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Communication
On the Use of Quasi-Helmholtz Projectors for Modeling Structures

With Junctions at Arbitrarily Low Frequencies
Johann Bourhis , Adrien Merlini , and Francesco P. Andriulli

Abstract— This work investigates the usage of quasi-Helmholtz pro-
jectors to cure the low frequency breakdown of the electric field
integral equation (EFIE) when modeling structures containing junctions.
We show that the quasi-Helmholtz projectors can still efficiently perform
projection into the solenoidal and nonsolenoidal subspaces in the presence
of junctions. Preconditioning strategies leveraging these projectors are
capable of curing the low-frequency breakdown that severely compro-
mises the accuracy and conditioning of the EFIE. Numerical studies
validate the use of algebraic multigrid approaches for achieving fast
and efficient implementation of the proposed scheme for problems with
multiple junctions. The effectiveness of the scheme and its applicability
to problems of industrial relevance is illustrated through a series of
numerical results.

Index Terms— Boundary element methods (BEMs), graph Laplacian,
junctions, low-frequency preconditioning, quasi-Helmholtz projectors.

I. INTRODUCTION

Time harmonic electromagnetic scattering and radiation problems
for perfectly electrically conducting (PEC) objects are often solved
using the electric field integral equation (EFIE) when spurious
resonances cannot arise. Unfortunately, as the modeling frequency
decreases, this formulation is subject to increasingly severe ill-
conditioning and yields increasingly less accurate results because
of loss of significance in floating point operations [1]. A classical
approach to fixing the low-frequency breakdown is to leverage quasi-
Helmholtz decompositions [1] to treat independently the solenoidal
and nonsolenoidal contributions of the elements of the discrete
system. This can be achieved, for instance, using Loop-Star decom-
positions [1], [2], [3], [4]. However, this approach worsens the
conditioning of the system for dense meshes and requires the
identification of the global cycles in the structure, which is often
a burdensome operation [1]. This burden can significantly worsen in
the presence of junctions since they can give rise to a significant
number of global cycles associated with apertures [3], [5].

The quasi-Helmholtz projectors [4] exploit orthogonal projections
over the Loop and Star subspaces to decompose and rescale the
problematic contributions of the system matrices, solution, and right-
hand side. This technique does not require an explicit identification
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of the global cycles and does not worsen the dense discretization
conditioning of the preconditioned equations but its generalization to
the presence of junctions had not been investigated yet.

The contribution of this communication is twofold.
1) The usage of quasi-Helmholtz projector strategies for a

structure containing junctions is investigated, addressing the
questions of completeness and orthogonality of the underlying
decompositions.

2) The computational cost of the approach is analyzed both by
studying the effect of the presence of junctions on the inversion
of the graph Laplacian that appears in the definition of the
projectors and by verifying the overall numerical performance
of the scheme.

In particular, we study numerically the performance of the
aggregation-based algebraic multigrid (AGMG) [6], [7], which is
one possible implementation of multigrid methods, well-known
for providing an efficient preconditioner for graph Laplacian sys-
tems [8], [9]. Our observations show that the effectiveness of the
quasi-Helmholtz projectors approach is not jeopardized in the pres-
ence of junctions and that it can be successfully used with realistic
structures of industrial relevance.

This communication is organized as follows. Section II lays out the
background and notations. Section III analyzes the quasi-Helmholtz
projectors in the context of junctions, addressing their orthogonality,
and the spectral properties of their associated graph Laplacians.
Section IV provides numerical results to validate all the strategies
presented here. Finally, Section V presents the conclusion of the
work. Preliminary results from this communication were presented
in the conference contribution [10].

