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Abstract
With increasing attention to physical human-machine interaction (pHMI), new control methods involving contact
force regulation in collaborative and coexistence scenarios have spread in recent years. Thanks to its internal robust-
ness, high dynamic performance, and capabilities to avoid constraint violations, a Model Predictive Control (MPC)
action can pose a viable solution to manage the uncertainties involved in those applications. This paper uses an
MPC-driven control method that aims to apply a well-defined and tunable force impulse on a human subject. After
describing a general control design suitable to achieve this goal, a practical implementation of such a logic, based
on an MPC controller, is shown. In particular, the physical interaction considered is the one occurring between
the body of a patient and an external perturbation device in a dynamic posturography trial. The device prototype
is presented in both its hardware architecture and software design. The MPC-based main control parameters are
thus tuned inside hardware-in-the-loop and human-in-the-loop environments to get optimal behaviors. Finally, the
device performance is analyzed to assess the MPC algorithm’s accuracy, repeatability, flexibility, and robustness
concerning the several uncertainties due to the specific pHMI environment considered.

1. Introduction
In recent years, cooperative robotic systems have spread not only in industrialized environments, such as
in Industry 4.0 [1–4] but in everyday life. Automated machines have become more compact and afford-
able to the general end-user, encouraging a renewed trust towards robotics in business [5], automotive
[6], home care [7], and healthcare [8, 9]. In addition, more dedicated design choices enable efficient
yet intuitive physical human-machine interaction (pHMI) [10–13]. pHMI-based technologies should
consider additional uncertainties which can result from dissimilar behavioral attitudes due to psycho-
logical, sociological, or cultural differences or involve different physical-physiological characteristics
[14]. A well-posed pHMI-based technology should adjust to or dampen out these uncertainties, assur-
ing safe operational conditions [13, 15], satisfy appropriate efficiency, and avoid possible execution and
evaluation errors, providing accurate and intuitive feedback responses [16]. The real-time control and
monitoring of the contact forces are one of the main design specifications for pHMI applications. For
this reason, the impact phenomenon can be managed by control logic architectures able to dampen out
the non-linearities involved [17] and the variability of unknown parameters related to human reaction.

Control strategies are crucial to achieve maximum performance and confidence and improving
ergonomics [18], flexibility [19], accuracy, and repeatability [20]. pHMI-based technologies often focus
on force control methods such as admittance control [21–23], impedance control [9, 24, 25], and direct
force control [26]. Simpler design choices could be discarded over more complex control strategies
involving adaptiveness [27, 28], robustness [29–31], and predictiveness. Among the different approaches
available, MPC can be selected due to its internal robustness, dynamic performance, and capabilities to

C© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574723001066 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001066
https://orcid.org/0000-0002-8274-0234
https://orcid.org/0000-0001-5484-7491
https://orcid.org/0000-0003-0687-0739
https://orcid.org/0000-0002-5831-8156
https://orcid.org/0000-0002-0783-6308
https://orcid.org/0000-0002-9703-9395
mailto:carlo.debenedictis@polito.it
https://doi.org/10.1017/S0263574723001066


3410 Daniel Pacheco Quiñones et al.

Figure 1. A sketch of the 1 degree of freedom plant model.

avoid constraint violations dictated by the plant and the actuation system [32–35]. In the MPC strategy,
the system to be controlled is totally or partially known a priori, not only through a state space quadruplet
representation but also in possible constraint equations involving both the plant and the actuation parts.
The MPC can thus compute online the best control action by selecting it through a prediction of the
gray-box model of the system. The MPC can be tuned through testing procedures such as Model-in-the-
loop (MIL), Hardware-in-the-loop (HIL), and Human-in-the-loop (HuIL) [36]. MPC-based techniques
have a considerable range of applications. For example, while in dos Santos et al. [32] an MPC loop
is used to find optimal stiffness parameters for a lower limb-rehabilitation exoskeleton impedance con-
troller, Erickson et al. [33] couples the MPC with a learning-based model for pHMI-assisted dressing.
Moreover, Teramae et al. [34] and Okada et al. [35] exploit MPC online calculations to adapt the control
algorithm, respectively, to assist a patient rehabilitative movement only when needed or to comply with
various pHMI proficiency levels during limb motion training and rehabilitation.

In previous works from the authors [37, 38], an MPC algorithm is developed to impress on a target
human body a well-defined and tunable force impulse during posturography trials, in which human bal-
ance is assessed for clinical purposes. The system consists of an electric actuator and a hybrid force/speed
control architecture. Previous MIL and HIL tests highlighted the adequate dynamic performance of the
perturbation device, with some limitations in the accuracy of impulse and force profile tracking [37].
The switching behavior of the proposed control logic led to an undesired delay between human-device
contact and the actual control of the force signal. A renewed control logic able to bypass the issue is
preliminarily presented in Paterna et al. [38], of which the present paper represents an extended version.
The proposed solution’s control performance, flexibility, and robustness are verified in a wider scenario,
including HIL and HuIL trials.

