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An Automatic Tool for Partial Discharge De-noising 
via Short Time Fourier Transform and Matrix 

Factorization 
 

Yuan Yan (颜源), Riccardo Trinchero, Igor Simone Stievano, Hongjie Li (李洪杰), and Yanzhao Xie (谢彦召) 

Abstract—This paper develops a fully automatic tool for the de-
noising of partial discharge (PD) signals occurring in electrical 
power networks and recorded in on-site measurements. The 
proposed method is based on the spectral decomposition of the PD 
measured signal via the joint application of the short-time Fourier 
transform and the singular value decomposition. The estimated 
noiseless signal is reconstructed via a clever selection of the 
dominant contributions, which allows us to filter out the different 
spurious components, including the white noise and the discrete 
spectrum noise. The method offers a viable solution which can be 
easily integrated within the measurement apparatus, with 
unavoidable beneficial effects in the detection of important 
parameters of the signal for PD localization. The performance of 
the proposed tool is first demonstrated on a synthetic test signal 
and then it is applied to real measured data. A cross comparison 
of the proposed method and other state-of-the-art alternatives is 
included in the study. 
 

Index Terms — electrical networks, partial discharge, de-
noising, short time Fourier transform, singular value 
decomposition. 

I. INTRODUCTION 

ONCEPT of smart grid is now a robust and well defined 
design format allowing the bi-directional interactions 
between electric utilities and power components in 

grids. This enables the real-time monitoring of the healthy 
condition of the different interconnected blocks, thus allowing 
the development of tools for optimizing their maintenance and 
operation actions [1]. In the above scenario, partial discharge 
(PD) can be considered one of the most harmful insulation 
aging factors playing a crucial role in the healthy condition 
assessment of power components [2].  

Nowadays, many commercial digital integrated circuits with 
advanced high-speed data acquisition features are available, 
and they also integrate with ultra-wide band sensors. These 
sensors allow achieving advanced PD diagnosis, including PD 
localization, recognition, and classification [3-5]. However, on-
site PD measurements turn out to be susceptible to field noise 
interferences, with unavoidable detrimental effects of both 
white noise and discrete spectrum disturbance [6]. Therefore, 
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de-noising is an essential step in on-site PD measurement. 
However, high-level noise, variable waveforms of PD signals, 
and limited computational resource in most commercial devices 
make on-site PD de-noising yet challenging. 

In last two decades, many papers have been published on 
alternative pulse signal (e.g., PD) de-noising approaches, being 
wavelet transform (WT), empirical mode decomposition 
(EMD), local mean decomposition (LMD), and variational 
mode decomposition (VMD). In [7-12], WT has proven to have 
an outstanding PD de-noising performance for extreme noisy 
signals if the mother wavelet and decomposition level are 
selected properly. Prior knowledge of the characteristics of the 
PD signal is however required to determine the mother wavelet 
and decomposition level, which is always difficult to have in 
field due to variable waveforms of PD signals. In [13,14] 
iteration-based algorithms are proposed to automatically 
determine the optimal mother wavelet and decomposition level. 
Despite the mentioned nice automatic feature of these methods, 
a common unfavorable aspect of these methods is their low 
efficiency, which means large computational time. In [15,16] 
the adaptative EMD and LMD algorithms are proposed. Their 
main advantage is that no prior knowledge is required, but they 
suffer from mode mixing problems, possibly leading to signal 
distortion. In [17] and [18], ensemble EMD and LMD are 
developed to overcome the problem, but they require many 
iterative cycles and calculations. In [19], VMD is proposed to 
specifically address this issue, and it has successfully been 
applied for de-noising PD or fault signals [20, 21]. However, 
the success of VMD depends highly on the pre-set parameters, 
including the mode number and bandwidth control parameter. 

To remedy these deficiencies in above de-noising approaches, 
the non-parametric and self-adaptive methods based on singular 
value decomposition (SVD) have been explored in recent years 
[22-28]. In [22], Abdel-Galil et al. carried out a pioneer study 
of de-noising via SVD. In [23], an adaptive principal 
components selection algorithm is developed to automate the 
SVD-based PD de-noising process. In [24, 25], some fast SVD 
algorithms are developed by reducing the rank of the input 
matrix to be decomposed. In [26, 27], some hybrid methods 
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combining SVD with WT or EMD are presented, where SVD 
is used to remove severe discrete spectrum noise components 
with significant larger singular values. In all the above papers, 
the SVD-based de-noising scheme is done as follows: first, a 
noisy PD signal is embedded into a Hankel matrix; then, 
applying SVD to the Hankel matrix results into a singular value 
vector and multiple components; finally, the components with 
larger singular values are used to reconstruct the noiseless PD 
or the unwanted discrete spectrum noise that needs to be 
subtracted. However, the investigation in [28] shows that the 
de-noising scheme does not perform well for signals with very 
low signal-to-noise ratio. In this case, several floors appear in 
the singular value plot, which makes it very difficult to select 
the optimal value of the number of dominant contributions. In 
addition, when the singular values of the PD signal and of the 
discrete spectrum noise have the same magnitude, the de-
noising scheme can hardly differentiate them. In [29], a PD de-
noising based on the so-called generalized S-transform and 
module time-frequency matrix is proposed. In this approach, 
the de-noising performance strongly depends on the accuracy 
of the estimated frequency of the discrete spectrum noise, 
which requires high frequency resolution of the S-transform 
and thus results in a high-rank matrix, which in turn may lead 
to large computational time. 