II. BACKGROUND AND NOTATION

Consider the problem of determining the scattered electric
field Esct radiated when an incident electric field Einc impinges on a
PEC obstacle. We denote by 0 the boundary of the obstacle and by η

the characteristic impedance of the exterior medium. We assume the
fields to be time-harmonic with wavenumber k. The electric current
density J induced over 0 by Einc that radiates Esct can be obtained
by solving the EFIE

T J = −n̂ ×
1
η

Einc (1)

where T = jkTs − ( jk)−1Th , with

(Ts J)(r) = n̂ ×

∫
0

G(r, r ′)J(r ′)dS(r ′) (2)

(Th J)(r) = n̂ × ∇0

∫
0

G(r, r ′)∇0 · J(r ′)dS(r ′) (3)

in which n̂ is the outgoing normal vector along 0 and the Green’s
function is G(r, r ′) = e− jk|r−r ′

|/
(
4π |r − r ′

|
)
.

The EFIE (1) can be solved numerically via the boundary element
method (BEM) by expanding the current as a linear combination of N
Rao–Wilton–Glisson (RWG) div-conforming basis functions [11],
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Fig. 1. Notations of the vertices and cells used to define the RWGs.

denoted ϕn, n = 1, . . . , N

J(r) ≈

N∑
n=1

[
j
]
n ϕn(r). (4)

These functions are defined on a triangular mesh of 0 as

ϕn(r) =

 ±
r − r±

n

2A±
n

, if r ∈ c±
n

0, otherwise
(5)

where the notation for the geometrical elements describing a pair
of adjacent triangle cells c±

n is given in Fig. 1 and A±
n denotes their

respective areas. Note that the definition above does not include edge
normalization.

The EFIE can be used for both open and closed manifolds that
can contain junctions, i.e., structures for which the associated mesh
contains edges shared by more than two cells (see for instance
Figs. 2 and 3 and [12]). A popular approach to handle structures
with junctions is to associate to a mesh edge e which connects
together ne cells, ne−1 independent RWG functions [12], [13]. These
functions are defined by considering ne − 1 independent couples of
cells sharing the edge [13]. Different choices of configurations that
define RWG functions spanning the same space are possible, but they
lead to different connectivity properties between cells. Here and in the
rest of this contribution we consider that two adjacent cells cm and cn
are connected if there exists an RWG function ϕi such that c+

i = cm
and c−

i = cn or c+

i = cn and c−

i = cm . In particular, the degrees of
connectivity—the number of cells connected to a given cell via RWG
functions—and the graph distance—the smallest number of RWG
functions needed to link a given pair of cells—depend on this choice.
We provide in Fig. 2 a visual representation of two of the possible
configurations along with their consequences on the connectivity of
the underlying graph. The nodes of this graph, which we will refer
to as the dual graph of the discretization, correspond to the cells cm
of the mesh, and its edges link pairs of nodes (cm , cn) if there exists
an RWG function ϕi such that c+

i = cm and c−

i = cn . With this
formalism, the total number of basis functions associated with a mesh
containing E edges is N =

∑E
e=1(ne−1). After replacing (4) into (1)

and by Galerkin testing the equation with rotated RWG functions
{n̂ × ϕm}

N
m=1, we obtain the N × N linear system

T j = e (6)

where T = jk Ts − ( jk)−1 Th with [Ts ]mn = ⟨n̂ × ϕm ,Tsϕn⟩,
[Th]mn = ⟨n̂ × ϕm ,Thϕn⟩, and [e]m = −⟨n̂ × ϕm , n̂ ×

Einc/η⟩, and where ⟨ f , g⟩ :=
∫
0 f (r) · g(r)dS(r).

III. QUASI-HELMHOLTZ PROJECTORS FOR

STRUCTURES WITH JUNCTIONS

The EFIE (6) is known to suffer from severe ill-conditioning
and dramatic losses of accuracy at low-frequency (see [1] and
references therein). These problems can be tackled starting with a
Loop-Star decomposition of the solution vector, i.e., by decomposing
the solution vector j in (6) as j = 6s+3l+Hh, where 6, 3, and H
are the Star-to-RWG, Loop-to-RWG, and quasi-Harmonic-functions-
to-RWG transformation matrices, respectively, and s, l , and h are

Fig. 2. Two conventional ways to define an independent set of RWGs on
a junction-edge and their associated graph representation. It illustrates two
extreme configuration scenarios: on the left, the one giving rise to the maximal
degree of connectivity, with one cell connected to all the others; on the right,
the one giving rise to the minimal degree of connectivity (but with higher
graph distance), with each cell connected to at most two other cells through
this edge.

