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Abstract: We consider a joint discount and replenishment problem in a discrete periodic review
fashion for the sale of a perishable product, characterized by limited deterministic shelf life,
replenishment lead times, and stochastic demand. Customers decide what to buy according to
a linear discrete choice model, balancing price and perceived quality, uniquely determined by
the residual shelf life. The decisions we consider are: How many new items to order, the age of
the items to be discounted, and how much discount to offer. In this context, we compare a set
of policies mixing the constant order policy and the base stock one with some easy discounting
policies, optimizing their parameters using a simulation-based optimization framework. To
evaluate their performance in terms of revenue and quantity of scraped items, we consider
four realistic instances for a grocery retailer characterized by products of different shelf life and
variance of demand. Experiments show that best results are achieved by a base stock policy that
discounts products of different ages based on a threshold: If the quantity of the inventory of a
given age is greater than a threshold it applies a discount, otherwise no discount is proposed.
In the presented configurations, this policy increases the average reward compared to policies

that do not discount.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Managing perishable items in a retail setting is a challeng-
ing but relevant problem, in terms of profitability on the
one hand, and food waste reduction on the other hand. The
problem is strongly affected by uncertainty, mainly due to
demand size and consumer attitude towards items of dif-
ferent characteristics: Customers can be more attracted by
new items, thus implementing a Last-In-First-Out (LIFO)
strategy, or they can be environmentally conscious and
prone to cooperate and behave according to a First-In-
First-Out (FIFO) scheme. Nevertheless, consumers may
freely choose their preferred items in a retail setting, and
inventory issuing cannot be tightly controlled. To encour-
age purchases of non-fresh items and reduce waste while
improving profits, discounts might be introduced on older
items.

Existing literature and practical experiences suggest that,
in addition to influencing purchasing decisions, pricing
serves as an effective strategy for enhancing the profitabil-
ity of perishable products by affecting the demand (Sen,
2013; van Donselaar et al., 2016). Therefore, the retailer
has not only to choose an ordering policy based on the
system state but also to decide if and when a discount

should be offered. In this paper, we explore these decisions
in a periodic review setting. In particular, following the
classification for pricing problem of perishable items in
Elmaghraby and Keskinocak (2003), we are dealing with
deterministic shelf life, with replenishment, considering
independent demand over time and delivery lead time. My-
opic customers are considered, i.e., customers purchasing
the product if their utility is positive, without considering
future prices (conversely, strategic customers take into
account the future path of prices when making purchasing
decisions). To model customers’ utility, toward different
product ages, we use a linear discrete choice model, which
allows us to model vertical differentiation (Pan and Hon-
hon, 2011). These characteristics define our problem as
belonging to the Replenishment - Independent demand -
Myopic class. Finally, we do not consider menu costs, i.e.,
there are no costs associated with the discount application
(neither in terms of updating computer systems nor in
terms of re-tagging items, printing new menus, etc.).

The presented approach allows for an analysis of the char-
acteristics of a set of ordering and discounting rules, pro-
vides useful insight, and paves the way for more advanced
techniques. The contributions of this paper are: (i) test
different policies of join replenishment and discounting in
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a realistic simulation environment, (i) quantify the value
of using a discounting policy.

The paper is organized as follows: Section 2 provides the
necessary literature background. Section 3 presents the
mathematical model of the problem. Section 4 describes
the set of parametric policies used in the computational
experiments of Section 5. Finally, Section 6 concludes the
paper and outlines future research directions.

2. LITERATURE REVIEW

The inventory management literature typically assumes
that the price of a product is a static single price, exoge-
nous to the inventory management problem. In contrast,
the literature about dynamic pricing focuses solely on price
variation. This paper has a vision in between, where the
initial price is fixed but decisions to lower it when aging
occurs to increase revenue and reduce waste are possible.

Being discounting a sub-problem of pricing, all the litera-
ture related to policies that jointly manage replenishment
and dynamic pricing can be of potential interest. Never-
theless, since the literature about these policies is broad,
we focus on reviewing papers with closer settings to ours,
i.e,, Chen and Simchi-Levi (2004), Chew et al. (2014),
Sainathan (2013), and Chua et al. (2017).

