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Abstract: The aim of this paper is the development of a 7-DOF (Degrees Of Freedom) mathematical
model of an IndyCar and the implementation of an Artificial Neural Network in order to predict the
optimal setup parameters of the car, reducing time and costs for race teams. The mathematical model
is created by using MATLAB™ and Simulink software starting from a telemetry acquisition at the
Houston circuit and is based on Vertical Vehicle Dynamic equations. The optimal setup parameters
have been predicted through an Artificial Neural Network (ANN) by using the NFTOOL Toolbox
of MATLAB™ software. ANN is implemented in a Quarter Car model, firstly, in order to train the
network and predict the parameters able to reduce tire deflection and suspension travel in the time
domain and the resonance peaks amplitude in the frequency domain. Then, it is implemented in the
7-DOF model in order to predict the best setup parameters able to reduce body movements and the
weight transfers of the car.

Keywords: Artificial Neural Network; setup identification; 7-DOF vehicle model; Matlab/Simulink

1. Introduction

The evaluation of the best qualifying setup of a race car is one of the hardest and
important tasks of a race team. In this regard, the mathematical modeling of a vehicle
suspension system can be very helpful for engineers to understand the behavior of the car
during a lap. The simplest configuration is the Quarter Car model, which is commonly
used in the literature [1], to study, in first approximation, the response of a suspension
system to a road input. Despite the fact that the model is easily understood and of simple
application, it presents important limitations:

It only takes into consideration the heave motion of the system without studying the
body motion of the roll, pitch and yaw;

e  The system is assumed to be linear but in reality, considering for example the shock
absorbers or the bump stops characteristics, is strongly nonlinear;

¢ It does not take into consideration the geometrical effect of having four wheels.

For this reason, many authors have developed more complex models in order to
evaluate the complex suspension system movement [2—4].

In Motorsport, the constant evolution of suspension systems and tire technology
makes it more complicated to evaluate the best setup parameters for a certain track. More-
over, in order to contain time and costs, the FIA limits days available for the race teams for
on-track acquisition. Hence, in adding to mathematical models, during test periods, race
teams use the Post Shaker Rig in order to find the best suspension setup. Basically, a Post
Shaker Rig is a system able to replicate the telemetry acquisition data through actuator
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displacement. The simplest configuration is the Four Post Shaker Rig, consisting of four
actuators placed under each wheel and able to reproduce the road profile of the track. In
the past, the race teams used the Four Post Shaker Rig for indoor testing [5]. The Seven
Post Shaker Rig has, in addition, three aeroloader actuators, two of these placed on the rear
side of the car and the third placed on the front side of the car. Therefore, the Seven Post is
also able to reproduce the body movements: roll, pitch and heave [6-8].

Moreover, it is possible to find the Eight Post Shaker Rig, which presents four aeroload-
ers [9]. However, as a matter of fact, the use of the Post Shaker Rig involves time and
costs related to the transport of the car and the simulation of the track. For this reason, the
aim of this paper is to use artificial intelligence to predict the optimal setup parameters
of the car, reducing time and costs for the race teams. The starting point of the work is
the mathematical modeling of the vehicle. Two models are used for characterizing vehicle
behavior: the Quarter Car model and the 7-DOF model. A Quarter Car model, considering
its simplicity, was used to test and train the network choosing an optimal population
size [10]. Then, the 7-DOF model was used for studying the behavior of an IndyCar during
a qualifying lap at the Houston circuit. Finally, the neural network is implemented in the
model in order to predict the best setup parameters able to reduce roll angle, pitch angle,
sprung mass heave and total weight transfer, improving grip [11] and performance.

2. Theoretical Background

In this section, the theoretical key points are analyzed, focusing in particular on:

*  What is meant by setup parameters, and which ones are available for this study;

*  The mathematical relation between the setup parameters and the information we can
extract to characterize the behavior of a vehicle during a lap;

®  The effects that change these parameters have on vehicle performance.

