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This study introduces a simple memristor cellular neural network struc-
ture, a minimalist configuration with only two cells, designed to concur-
rently address two logic problems. The unique attribute of this system
lies in its adaptability, where the nature of the implemented logic gate,
be it AND, OR, and XOR, is determined exclusively by the initial states
of the memristors. The memristors’ state, alterable through current flow,
allows for dynamic manipulation, enabling the setting of initial condi-
tions and consequently, a change in the circuit’s functionality. To opti-
mize the parameters of this dynamic system, contemporary machine
learning techniques are employed, specifically gradient descent opti-
mization. Through a case study, the potential of leveraging intricate cir-
cuit dynamics is exemplified to expand the spectrum of problems solv-
able with a defined number of neurons. This work not only underscores
the significance of adaptability in logical circuits but also demonstrates
the efficacy of memristive elements in enhancing problem-solving ca-
pabilities.

Introduction: Logical functions assume a pivotal role in contemporary
problem-solving, necessitating the integration of versatile and reusable
circuit elements within modern and emerging circuits.

Neural networks facilitate the resolution of diverse and intricate prob-
lems by constructing elaborate structures from fundamental building
blocks. While neural networks demonstrate proficiency in addressing
specific problems for which they are trained, contemporary artificial in-
telligence tends to exhibit a narrow and singular purpose.

Over the preceding decade, an escalating introduction of increasingly
complex neural networks has yielded enhanced performance across
widely explored benchmark datasets. This discernible trend highlights
that augmenting network complexity commonly arises from the aug-
mentation of neurons and layers within their architectural framework.
However, elevated complexity can also be attained through the enhance-
ment of cellular dynamics.

The evolutionary trajectory of neural networks in recent years show-
cases the practical efficacy of complex architectures featuring millions
of processing elements and parameters. Notably, these parameters can
be finely tuned through the application of modern machine learning al-
gorithms, underscoring the adaptability of neural networks in addressing
practical problems.

A discernible trend in the past decade has been the escalating com-
plexity of neural networks. In 2012, computer vision predominantly
utilized neural networks with 8 layers, exemplified by Alexnet [1].
Subsequent advancements saw an increase to 19 layers in VGG in
2014 [2] and a remarkable elevation to 152 layers in residual networks
in 2016 [3], indicating an ongoing trajectory of network complexity
augmentation.

A parallel augmentation of complexity is observed in natural lan-
guage processing models. GPT-2, a transformer network, employed 48
layers and 1.5 billion parameters in 2019 [4]. In a remarkable stride,
GPT-3 in 2020 increased this complexity to 96 layers and a staggering
175 billion parameters [5] within a mere year.

An alternative avenue for enhancing neural network capabilities lies
in augmenting the complexity of individual building blocks. The incor-
poration of cells with memory and higher-dimension state-space repre-
sentations, embedding higher-order dynamics, holds promise for solv-
ing challenging non-linearly separable problems. Such problems often

") Check for updates

necessitate the execution of numerous sequential operations through a
singular operation. Ideally, these extended dynamics should not be im-
plemented using multiple simple building blocks to maintain efficiency.
Instead, they should be realized through basic circuit elements.

The memristor emerges as a promising element for efficiently in-
troducing both memory and non-linearity into circuits. Demonstrated
in previous works [6, 7], memristive dynamics offer energy- and time-
efficient solutions in circuit design. This study delves into a fundamental
problem from a similar perspective, exploring the potential of leveraging
memristive elements for efficient and effective circuit design.

The XOR problem, featuring linearly inseparable input-output pairs,
stands out as a renowned elementary problem. Logic gates, including
AND, OR, and XOR, serve as essential tools for describing complex
and arbitrary algorithmic problems. Enhancing the efficiency of logic
gates could prove advantageous in addressing a diverse array of chal-
lenging problems.

Numerous neural network-based solutions for the XOR gate have
been proposed in the literature, encompassing single neural solutions
with complex values [8], spiking neural networks [9], and efficient so-
lutions with memristive systems [10, 11]. This problem gains particular
significance as it eludes resolution with two neurons in a simple fully-
connected network, employing either Hebbian or gradient-based opti-
mization [12], or within a standard CelINN consisting of two cells [13].