To overcome the above limitations and offer a de-noising 
solution with improved accuracy and efficiency at the same 
time, this paper proposes an alternative approach that jointly 
combines the SVD and the time-frequency complex matrix (or 
spectrogram) of a noisy PD signal obtained by the short-time 
Fourier transform (STFT). It can be verified that the latter 
transform and the time-frequency domain allow a clearer 
decomposition of the PD signal into its different constitutive 
components. The functional, i.e., noiseless, PD signal can be 
therefore estimated by filtering out the spurious and well-
separated noisy terms. In addition, the procedure can be 
wrapped-up in terms of an automatic tool in which only two 
parameters are needed, one related to the frequency pass-band 
behavior of the used PD sensor and the other related to the field 
noise level. The performance of the developed de-noising 
algorithm is compared with some state-of-the-art alternatives, 
including the Hankel matrix-based adaptive SVD (H-ASVD), 
WT, and EMD algorithms. In addition, the proposed approach 
is first applied to a synthetic PD signal and then to real 
measured data to demonstrate its strengths and features. The 
obtained results also prove the improved features of the method 
in extreme conditions with very small signal-to-noise ratio, as 
it produces a better noiseless PD reconstructed signal. 

In summary, the main contributions of this paper are: 
 A well-defined and robust step-by-step procedure for 

de-noising PD signals is defined; 
 An automatic tool with the smallest number of tuning 

parameters (two in the proposed scheme) is generated. 
The parameters are chosen with a simple rule, and the 
low sensitivity of the de-noising accuracy to their value 
has been confirmed. 

 The feasibility and strengths of the proposed de-noising 

scheme on a synthetic signal are verified, as we have 
proved its generality for different possible shapes of PD 
signals and its robustness to large noise levels; 

 An unbiased comparison with alternative state-of-the-
art solutions is carried out; 

 The proposed tool has been applied to real on-site 
measurements carried out by a high frequency current 
transformer and an ultra-high frequency antenna. 

The rest of this paper is structured as follows. Section II 
discusses the modeling of typical PD signals and noise. In 
Section III, the proposed adaptive and automatic PD de-nosing 
tool is detailed. In Section IV, three de-noising performance 
metrics are introduced and adopted to quantify the effectiveness 
of the proposed algorithm on a synthetic PD test case. In the 
same section, a cross-comparison involving the mentioned 
state-of-the-art approaches is carried out. In Section V, the 
feasibility of the developed tool is confirmed by its application 
to real measured signals. Conclusions and final remark are 
given in Section VI. 

II. PD AND NOISE MODELING 

A. PD signal modeling 

PD is a localized electrical discharge that only partially 
bridges the insulation between conductors, and it can or cannot 
occur adjacent to a conductor [30]. According to many 
laboratory studies, the PD process can be approximately 
equivalent to the Townsend discharge process, in which a 
current pulse is generated due to the movement of ionized 
electrons and ions under the stress of an external electric field 
[31]. The electrons move faster due to their lighter weight, 
leading to a fast-rising edge of the current pulse, whereas the 
ions move slowly due to their heavier weight, leading to a slow-
falling edge.  

Therefore, at the PD source, a PD signal start at time zero can 
be approximately modeled by a double exponential pulse (DEP), 
which can be formulated as [6] 

1 2/ /
1( ) ( )t tDEP t A e e                           (1) 

where A1 is the amplitude, and τ1 and τ2 (τ1 > τ2) are the time 
constants. DEP signal is often detected in the line-type power 
equipment, such as cables and overhead lines. Most of detected 
PD signals are however oscillating pulses due to the effects of 
both the propagation path and the transfer function of the used 
sensor. Therefore, single exponential and double exponential 
attenuation oscillation pulses (SEOP and DEOP) are used [26]. 
They are formulated as: 

3/
2 1( ) sin(2 )t

cSEOP t A e f t                     (2) 

54 //
3 2( ) ( ) sin(2 )tt

cDEOP t A e e f t               (3) 

where A2 and A3 are the amplitude parameters, τ3, τ4, and τ5 are 
time constants, and fc1 and fc2 are the oscillation frequencies.  

In this work, the above three types of pulses (DEP, SEOP, 
and DEOP) are concatenated sequentially to generate the signal 
shown in Fig. 1(a). The above signal represents an initial 
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(a) 

 
(b) 

Fig. 1. Synthetic noiseless (a) and noisy (b) PD signal with 
signal-to-noise ratio of -1.55dB. 
 
 

TABLE I 
PARAMETERS OF THE SYNTHETIC PD SIGNAL OF FIG. 1 

 

Parameter A1 /mV A2 /mV A3 /mV τ1 /ns τ2 /ns 

Value 1 0.7 1.8 150 23 

Parameter τ3 /ns τ4 /ns τ5 /ns fc1 /MHz fc2 /MHz 

Value 200 77 230 1 5 

 
 
synthetic test case which simulates the simultaneous occurrence 
of multiple PDs, which is a common phenomenon in field 
measurements. Also, it offers a fully controllable test case, 
which highlights and verifies the features and strengths of the 

proposed de-noising scheme for increasing levels of 
superimposed noise. The parameters of DEP, SEOP, and DEOP 
signals used in this paper are listed in Tab. I. The PD signal is 
uniformly sampled at a sampling frequency 125MHzsf   and 

stored in a vector. For the signals of Fig. 1, the number of 
sampling points is 9000. 
 