2. Model predictive control to manage human-machine interaction
2.1. General description of the plant and the control problem
The objective of control design is the regulation of the contact force in the impact between the body of a
human subject and an external automatic perturbation device. In the following, a brief presentation of the
control logic formulation is reported, with additional details included in Pacheco et al. [37]. The control
input (u) and the output (y) of the plant model, sketched in Fig. 1, are the device force control signal
and the contact force at the pHMI interface, respectively. The plant lumped-parameter model treats the
device and the human target as 1 degree of freedom (dof) point masses connected to the environment
through springs and dampers. Each connection represents a physical constraint to the oscillation of the
corresponding mass. Thus, spring and dampers characteristics can be appropriately modulated to exhibit
the desired behavior. Although this approach greatly simplifies any human-machine interaction, which
generally is multidimensional (up to 6 dof), it enables the modeling of several pHMI scenarios with
different dynamics. During the impact, a viscoelastic element connects the device and the target, so the
contact force is modeled as an internal force, and contact loss is unmodeled.

More accurate models of impact phenomena are possible but require information about the bodies’
relative penetration, speed, and damping [17]. These parameters are difficult to measure or estimate,
so it is necessary to introduce dedicated sensors, which increase the bulkiness and system complexity.
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Although the gap between the model and the reality directly impacts the control performance, a simpli-
fied model is preferred to find a tradeoff between algorithm performance, simplicity, and computational
cost.

The MPC bases its action on minimizing a customizable cost function through quadratic program
optimization [39]. The cost function is a weighted quadratic sum over Hp (i.e., prediction horizon) time
steps of the following control parameters: the tracking error ey with respect to the reference signal, the
control input u, and its rate du. These three parameters are tuned through the weights Q, Ru, and Rdu,
respectively. Other weights considered for the cost function optimization are the terminal cost Sy over
the output (i.e., contact force) y and slack variable soft constraint violation weight ρε . All weights are
usually diagonal matrices. Among different strategies, this cost function structure is selected due to its
overall composition and software implementation simplicity.

The higher the tunable weight, the greater the minimization of the respective parameter during the
optimization process. In other words, increasing Q leads the algorithm to focus on minimizing the output
tracking error while increasing Ru or Rdu reduces, respectively, the control input value and its speed.
However, as the cost function is a sum of intercurrent addenda, the optimization of one of the three
parameters (ey, u, du) occurs at the expense of the other two. Therefore, increasing Q reduces the output
tracking error but at the same time increases the ringing due to higher control input and control input
speed [39].

The quadratic program optimization is subject to the state space representation quadruplet, actuation,
and plant parameter constraints, such as the maximum permissible contact force (umax). At the beginning
of the impact, the control input can be saturated to a predefined value (usat) for a predefined time interval
(Sdt) to compensate for the impact phase non-linearities unmodeled in the plant model due to the reasons
mentioned above. usat and sat must be set accordingly to the desired contact force magnitude.

The control input can be further enriched by varying tunable weights during the MPC action, that is,
the time interval from the end of the Sdt to the end of the perturbation. As the cost function is updated
online step-by-step, an interpolating behavior between initial and final generalized weight values W 0 and
W end is expected. In this solution, weights are time-dependent and made to follow the ramp expression,
which has been arbitrarily chosen:

W (t) = W0 + Wend − W0

dtstrike − Sdt
t (1)

where dtstrike is the perturbation onset.

2.2. MPC application to dynamic posturography
The presented MPC algorithm can be used to control the mechanical disturbances (i.e., perturbations)
provided to a patient’s body [37, 38, 40] to investigate balance and posture issues. Preliminary studies
highlighted that the force impulse (force-time integral, FI) resulting from the contact should range within
2–10 Ns to elicit a detectable postural response and, at the same time, to keep the subject in the standing
position without any risk of falling [41, 42]. To obtain the desired FI in a brief time, comparable with
the neuromuscular response time, a rectangular force profile of 250 ms and a magnitude between 20 N
and 50 N was chosen as the reference force profile.