The human nervous system, with its inherently general architecture,
adeptly tackles various tasks relying on the input and the initial state to
determine a solution for a given problem. An ideal scenario in biomor-
phic chip design envisions a similar case, where memristive circuits
exhibiting programmability, enable the implementation of diverse logic
gates without necessitating changes to the system’s wiring, solely by ma-
nipulating the initial state.

In this study, we demonstrate resolution of AND, OR, and XOR logic
gates by a basic CelINN comprising two memristive cells. The circuit’s
functionality is uniquely dictated by the initial state of the memristors.
To achieve this, we employ a gradient-based optimization technique to
train both the network weights and the memristor parameters, encom-
passing their initial states.

Our exploration demonstrates how the incorporation of complex cir-
cuit dynamics expands the range of problems that can be efficiently
solved, even with a limited number of neurons. By examining a well-
known problem, we aim to underscore the vast potential inherent in such
structures. The study emphasizes the adaptability and efficacy of lever-
aging complex circuitry to extend the problem-solving capabilities of
neural networks.

Cell dynamics of a memristive cellular neural network: The subject of
our investigation is a memristive cellular neural network (M-CelINN)
[14] comprising two cells.

Prior studies have demonstrated that such networks exhibit emergent
behaviour [15, 16], as well as complex and chaotic dynamics [17, 18],
even with just two conventional cell structures [19, 20], and [21]. How-
ever, these dynamics alone could not offer a solution to the XOR prob-
lem.

The solution we propose is based on continuous-time dynamics that
emerge in an M-CelINN, featuring two analogue neurons, each with two
degrees of freedom. Specifically, the states of cell j € {1, 2} encompass
its capacitor voltage x; and its memristor state m;. The dynamics of the
capacitor Cy, in cell C(j) can be succinctly expressed by the following
equation:

Xj = —x; +aoy; + bouj —im;+agyi + boui +z &)

with (7, i) € {(1,2), (2, 1)}, and §; € —(+)1 for i = 1(2). Here y; is the
output of the cell C(;) which is defined by the standard non-linearity
f(x;) via:

1 1
J’./=f(x/)=§|x.i+1\—§|xf—1| @)

In (1) z denotes the bias parameter, whereas a_1, ay and a (b_y, by
and b, ), known as feedback (feedforward) synaptic weights, are rep-
resented in compact form via the feedback (feedforward) template, de-
fined as A = [a_, ap, a+1] (B = [b_1, by, b11]). In particular, a_; and
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Fig. 1 Schematic of the circuit of cell C(j), including the dependent sources
controlled by the cell C(i). Here (j,1) € {(1,2), (2, 1)} and ¢ = —(+)1 for
i=1(2). HereC/ =1F ande/ =Ry, =1Q

b_; (a4 and by) respectively are the feedback and feedforward synap-
tic weights by which cell C(1) (C(2)) acts on the dynamics of cell C(2)
(C(1)). Finally a¢ and by respectively are self feedback and self feedfor-
ward weights.

A, B and z determine the dynamic behaviour, i.e. the mapping of in-
puts and initial states of the network onto the respective outputs, and are
usually referred to as programming templates.

CelIlNNs have proven efficiency across diverse applications [22]. It
has been established, that a two-cell array can exhibit chaotic dynamics.
However, the utilization of a straightforward, M-CelINN for implement-
ing any logic gate from a number of options, including especially the
XOR function has not been explored previously.

The current i, through the memristor M; in cell C(j) is expressed
according to Ohm’s law as:

im, :G(mjsxj)‘xj’ (3)

where the evolution of the state m; of this voltage-controlled first-order
extended memristor is governed by the following dynamics:

Wij :g(m‘,-,xj) (4)

Here x; represents the voltage across the memristor and m; denotes the
state of the memristor. The initial state and initial voltage of the mem-
ristor are denoted by m;(0) and x;(0), respectively.