B. Noise characteristics 

In on-site PD measurements, the sensitivity and accuracy of 
PD detection are always reduced by two types of noise: (i) the 
white noise and (ii) the discrete spectrum noise. Discrete 
spectrum noise mainly arises from carrier communication, ratio  
communication, high-order harmonic, etc., whilst white noise 
is mainly caused by equipment thermal noise, ground noise, 
rand noise, etc. [32]. In this work, the frequencies of two 
harmonics in the discrete spectrum noise are set to 3 and 7 MHz 
and their corresponding amplitudes are set to 0.15 and 0.1 mV, 
respectively. White noise is a zero mean gaussian sequence 
with 0.1 mV standard deviation.  

The above disturbances are added to the noise-free PD signal 
to generate the noisy signal shown in Fig. 1(b). It is important 
to point out that the synthetic noisy signal in the Figure is 
characterized by a critical low signal-to-noise ratio, and thus it 
is a challenging test case which can be effectively used to verify 
the benefits of the proposed de-noising solution and to compare 
with state-of-the-art alternatives. 
 

III. PRINCIPLE OF THE PROPOSED DE-NOISING TOOL 

This section presents the proposed automatic tool for PD de- 
noising according to the scheme in Fig. 2 and data processing 
following all the different involved blocks from left to right. It 
consists of six steps which are detailed in the following 
subsections. 

A. Time-frequency transform via STFT (step 1) 

According to the procedure of Fig. 2, the sampled noisy PD 
signal like the one shown in Fig. 1(b) is stored in a vector  

 
Fig. 2. Proposed step-by-step automatic procedure for PD de-noising. 
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Fig. 3. Magnitude of the spectrogram of the synthetic noisy 
signal shown in Fig. 1(b) and location of the different signal 
components. 
 
 

 1 2( ), ( ), , ( )
T

Kx t x t x tx   defined as: 

( ) ( ) ( ), ( 1) , 1,2, ,  k k k kx t s t w t t k t k K             (4)  

where ( )ks t  is the discretized noise-free PD signal, ( )kw t  

represents the superimposed noise (e.g., white and discrete 

spectrum noise), 1/ 1/ (125 )MHzst f   is the sampling 

interval, and K is the number of time samples (e.g., 9000 in the 
example signal).  Then, x is transformed into a spectrogram X 
via the STFT. 

This step represents the most important initial data 
processing since the local features of a nonstationary PD signal 
cannot be well expressed in the time-domain or in the 
frequency-domain only. Hence, a time-frequency analysis is 
more suitable for representing a PD signal with its inherent 
pulsed characteristics.  

STFT is a widely used time-frequency tool for studying 
nonstationary signals and it has been proven to be effectively 
used in this field [33]. The discrete STFT of the discrete signal 
x can be written as: 

2

1
( , ) ( ) ( ) k m

K j t f
m n k k nk

X f t x t g t t e t


             (5) 

where ( )g  is a Gaussian window function with length of M (e g., 

200 in the following illustrative example in this section), 
( 1)nt n t   ( 1,2, ,n N  , N=K-M+1) and 

(2 ) / (2 )mf m M M t   （ 1,2, ,m M  ) are the discrete 

time and frequency, respectively, and ( , )m nX f t  (also labeled as 

Xm,n) is the element in the mth row and nth column of the 
spectrogram M NX  . The absolute value of the spectrogram 
X  obtained by applying STFT to the synthetic noisy signal in Fig. 
1(b) is shown in Fig. 3, in which the PD pulses emerge clearly 
while they are drowned out by noise in time-domain.  
 

B. Soft masking (step 2) 

White noise is preliminarily reduced by applying the 
following soft masking to the spectrogram X, resulting into an 
updated spectrogram X . 

Figure 3 shows the magnitude of X, highlighting that both the 
PD signal and the discrete spectrum noise turn out to be localized 
in the specific zones of the spectrogram characterized by a 
remarkably high amplitude (in magnitude). On the other hand, 
white noise produces a uniformly distributed background. This 
magnitude difference between the dominant signal (e.g., PD signal) 
and the white noise allows us to first preliminarily filter out the 
noise by applying the following soft masking on the spectrogram 
[34]: 

, , ,
,

, ,

| 3

| 3

       if  |  

              if  |
m n m n m n

m n
m n m n

T X X
X

X X




 
   

              (6) 

where ε is the standard deviation of X. The threshold value of 3ε 
is suitably adjusted on the basis of the signal-to-noise ratio and is 
chosen according to [35], and Tm,n are the attenuation coefficients 
defined as: 

,
, 3

q

m n
m n

X
T


                                   (7) 

where q is the attenuation control factor. A large value of q 
increases the white noise suppression, but at the same time it 
leads to large distortion of the PD signal. Therefore, the value 
of q should be set carefully, and it will be thoroughly discussed 
in Section IV. In the following illustrative example in this 
section, q is set to 1. After the soft masking, the spectrogram X  
is updated to a new spectrogram X , in which parts of white 
noise is removed while discrete spectrum noise and some 
residual white noise still exist. Finally, it is important to point 
out that the soft masking improves the signal-to-noise ratio of 
the PD signal, thus facilitating the subsequent matrix 
factorization and component selection. 