The application of the mechanical disturbances is performed by means of the perturbation device, as
shown in Fig. 2a, whose architecture has already been outlined in previous works [37, 38]. It includes
a tubular electric linear motor (1) (GD160Q, NiLAB GmbH, Klagenfurt am Woörthersee, Austria),
allowing accurate rod motion control while developing the high acceleration necessary to meet the
specifications of the contact force profile. The stroke of the actuator (100 mm) has been selected to
compensate for relative motion between the device and the patient’s body. The actuator is controlled by
a Simulink R© (MathWorks Inc., Natick, MA, USA) operated real-time target machine (Speedgoat Inc.,
Natick, MA, USA) and a single-axis servo controller (SLVD1N, Parker Hannifin Corp., Cleveland, OH,
USA), and triggered through a pushbutton (5). The contact force is monitored by a calibrated load-cell
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Figure 2. Perturbation device’s rendering (a); perturbation system (b).

sensor (2). At the end of the rod, the striking interface is adequately covered by an expanded polyethy-
lene layer (4), and its displacement is monitored by the motor’s embedded encoder and a laser sensor
(3), serving for limit-switch purposes.

A trained operator must place the device about 10–20 mm away from the patient’s body before per-
turbation generation, as shown in Fig. 2b. The flexibility introduced by an operator directly maneuvering
the device enables the customization of several perturbation features, namely the point of application, the
direction, and the reference contact force profile through a dedicated interface. Although the unknown
compliance of the operator represents a challenge to system robustness and repeatability, the handheld
configuration is advantageous because it reduces the implementation cost, the bulkiness and ensures
the system’s portability. The control action should produce repeatable contact force and dampen out all
the uncertainties coming from the non-linearities of the impact and the physiological and behavioral
changes in both the patient and the operator.

2.3. Control logic of the perturbation device
The control of the perturbation device is based on the finite state machine criterium. The device’s states
are as follows:

1. Idle: the perturbator’s rod is fully retracted. During this state, the operator may issue sensor
calibrations or tune the control action;

2. Operational: issued by a trigger signal from the operator by the hardware pushbutton or via the
user interface. The operational state includes the following phases:

3. Approach: in which the motor’s rod is moved forward with a predefined approaching speed (va);
4. Strike: in which the rod end reaches the target, and the control algorithm manages to impress a

predefined FI stimulus. The strike phase is triggered once the load-cell measurement overcomes a
threshold value (3 N) over three consecutive time steps (3 ms). Otherwise, upon reaching a thresh-
old displacement detected by the optical sensor, the rod automatically moves to the retraction
phase;

5. Retraction: in which the motor’s rod is moved backward with a predefined retraction speed (vr)
and stopped with a limit switch detected by the optical sensor;

6. Emergency: triggered by pressing again the pushbutton, the motor immediately stops working.

2.4. Control logic implementation
The motor’s driver software is of paramount importance as an intermediary between the Simulink envi-
ronment and the linear electric motor. The driver can work with several operating modes and implements
a pico-PLC for logical operations. The one selected is the speed control mode. As in Fig. 3, the speed
control mode can be divided into the following main blocks:
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Figure 3. Overall control scheme, with the SLVD1N driver in speed control operating mode.

• Speed closed-loop control: involving as reference an analog input coming from the real-time
target machine and the speed measured by the motor’s embedded encoder as feedback. Before
entering the loop, the driver modulates the reference speed through accelerations and decelera-
tion ramps (1). An integrative controller on the speed tracking error performs the control action.
A first-order low pass filter (2) (cutting frequency f c = 248 Hz) was selected as a tradeoff between
the introduced delay (∼= 4 ms) and noise dampening.

• Current saturation block (3): limiting the actuation force by saturating the control input. The
threshold value is the minimum among various inputs, such as peak current, nominal cur-
rent (only when thermal protection is active), and the auxiliary analog input, which is a
voltage signal (gain equal to 5.79 N/V) meant for possible online operation on force thres
holding.

The approach and retraction phases are performed through the speed closed-loop control by impos-
ing proper and constant reference speed values via Simulink. The strike phase is actuated by increasing
the reference speed (vs = 0.6 m/s), selected high enough to saturate the speed control loop in a few
milliseconds. With the speed control loop saturated, the force control loop is closed by employing
the MPC controller, acting through the auxiliary analog input, and having as feedback the contact
force registered by the load cell, as shown in Fig. 3. Acting on the force loop only, all MPC tunable
weight matrices presented in Section 2.2 are scalar quantities. In addition, the toggling between the
speed and force control modes, which negatively affected the results presented in Pacheco et al. [37], is
avoided.

3. Hardware and human-in-the-loop testing and discussion
3.1. Testing setup and evaluation criteria
Two different testing setups have been considered and analyzed:

• Hardware-in-the-loop (HIL), in which a dedicated test bench, presented in [37] and depicted
in Fig. 4, is employed to assess the performance of the perturbation device in a controlled
environment.

• Human-in-the-loop (HuIL), in which one or more operator handheld the device to hit a rigid fixed
target or a healthy subject’s back (Fig. 2). HuIL tests are needed to evaluate the performance of
the device in a more realistic scenario.

https://doi.org/10.1017/S0263574723001066 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001066


3414 Daniel Pacheco Quiñones et al.

Figure 4. Test bench configuration for HIL. A detailed description of all elements is reported in [37].