Chen and Simchi-Levi (2004) deal with pricing and inven-
tory control decisions for a single non-perishable product,
where demand distribution depends on the product price,
all shortages are backorders, and both fixed and variable
ordering costs are considered. They show that in this
setting it is optimal to replenish the on-hand inventory up
to a certain level whenever it falls below a certain threshold
while determining the price according to the inventory
position at the beginning of each period.

Chew et al. (2014) propose a technique based on dynamic
programming to compute the optimal order quantity and
prices for a perishable product with a shelf life of two
periods. Their computational results show that the total
profit significantly increases when demand transfers be-
tween products of different ages are considered.

In the same setting, Sainathan (2013) shows that demand
uncertainty, together with discounts, can make the sale
of old products profitable. Moreover, they find that the
benefit obtained from selling old items with constant
decisions is much higher than the benefit from allowing
all the decisions to vary.

Finally, Chua et al. (2017) measure the impact of con-
sumer behavior and shelf life on discount decisions for old
items, determining the discount amount, and establishing
a replenishment policy. They find the optimal policy for
an item of shelf life equal to two periods and consider a
finite time horizon with no lead time. In particular, they
prove that with given discounts, the optimal discounting
policy is a threshold policy, and the optimal order quantity
decreases according to the inventory of old units with a
significant decrease at the threshold. They also show that,
if a discount is considered, its value first increases and then
decreases (eventually to zero) in the inventory of old units.
Their results are proved up to instances with two periods

while for bigger instances the course of dimensionality
prevents finding optimal solutions.

In our study, we start to extend their work by considering
greater shelf life, lead times, and an infinite time horizon.
We use a discrete choice model for modeling customers’
choices. Due to such realistic, but complex, features, we
rely on heuristic policies.

3. PROBLEM STATEMENT

We consider a retailer who sells a single perishable product
and makes daily decisions on the quantity of fresh items
to order and possible discounts to apply.

The product is characterized by: Purchasing cost c, selling
price p, a fixed discrete delivery lead time LT, and a
deterministic discrete shelf life 7 equal to SL at delivery
time. Items with a residual shelf life 7 have a perceived
quality g, and when 7 = 0, they are scrapped. Quality is
increasing in 7, i.e., ¢r4+1 > qr-

We divide the simulation into discrete time steps ¢, where
each period corresponds to one day. At the beginning
of day t, prices for old items are updated according to
discounts (we call p, the price for items with residual
shelf life 7). The number of items to be delivered in
1 € {0,...,LT — 1} days is called O}, and the on-hand
inventory of items with a residual life of 7 € {1,...,SL}
days at time ¢ before sales is called I7.

When the shop opens, V; heterogeneous customers enter
the store. For the sake of simplicity, we assume N; to be
independent and identically distributed random variables.
Each customer is characterized by a utility function that
differently weights quality and price. We model their
choice using a linear discrete choice model (Gioia et al.,
2022, 2023). Therefore, the utility of customer n is:

Unr = enQ‘r — Prs (1)
where 6,, is a stochastic positive variable representing the
consumer’s valuation of the price-quality ratio of the item
with residual shelf life 7.

If at least a combination of quality and price generates
positive utility, the customer picks one unit of the item
that maximizes it. In formula, customer n picks the item
of residual shelf life 7 if

T € argmax [0,qr — pr] - (2)

717 >0

Lost sales costs are not considered due to the complexity of
tracking them in brick-and-mortar grocery retail settings.

If no discount is applied and items of all ages are available,
customers prefer new items to older ones. This is due to
a vertical differentiation entailed by the linear discrete
choice model between items of different ages (Gioia et al.,
2022). The effect of discounts for a product with fixed price
p=6,SL =2 g =20, ¢ =10, and 6,, ~ beta(2,3) is
represented in Fig. 1. Since SL = 2, we can either have
new products (7 = 2) or old item (7 = 1). The red dash-
dotted (green continuous) lines represent the utility in Eq.
(1) for different types of customers of the new (old) item.
Discounting old items leads to a vertical shift of the green
continuous line (the green dashed line in the plot) which
has two effects. On the one hand, it opens a new share
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Fig. 1. Graphical representation of the effect of the dis-
count on old items.

of the market, providing a positive utility for customers
who are not willing to pay the price for fresh items
(this is represented as the green area). In other words,
discounts are useful to exploit the share of customers not
originally interested in the full-price product. On the other
hand, discounting creates a new price-quality combination
that, for some customers, can be better than the new
and more remunerative product (the yellow area), leading
to the cannibalization of part of the profit coming from
new discounted items [this is an example of age-based
substitution (Gioia et al., 2023)].