C. Matrix factorization via SVD (step 3)  

In this step, the spectrogram X  is decomposed into M 
components via the singular value decomposition, allowing to split 
the original signal into multiple distinguishable components, in 
which the functional PD signal, the discrete spectrum noise and 
the remaining white noise can be separated. This can be also 
justified by the different localization of signal components in 
Fig. 3, which are characterized by different shapes and strengths, 
in magnitude. 

Applying SVD to the spectrogram X  (with M < N) can 
generate three decomposed matrices, yielding: 

1 1 1 2 2 2

1 2

   

   

H

H H H
M M M

M

  

 

  
     

X USV

X X X

u v u v u v


               (8) 

where U is a 𝑀 × 𝑀 orthonormal matrix (U= 1 2[ , , , ]Nu u u , 

𝒖௜ ∈ ℂெ×ଵ ), S is a real 𝑀 × 𝑁  rectangular matrix with the 

singular values 1 2 M      in the diagonal entries, V is 

𝑀 × 𝑀 a square orthonormal matrix (V= 1 2[ , , , ]Mv v v ,𝒗௜ ∈

ℂெ×ଵ), and iX  is the ith decomposed component of X . PD de-

noising can be achieved by selecting the components which best 
represent the contribution of the noiseless PD signal. 
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Fig. 4. Singular values of the spectrogram X . 
 
 

Roughly speaking, it can be verified that the more 
concentrated and large-amplitude objects (e.g., the PD signal 
and the discrete spectrum noise) in the spectrogram X  
correspond to the components with larger singular values, 
whereas the scattered and low-amplitude objects (e.g., the white 
noise) correspond to the components with small singular values 
as highlighted in Fig. 4. Therefore, the mix consisting of the PD 
signal and of the discrete spectrum noise can be possibly 
extracted by selecting the principal components associated to 
larger singular values, thus reducing the residual white noise. 

D. Principal components selection via minimum description 
length (MDL) criterion (step 4) 

This step implements an automatic rule for the selection of the 
optimal L ( L M ) components arising from the dominant 
singular values as shown in Fig. 4.  

Traditionally, the principal components associated to larger 
singular values in the SVD are selected via the threshold 

criterion 1 1/l     ( 0,1, , 1l M  ), where   is an 

artificial threshold value referring to the signal-to-noise ratio of 
the spectrogram X . Since we do not know the signal-to-noise 
ratio, which is different depending on the PD signal and noise 
level, we use the MDL criterion to automatically select the 
number of the principal components. The function of the MDL 
with repect to the singular values of the spectrogram X  is 
defined as [36,37]: 

1

1

1
MDL( ) log (2 ) log

21

M

ii l
M l

M

ii l

l N l M l N

M l





 


 

 
 
    
      




  (9) 

where i  is the ith singular value of X , M is the number of 

singular values (or rows) of X , and N (N > M) is the number 
of the columns of X . The number of effective singular values 
can be determined by minimizing MDL(l) as [36,37]: 

0 1
arg min MDL( )

l M
L l

  
                          (10) 

To better explain the effect of the above criterion, the MDL 
curve of the singular value vector of Fig. 4 is shown in Fig. 5. 
L=12 corresponds to the minimum of the MDL curve, defining that 
only the first 12 components, instead of 200 in total, can 
successfully be used to represent the dominant contributions of 
the spectrogram X . Therefore, X  can be updated to a  

 
Fig. 5. MDL curve of the singular values. 
 
 

compressed spectrogram 1 2 L    X X X X   ( M N
i

 X  , 

1, 2, ,i L  ) by selecting the first L components, thereby 
removing most of the remaining white noise.  
 

E. Time-domain signal reconstruction via inverse STFT (step 5) 

Each component in the spectrogram X  is transformed back 
to time domain via Inverse STFT (ISTFT), resulting into L 
signal modes, in which the PD signal and the discrete spectrum 
noise are clearly distinguishable. The conversing back to time-
domain is important not only for retrieving the estimated 
noiseless PD signal but also because, as observed before, the 
singular values of the PD signal and of the discrete spectrum 
noise may have the same magnitude, making their possible 
separation hard. 

Hence, each component iX  of the spectrogram X  is 

converted back to time domain via inverse STFT: 

2

1 1

1
( ) ( , ) ( ) k m

N M j t f
i k i m n k nn m

x t X f t g t t e
M


 

      (11) 

where ( )i kx t  is the ith reconstructed signal mode, and 

( , )m nX f t  (also labeled as ,m nX  ) is the element in the mth row 

and nth column of the sub-spectrogram iX .  