In both working configurations, experimental tests aim to optimize the device’s performance and
evaluate its accuracy, robustness, and flexibility. To this end, four trial sessions were held:

A. Parameters tuning. Firstly, the control action parameters Q, Ru, Rdu, Hp, Sdt, usat, and va are
tuned in the HIL configuration, (Q, Rdu) additionally varying linearly according to (Eq. (1)).
Then some of them (Q, Ru, Hp, Sdt) are adjusted through an experimental series carried out
by a trained operator on a fixed rigid target, with Rdu additionally varying linearly according
to (Eq. (1)). HuIL tests are needed due to differences between the test bench and the operative
condition and to set additional parameters, such as modeled operator stiffness ka. In all these
tests, a rectangular pulse of 40 N and 250 ms is selected as the reference force signal in the strike
phase. Five consecutive stimuli are performed for each parameter configuration.

B. Control accuracy. The device performance in HIL configuration is compared to the result
obtained with the hybrid force/speed control architecture [37] to highlight the force-tracking
improvement. Rectangular pulses of 50 N lasting [50, 100, 150, 250] ms are selected as force
reference profiles. Five perturbations are performed for each force profile.

C. Control robustness test. The control robustness is verified by recruiting 10 untrained operators
(7 males; 3 females; 24–52 years) to hit a fixed rigid target. In this series, the perturbations
had the same duration (250 ms) but different force magnitudes [20, 30, 40, 50] N. Each operator
provided 22 perturbations, the first two to familiarize with the device and then five perturbations
for each force level in random order.

D. Control flexibility test. Finally, the control flexibility is verified by evaluating the device per-
formance for different perturbation magnitudes (rectangular pulses of [20, 30, 40, 50] N and
250 ms) in both HIL and HuIL configurations. The latter involved only one operator using the
device against a fixed target and on a healthy subject. Five perturbations are performed for each
profile and working configuration.

In all the tests, the device performance is evaluated by the following two percentual indices: the
Tracking Accuracy Error (TAE) (Eq. (2)) and the Force Impulse Deviation (FID, calculated when the
contact force is higher than 3 N) (Eq. (3)).

TAE = 100

∫
�t

|fm − fr|
FIr

% (2)

FID = 100
FIm − FIr

FIr

% (3)

where �t is the contact time interval; f r and f m are the reference and measured force values; FIr

and FIm are the reference and measured impulse values. FID and TAE in the text are expressed as
mean ± standard deviation values.
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3.2. A: Tuning results
3.2.1. HIL parameters optimization
The results of the HIL tests that consider only constant weights for the MPC algorithm are shown in
Fig. 5 and summarized in Table A1 in Appendix A:

• High Q values minimize the control output error; hence, the force signal rapidly reaches the
reference value. On the other hand, increasing Q reduces du optimization. The resulting quick
control input variation leads to increased ringing, especially in the second part of the perturbation
(see Fig. 5a). The lower value (Q = 1) is chosen.

• As Ru increases, the control input decreases to balance the initial overshoot at the expense of
tracking error minimization. Consequently, the average force magnitude is lower than the ref-
erence value. On the other hand, decreasing Ru means higher control input values during the
whole strike time interval, increasing the tracking error in the last steps. Ru has been selected as
a tradeoff value between the two behaviors (Ru = 0.2, see Fig. 5b).

• Increasing Rdu leads to longer settling time due to the control input speed reduction; however, a
low value of Rdu causes a greater undershoot due to the sharp decrease of the control input. Rdu

has been selected as a tradeoff between the two behaviors (Rdu = 5, see Fig. 5c).
• Compared to the previous parameters, the variation of the power of prediction of the controller

Hp has less effect on the system output, maybe due to the simplified assumptions of the model.
Therefore, the lowest Hp value (Hp = 10) has been set to avoid high computational costs (see
Fig. 5d).

• Finally, Sdt, usat, and va should be appropriately set (Sdt = 10 ms, usat = 45 N, va = 0.25 m/s) and
adapted to the magnitude of the reference force value to reduce the initial overshoot (equal to
about 16% of the force reference value) by maintaining a limited rising time (4.4 ± 0.55 ms) (see
Fig. 5e, f, g).

The final configuration of the parameters (Fig. 5h, continuous red line) highlights good performance:
the contact force is almost constant and close to the reference throughout the considered time interval.
Moreover, FID and TAE are (1.39 ± 0.44)% and (11.6 ± 0.44)%, respectively.