2.1. Setup Parameters

Basically, setting a vehicle consists of changing all the parameters that affect the vehicle
behavior during a lap. For example, lowering the Center Of Gravity Height (COG) reduces
load transfer and increases grip. Changing roll centers has an effect on overall roll and
balance. The anti-roll bar stiffness adjustment has an effect on the understeer and oversteer
behavior of the car. Damper adjustment has an effect on vibration and transient handling
of a vehicle. In this work, setup parameters were chosen according to the available vehicle
parameters, as shown in Table 1.

Table 1. IndyCar parameters.

Variable Value
Wheelbase ! 3.084 m
Front wheelbase a7 1.8m
Rear wheelbase a; 1.248 m
Front track width t; 1.7m
Rear track width ¢, 1.58 m
Center of gravity height & 0.30 m
Pitch center height b 0.15m
Vehicle mass m 673.44 kg
Front tire mass m,,, 29.4 kg
Rear tire mass 1, 33.7 kg
x-axis inertia Jy 120 kgm?
y-axis inertia J, 854.34 kgm?
Front tire stiffness py;, 294,737 N/m

Rear tire stiffness pyr 276,174 N/m
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Table 1. Cont.

Variable Value
Tire damping cpun 2000 Ns/m
Front dynamic tire radius Ry 0.66 m
Rear dynamic tire radius R, 0.7m
Front anti-roll bar ground stiffness ksrps 24,525 N/m
Rear anti-roll bar ground stiffness k sz, 26,487 N/m
Front roll stiffness kg ¢ 3297.5 Nm/deg
Rear roll stiffness kg, 2270.5 Nm/deg
Front damper motion ratio MR ¢ 0.994
Rear damper motion ratio MRy, 1.298
Front spring motion ratio MRy 0.8
Rear spring motion ratio MR, 0.9
Front anti-roll bar motion ratio MR 4rpf 1.70
Rear anti-roll bar motion ratio MR 4gp;, 1.70

Moreover, roll center variation, spring and damper characteristics have been provided,
as shown in Figures 1-6

Front roll center variation charcteristic
T T T

Front roll center [m]

L 1 1 L L L 1
-0.02 0.m 0 0.01 0.02 0.03 0.04 0.05 0.06

Vertical wheel travel [m]

-0.08

Figure 1. Front roll center variation characteristic.
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Rear roll center variation charcteristic

Rear roll center [m]
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Figure 2. Rear roll center variation characteristic.
Front coil spring charcteristic
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Figure 3. Front coil spring characteristic.
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Figure 4. Rear coil spring characteristic.

1000

800

600

200

Force [N]

-200

-800

-1000
0.

Figure 5. Front damper characteristic.
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Rear damper charcteristic
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Figure 6. Rear damper characteristic.

Among all available data, those representing the starting setup, called from now on
the baseline setup, have been chosen (Table 2).

Table 2. Parameters chosen for the baseline setup.

Variable Value

Center of gravity height h 0.30 m
Front roll stiffness k¢ 3297.5 Nm/deg
Rear roll stiffness kg, 2270.5 Nm/deg

In addition, roll center variation, damper and spring characteristics have been chosen
for the baseline setup. The choice of baseline setup parameters are due to the following
considerations:

e After the chassis is manufactured, its geometry cannot be changed. For this reason,
it is not possible to change the wheelbase, track width and all the other parameters
related to vehicle geometry;

*  Tires are imposed by the regulation; hence, it is not possible to change all the parame-
ters related to the tire, such as tire stiffness and damping;

* Motion Ratio (MR) is a characteristic provided by the manufacturer and cannot
be changed.

2.2. Quarter Car Model

The Quarter Car model represents the simplest mathematical model to study, in first
approximation, the suspension motion due to a road input. It consists of a sprung mass s,
a spring represented by a constant stiffness k, a damper represented by a constant damping
¢, an inverter represented by a constant inheritance b (this element is not always present), an
unsprung mass 11, and another constant stiffness p, which represents tire vertical stiffness.
In Figure 7, the Quarter Car model proposed by Guiggiani [1] and adopted in this work
is shown.
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Figure 7. Quarter Car model.