At the end of the day, the retailer examines whether any
product has expired (scrapping it accordingly), updates
the inventory residual shelf-lives, and decides

e the quantity of product to order z; € X C N
e the discount 67 € A to apply to items with residual
life r=1,...,SL.

Both sets X and A are discrete sets, where X contains
the possible orders [retailers buy batches of products
(Broekmeulen and van Donselaar, 2019)], and A contains
the possible discounts.

The dynamics of the system are represented in Figure 2.

We can model the system as a sequential optimization
problem (Powell, 2022), in which the state of the sys-
tem is [OFT71, ... 09, I?Y71 ... I}]. Then, the decision
maker decides the number of items to order (z;), and the
discounts to apply (67). Once these decisions are fixed,
the order OY arrives at the shop generating the new post
decision state [z, OFT 1, ..., 00 = 1?4, I°4=1 .. I}] and
customers enter the shop. By calling S the number of sold
items with residual shelf life 7, the retailer gets a reward

SL
Ry =Y p(1—67)S — ca. (3)
T=1

Then, the inventory becomes

Iot=1 -5 VvVr=>1, (4)
and orders shift accordingly
O 1=0 Vie{l,... LT} (5)
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In contrast with several studies, we consider an infinite
time horizon problem and our goal is to maximize the
average profit. !

4. SOLUTION APPROACHES

All the proposed solution approaches fall under the um-
brella of parametric policy function approximation, i.e.,
parametric functions that map a state to an action (Powell,
2022). While many replenishment policies are well known
for perishable (Haijema and Minner, 2016), there are fewer
discounting policies. The most used ones in practice are:

e Fixed percentage discount applied to all items with
shelf life less than SL (Chen et al., 2021).

e Periodic clearance sales which are used to sell items
quickly and make room for new ones (Chen et al.,
2021).

e Tiered discounting which implements different dis-
count levels based on the age of the product (Chen
et al., 2021).

e Last day discount which applies the discount the
last day before expiration (Broekmeulen and van
Donselaar, 2019).

Within the wider context of pricing policies, an important
policy is the base stock list price policy (BSLP) (Zabel,
1970). This policy is characterized by a base stock level
and a list of prices. If the inventory level is below the base
stock level, it is increased to the base stock level and the
standard price is charged. Otherwise, nothing is ordered,
and a price discount is offered. This policy is shown to
be optimal under certain conditions in a finite horizon
in Zabel (1970). We generalize the discounting policies
and the BSLP and we join them with the replenishment
policies by defining the following policies:

e COPs: Orders a constant quantity and discounts all
the items older than 79 by an amount equal to 0.
Therefore, this policy requires 3 parameters to be set.

e COPtr: Orders a constant quantity and applies a
discount 4, to products with residual shelf life 7 if I
is greater than a threshold .. Therefore, this policy
requires 14+2(SL—1) parameters to be set (we assume
no discount on fresh items).

e BSs: Orders

LT—1 SL—1

xy = max[z — Z ol — Z I7,0],
=0 =1

where z is the parameter of the base stock level.
Moreover, it applies discount as in COPs, thus this
policy requires 3 parameters to be set.

e BStr: Orders according to (6) and it discounts as
COPtr, thus requiring 1 + 2(SL — 1) parameters to
be set.

(6)

To assess the value of discounting, we also consider the
base stock policy and the constant order policy with no
discount. We call them BS, and COP, respectively.

I Note that there is no fixed order cost since we assume that orders
are made so often that the logistic provider will deliver products each
day.
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Fig. 2. Dynamics of the system

5. COMPUTATIONAL EXPERIMENTS

To test the policies in a realistic setting, parameters are
based on data for perishables from empirical studies in
grocery stores. In particular, according to van Donselaar
et al. (2006); Broekmeulen and van Donselaar (2019), we
consider orders in batches of 6 items, LT = 1, and two
possible values for SL, of 5 and 7 time periods. Instead,
following ORiordan (1993), we set the margin of the

product, computed by using the newsvendor ratio 2 ;C,

to ~30%. Therefore, we set the price of the new product
to be 6 and its cost to be 4. Finally, we define the set of
possible discounts A = {0%, 15%, 25%, 50%}.