At this point, the tuning is finished through the time-varying control weights. To rapidly reach the
force reference value while maintaining a stable force profile in the last part of the strike phase, the effect
of a decreasing linear pattern of Q is investigated (Q0 = 10; Qend = 1). As expected, the new force profile
(Fig. 6, red dotted lines) oscillates around the reference force value earlier. However, due to the increased
Rdu weight, the control input does not decrease fast enough to follow the reference value stably, showing
worse performance than the optimized constant parameters setup (Fig. 5h, Table A1, g row).

The increasing linear pattern of Rdu (Rdu,0 = 5; Rdu,end = 10) is also tested. Increasing Rdu makes control
input less sensitive to ey and reduces ringing at the end of the strike. The control input and force profiles
are shown in Fig. 7. FID and TAE of the force profile obtained with the non-constant Rdu value are
respectively equal to (0.42 ± 0.34)% and (11.4 ± 0.24)%, showing slightly better performance than the
optimized constant parameters setup (Fig. 5h).

3.2.2. Human-in-the-loop-optimization result
A previous work [38] focused on the identification of the best set of parameters for the handheld con-
figuration. The tuning parameters were Ru, Q, Hp, Sdt, and ka as the operator stiffness ka is not known
a priori. Rdu, usat, and va were kept constant and equal to 10, 52 N, and 0.3 m/s, respectively. The most
accurate force profile (Q = 3, Ru = 0.2, ka = 15,000 N/m, Hp = 20, Sdt = 15 ms) is shown in Fig. 8a, with
FI = 10.4 ± 0.56 Ns, FID = −3.68 ± 5.61%, TAE = 13.6 ± 2.30%. Although increased with respect to
the best profile presented in the HIL test (Fig. 8b, c), the variability of the perturbation magnitude is
comparable with that observed in previous experimental studies [41–44]. Moreover, FID and TAE mean
values are, respectively, still less than 5% and 15%. Finally, the initial undershoot is due to the dynamics
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Figure 5. HIL force tracking for different values of the tuning parameters. Reference force signal are
black, and each colored line is the measured contact force profile averaged over five consecutive stim-
uli. Profiles, tuning parameters, and their respective performance indices are reported in Appendix A,
Table A1.

occurring after the impact, involving the rebound between the motor end and the target. Indeed, a partial
loss of contact occurs, and it is quickly balanced by the controller.

For the same reason explained in Section 3.2.1, the non-constant Rdu trend is tested (Rdu,0 = 5; Rdu,end =
10). However, as shown in Fig. 9, introducing the time-varying control weight (red dotted lines) does not
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Figure 6. Force tracking (left) and control input (right) of the HIL test by imposing Q equal to constant 1
(blue dash-dot lines), constant 10 (green lines), and a linear function from 10 to 1 (red dotted lines). Each
colored line represents the experimental result averaged over five consecutive stimuli. The reference
force signal is black. The bottom plots show details of the two graphs on top.

Figure 7. Force tracking (left) and control input (right) of the HIL test by imposing Rdu equal to constant
5 (dash-dot lines), constant 10 (green lines), and a linear function from 5 to 10 (red dotted lines). Each
colored line represents the experimental result averaged over five consecutive stimuli. The black lines
are the reference force signals. The bottom plots show details of the two graphs on top.

significantly improve the tracking performance. TAE of the force profile obtained with the non-constant
Rdu value is equal to 13.05 ± 0.85%, and does not differ significantly from the TAE value obtained with
constant Rdu = 10 (Fig. 9, green lines). The non-constant weight control is no longer successful, perhaps
due to the increased data variability due to the operator handling the device.

3.3. B: Control accuracy
The achieved HIL results can be compared to the force profile (rectangular wave of 50 N, 250 ms)
obtained with the previous version of the control logic based on a hybrid force/speed control archi-
tecture tested in HIL [37]. As highlighted in Fig. 10 (dotted blue line), the toggling between the speed
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Figure 8. HuIL force tracking averaged over 5 consecutive stimuli (a). Five stimuli registered with the
optimal parameter configuration in HIL (b) and HuIL (c) tests. The reference force signal is black.

Figure 9. Force tracking (left) and control input (right) of the HuIL test by imposing Rdu equal to
constant 5 (blue dash-dot lines), constant 10 (green lines), and a linear function from 5 to 10 (red dotted
lines). Each line is averaged over five consecutive stimuli, black lines being the reference signal. The
bottom plots show details of the two graphs on top.

and force loops introduces a delay between the initial actuator-target contact and the actual stimulus.
The toggling, in fact, is operated by the pico-PLC embedded into the driver, which has a finite update
rate. This introduces unwanted transient dynamics to the contact phenomenon, with losses in terms of
raising time and overall tracking error. The present control logic, based on the modulation of the satu-
ration current, allows to overcome the toggling and significantly improves the device performance (see
Fig. 10, continuous red line). The HIL’s FID and TAE of the most accurate force profile obtained in
Pacheco et al. [37] are about [−15; 24]%, compared to this paper in which they are about [−0.56; 12]%.
In the latter, the apparent high value of TAE is mainly due to the non-instantaneous falling edge of the
perturbations.

