occluded
by the rider.

7. Conclusions and future works
In this work, we explored an alternative approach to af-
fordance grounding. We move away from traditional
weakly-supervised learning methods and instead leverage
the implicit knowledge within visual language models (like
CLIP) to identify object activation regions based on action
prompts. We believe that our work paves the way for future
research towards open-vocabulary affordance grounding.
These promising results highlight the potential of explor-
ing more advanced Vision-Language models, like LLaVA
[15], Flamingo [1] and GPT-4V [38]. In particular, these

Image Prediction GT
write

ride

Fa
ilu

re
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as
es

Figure 5. Examples of failure cases.

models are able to answer questions which require a deeper
understanding of objects and their relationship to abstract
concepts. This level of reasoning is essential in affordance
grounding when dealing with complex images and queries,
which demand taking into account object properties beyond
mere geometric shape (e.g. material, inertial parameters) to
associate them to functionalities.
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