The equations of motion of the model are shown in (1) and (2):
msz = —b(z—§j) —c(z = §) —k(z—y) @
mpz = —b(jj —2) —c(y—2) —k(y—z) — p(y —h) )
2.3. 7-DOF Model

Available vehicle parameters have been used to build a 7-DOF mathematical model
based on vertical vehicle dynamic equations. As proposed by Guiggiani [1], parameters
are linked together through the equilibrium equations, which are a link between forces
or couples and acceleration, constitutive equations and congruence equations, which are
purely geometrical links between coordinates.

The equilibrium equations are:

msZs = Fi1 + Fio + P + ®3)

Jy6 = (Fa1 + Fxo)ay — (Fiz + Fi1)ay + m¥s(h — b) 4)

Jx§ = (Fi1 + Fx)t1/2 — (Fio + Fx2)t2 /2 + mys(h — qp) — kg1 — kg2 ©)
Myn11y11 + Fi1 = Ny (6)

Myn12yiz2 + Fi2 = Nz @)

Mym1Y21 + Fa1 = Nog ®)

Myn22Y32 + Fop = Nop )

The constitutive equations are:

Fi1 = —ki1(z11 —y11)/ MRs1 — c11(zi1 — yi1)/ MRg1 + ka1 ((z11 — y11) — (212 — ¥12)) / MRy (10)
Fio = —k12(z12 — y12) / MRg1 — c12(z12 — ¥i2) / MRy — ka1 (211 — y11) — (212 — ¥12) )/ MRyi1 (11)
Fo1 = —ko1(2z21 — y21)/ MRgy — c21(221 — Y21)/ MR o + kgppo (221 — y21) — (2220 — Y22)) / MR g2 (12)
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Fyp = —kap (200 — y22)/ MRsy — c22(220 — ¥22) / MRgp — koo ((z21 — y21) — (202 — ¥22)) / MRy (13)
N1 = —kp11(y11 — h11) — cpn1 (yin — h1) (14)
Nz = —kp12(y12 — I12) — cp12(viz — h12) (15)
Noy = —kpo1(ya1 — ho1) — cpo1(y21 — ha1) (16)
Nop = —kyo2 (Y22 — h22) — cpoa(yi2 — ha2) 17)
The congruence equations are:
z11 = zs —a10 +t1/2¢ (18)
Z1p = zs —a10 — t1/2¢ (19)
Zp1 = Zs + ap0 + t2/2(]§ (20)
20y = 25 + a0 — tp /2¢ (21)

In Figure 8 a schematic representation of a 7-DOF mathematical model is shown:

7/
// Z
/ X |
COG \is

unll

CplZ
hiz

Figure 8. 7-DOF mathematical model.

2.4. Grip Effect

The main function of the tires is to convert the vertical load F, into two planar forces
Fy and F,. The variation of these planar forces during a lap represents the Contact Patch
Load Variations (CPLV). Grip is influenced by the CPLV because every peak of load at the
contact patch brings subsequent unloading of the tire, which compromises both the average
load acting on the tire in time and the grip generation through the hysteresis mechanism
at the contact patch. Hence, the grip is related to the weight transfer and also to the body
movements: roll, pitch and heave. Figure 9 [11] summarizes all these concepts.
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GRIP
|
CPLV
Lateral
Effects
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Unsprung  Geometric Elastic Dampers Heave Pitch 9

Figure 9. The performance of the vehicle is related to the grip between road and tire. Improving the
grip means decreasing the CPLV, which depends on weight transfer and body movements of roll,
pitch and heave.

The unsprung weight transfer on the front and rear axle is given by (22) and (23):
Awuf = (Myn11 + muan)y.Srf/tl (22)
AW, = (mun21 + munZZ)y"srr/tZ (23)
The geometric weight transfer on the front and rear axle is given by (24) and (25):
AWy = mgpyjs(a1/1)q1/ta (24)
AWgr = msrjs(az/1)q2/ta (25)
The elastic weight transfer on the front and rear axle is given by (26) and (27):
AW,p = mssifs (kg1 /kg2)qp/ ta (26)
AW,y = Msrlfs (k¢1 /k¢2)Qb/t2 (27)
Moreover, the longitudinal weight transfer given by (28) is taken into consideration:
AWigng = ms¥sh/1 (28)
Hence, the total weight transfer is given by (29):