Thanks to the elimination of the initial delay, good results are also obtained for less-lasting pertur-
bations without changing the optimization parameter, as shown in Fig. 11. Short-lasting perturbations
are generally less accurate than longer ones due to the greater influences of the impact’s non-linearities
and the initial kickback. Therefore, by reducing the duration, the FID increases from 0.19% (150 ms)
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Figure 10. Comparison between the hybrid force/position control logic architecture (dotted blue line)
in HIL [37] and the current control logic in HIL (continuous red line). The force profiles are averaged
over five stimuli. The black line is the reference force signal.

Figure 11. Force tracking of 50 ms (a), 100 ms (b), 150 ms (c) perturbation profile in HIL configuration.
Each line is averaged over five consecutive stimuli, black continuous lines being the reference signal.

to −1.3% (100 ms) to 5.2% (50 ms), while TAE increases from 15% (150 ms) to 19% (100 ms) to
31% (50 ms). However, maintaining the same optimized tuning parameters avoids the large overshoot
highlighted in the short-lasting force profile in Pacheco et al. [37], which could be unsafe for the
patient.

3.4. C: Control robustness
Ten different operators are recruited. Each of them handles the prototype to hit a fixed target to
assess the effect of operator behavior on device performance. Posing the same reference duration of
250 ms, reference magnitudes f r and force impulses FIr are, respectively, equal to (20,30,40,50) N and
(5.0,7.5,10.0,12.5) Ns. The 10 averaged contact force profiles, shown in Fig. 12 and Table A2, reported in
Appendix A, show similar behaviors per reference force profile. With a coefficient of variation less than
5% on average per reference profile, the test demonstrates that the device performance is not strongly
affected by the variability introduced by the operator. This result confirms the control system’s robust-
ness regardless of the subject’s characteristics handling the perturbation device. In addition, the results
emphasize the feasibility of the handheld configuration, which represents a compact and easy-to-use
solution.
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Figure 12. Force profiles by 10 operators. Each curve is the mean over five consecutive stimuli.

Figure 13. HIL (top row), HuIL with fixed target (middle row), and HuIL with human target (bottom
row) results for four reference force profiles superimposed on the respective reference profile (in black).

3.5. D: Control flexibility
The device flexibility is evaluated by testing different magnitudes reference force profiles in both testing
setups (HIL, HuIL). Only one operator is recruited for HuIL tests. The operator first hit a rigidly fixed tar-
get and then a healthy subject. The reference force profiles are selected equal to Section 3.4. The results,
shown in Fig. 13 and Table A3, reported in Appendix A, highlight that the data variability increases
in the handheld condition. Despite this, the performance is still satisfactory, and the FI coefficient of
variation is equal to 2.51% on average. Although the increasing variability, only slight differences are
evident among HIL and HuIL average force profiles; hence, the device performance is not significantly
affected by the subject’s and the operator’s mechanical impedances.

4. Discussion and conclusion
An MPC-based control algorithm and a case study device to manage the force control loop in pHMI were
presented in Section 2. The results, shown in Section 3, highlight that, with the adequate tuning of the
control parameters, the proposed architecture can provide sufficiently accurate impulsive contact force.
The high dynamic behavior shown in HIL results, that is the fast onset of the perturbation signaled
by a first steep peak, seems to be related to the approach velocity only (Fig. 5g). Control parameters
tuning effects only appear in the force trend shown after the first peak, in which impact physics is no
longer predominant and the current saturation block, detailed in Section 2.4, gains control. Applying
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the MPC action to the current saturation block of the driver allows substantial dynamic performance
improvements compared to the previous version of the control design described in Pacheco et al. [37].

On the other hand, performance does not seem to benefit from a linear variation of the tunable weights
during the strike. As expected, it brings an interpolated behavior between generalized weights W 0 and
W end during the HIL test. Nonetheless, performance is not always improved (as for varying Q, Fig. 6),
and slight enhancements (varying Rdu, Fig. 7) do not likely justify the added complexity of the control
logic. Future improvements concerning weight variations could involve different interpolating profiles
with respect to the linear one presented in (Eq. (1)). Furthermore, as ringing is predominant after the
first peak, a tuning action on the derivative of the tracking error ey could be implemented.