Fig. 3. Dual graph (in red) associated with a mesh (in gray) which contains
open boundaries, a junction, and an aperture. This graph highlights the
existence of two local Loops around the vertex belonging to the junction
and one global Loop around the aperture.

the vectors containing the associated expansion coefficients. In the
presence of junctions, the matrix 6 is defined as in the junction-less
case as

[6]mn =

{
±1, if c±

m is cell n
0, otherwise

(7)

which is also referred to as the charge matrix, in the sense that it
corresponds to the discretization of the divergence operator [1] and
its rank equals the number of independent charges [3]. With this
definition, 6 contains the information on the connectivity between
cells. This connectivity depends on the choice of the RWG config-
uration along the junctions (see the discussion above and Fig. 2)
and impacts the spectral properties of 6. These properties and their
influence on the performance of the proposed method are further
investigated in Section III-B.

Regarding the Loops, we propose the following definition based
on the dual graph faces (see Fig. 3), for compactness

[
3

]
mn =

{
±1, if v±

m belongs to the dual-face n
0, otherwise.

(8)

The construction of the quasi-Harmonic-functions-to-RWG trans-
formation matrix H requires the identification of the global cycles
associated with the genus of the geometry (see [1] and references
therein).

The use of the Loop-Star basis is known to be problematic
under certain circumstances because, on the one hand, it worsens
the conditioning of the original EFIE [1] and, on the other hand,
it requires the detection of topological Loops in H that can jeopardize
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the overall linear complexity of the scheme. Moreover, even the
presence of open structure cycles (that in the formalism of this
communication are associated with the matrix 3) can be problematic
and it can require an expensive cycle detection procedure. The reader
should also note that the recovery of even standard Loops (around
the vertices of the junction edges) can be problematic when several
junctions are present.

The above drawbacks can be tackled by leveraging the quasi-
Helmholtz projectors. Similar to what is done in the junction-less
case, we define the projector to the nonsolenoidal subspace as

P6
= 6

(
6T 6

)+
6T (9)

where “+” denotes the Moore–Penrose pseudoinverse [14], and the
projector to the solenoidal subspace as

P3H
= I − P6 . (10)

Finally, we use the quasi-Helmholtz decomposition provided by the
projectors to compensate for the frequency scaling of the solenoidal
and nonsolenoidal parts of the EFIE system when the frequency is
decreasing [1], [3]. To this end, we define the preconditioning matrix
P = (1/

√
k)P3H

+ j
√

kP6 to form the preconditioned EFIE

P
(

jk Ts −
1
jk

Th

)
P y = Pe (11)

that exhibits a bounded condition number at low-frequency [1], and
where P y = j .

In addition, to avoid loss of significant digits at low frequency, (11)
needs to be expanded in order to impose P3H Th = ThP3H

= 0 and
the Loop contributions of the right-hand side and postprocessing field
solutions need to be computed using specific techniques [1].

A. Study of Orthogonality and Completeness

To ensure the proper applicability of the quasi-Helmholtz pro-
jectors to arbitrary problems with junctions, orthogonality between
the Loop and Star bases and the completeness of the proposed
quasi-Helmholtz decomposition must be verified.

The orthogonality between the Loop (or quasi-Harmonic-functions)
and the Star transformation matrices follows from the fact that,
across a triangle, a cycle has to enter through one edge and to exit
through another one, whereas a Star associated with a given cell exits
across all the branches made by the RWGs on that cell, even in the
presence of junctions. It results in a null dot product between the
columns of 3 (or H) and 6, which finally gives 6T 3 = 0 and
6T H = 0.