In accordance with Leon Chua’s latest memristor classification, g and
G characterize an extended memristor [23, 24]. By employing Chua’s
Unfolding Principle [25], these functions are approximated through
third-order polynomials:

m;=g(m;,x;) =g+ o -x; +a -x§+a3 -xi—f—
+ Biomy+ By m; + By i+ )

+J/1'Xj'Mj+V2‘Xj'm§+y3'.x§‘mj

G(mj,xj) 280-‘1—51 ~xj+52-x§+83 Xi-’-
+51‘mj+€2'm§+53'm3+ (6)
+¢1'X/'m/+¢2'xj'm§+¢3'x§'m/

The circuit schematic of cell C(j), incorporating the influence of the
neighbouring cell C; on its dynamics, is depicted in Figure 1. The mem-
ristive cell introduces only one additional circuit element compared to
a standard CelINN cell—a memristor in parallel to the capacitor. This
singular addition does not significantly amplify power consumption or
manufacturing complexity. Nevertheless, it substantially broadens the
spectrum of implementable functions, as elucidated in [26] and further
demonstrated in this study.

Within this two-cell array, both the feedback synaptic template A and
the feedforward synaptic template B incorporate three non-zero coeffi-
cients each. Coupled with the bias parameter z, the total number of tun-
able parameters reaches seven. Simultaneously, the properties of each
memristor are delineated by an additional set of 20 parameters. While
presuming perfectly matched memristive devices in the cells, we intro-
duce variability solely in their initial memristive states, representing the
only parameter distinct in the implementation of different logic gates. All
other parameters remain consistent across all scenarios. Consequently,

Table 1. This table describes the representation of inputs and out-
puts for the investigated logic gates (AND, OR, and XOR). The input
voltage u; to cell C(j), j € {1,2} is either 0 (false) or 1 (true) and
denotes one of the input operands. The sum of the cell’s output volt-
ages is either —2 (false) or 2 (true), and represents the result. The
output of the M-CelINN, i.e. y| + y,, where y; is the output voltage
of cell C(j), matches the expected output of the operations, if we
consider output cell values above zero as true and those below zero
as false

Input 1 Input 2 AND OR XOR M-AND M-OR M-XOR
0 0 -2 -2 -2 -2 -2 -2
0 1 -2 2 2 -2 2 2
1 0 -2 2 2 -2 2 2
1 1 2 2 -2 2 2 -2

by 33 parameters, encompassing three distinct problems and functional-
ities. Each functionality involves the application of 29 parameters, with
27 of these shared among the three problems.

The extensive nature of this parameter set renders it impractical for
direct exploration using exhaustive or grid search methodologies. There-
fore, we have chosen to employ a machine learning algorithm for pa-
rameter optimization. This strategy proves particularly beneficial when
dealing with more intricate and practical problems that necessitate larger
CelINNSs, resulting in a linear augmentation of the parameter count with
the number of cells.

Training of the network parameters: The implemented network utilized
PyTorch [27], where both the programming templates and the parame-
ters of the memristor model underwent the training process.

Training involved simulating the continuous-time differential equa-
tions on digital hardware, employing the Euler formula with the TorchD-
iffEq module [28]. The PyTorch code for training the network parame-
ters and a straightforward Python script for testing the optimized net-
work can be accessed in [29].

For the XOR gate, there are four possible input-output pairs, as de-
tailed in Table 1. In instances of a false input on cell i, u; was set
to zero; conversely, for true inputs, it was set to 1. The overall out-
put of the computation was determined as the sum of the cells’ out-
puts, which could range from —2 (false) to 2 (true) due to the stan-
dard CelINN non-linearity constraints. System dynamics were allowed
to evolve for 100 iterations, with a timestep of 0.01 s, ensuring an ac-
curate integration of the continuous-time differential equation, evaluat-
ing the global output and comparing it to the expected XOR operation
output.

The training spanned 3000 iterations, utilizing the Adam opti-
mizer [30] with an initial step size of 0.01. Initial parameter values
were randomly generated from a standard normal distribution. The £
loss function guided the network training, assessing the disparity be-
tween actual and expected outputs at the conclusion of each training
iteration.