The difference between the test bench and the handheld setup of the device made it necessary to
set a different control parameters configuration during the HuIL test. Despite the refined tuning opti-
mization, HuIL results show a performance loss and increased variability compared with HIL results
(Fig. 13, Table A3) due to the added uncertainties introduced in the systems. Nonetheless, the HuIL
optimization output exhibits acceptable FI variability (i.e., standard deviation) for the application con-
sidered. Moreover, the results are not affected by the operator’s and the target’s characteristics regardless
of the force amplitude (Fig. 12, Table A2, Fig. 13, Table A3). These results support the design decision
to develop a handheld prototype that should help reduce the system’s bulkiness, complexity, cost, and
improve transportability. Finally, the possibility of applying contact forces with different magnitudes
without performance loss improves the flexibility of the device and extends its range of applications.

In conclusion, the results demonstrated that, with the appropriate tuning of the control parameters,
accurate and robust tracking of the reference contact force could be obtained despite the uncertainties
introduced in the system by unpredictable human behavior.
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Appendix A
In this section, the parameters used for tuning of the MPC algorithm in the several conditions tested, as
well as the resulting performance indices obtained, are shown for the sake of clarity.

Table A1. HIL parameters tuning.

Q Ru Rdu Hp Sdt (ms) usat (N) va (m/s) FI (Ns) FID (%) TAE (%)
1 0.2 10 10 30 52 0.30 10.5 ± 0.04 5.37 ± 0.38 13.3 ± 0.95

a 9.015 ± 0.05 9.29 ± 0.53 15.7 ± 0.24

9.0101 ± 0.04 9.60 ± 0.45 15.6 ± 0.33

1 0.1 10 10 30 52 0.30 11.2 ± 0.08 11.70 ± 0.80 16.5 ± 1.11

b 0.2 10.5 ± 0.04 5.37 ± 0.38 13.3 ± 0.95

2.94.0 ± 0.04 − 7.97 ± 0.40 20.0 ± 0.37

1 0.2 1 10 30 52 0.30 10.3 ± 0.04 3.18 ± 0.40 12.5 ± 0.29

c 5 10.3 ± 0.05 2.76 ± 0.51 12.6 ± 0.25

5.0101 ± 0.04 5.37 ± 0.38 13.3 ± 0.95

1 0.2 5 10 30 52 0.30 10.3 ± 0.05 2.76 ± 0.51 12.6 ± 0.25

d 5.0102 ± 0.03 4.95 ± 0.34 13.1 ± 0.44

7.01001 ± 0.05 6.71 ± 0.46 14.1 ± 0.39

1 0.2 5 10 5 52 0.30 10.0 ± 0.03 0.32 ± 0.33 11.0 ± 0.38

e 10 10.0 ± 0.04 0.28 ± 0.36 11.2 ± 0.26

30 10.3 ± 0.05 2.76 ± 0.51 12.6 ± 0.25

1 0.2 5 10 10 40 0.30 10.2 ± 0.04 2.00 ± 0.44 11.4 ± 0.33

f 45 10.2 ± 0.02 1.74 ± 0.25 11.3 ± 0.25

52 10.0 ± 0.04 0.28 ± 0.36 11.2 ± 0.26

1 0.2 5 10 10 45 0.20 10.0 ± 0.02 0.24 ± 0.22 11.9 ± 0.55

g 1 0.2 5 10 10 45 0.25 10.1 ± 0.04 1.39 ± 0.44 11.3 ± 0.44

0.30 10.0 ± 0.04 0.28 ± 0.36 11.3 ± 0.25

Letters refer to Fig. 5. FI, FID, and TAE values are reported in mean ± standard deviation format. Colored cells correspond
to the parameters optimized in each optimization round, the highlighted one being the best.
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Table A2. Device robustness HuIL performance with fixed target for different force amplitudes.

f r (N) FIr (Ns) Operator FI (Ns) FID (%) TAE (%) FICoV (%)
20 5.0 1 5.00 ± 0.13 −0.08 ± 2.60 14.20 ± 1.82 3.60

2 4.62 ± 0.21 −7.51 ± 4.28 14.96 ± 2.51
3 5.54 ± 0.15 10.82 ± 3.07 18.54 ± 2.25
4 4.59 ± 0.08 −8.10 ± 1.65 18.18 ± 0.57
5 4.75 ± 0.05 −4.94 ± 1.04 12.99 ± 1.20
6 4.96 ± 0.15 −0.80 ± 3.03 14.83 ± 1.93
7 5.17 ± 0.17 3.41 ± 3.40 14.10 ± 1.04
8 5.34 ± 0.38 6.83 ± 7.65 22.12 ± 3.85
9 4.73 ± 0.24 −5.46 ± 4.84 16.00 ± 1.87
10 5.18 ± 0.23 3.65 ± 4.65 12.86 ± 1.82