Again, for example signal of Fig. 1(b), the L reconstructed 

signal modes 1x , 2x , …, and Lx  are shown in Fig. 6. From 

visual inspection, it can be observed that the PD signal and the 
discrete spectrum noise are spread in different contributions, or 
modes (e.g., #1, #4, #5, #8, #9, #10, #11, #12). This observation 
suggests that it is also possible filtering out the discrete 
spectrum noise and estimate the noiseless PD signal by 
selecting the most modes with an impulse-like shape. This is 
done in the next, i.e., last, step. 
 

F. Mode selection via Kurtosis criterion (step 6) 

The Kurtosis parameter is used to separate the contributions 
associated with the PD signal from those arising from the 
discrete spectrum noise in the L reconstructed modes. Kurtosis 
is a statistical measure of whether the data are heavy-tailed or 
light-tailed relative to a normal distribution [38]. 

Qualitatively, sequences with high kurtosis parameter tend to 
have heavy tails, or outliers. Sequences with low kurtosis value 
tend to have light tails or lack outliers. In the reconstructed  
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Fig. 6. Signal modes reconstructed from the first twelve 
components with larger singular values. 

 
modes, the signal components associated with the pulses (e.g., 
PD signal) performs like some outliers, thus produce to a large 
kurtosis value, whereas periodic signals (e.g., the discrete 
spectrum noise) produce a low kurtosis value.  

The Kurtosis value of a discretized signal is defined as: 

 

 

4

1

2
2

1

1
( )

( )
1

( )

K

i k ik

i
K

i k ik

x t x
KKur x

x t x
K







  
 









                  (12) 

where ix is the ith signal mode reconstructed by the ith 

component of X , and ix  is the average of ix . The calculated 

kurtosis values of the modes collected in Fig. 6 are shown in 
Fig. 7. From this figure, we can see the modes which are more 
closely related to the PD signal are these with larger kurtosis 
values (i.e., #1, #4, #5, #8, #9, #10, #11, #12).  

The modes with larger kurtosis value are selected to 
reconstruct the final estimated noiseless signal x , which can 
be rewritten as: 

1 1 2 2 L La a a     x x x x                        (13) 

where Logical{ { } }i ia kur  x ,where Logical{.} is the 

logical judgment function and returns 1 or 0. β is a threshold set 
to 4, an empirical value suggested in [27, 38]. The final 
estimated noiseless signal x  via (13) is shown in Fig 8, where 
most of white noise and discrete spectrum noise are 
successfully removed. 

 
Fig. 7. Kurtosis value of the modes in Fig. 6. 
 

 
Fig. 8. De-noised signal obtained by summing modes #1, #4, 
#5, #8, #9, #10, #11, and #12 in Fig. 6. The green, blue, and red 
lines denote the noisy, the original, and the de-noised signals, 
respectively. 
 
 

IV. RESULTS: SYNTHETIC PD SIGNALS 

This Section collects the results of the application of the 
proposed tool to the synthetic PD test case. The simulations are 
conducted using MATLAB software running on an Intel(R) 
Core i7-10750H processor with 2.60-GHz clock frequency and 
16-GB RAM. In the simulations, three evaluation metrics are 
defined to quantitatively assess the de-noising performance of 
the proposed algorithm, which is compared with the alternative 
WT [7], EMD [17], and H-ASVD [23] tools. Also, as briefly 
mentioned before, in the proposed algorithm, only two 
parameters (the window length in the STFT and the attenuation 
control factor of the soft masking) need to be determined in 
advance; a rule for their choice is also presented.  

 

A. Evaluation metrics  

Three evaluation metrics are defined below to quantify the  

quality of the estimated noiseless PD signal [27] ( ( )ks t  and 

( )kx t denote the discrete noise-free and de-noised signals, 

respectively). 
1) Signal-to-noise ratio (SNR) is used to measure the 

background noise reduction: 

 
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           (14) 

2) Normalized correlation coefficient (NCC) is used to 
evaluate the similarity of waveform between the original  
and de-noised signals. It is defined as: 
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3) Root-mean-square error (RMSE) is used to evaluate the 
waveform distortion of the de-noised signal compared 
with the original signal: 

 2

1

1
( ) ( )

K

k kk
RMSE x t s t

K 
               (16) 

Higher SNR and NCC, and lower RMSE represent a better de-
noising performance. 

B. Effect of the window length in STFT 

The window length M in STFT, which is equal to the number 
of rows of the time-frequency spectrogram X, is inversely 

proportional to the frequency resolution f  of the 

spectrogram, which can be formulated as 

sff
M

                                    (17) 

For a fixed value of the sampling frequency fs, a small window 
length can lead to a large frequency resolution of the 
spectrogram, which may be insufficient to distinguish a PD 
signal from the noise, especially the discrete spectrum noise, 
whereas a large window length can lead to a small frequency 
resolution, resulting in redundant computations.  

We de-noise the noisy PD signal synthesized in Section II via 
the proposed algorithm with varying window lengths and noise 
levels. The window length M is changed from 40 to 800 
sampling points, the SNR of the noisy signal is changed from -
1.55 to -15.5-dB by increasing the amplitudes of the two types 
of noises in equal proportions, and the attenuation control factor 
q of the soft masking in equation (7) is set as 1.  