Next, we show the completeness of the quasi-Helmholtz decompo-
sition, i.e., that the Loops, quasi-Harmonic functions, and Stars span
the entire RWG space. We establish our result for connected geome-
tries. The generalization to the nonconnected case is straightforward,
by individually applying the following result to each connected
subdomain. We first describe the elements of the dual graph: S is
the number of nodes that correspond to the cells of the mesh, F is
the number of faces that correspond to the local Loops and apertures,
including the exterior boundary of open objects, and H is the number
of handles of the structure, present in both the mesh and its dual
graph, which corresponds to 2H quasi-harmonic functions; N denotes
the number of RWGs and so the number of edges of the dual
graph. We can then relate these quantities using the Euler–Poincaré
formula [15] applied to the dual graph N = (S − 1)+ (F − 1)+ 2H .
First, the number of independent cycles (Loops and quasi-Harmonic
functions) is known to be (F − 1) + 2H [16] where the linear
dependency between the nonharmonic cycles is taken into account.
Next, the rank of 6 is S − 1 since it has a nullspace associated with

the constant vector (it is related to the fact that a div-conforming
current has a neutral charge along the whole structure [3]). As a
consequence, the rank of the subspace orthogonal to the range of 6

is N − (S −1) = F −1+2H , which corresponds to the total number
of independent cycles. Because 3 and H are both orthogonal to 6,
it results in the completeness between the Loop and Star bases and
that P3H is the projector on the solenoidal subspace (local Loops
and global cycles).

B. Spectral Analysis of Graph Laplacians With Junctions

The computation of the Star projector (9) requires solving sys-
tems arising from the pseudoinversion of 6T 6. Thus, the spectral
properties of this matrix directly impact the computational efficiency
of this procedure. In particular, the definition (7) of 6 is the one
of the adjacency matrix of the dual graph described above, which
in turn means that 6T 6 is the graph Laplacian associated with this
graph [17]. The spectral properties of this class of matrices have been
thoroughly studied [17], [18], [19].

First, the graph Laplacian 6T 6 has a nullspace associated with
the constant functions restricted to each connected subdomain of 0.
Because the pseudoinverse of 6T 6 in (9) will only be applied to
vectors living in the range of 6T , we will focus on the spectral
properties of the graph Laplacian restricted to this subspace. In par-
ticular, we will consider the condition number “restricted” to that
subspace that we define as the ratio between the largest singular
value µmax and the smallest nonzero singular value µmin of 6T 6,
i.e., condr (6T 6) = µmax/µmin.

In practice, the convergence of several iterative methods will be
faster if this condition number is close to one, provided that the
initial guess belongs to the range of 6T (see for instance the
convergence results on the conjugate gradient method in solving
singular symmetric systems [20]). The maximal singular value can
be bounded as [18]

δ ≤ µmax ≤ 2δ (12)

where δ denotes the maximal degree of connectivity of the graph
associated with 6T 6. Regarding the minimal nonzero singular value,
we have the upper bound [17]

µmin ≤ 1 −

√
δ − 1
δ

(
1 −

2
D

)
+

2
D

(13)

where D denotes the diameter of the graph associated with 6T 6.
Let us first consider the case of δ growing. Combining (12) and (13)
we get

condr
(
6T 6

)
≥

δ

1 −

√
δ−1
δ

(
1 −

2
D

)
+

2
D

. (14)

This inequality shows that the condition number increases asymptot-
ically with the maximal degree of connectivity δ. When δ is bounded
and D grows, however, (14) does not provide a useful bound, but the
following [19]:

2


√

condr
(
6T 6

)√α2 − 1
4α

+ 1


⌈

logα

S
2

⌉
≥ D (15)

can be used instead, where α is any arbitrary real number greater
than 1, and S is the dimension of 6T 6. This shows that the
condition number increases asymptotically with respect to the graph
diameter D, provided that logα(S/2) increases slower than D. This
requirement is met whenever δ is bounded, since in that case D
increases as Sd , with d = 1 for elongated (quasi-lineic) surfaces,
d = 1/2 for surfaces of balanced length and width and d = 1/3 for
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Fig. 4. Spectrum of the graph Laplacian 6T 6 for structures with multiple
sheets, each discretized with two triangles. The two connectivity configura-
tions of Fig. 2 are tested and yield different spectra for the same structures.

3-D lattice (quasi-volumic) structures. Equations (14) and (15) only
imply an increase of the condition number in the asymptotic limit.
However, these bounds are sharp enough that this increase has been
observed numerically for small degrees of connectivity and small
graph diameters, as shown in Fig. 4.

A direct consequence of (15), is that condr (6T 6) increases
asymptotically when refining the mesh, since D will be increasing.
The second consequence from the above analysis is that the condition
number condr (6T 6) also increases asymptotically when inserting
additional sheets to the structure. To further clarify this, let us
consider the two extreme configurations of RWG functions along the
junctions, illustrated in Fig. 2, both implying different asymptotic
behavior for the degrees of connectivity and graph diameters. In the
first case (as in Fig. 2, left), the graph diameter is not impacted by the
presence of junctions but the connectivity increases with the maximal
number of sheets connected together, which results in an increase of
the condition number. In the second case (as in Fig. 2, right), the
connectivity is bounded but the graph diameter increases with the
maximal number of sheets connected together, which also results in
an increase of the condition number.

Because of this conditioning behavior, the computation of the
quasi-Helmholtz projectors requires an efficient method to precon-
dition and solve graph Laplacian systems. In Section IV, we will
investigate numerically the effects of using multigrid approaches [6],
[7], [8], [9] for this purpose.

IV. NUMERICAL RESULTS

This section will first show the performance of AGMG in perform-
ing the graph Laplacian pseudoinversion required by quasi-Helmholtz
projectors, then the overall preconditioning approach will be validated
on simply and nonsimply connected structures containing junctions.

A. Pseudoinversion of the Graph Laplacian

First, we investigate the use of AGMG, described in [6] and [7]
and its robustness in preconditioning the graph Laplacian 6T 6 in
the presence of junctions. We study the number of iterations as
a function of the number of unknowns when refining the mesh
of structures having a bounded number of junctions and with the
RWG configuration on junctions that maximizes the connectivity

TABLE I
NUMBER OF ITERATIONS ACHIEVED BY AGMG FOR INCREASING

DISCRETIZATION WITH A RESIDUAL ERROR BELOW 10−8

(Fig. 2, left). Table I shows that the number of iterations of AGMG
increases logarithmically with the number of unknowns for various
structures while the restricted condition number increases linearly
with the number of unknowns. This results in a quasi-linear num-
ber of operations since each iteration requires sparse matrix-vector
products.

Next, we address the question of the AGMG performance when
the number of connected sheets increases. Fig. 5 shows the time
required by the setup and solving phases of AGMG as a function of
the number of sheets, when the graph Laplacian is built using the two
extremal RWG configurations (minimal and maximal connectivity).
We observe that the setup time increases almost quadratically when
the number of sheets and the connectivity both increase, while
it remains linear when the number of sheets increases but the
connectivity is bounded. In both cases, the solving time is quasi-linear
with respect to the number of unknowns. Note that for a smaller
number of junctions, we however observe better performance with
the configuration having the maximal degree of connectivity. The
computation time for the first experiment has not been reported above
because the scenario is similar to the second configuration in Fig. 5,
and numerical observations have shown similar behavior.

For this particular version of algrebraic multigrid, our numerical
observations thus point out that the connectivity plays an important
role in the performance of the graph Laplacian inversion using
AGMG and that the proper RWG configuration on junctions can be
chosen to get a robust algorithm.