3. Related Work

The application of artificial intelligence to vehicle dynamics is, nowadays, a field under
development. The literature review shows that the main application of a neural network is
related to the prediction of the suspension response to an external input and identification
of the optimum suspension parameters. Guarneri et al. [12] demonstrated that a Neural
Network (NN) model can be effectively applied as a part of vehicle system model to
accurately predict elastic bushings and tire dynamics behavior. Guclu and Gulez [13]
investigated the time and frequency response of an 8-DOF nonlinear model due to road
disturbance. In this case, the NN model predicts seat vibrations with almost zero error
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between desired and achieved outputs. Safari et al. [14] implemented a deep neural
network algorithm on a 7-DOF model full car suspension system for the identification
of an Active Vehicle Suspension response. Nagarkar et al. [15] used an Artificial Neural
Network (ANN) to predict with high accuracy the optimal suspension parameters of a
Mcpherson strut suspension system. In this work, the authors modeled the Mcpherson
suspension with a Quarter Car model using a MATLAB/Simulink™ environment. The
suspension system has been optimized using a genetic algorithm for an objective function,
in order to improve ride comfort. Finally, two optimal values of stiffness and damping
were found that satisfied the objective functions. The results are then validated using an
experimental test rig. After the optimization, ANN is implemented in the model using the
NFTOOL Toolbox of MATLAB™, in order to predict the optimal suspension parameters.
Results show that simulation, experimental and predicted values are in strong correlation
and ANN is able to predict with high accuracy the optimum suspension parameters.

4. The Proposed Method

The mathematical modeling represents an important step for the understanding of a
vehicle’s behavior during a lap. Although the mathematical model represents an approxi-
mation of the real behavior of the car, it is possible to obtain important information about
vehicle performance. Moreover, through the equations set, it is possible to understand
which variables influence comfort and performance, etc. According to a literature review,
the authors developed increasingly complex models to better characterize the behavior
of a vehicle. Sun et al. [2] developed a 4-DOF vehicle model for studying the pitch and
bounce of the sprung mass and the bounce of the front and rear wheel response to a step
input. The work shows that the different values of the dynamic index, mass ratio, weight
distribution and flat ride tuning affect ride frequency and vibration isolation of the system.
DUMITRIU [3] developed a 3D car 7-DOF model in order to study wheel-road adherence
and passenger comfort, remarking that the usage of a different shock absorber influenced
both adherence and comfort. Setiawan et al. [4] developed a 14-DOF model, including yaw
motion and wheel spin. The model under examination consists of a ride and handling
model. The ride model is a 7-DOF used for studying the ride performance parameter. The
handling model is a 7-DOF model that takes into account longitudinal, lateral and yaw
motion of the vehicle body and the four wheel spin. Moreover, the authors investigated the
effect of slip and camber angle on the lateral force generated at the wheel. The model is then
validated using a Step Steer Test comparing the simulation result with the experimental
one. Among all developed models, in this study, the attention is focused on a Quarter Car
model and a 7-DOF model. At first, the response of the Quarter Car model to a road input
has been studied. In particular, from Equations (1) and (2), knowing road input, stiffness
coefficient and damping coefficient, it is possible to evaluate tire deflection (y — /1) and
suspension travel (z — y). Then, two optimal values of stiffness and damping coefficient
were chosen in order to improve the response of the model. The result was analyzed
both in time and frequency domains. Then, ANN was implemented in the model using
the NFTOOL Toolbox of MATLAB™ in order to predict the optimized values. Finally,
a comparison between optimized and predicted values was carried out. After the ANN
was tested and validated with the Quarter Car model, the same methodology was applied
to the 7-DOF model. In this case, the parameters being optimized are the baseline setup
parameters. The optimization or, in general, setup adjustment are carried out by a human
factor before the race, changing, for example, mass distribution and stiffening or softening
suspension elements. Then, the influence of changing parameters on body movements
(roll, pitch and sprung mass vertical travel) and load transfer were studied. This has
been undertaken because an improvement of these responses leads to an improvement in
vehicle performance [11]. In addition, the study was carried out both in time and frequency
domains. Then, ANN was implemented in the model in order to predict the optimized
setup parameters. In the end, a comparison between baseline, optimized and predicted
values was carried out.
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5. Empirical Research Methodology