We conducted training on the network using all four possible input
pairs for the three problems. Theoretically, no stimulus pair other than
the twelve specified in Table 1 is permissible.

To enhance the robustness of the network outputs, we implemented
a data augmentation strategy by introducing uniform noise £ € [0, 0.1]
into each input value. Consequently, the inputs were permitted to vary
within [—0.1,0.1] for the false case and within [0.9, 1.1] for the
true case.

After the execution of the training, the programming templates were
found to assume the following form:

A=[-0.7379 11183 —0.8916],

this introduces two additional parameters for each logic gate, and as we B— [_1' 5312 0.6234 —1.22 46]] (7
investigate three distinct logic gates (AND, OR, XOR), this results in '

an additional six parameters. Thus, the overall system is characterized z=—1.9875
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The differential equations governing the dynamics of the capacitor
voltages were found to be expressed by

¥ =—x1 + 1.1183y; + —0.8916y,

®)
0.6234u; + —1.2246]0u; — 1.9875 — iy,

and

xlz =—Xx + —0.7379)/1 + 1.1183y2
(6]
+ 0.6098u; + —1.5312u; — 1.9875 — iyy2,

for cells C(1) and C(2) respectively.

The values of the optimized memristor model parameters turned
out to be as follows: oy = —0.9602, a; = —0.6280, o, = —2.1831,
a3z = 1.5359, B; = 1.6686, B, = 1.2363, B3 = —1.1509, y; = 0.5227,
y, = —1.8543, y3 = —0.0450, and 8, = —1.2040, §;, = —1.2903, 5, =
—1.5158, 83 = —0.2210, €, = 0.6489, €, = 0.8607, €3 = —0.8444,
¢1 = 0.2612, ¢ = —0.4397, ¢35 = 1.0842.

The states of the memristors of the two neurons for the different
logic gates were initialized as follows: AND gate: m;(0) = 0.4841,
my(0) = —0.0494; OR gate: m;(0) = —0.6606, m,(0) = 0.3078, XOR
gate: m;(0) = —0.4568, m,(0) = —0.2965. The initial values of the ca-
pacitor voltages x;(0) and x,(0) were set as the values of the inputs u;
and u; respectively.

We have repeated parameter training multiple times and different op-
timized parameters were obtained in each training, thereby indicating the
existence of multiple potential solutions to this problem.

Results: 'We conducted training for both the programming templates and
the parameters of the memristor model. The average ¢, distance de-
creased to 0.0093 after the final training iteration. While this value in-
dicates close proximity to the ideal solution, the fact that it is not zero
suggests that perfection has not been achieved. In practical terms, this
accuracy can be easily enhanced by applying thresholding to the actual
outputs of the cells and converting them to a digital format. This adjust-
ment would yield correct XOR outputs in all four cases.

As a point of reference, we implemented a classical CelINN featuring
two non-memristive cells. This reference model struggled to solve the
problem and could only handle either the OR or the AND problem indi-
vidually, as they are linearly separable. The lowest £, distance, averaged
over the four possible input-output pairs attainable during training, was
0.724. This comparison demonstrates that the integration of two mem-
ristors into such a simple circuit is adequate to expand its functionalities.
Furthermore, we aim to illustrate how memristors facilitate the modula-
tion of the decision boundary in the traditional CelINN, allowing for the
seamless execution of the XOR Boolean logic operation between two
operands and switching between logical operations by altering only the
initial state of the system.

Beyond merely extending the circuit’s functionality to solve the XOR
problem, which is unfeasible for the linear implementation, memristors
enable the creation of a dynamic network. This network maintains con-
stant connection weights, but the initial condition of the network can be
set to achieve any of the three desired functionalities.

Decision boundaries hold significance from two distinct perspectives.
In practical applications, merely deriving a theoretical solution may
prove inadequate. Real circuits are invariably affected by noise and par-
asitic elements. Therefore, ensuring a solution for each theoretically ad-
missible input is not sufficient for a robust design. The system must yield
correct solutions even in scenarios where inputs deviate slightly from
their nominal values. Examination of decision boundaries unveils the
extent to which parameters can change without affecting the digitized,
thresholded outputs.