The number of customers entering the shop is distributed
according to a negative binomial distribution, widely
used in market applications Ehrenberg (1959), and inter-
pretable as a Poisson distribution with parameters dis-
tributed according to gamma or, as a compound Poisson
process with geometrically distributed purchases quantity
Agrawal and Smith (2015). Each customer entering the
shop is characterized by a 6,, in Eq.(1) distributed accord-
ing to a beta(2,3) (Gioia et al., 2023). We set the mean
number of customers entering the shop to p = 30 and
the standard deviation ¢ using the coefficient of variation
(v = %) Since the literature provides cv for the sales,
we transform them to obtain u, o of the consumers. In
particular, in Eq. (1) of Broekmeulen and van Donselaar
(2019) the authors suggest that the mean pu,, and standard
deviation o, of Weekly sales are linked by

=0. 7'u0 s (7)
Adapting Eq. (7) to a daily setting and assuming inde-
pendent demand, we get o4 = 1.18u%7". The mean of
the demand is pg = E[ZnN;1 Y,], where Y, is a Bernoulli
random variable equal to 1 if customer n buys an item. By
assuming that there are only new items, Eq. (1) implies
that

pSL]

FlYa =1 asL

=P, >

Therefore, it holds that

Ny Ny
E} Y, =E lE[Z Yo Vi)
n=1 n=1

where Fieta(2,3) is the cumulative distribution of the
beta(2, 3) random variable. With a similar calculation, we
get the correspondent standard deviation

p
:,LL< Fbetd(23)< SL))v
astL

clients arriving

=i

Inverting these two equations, we get cv ~ 0.3 (i.e., 0 =9
) on the consumers’ distribution. Furthermore, since high
daily demands are correlated to higher correspondent daily
standard deviations (Broekmeulen and van Donselaar,
2019) and such empirical estimations do not consider
discounted items, we also test the policies in a more
difficult setting, using cv = 0.7 (i.e., o = 21).

Fbeta 2 3)) (02 + MQFbeta(2,3))~

The quality of the product at the different ages is set to
30, 29, 29.5, 28, 26, 24, 22 for the case with SL = 7, and
30, 29, 28, 26, 24 for the case with SL = 5.

Since the stochastic problem is ergodic, the estimate of
the expected value can be calculated by simulation over a
sufficiently long horizon (set to 70000 time periods in the
experiments). To provide an estimation with reasonable
accuracy, we apply two precautions. First, we compute the
average using the observations after the first 1000. In such
a way, we remove the effect of the initial transient where
the inventory is empty because of the lead time. Second,
we use a 100-period sliding window to decide whether the
estimate is sufficiently accurate. If the difference between
the maximum and minimum value of the estimated mean
in that window is less than 0.5%, we stop the simulation.
Tests have been implemented in Python generalizing the
code available in Gioia et al. (2023).

To compute the parameters of the policies we use
simulation-based optimization techniques, broadly used in
practical inventory control problems (Deng et al., 2023).
In particular, the parameters of COP, BS, COPs, and BSs are
optimized using an enumerative search of the parameter
space since, due to the characteristics of the problem, they
can be computed in a reasonable amount of time. This
enables us to get more accurate results without heuristic
optimization algorithm uncertainties. Instead, the param-
eters of COPtr and BStr are optimized using the bayes opt
library (Nogueira, 2014). We use 50 initial points for pure
exploration and 100 steps of Bayesian optimization. We
do not modify the standard setting of the library. The
selection of the heuristic optimization method for policies
with a large number of parameters and the accuracy of
reward estimates are hyperparameters of the proposed
configurations.

For all the policies, we select a subset of possible parameter
values following the bounds of Haijema and Minner (2016).
In particular, we search the base stock level by considering
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the values in [0, (SL + LT)F;&'(”;C)], where F! is the
inverse of the cumulative distribution function of the
number of customer entering the shop (i.e., the negative
binomial). Instead, we search for the constant order in the
interval [0, z], where z is the base stock level (we use the
base stock level of BSs for COPs and the one of BStr for
COPtr).