The first step of the work was the creation of a 7-DOF model of an IndyCar. The
vehicle can be seen as a transfer function in which a set of input data produces a response of
the system, basically the 7-DOF. Input and output variables are related through equilibrium,
constitutive and congruence equations, as already mentioned in Section 2.3. Input data are

real telemetry acquisitions from the Houston circuit in Texas, which usually hosts the NTT
IndyCar Series (Figure 10).

“Fs.GrandPrix:
BUSton

Figure 10. Houston circuit in Texas, USA.

The available data are accelerations along three axis and damper travels, which
represent the model inputs (Figures 11 and 12).

From the equation sets, it is possible to evaluate the 7-DOF of the model, as shown in
Table 3.

Table 3. Output of the 7-DOF model.

Variable

Unit

Roll angle ¢ deg

Pitch angle 6 deg
m
m
m
m
m

Sprung mass vertical travel z,

Front left wheel/road contact point displacement /14
Front right wheel /road contact point displacement /11,
Rear left wheel/road contact point displacement /55
Rear right wheel/road contact point displacement hp,

In addition, from the previous considerations about vehicle performance, total weight
transfer was evaluated. The equation sets were solved using the Simulink™ environment
(Figure 13). The simulation time is equal to the acquired lap time at the Houston circuit,
and the time step is 0.001 s.
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Figure 13. Simulink model of an IndyCar. Red blocks are the outputs of the model, and the green
block is the total weight transfer.

An Artificial Neural Network was implemented in the mathematical model using
the NFTOOL Neural Network Toolbox of MATLAB™. The Toolbox provides algorithms
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and pre-trained models to create, train, simulate and visualize neural networks. The
chosen Artificial Neural Network is a feed-forward network in which the unidirectional
information comes from input data to target data. The network was implemented in a
Quarter Car model, firstly, in order to predict the parameters able to reduce tire deflection
(y — h) and the suspension travel (z — y) in the time domain and frequency domain. This
choice was made in order to test the goodness of optimal parameters prediction. The
designated parameters of the optimization are suspension spring rate k and damping rate
¢ (Figure 7). The search space for the optimization is k € £50% kpse1ine for the stiffness
coefficient and ¢ € £50% cpgse1ine for the damping coefficient. In this case, “baseline”
terminology is used to indicate initial parameter values. In order to train the network, a
series of 40 simulations was carried out in Simulink™, varying spring rate and damping
rate values inside the search space. Hence, the population size is 40 elements for both the
input and output layers. Network topology consists of two input layers, represented by
suspension travel and tire deflection population, and two output layers represented by
stiffness and damping rate population. The hidden layer contains the artificial neurons,
in this case the same number as the population size. The ANN topology is shown in
Figure 14.

#\ Neural Network Training (nntraintool) — X

Neural Network

Hidden Layer OQutput Layer
Inpurt . Output
;? 0
2 2
Algorithms
Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)

Performance: Mean Squared Error (mse)
Calculations: MEX

Figure 14. ANN topology for the Quarter Car model optimization. Input layer contains suspension
travel and tire deflection population. The output layer contains the designated variables of the
optimization, spring rate and damping rate. The hidden layer contains the artificial neurons.