Figure 9 provides a compact picture about the effect of the 
window length M in STFT on the de-noising performance of the 
proposed algorithm through the defined two evaluation metrics, 
SNR and RMSE. It can be observed that the de-noising 
performance improves as the window length increases in the 
initial part pf the curves, and then it becomes nearly flat once 
the number of sampling points exceed the critical value of 200. 
This critical value is equivalent to the frequency resolution of 
the spectrogram of 0.625MHz, which is just sufficient to 
distinguish the last two PD pulses with dominant frequencies of 
1MHz and 5MHz, respectively, from the discrete spectrum 
noise with dominant frequencies of 3MHz and 7MHz. Once the 
window length is smaller than the critical value, the frequency 
resolution of the spectrogram is insufficient to distinguish the 
PD pulses from the discrete spectrum noise, resulting in a 
significant drop in the de-noising performance as shown in the 
front parts of the curves in Fig. 9. Therefore, the window length 
should not be too small. 

Figure 10 shows the effect of the window length M on the 
computational time of the proposed algorithm. It can be 
observed that the efficiency decreases as the window length 
increases, suggesting a selection of the smallest value of M may 
lead to sufficiently good performance indexes (such as those 

   
(a)                                            (b) 

Fig. 9. Effect of the window length M on (a) SNR and (b) RMSE 
in varying noise levels. 
 
 

 
Fig. 10. Effect of the window length M on the overall 
computational time required by the proposed algorithm. 
 
 
considered in Fig. 9).  

Referring to the frequency pass-band of the used PD sensor, 
an empirical formula allowing to determine the window length 
M is: 

high low

s sf f
M

f f f

 
 
 

                       (18) 

where fhigh and flow are the upper and lower cutoff frequencies 
of the used PD sensor, and α is the ratio between the passband 
frequency of the sensor and the acceptable frequency resolution. 
In practical applications, it is recommended to set α a bit larger 
than some dozens (e.g., 20 to 60) to ensure sufficient frequency 
resolution of the spectrogram for good de-noising performance 
and simultaneously less computation time. 
 

C. Effect of the attenuation control factor in the soft masking 

The effect of the attenuation control factor of the soft 
masking on the two evaluation metrics SNR and RMSE is shown 
in Fig. 11, where the attenuation control factor, q, is changed 
from 0 to 6, the SNR of the noisy signal is changed from -1.55 
to -15.5-dB, and   in (18) is set as 48. The above value 
corresponds to the window length 

48 125 / (30 0.5 ) 200 MHz  MHz  MHzM      sampling 

points if a PD sensor with the pass-band from 0.5 MHz to 30 
MHz is used, which is sufficient to detect the synthetic PD 
signal. It can be observed that with the increase of the 
attenuation control factor, the de-noising performance is 
obviously improved at first, indicating that soft masking works 
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(a)                                            (b) 

 
Fig. 11. Effect of the attenuation control factor q on (a) SNR 
and (b) RMSE in varying noise levels. (q equal to 0 denotes the 
soft masking is disenabled) 
 
 
first effectively, and then gradually deteriorates. The initial 
increase in the de-noising performance is because more white 
noise is removed; the subsequent drop in de-noising 
performance is because part of the useful PD signal is also 
removed, resulting in some signal distortions. In addition, 
comparing the optimal q values for different noise levels, it can 
be found that a relatively small q value produces the best noise 
reduction effect at low noise levels, while a relatively large q 
value produces the best noise reduction effect at high noise 
levels. Referring to the simulation results, the attenuation 
control factor, q, is recommended to be set between 0.5 to 2.5 
and it should be relatively large for high noise levels and 
relatively small for low noise levels. 
 

D. De-noising  

Figure 12 collects the results of the de-noising of the 
simulated PD signal with high-level noise (SNR=-11.10dB) via 
the proposed STFT-SVD, H-ASVD, WT, and EMD algorithms. 
It can be seen from Fig. 12(a) that the H-ASVD algorithm can 
hardly remove the discrete spectrum noise. In Fig. 12(b), the 
WT algorithm has good behavior for the first and second pulses, 
but it basically fails to reconstruct the third pulse. The 
difference in the noise reduction effect on the PD pulses is 
attributed to the selected mother wavelet (dB8); the failure of 
the last PD pulse de-noising is due to the insufficient frequency 
resolution requiring to separate the PD pulses (with a dominant 
frequency of 5MHz) with the discrete spectral noises with 
sinusoidal components at 3MHz and 7MHz. In Fig. 12(c), the 
EMD technique can only discriminate the PD signal vaguely, 
and a large amount of white noise and waveform distortions still 
remain. In Fig.12(d), compared with the results of H-ASVD, 
WT, and EMD algorithms, the proposed STFT- SVD algorithm 
can be effectively used to reduce both the white noise and the 
discrete spectrum noise in all three types of PD pulses, although 
a small amount of noise remains. In Fig. 12(e), where the soft 
masking is enabled, the de-noising performance is improved, 
thus proving the benefit of this additional step in the de-noising 
procedure.  

The evaluation metrics of all the algorithms are listed in Tab. 
II, where it can be observed that the proposed STFT-SVD 
algorithm with the soft masking has the largest signal-to-noise 
ratio (the highest SNR), and the least waveform distortion (the 
lowest RMSE and the highest NCC). 