B. Efficiency of the Quasi-Helmholtz Preconditioning
for Structures With Junctions

We now numerically test the efficiency of the proposed method
with application to the computation of the radar cross section (RCS)
of a jet engine illuminated by an incident plane wave Einc(r) =

ẑe− jkr·x̂ . The shell of the engine is a toroidal geometry that gives
two quasi-harmonic functions. On the front, the blades of the turbine
are approximated by metallic sheets and are connected to the rotor
by junctions. This part of the structure is separated from the shell
and generates an independent set of Loops and Stars (with respect to
the Euler–Poincaré formula). In particular, 6 has nullspace of dimen-
sion 2 generated by the constant functions restricted to each separated
subdomain. On the back, a fence made of metallic sheets connects the
shell to the nozzle forming junctions at both extremities of the sheets
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Fig. 5. Computational time required by AGMG to solve graph-Laplacian
systems for increasing number of junctions. Configuration (1) and (2) are,
respectively, corresponding to the maximal and minimal degree of connectivity
that we get with a given RWG configuration on junctions.

Fig. 6. Surface density current calculated along the surface of the turbine
with the quasi-Helmholtz projectors at 1 Hz.

Fig. 7. Condition number of the EFIE with and without preconditioning in
function of the frequency for the model of turbine.

as well as apertures between them. The nozzle itself is an open surface
with an aperture at its end. The object is discretized using 9191 RWGs
that can be split into 3011 and 6180 Loops and Stars, respectively.
The average number of iterations of AGMG required to solve a
single graph Laplacian system with a desired accuracy of 10−6 is 19,
which is repeated at every multiplication involving the projectors
in the iterative inversion of the preconditioned EFIE. The surface
current density calculated at a frequency of 1 Hz using the EFIE
preconditioned with the quasi-Helmholtz projectors is given in Fig. 6.

Our work (11) is compared with the standard EFIE (without
preconditioning) as well as the Loop-Star decomposed EFIE [1].
In Fig. 7, we observe that the two preconditioning techniques give
rise to systems with a bounded condition number when the frequency

Fig. 8. Bistatic RCS (dBsm) in the (x̂, ẑ) plane given the scattered far-field
produced by the turbine with an incident plane wave at a frequency of 1 Hz.

TABLE II
NUMBER OF ITERATIONS AND RUN TIME OF TFQMR TO SOLVE THE EFIE

WITH AND WITHOUT PRECONDITIONING AT MEDIUM AND LOW
FREQUENCIES FOR THE MODEL OF TURBINE WITH 9191 RWGs

decreases, while the condition number dramatically increases for
the standard formulation until it saturates due to numerical effects.
In addition, the condition numbers obtained with the quasi-Helmholtz
projectors are significantly lower than the Loop-Star decomposed
EFIE. Solving with the solver TFQMR at 1 Hz for a desired accuracy
of 10−6, the iterative procedure requires fewer iterations when the
system is preconditioned with the quasi-Helmholtz projectors than
when preconditioned using a Loop-Star decomposition since only 419
iterations are required for the former instead of 4416 for the latter.
Under these conditions, the EFIE does not converge without precon-
ditioning. We also note that the two preconditioning methods give
comparable results at low frequency, unlike the standard formulation
(solved via direct factorization), as is shown in Fig. 8. Finally,
in Table II we report the number of iterations and computation time
required to solve the EFIE with and without preconditioning, showing
better performance for the proposed scheme at a frequency of 5 MHz.

V. CONCLUSION

In this communication, we theoretically and numerically showed
how the quasi-Helmholtz projectors method can be used to model
low-frequency problems containing junctions with the EFIE. Expla-
nations concerning the generalization of the Loops and Stars for
such structures have been given. Finally, we have presented the
successful application of the quasi-Helmholtz projectors to scenarios
of industrial relevance.
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