After training the network with a simple Quarter Car model, it is possible to extend
the same procedure to the 7-DOF model. In this case, the parameters to optimize are: roll
angle, pitch angle, sprung mass vertical travel and total weight transfer. The designated
parameters of the optimization are the center of gravity height /, rolling stiffness on front
axle kg1, rolling stiffness on rear axle kg, roll center variation characteristic on front and
rear axle, coil spring characteristic on front and rear axle and shock absorber characteristic
on front and rear axle, as previously mentioned in Section 2.1. The search space for the
optimization is the same of the Quarter Car model for all the variables. The family of
training data was created through 100 subsequent simulations in Simulink™ with different
setup parameters, following the search space. Then, both output and input values were
saved in a matrix to create the neural network. In particular, the input matrix (which
contains the variables to optimize) is a [4 x 100] while the target matrix (which contains
the different setup configuration) is a [245 x 100]. Hence, the topology of the network
consists of:
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e  Four input layers: roll angle, pitch angle, sprung mass vertical travel and total weight
transfer vectors;

¢  Two-hundred-and-forty-five output layers: contains, in order, the vectors of the
designated optimization variables;

e  Hidden layer: 100 neurons.

The ANN topology is shown in Figure 15.

#\ Neural Network Training (nntraintool) — X

Neural Network

=S T et

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mse)
Calculations: MEX

Figure 15. The ANN topology for the 7-DOF model optimization. The input layer contains the
variable to optimize: roll angle, pitch angle, sprung mass vertical travel and total weight transfer.
The output layer contains the vectors of the designated variables of the optimization. The hidden
layer contains the artificial neuron.

The goodness of the optimization was evaluated through a mean squared error, which
represents the network’s performance, and a correlation coefficient R between target data
(simulation values) and output data (i.e., ANN output values).

6. Results

In this section, we show the results regarding the Quarter Car and 7-DOF model
simulation. For what concerns the Quarter Car model, a comparison between the baseline
setup and optimized setup was carried out in order to highlight the improvement of the
optimized setup related to tire deflection and suspension travel, in the time and frequency
domains. Then, ANN was implemented in the model in order to predict the optimal
suspension parameters. The same methodology was applied to the 7-DOF model.

6.1. Quarter Car Model

Initially, the response of the Quarter Car model to a sine wave input was evaluated, as
shown in Figure 16.
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Figure 16. Quarter Car model response in terms of suspension travel and tire deflection to a sine
wave input of 0.1 m of amplitude for a 10 s simulation time.

Figure 17 shows the comparison between the baseline setup and the optimized setup
for suspension travel and tire deflection in the time domain.
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Figure 17. Comparison between baseline setup and optimized setup. The optimized setup is able to
reduce the amplitude of suspension travel and tire deflection in the time domain.
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Figure 18 shows the comparison between the baseline setup and optimized setup of
suspension travel and tire deflection in the frequency domain.
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Figure 18. Comparison between the baseline setup and optimized setup. The optimized setup
is able to reduce the resonance peak amplitude of suspension travel and tire deflection in the
frequency domain.

After the optimization of the baseline setup, ANN is implemented in the model in
order to predict the optimized setup parameters. A neural network script was imported
into the MATLAB™ workspace, and the identification vector of the optimized parameters
was evaluated through the following MATLAB™ command:

y = sim(network, (z — y)opt, (y — h)opt) (30)

The output of this command is a [2 x 1] vector that contains the corresponding setup
parameters. Figure 19 shows the output vector of the neural network.

A . B C

49038 |«—— Copt

2 || 294580 |«—— kgt

Figure 19. Output vector of the neural network.
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Table 4 shows the comparison between the baseline, optimized and predicted ANN
setup for the spring and damping rate.

Table 4. Comparison between the baseline, optimized and predicted ANN setup.

Parameter Baseline Setup Optimized Setup Predicted ANN Setup

k 210,412.92 N/m 294,580 N/m 294,580 N/m
c 3503 Ns/m 4904 Ns/m 4903.8 Ns/m

6.2. 7-DOF Model

After testing the network with a Quarter Car model, roll angle, pitch angle, sprung
mass vertical travel and total weight transfer of the 7-DOF model were optimized. Figure 20
shows the trend of the roll angle for the baseline and optimized setup in the time domain.

Roll angle ¢ - Time domain
T I

——Baseline setup
—— Optimized setup

= s

¢ [deg]
—

Time[s]

Figure 20. Comparison between the baseline provided setup and improved setup for the roll angle
trend in the time domain.