 
Fig. 12. De-noising results of (a) H-ASVD (the size of Hankel 
matrix: 450×9000), (b) WT (the mother wavelet: dB8), (c) 
EMD (the ensemble number: 300), (d) the proposed STFT-SVD 
without the soft masking (M=200, q=0), and (e) the proposed 
STFT-SVD with the soft masking (M=200, q=2). The green, 
blue, and red lines denote the noisy signal (SNR=-11.10 dB), 
the original signal, and the de-noised signal, respectively. 
 
 

TABLE II 
EVALUATION METRICS COMPARISON OF THE ALGORITHMS 

 

Method SNR (dB) NCC RMSE 

STFT-SVD 
(L=200, q=0) 

7.53 0.912 0.057 

STFT-SVD 
(L=200, q=2) 

12.97 0.975 0.030 

WT 2.10 0.627 0.107 

EMD 0.236 0.518 0.132 

H-ASVD -9.17 0.273 0.390 

 
 

V. RESULTS: MEASURED DATA 

This Section collects the results of the application of the 
proposed de-noising tool to the measurements carried out by 
two different ultra-wide band PD sensors widely used for on- 
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(a)                                           (b) 

Fig. 13. Case I: layout of the high frequency current transformer 
on a 10-kV CC line (a) and picture of the PD defect on an 
insulator caused by fouling (b). 
 

  
(a) 

  
(b) 

  
(c) 

Fig. 14. Case I: time-domain waveforms and frequency-
domain spectrums of the HFCT-measured PD signal (a), the 
HFCT-measured noise (b), and their combination (c). 
 
 
site PD measurement in cables, transformers, motors, 
switchgears, overhead lines, etc. Two test cases are considered:  
the first one involves a high frequency current transformer 
(HFCT) and the second one an ultra-high frequency (UHF) 
antenna. The achieved de-noising performance is compared 
with the ones obtained through the alternative WT [7], EMD 
[17], and H-ASVD algorithms [23]. 
 

A. Case I: De-noising of a PD signal measured by HFCT  

In this first real application test case, the proposed STFT-
SVD algorithm is applied to a PD signal measured by means of 
a HFCT to demonstrate its de-noising performance. To have a 
controlled environment and test, two measurements are carried 
out: one is related to a PD signal with the smallest possible noise 
corruption and the other involves the contribution of the noise 
only, being this latter associated to another conductor and time  

 
Fig. 15. Case I: de-noising results of real noisy PD signal by (a) 
H-ASVD (the size of Hankel matrix: 390×7810), (b) WT (the 
mother wavelet: dB8), (c) EMD (the ensemble number: 300), 
and (d) the proposed STFT-SVD (M=200, q=2). The green, 
blue, and red lines denote the noisy, original, and de-noised 
signal, respectively. The insets zoom in the PD pulses. 
 
 
window where only the spurious disturbance is recorded. The 
PD signal originates from a soiled insulator in a 10-kV covered 
conductor (CC) line, as shown in Fig. 13. The passband 
frequency of the HFCT is in the range of 0.5-30 MHz and the 
sampling frequency for data collection is 125 MHz. 

Figure 14 collects both the time waveforms and the 
corresponding frequency spectra of the PD measured signal and 
noise. Specifically, panel (a) corresponds to the PD signal 
measured as closer as possible to the insulator, to reduce the 
detrimental effects of noise and to produce a reference response 
which is eventually compared with the reconstructed PD. Panel 
(b) and panel (c) corresponds to the noisy contrition and to the 
PD noisy response, respectively. The PD noisy response is 
generated by summing the noiseless and the noisy waveforms. 
It is important to point out that the noisy waveform of Fig. 14(b) 
includes both the effects of the white noise and of the discrete 
spectrum noise, as discussed in the synthetic test example 
considered in Section II. Also for this case, the PD pulse, for 
both the time- and the frequency-domain waveforms, is 
massively cluttered by the effect of the large superimposed 
noise, thus making the de-noising a challenge.  

De-noising is carried out starting from the time-domain 
measured response of Fig. 14(c) by using all the considered 
algorithms. In the proposed STFT-SVD algorithm, the tuning 
parameters are defined as follows. According to (18) and the 
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suggested range of 𝛼 between 20 to 60, M should be chosen in 
the range between 83 and 254. It is important to point out that 
the discussion of the role of M in Sec. IV.B and the additional 
simulation analyses have proven that  the overall accuracy of 
the method has a very low sensitivity to this parameter. For this 
test case, the window width value is set to 200 sampling points 
(corresponding to the ratio 48  ), which enables the 
frequency resolution to be 0.625 MHz. A similar reasoning and 
behavior holds for the other parameter (i.e., the attenuation 
control factor in the soft masking) which is set to 2, due to the 
high-level noise. 

Fig. 16 offers the results of the cross comparison. We can 
find that it illustrates the superior performance of the proposed 
tool which yields a very good reconstructed PD signal (see Fig. 
15(d)). From the responses in the figure, we can observe that 
the H-ASVD algorithm fails to remove the discrete spectrum 
noise (see Fig. 15(a)), the WT algorithm effectively reduces 
most of noise but leads to a visible distortion (see Fig. 15(b)), 
and the EMD algorithm can only discriminate the PD signal 
vaguely and leads to a significant distortion (see Fig. 15(c)). To 
sum up, this test has proven the nice features of the proposed 
de-noising tool for in field measurements via HFCT. 
 