30 7.5 1 7.08 ± 0.18 −5.66 ± 2.34 13.52 ± 1.35 3.75
2 6.99 ± 0.47 −6.83 ± 6.21 14.37 ± 3.52
3 7.63 ± 0.44 1.74 ± 5.93 13.94 ± 1.98
4 6.43 ± 0.14 −14.23 ± 1.80 18.75 ± 1.53
5 6.59 ± 0.11 −12.15 ± 1.53 17.34 ± 1.46
6 6.90 ± 0.20 −7.94 ± 2.61 16.03 ± 2.09
7 7.17 ± 0.22 −4.45 ± 2.87 14.72 ± 1.84
8 6.97 ± 0.55 −7.09 ± 7.38 19.33 ± 1.51
9 6.66 ± 0.09 −11.20 ± 1.25 16.30 ± 0.93
10 7.17 ± 0.25 −4.41 ± 3.37 13.10 ± 1.97

40 10.0 1 8.73 ± 0.29 −12.67 ± 2.93 17.54 ± 2.72 3.50
2 8.99 ± 0.21 −10.11 ± 2.14 15.15 ± 1.66
3 9.43 ± 0.53 −5.74 ± 5.32 16.28 ± 1.99
4 8.80 ± 0.35 −11.95 ± 3.48 16.53 ± 2.64
5 9.02 ± 0.42 −9.81 ± 4.20 15.89 ± 1.90
6 8.80 ± 0.09 −11.96 ± 0.89 17.28 ± 0.55
7 8.53 ± 0.27 −14.74 ± 2.68 20.10 ± 1.94
8 9.70 ± 0.5 −2.97 ± 4.95 19.12 ± 2.68
9 8.70 ± 0.15 −12.97 ± 1.55 17.62 ± 1.65
10 9.40 ± 0.38 −5.99 ± 3.76 14.53 ± 1.14

50 12.5 1 10.47 ± 0.65 −16.27 ± 5.16 20.49 ± 3.67 4.86
2 11.48 ± 0.18 −8.12 ± 1.44 14.68 ± 1.19
3 11.39 ± 0.82 −8.85 ± 6.59 18.68 ± 5.53
4 10.37 ± 0.48 −17.06 ± 3.85 21.06 ± 3.01
5 10.38 ± 0.90 −16.99 ± 7.23 21.05 ± 5.50
6 10.39 ± 0.08 −16.88 ± 0.66 21.08 ± 0.63
7 10.69 ± 0.44 −14.49 ± 3.51 20.13 ± 2.56
8 10.53 ± 0.59 −15.80 ± 4.75 23.26 ± 0.73
9 10.21 ± 0.45 −18.33 ± 3.58 22.05 ± 2.45
10 10.92 ± 0.59 −12.66 ± 4.71 17.59 ± 3.30

FI, FID, and TAE values are reported in mean ± standard deviation format. FICoV is the averaged coefficient of variation
of the FI per reference profile. Data refer to Fig. 12.
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Table A3. Device performance for different force amplitudes and testing configurations.

Test f r FIr Sdt usat va

(N) (Ns) (ms) (N) (m/s) FI (Ns) FID (%) TAE (%)
HIL 20 5.0 10 20 0.12 5.15 ± 0.03 2.39 ± 0.74 12.0 ± 0.89

30 7.5 10 30 0.18 7.48 ± 0.04 −0.46 ± 0.79 12.2 ± 0.69
40 10.0 10 45 0.25 10.10 ± 0.09 0.42 ± 0.34 11.4 ± 0.24
50 12.5 10 52 0.30 12.40 ± 0.02 −0.56 ± 0.22 11.8 ± 0.29

HuIL 20 5.0 0 52 0.30 5.32 ± 0.21 6.44 ± 4.25 15.4 ± 1.72
(fixed target) 30 7.5 0 52 0.30 7.35 ± 0.35 −2.06 ± 4.67 13.4 ± 2.15

40 10.0 15 52 0.30 10.40 ± 0.56 3.70 ± 5.59 12.9 ± 2.27
50 12.5 20 52 0.30 12.80 ± 0.28 2.35 ± 2.27 10.9 ± 1.73

HuIL 20 5.0 0 52 0.30 4.95 ± 0.19 −1.02 ± 3.79 17.1 ± 1.57
(human target) 30 7.5 0 52 0.30 6.91 ± 0.24 −7.90 ± 3.22 17.6 ± 2.21

40 10.0 15 52 0.30 9.64 ± 0.08 −3.59 ± 0.77 15.0 ± 0.57
50 12.5 20 52 0.30 12.52 ± 0.15 −0.14 ± 1.20 18.0 ± 2.14

FI, FID, and TAE values are reported in mean ± standard deviation format. HuIL optimization parameters are the same
regardless of the target. Data refer to Fig. 13.
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