Figure 21 shows the trend of roll angle for the baseline and optimized setup in the
frequency domain.
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Figure 21. Comparison between the baseline provided setup and improved setup for the roll angle
trend in the frequency domain.

Figure 22 shows the trend of the pitch angle for the baseline and optimized setup in
the time domain.

Pitch angle ¢ - Time domain
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Figure 22. Comparison between the baseline provided setup and improved setup for the pitch angle
trend in the time domain.

Figure 23 shows the trend of the pitch angle for the baseline and optimized setup in
the frequency domain.
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Pitch angle ¢ - Frequency domain
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Figure 23. Comparison between the baseline provided setup and improved setup for the pitch angle

trend in the frequency domain.

Figure 24 shows the trend of heave response of the car for the baseline and optimized

setup in the time domain.
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Figure 24. Comparison between the baseline provided setup and improved setup for heave response

of the car in the time domain.

Figure 25 shows the trend of heave response of the car for the baseline and optimized

setup in the frequency domain.
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Heave response Z_ - Frequency domain
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Figure 25. Comparison between the baseline provided setup and improved setup for the heave
response of the car in the frequency domain.

Figure 26 shows the total weight transfer for baseline and optimized setup in the
time domain.
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Figure 26. Comparison between the baseline provided setup and improved setup for the total weight
transfer of the car in the time domain.
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Figure 27 shows the total weight transfer for the baseline and optimized setup in the
frequency domain.
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Figure 27. Comparison between the baseline provided setup and improved setup for the total weight
transfer of the car in the frequency domain.

After the optimization of the baseline setup, the ANN is implemented in the model in
order to predict the optimized setup parameters. The neural network script was imported
into the MATLAB™ workspace, and the identification vector of the optimized parameters
was evaluated through the following MATLAB™ command:

y = sim(network, ¢opt, Oopt, Zopt, Wopt ) (31)

The output of this command is a [245 x 1] vector that contains the corresponding
setup parameters.

Figure 28 shows the output vector of the neural network.

Table 5 shows the comparison between the baseline, optimized and predicted ANN
setup for the center of gravity height and roll stiffness on the front and rear axle.

Table 5. Comparison between the baseline, optimized and predicted ANN setup.

Parameter Baseline Setup Optimized Setup Predicted ANN Setup
h 0.3m 0.2727 m 0.2757 N/m
k¢1 3297.5 Nm/deg roll 2997.7 Nm/deg roll 2997.7 Nm/deg roll
kg2 2270.5 Nm/degroll ~ 2064.1 Nm/deg roll 2064.1 Nm/deg roll

Figures 29-34 show the comparison between the baseline, optimized and predicted
ANN setup for roll center, spring and damper characteristics on the front and rear axle,
respectively.
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Figure 28. Output vector of the neural network.
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Figure 29. Front roll center variation comparison.
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Figure 30. Rear roll center variation comparison.
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Figure 31. Front spring characteristic comparison.
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Figure 32. Rear spring characteristic comparison.
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Figure 33. Front damper characteristic comparison.
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Figure 34. Rear damper characteristic comparison.

7. Discussion

The Quarter Car model optimization shows that the spring rate and the damping
rate influence suspension travel and tire deflection. In fact, as shown in Figures 17 and 18,
optimized setup parameters reduce tire deflection and suspension travel fluctuations in
the time domain and resonance peaks amplitude in the frequency domain. The goodness
of the ANN prediction of the optimized parameters was evaluated through a correlation
coefficient R between target data and output data for training, validation and test, and
mean squared error for the best validation performance. Considering the simplicity of
the model, the best validation performance is reached after five epochs with R = 0.99, as
shown in Figure 35.
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Figure 35. Cont.
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Figure 35. Correlation coefficient R between target data and output data for training, validation and
test and mean squared error for the best validation performance.