      

(a)                                         (b) 

Fig. 16. Case II: layout of a UHF sensor on a 110-kV gas-
insulated switchgear (a) and picture of X-ray imaging 
inspection of the detected internal air gap PD defect of a basin 
insulator (b). 
 
 

B. Case II: De-noising of a PD signal measured by UHF  

In this second comparison, a real noisy PD signal is measured 
by means of a UHF in 110 kV gas-insulated switchgear as 
shown in Fig. 16 (a). The PD was caused by an internal air gap 
in a basin insulator, as shown in Fig. 16(b). The passband 
frequency of the UHF antenna is in the range of 300-1500 MHz. 
The sampling frequency of the data collection device is 10 GHz.  
As done in Case I, the time-domain waveform and the 
corresponding frequency spectrum of the noisy signal are 
shown in Fig. 17. It can be observed also in this case that the 
PD pulse is almost drowned out by the noise. The edge of the 
PD pulse is zoomed in Fig. 17(c), where a visible oscillation 
with a specific frequency appears from about time t0, which is 
credibly regarded as the starting point of the PD pulse. 

Based on the observations of the tuning parameters used in 
test case I, the same values of M and q are selected for this 
second example (hence M=200 and q=2). In this case, the 
window width value in the proposed STFT-SVD algorithm 

   
 (a)                                       (b) 

 
(c) 

Fig. 17. Case II: time-domain waveform (a) and frequency-
domain spectrum (b) of a real noisy PD signal in a 110-kV gas-
insulated switchgear, measured by a UHF sensor. The starting 
of the PD pulse is zoomed in (c). 
 
 

 
Fig. 18. Case II: de-noising results of a real noisy UHF-
measured PD signal by (a) H-ASVD (the size of Hankel matrix: 
1000×20000), (b) WT (the mother wavelet: dB8), (c) EMD (the 
ensemble number: 300), and (d) the proposed STFT-SVD 
(M=200, q=2). The green line denotes the noisy signal, and red 
line denotes the de-noised signal. The insets zoom in the 
starting of the PD pulse. 
 
 
corresponds to the ratio 24   in (18), which enables a 
frequency resolution of 50MHz. 

The results of this cross comparison are collected in Fig. 18.  
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It demonstrates the superior performance of the proposed tool, 
which gives a good performance in detecting the starting of the 
PD pulse (see Fig. 18(d)). This is essential for PD source 
localization, which is nowadays one of the common functions 
required for PD diagnosis on gas-insulated switchgears in order 
to improve their maintenance efficiency. From the responses in 
the Figure we can observe that the H-ASVD algorithm is 
effective in reducing most of the white noise, but some discrete 
spectrum noise remains, making it quite difficult to identify the 
start of the PD pulse (see Fig. 18(a)). The WT and EMD 
algorithms effectively reduce most of the noise, but lead to 
remarkable distortions, causing the loss of the pulse starting 
information (see Fig. 18(b) and (c)). In summary, this test has 
verified the nice features and benefits of the proposed de-
noising algorithm in detecting the pulse starting for field PD 
localizations via UHF. 

VI. CONCLUSION 

In this paper, an automatic PD de-noising algorithm is 
proposed. It is based on a well-defined automatic procedure 
which involves the joint application of the STFT and the SVD 
tools. The former time-frequency transform enables the 
separation of the functional behavior of the PD signal and of the 
possibly superimposed discrete spectrum noise and the white 
noise background disturbance. The latter matrix decomposition 
allows to separate all the different signal contributions in terms 
of the dominant terms (or modes) and filter out all the noisy 
terms. The algorithm also embeds some additional features, 
including a soft-masking mechanism and the optimal selection 
of the terms leading to the accurate estimation of the noiseless 
PD signal. The proposed method is demonstrated on a first test 
case involving a synthetic PD signal which is fully controllable 
and can be used to validate and stress the tool in extreme 
conditions (e.g., with a very large impact of noise). A second 
test case is then considered, where the real measured data are 
processed and de-noised. A cross comparison with some state-
of-the-art alternatives is carried out for all the test cases. To sum 
up:  
1) The proposed algorithm is fully automatic. Minimum 

description length and Kurtosis criterions are used to 
automatically select the dominated components to 
reconstruct the estimated noiseless PD signal; 

2) The synthetic test case and the simulation results prove 
that the proposed de-noising scheme can adaptively 
reduce, selectively, both of the white noise and the 
discrete spectrum noise in all the considered (three 
representative types) PD pulses; 

3) The white noise reduction is further improved by applying 
a soft masking to the time-frequency spectrogram and by 
filtering out the remaining white noise (together with the 
discrete spectrum noise) by the selection of PD-dominant 
contributions. 

4) The application of the tool to real measured data 
demonstrates its effectiveness, as it causes a significantly 
less waveform distortion than other state-of-the-art 
alternatives. So this tool has a qualified capacity to detect 
the important parameters of the signal for advanced PD 
waveform-based applications, such as PD localization. 

Future works will investigate a possible application of the 
proposed algorithm to an embedded system, which may offer 
a cheap and effective alternative solution for on-line PD 
monitoring. 
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