We report the results for the different settings in Table
1. In each row, we report the results of a technique and
we add * if parameter optimization has been done by
enumeration.

The average reward decreases as cv increases, regardless
of the policy. This pattern holds for both SL = 5 and
for SL = 7. This is due to the difficulty in handling
demand variance which leads all the methods to reduce the
quantity ordered also reducing the probability of having a
big quantity of old items. Moreover, when there is a high
variance, lower orders reduce the risk of having many fresh
products that jeopardize the sales of older ones.

In contrast to the cv effect, the change in shelf life
increases the profit for all the settings: Having more
periods available augments the flexibility in selling items.
This effect is bigger for cv = 0.7 than for cv = 0.3, where
the average profit increase reaches an average of 3.5%
against the 1.9% when cv = 0.3. This difference is due
to the longer expiration time that enables the agents to
better deal with the variance of the number of customers.

The change in SL has different effects also on the quantity
of scrapped items: For COP, COPs, and COPtr the quantity
of scrapped items decreases as the shelf life increases, while
it remains almost constant for the base stock policies.

By comparing constant order policies against base stock
ones, we notice that the latter achieves the best results.
This is due to the possibility of ordering less when both on-
order and inventory are high. This lead also to a reduced
quantity of scrapped items. More in detail, the differences
in average reward between these two types of policies
decrease as cv increases while it remains almost the same
for the two shelf-lives.

For cv = 0.3 and SL = 5,7, COPs does not apply any
discounts, while COPtr applies discounts increasing the
average profit of 8.6%. This means that sometimes, ap-
plying a constant discount independently of the inventory
quantity is not beneficial. Instead, for cv = 0.7, COPs
applies discounts as well, improving the performance of
the COP policy by 2.7% and by 3.6% for SL = 5 and
SL = 7, respectively. Concerning base stock policies BSs
performs better than BS by 2.4%, while BStr performs
better than BS by 8.8%, on average. The finding that
threshold policies perform better than the other ones is an
empirical verification that confirms the results obtained in
Chua et al. (2017).

Joint effects of replenishment and discounting are very
different for the two types of policies: The threshold
discounting policy achieves better results if mixed with
base stock policies than the constant order ones.

Concerning the policies implemented, we also notice that
the general discounting features are independent of SL and
cv: They all discount the items in two or three periods

from the end of the shelf life. This is because in the initial
periods, it is more likely to sell the items since on the one
hand, their quality is not very low, on the other hand, the
probability of ending fresher items is bigger. This general
observation is deeply influenced by quality evolution: If
the quality remains almost the same there is little value
in making the discount while if the quality reduces a lot,
shrinking the market for the product, applying discounts
even in earlier stages is beneficial.

Concerning orders, all the policies order quantities of the
product below the average number of arrivals due to the
low newsvendor ratio and the presence of customers with
negative utility. Moreover, if there are no fresh products,
many customers will buy the old products without the
need for discounting.

Finally, we also mention that the last-day discount policy
and the fixed percentage discount one of Section 4 are
special cases of COPs and BSs.

6. CONCLUSIONS

In this paper, we focus on comparing different policies
in a setting characterized by a single perishable product
with deterministic shelf life, independent demand over
time, delivery lead time, and myopic customers with
utilities modeled according to a linear discrete choice
model. Similar to Chew et al. (2014), we show that
deciding on replenishment and discounting is beneficial.
Moreover, we found that in the proposed realistic setting,
the best results are achieved by a policy that manages the
inventory by using a base stock policy and that discounts
the products of different ages based on a threshold: If the
quantity of the inventory of a given age is greater than
a threshold it applies a discount, otherwise no discount
is proposed. This policy increases the average reward
compared to policies that do not apply any discount.

Future work will tackle the problem in many other ways,
such as (%) a static robust approach, where we assume that
unknown parameters are contained within an uncertainty
set, and we select a policy maximizing long-term average
profit in the worst-case sense, (ii) a model-based learning
approach, in which we assume a model structure and we
apply a learning strategy to estimate the parameters, pos-
sibly starting from prior knowledge, following a Bayesian
inventory management strategy, and (i) a model-free
learning approach, where we use a reinforcement learn-
ing strategy and try to improve a decision policy online.
These three strategies need not be mutually exclusive. For
instance, a static robust approach might provide an initial
policy for online learning.
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