The 7-DOF model optimization shows that the optimized parameters set is able to
reduce the trend of the roll angle, pitch angle, sprung mass vertical travel and total weight
transfer in the time and frequency domains. Moreover, observing trends in the frequency
domain, the major frequency contributions are included in the range 0-5 Hz, which is
the range in which the contribution of the body movements is expected. In this case, the
correlation coefficient R between target data and output data for training, validation and
test and the mean squared error for the best validation performance was evaluated. The
best validation performance is reached after 150 epochs with R = 1, as shown in Figure 36

The ANN application for prediction of the optimized parameters shows a strong
correlation between optimized and predicted parameters when a single value is taken into
account. This fact is confirmed by the results shown in Tables 4 and 5, in which the error
between the optimized and ANN predicted setup is very low. Some difficulties emerge
when characteristics are taken into account, such as roll center, spring and damper. In
fact, results show that the prediction is not very accurate for the roll center and spring
characteristic, while the correlation is strong for the damper characteristic.
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Figure 36. Correlation coefficient R between target data and output data for training, validation and
test and mean squared error for the best validation performance.

8. Conclusions and Future Work

In this paper, the authors presented the creation of a 7-DOF mathematical model of an
IndyCar, optimization of the car setup and prediction of the optimized setup parameters
through an Artificial Neural Network. Starting from a telemetry acquisition at the Houston
circuit, the behavior of the car during a lap was studied. In particular, the study focused
on body movements and weight transfer because they are related to grip and, hence,
to the car performance. Then, the influence of the optimized setup on car performance
was investigated through a comparison, in the time and frequency domains, between the
baseline setup and optimized setup. In the end, the ANN algorithm was implemented in
the model in order to predict the optimized variables. The results show a strong correlation
and high accuracy prediction of the designated parameters. At the moment, the application
of artificial intelligence to vehicle dynamics is a field under development and, in this way,
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this study represents a novelty. The use of Seven Post is currently one of the best choices
for finding the best suspension setting, despite the related costs. For this reason, future
development of this work could be the creation of a virtual Seven Post, able to replicate
telemetry data starting from actuator displacement. In addition, following this work,
an ANN algorithm could be implemented in the model in order to try a different setup
combination through the generation of a population dataset. In the end, the neural network
could be able to provide an optimal setting parameter combination for a certain track.
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Abbreviations

The following abbreviations are used in this manuscript:

m Total vehicle mass [kg]

ms Sprung mass [kg]

msy  Front sprung mass [kg]
Mgy Rear sprung mass [kg]

myy,  Unsprung mass [kg]

) Wheelbase [m]

a Front wheelbase [m]

ap Rear wheelbase [m]

12 Front track width [m]

ty Rear track width [m]

h Center Of Gravity height [m]
ry Front dynamic tire radius [m]
r rear dynamic tire radius [m]
7 Front no-roll center [m]

q2 Rear no-roll center [m]

b Pitch center height [m]

q Height of no-roll axis under the COG [m]

kg1 Rolling stiffness on front axle [Nm/deg roll]
kpo Rolling stiffness on rear axle [Nm/deg roll]
kup1 ~ Front Anti-Roll bar stiffness at the wheel [N/m]
k.o Rear Anti-Roll bar stiffness at the wheel [N/m]
k11 Front left spring rate [N/m]

k1o Front right spring rate [N/m]

koq Rear left spring rate [N/m]

koo Rear right spring rate [N/m]

c11 Front left damping rate [Ns/m]

c12 Front right damping rate [Ns/m]

21 Rear left damping rate [Ns/m]

c Rear right damping rate [Ns/m]
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kp11 Front left tire vertical stiffness [N/m]
kp12 Front right tire vertical stiffness [N/m]
kp21 Rear left tire vertical stiffness [N/m]
kp2o Rear right tire vertical stiffness [N/m]
cpl1 Front left tire vertical damping [Ns/m]
Cp12 Front right tire vertical damping [Ns/m]
cpo1 Rear left tire vertical damping [Ns/m]
Cp22 Rear right tire vertical damping [Ns/m]
Ix Roll inertia [kgmz]

Jy Pitch inertia [kgmz]

MRz Front damper motion ratio [-]

MR Rear damper motion ratio [-]

MRg Front spring motion ratio [-]

MR Rear spring motion ratio [-]

MR,41  Front Anti-Roll bar motion ratio [-]
MR,,;4»  Rear Anti-roll bar motion ratio [-]
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