From another viewpoint, decision boundaries can unveil the com-
plexity of the system. Linear systems exhibit simple linear deci-
sion boundaries, limiting their utility for most practical applications.
The incorporation of higher nonlinearities into a network results in a
more intricate and complex decision boundary, which is a crucial el-
ement for solving complex problems. One can also notice how alter-
ing the initial conditions has influenced the decision boundaries of the
system.
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(c) Decision boundary for XOR operation

Fig. 2 This diagram shows the output (yy + y2) of a M-CelINN for all possi-
ble input combinations where u; € [—0.4,1.2], Au; = 0.05, j € {1,2}. The
colors visualize the output according to the legend. At the positions of white
(red) markers the system should emit low (high) output values

Figure 2(a)—(c) illustrates the AND, OR and XOR outputs accord-
ingly y| + y» for every possible input pair (u;, uy) withu; € [-0.4, 1.2],
Au; = 0.05, j € {1, 2}, for our M-CelINN (for the memristive two-cell
array).

In the case of the traditional CelINN, a linear boundary separates the
regions containing the red and white markers, hindering the two-cell ar-
ray from solving the XOR logical Boolean problem.

As these illustrations demonstrate, our network adeptly computes
the correct output for each of the three investigated problems and
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Temporal Evolution of the capacitors' voltages for the four possible input pairs
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Fig. 3 Evolution of the states x| and x; of the M-CelINN for the four possi-
ble input pairs for the XOR operation. The state evolution for the two other
logic gates are not reported for the sake of space and simplicity but their
simulations resulted in similar figures

all four possible input pairs. Notably, the memristive system exhibits
an intricate decision boundary, enabling the two-cell array to accu-
rately compute the XOR solution for each of the four possible in-
put combinations—a feat unattainable with a linear system. Moreover,
the design showcases robustness as all of the outputs fall consider-
ably far from the decision boundaries except the input of u; = 1 and
uy = 0 for the XOR gate, which falls close to the decision boundary,
but even this input case provides the expected output for the desired
operation.

The intricate decision boundary map is shaped by the rich nonlinear
dynamics of the two memristors, playing a pivotal role in enabling the
two-cell array to solve the AND, OR, and XOR problems without modi-
fying the connection weights in the network, showcasing the significance
of altering only the initial conditions.

Given that our network is a dynamic system, it is crucial to scruti-
nize how its internal state evolves over time during computation. We
have explored the progression of the network states (x;, x,) for all pos-
sible input pairs across all three logical operations. The temporal evo-
lution of the cells’ outputs y; and y, can be directly inferred from
the time course of the capacitors’ voltages x; and x;, respectively.
The dynamics of the capacitors’ voltages are illustrated in Figure 3.
As it is depicted, the output states align with the anticipated outputs
of the logical operations. The state evolution for the other two prob-
lems is not provided due to space constraints, given that those prob-
lems are comparatively simpler than the implementation of the XOR
problem.

Conclusions: In this paper, we have successfully showcased the capa-
bility of a memristive cellular neural network with two ideal memristive
cells to execute the AND, OR, and XOR operations between two inputs.
The resulting output solutions for the respective problems solely depend
on the initial states of the memristors, which can ideally be modified by
the current flowing through them.

It is noteworthy that our implementation marks the first instance
where the functionalities of memristors are altered based on their ini-
tial conditions, enabling their application for various logical operations.
Importantly, the XOR task, unattainable for a traditional 2 x 1 CelINN,
underscores the potential of enriching the dynamical properties of neu-
rons to expand the range of functions implementable by a given neural
network. This expansion can lead to more efficient hardware solutions
for complex problems.

It is essential to clarify that our simulations involved the training of
parameters in an idealized M-CelINN setup, free from noise, with all
circuit elements and connections assumed to be ideal. Additionally, our
memristor is defined according to Chua’s unfolding principle, imple-
menting ideal and optimized memristor characteristics for this task. Be-
cause of this the investigated scenarios might not completely be feasible
with existing memristive devices. The translation of similar functionali-
ties to real devices necessitates further investigation and exploration.
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