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On a High-Frequency Analysis of Some Relevant
Integral Equations in Electromagnetics

Viviana Giunzioni(1) , Adrien Merlini(2) , and Francesco P. Andriulli(1)

(1) Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
(2) Microwaves Department, IMT Atlantique, 29238 Brest, France

Abstract—In this contribution we analyze the spectral proper-
ties of some commonly used boundary integral operators in com-
putational electromagnetics and of their discrete counterparts,
highlighting peculiar features of their spectra. In particular, a
comparison with the eigenvalues of the continuous operators will
be presented that highlights deviations in the high frequency
regime and impacts, in a peculiar way, the accuracy of the
numerical solutions of each formulation. A study and a proactive
analysis of numerical results from standard boundary element
solvers and the predictions from the theoretical analysis will
corroborate the analytical framework employed and the validity
of our observations.

Index Terms—Integral operators, high-frequency, spectral
analysis, accuracy of the Boundary Element Method

I. Introduction
Boundary integral equations are well-established in com-

putational electromagnetics. Numerically solved by boundary
element methods (BEMs), they provide a full-wave solution
to the Maxwell’s system. Their accuracy and adherence to
the physics offer an advantage in terms of prediction power
with respect to approximate methods, such as ray tracing or
geometrical optics, useful at high frequency.

When modeling the two-dimensional electromagnetic scat-
tering from a perfectly conducting metallic obstacle, the elec-
tric and magnetic field integral equations (EFIE / MFIE) act as
building blocks for other formulations, such as the combined
field integral equation (CFIE) and preconditioned versions of
it, freed from spurious resonances.

In this contribution, we analyze the above-mentioned inte-
gral formulations applied to infinitely extended cylinders in the
high-frequency regime, characterized by a mesh discretization
density increasing proportionally with the wavenumber of the
impinging fields. This condition is equivalent to fixing a
certain number of degrees of freedom per wavelenght. After
introducing the required formalism in Section II, we will
provide an analysis of how the discretization process causes
the spectra of BEM matrices and the spectra of the continuous
operators from which they derive to differ. This analysis
along with the effect of the discretization on the solution
accuracy will be delineated in Section III. The numerical
results proposed in Section IV will illustrate the theoretical
developments.

II. Formalism
Consider the time harmonic electromagnetic scattering from

a perfect electrically conducting (PEC) cylinder indefinitely
extended along the longitudinal direction �̂�. Let 𝛺 be the open

set modeling the transversal cross-section of a cylinder of ra-
dius 𝑎 and of axis along 𝑧 and 𝛤 ≔ 𝜕𝛺 be its two-dimensional
circular contour. The exterior space R2\𝛺 is characterized by
its impedance 𝜂 =

√︁
𝜇/𝜖 and the corresponding wavenumber

𝑘 = 𝜔
√
𝜇𝜖 . We define the single layer, double layer, adjoint

double layer, and hypersingular operators respectively as

S𝑘 𝑓 (𝝆) B 𝑘

∫
𝛤

𝐺𝑘 (𝝆, 𝝆′) 𝑓 (𝝆′)𝑑𝝆′ , (1)

D𝑘 𝑓 (𝝆) B
∫
𝛤

𝜕

𝜕𝑛′
𝐺𝑘 (𝝆, 𝝆′) 𝑓 (𝝆′)𝑑𝝆′ , (2)

D∗𝑘 𝑓 (𝝆) B
∫
𝛤

𝜕

𝜕𝑛
𝐺𝑘 (𝝆, 𝝆′) 𝑓 (𝝆′)𝑑𝝆′ , (3)

N 𝑘 𝑓 (𝝆) B − 1
𝑘

𝜕

𝜕𝑛

∫
𝛤

𝜕

𝜕𝑛′
𝐺𝑘 (𝝆, 𝝆′) 𝑓 (𝝆′)𝑑𝝆′ , (4)

where 𝐺𝑘 is the two-dimensional free-space Green’s function,
𝐺𝑘 (𝝆, 𝝆′) B − j

4𝐻
(2)
0 (𝑘 |𝝆−𝝆′ |). These are the building blocks

for the electric and magnetic field integral equations that relate
the longitudinal and transversal electric current densities 𝐽𝑧
and 𝐽𝑡 and the impinging electromagnetic fields (𝐸𝑧 , 𝐻𝑡 ) and
(𝐸𝑡 , 𝐻𝑧). In the transverse magnetic (TM) polarization, they
read

S𝑘 (𝐽𝑧) (𝝆) =
𝐸𝑧 (𝝆)

j𝜂
, (5)(

1
2
I + D∗𝑘

)
(𝐽𝑧) (𝝆) = 𝐻𝑡 (𝝆) , (6)

while in the transverse electric (TE) polarization they read

N 𝑘 (𝐽𝑡 ) (𝝆) = −𝐸𝑡 (𝝆)
j𝜂

, (7)(
1
2
I − D𝑘

)
(𝐽𝑡 ) (𝝆) = −𝐻𝑧 (𝝆) . (8)

The EFIE and MFIE in the high-frequency regime are plagued
by ill conditioning, known as the high-frequency breakdown,
as well as by spurious resonances. Both these issues can be
addressed by combining and preconditioning these equations
to form the Calderón combined field integral equation, referred
in the following as CCFIE, that reads for TM and TE polari-



zations respectively[
N �̃�S𝑘 +

(
1
2
I − D∗�̃�

) (
1
2
I + D∗𝑘

)]
(𝐽𝑧) (𝝆) =

N �̃�

j𝜂
𝐸𝑧 (𝝆) +

(
1
2
I − D∗�̃�

)
𝐻𝑡 (𝝆) , (9)[

S �̃�N 𝑘 +
(
1
2
I + D �̃�

) (
1
2
I − D𝑘

)]
(𝐽𝑡 ) (𝝆) =

− S �̃�

j𝜂
𝐸𝑡 (𝝆) −

(
1
2
I + D �̃�

)
𝐻𝑧 (𝝆) , (10)

where �̃� B 𝑘 − j0.4𝑘1/3𝑎−2/3 [1].
By denoting 𝜆O

𝑞 the eigenvalues of a placeholder continuous
operator O, because 𝛤 is a circle, one can show that

𝜆S𝑘

𝑞 = − j𝑘𝜋𝑎
2

𝐽𝑞 (𝑘𝑎)𝐻 (2)
𝑞 (𝑘𝑎) , (11)

𝜆D𝑘

𝑞 = 𝜆D∗𝑘
𝑞 = − j𝑘𝜋𝑎

4

[
𝐽𝑞 (𝑘𝑎)𝐻 (2)

𝑞 (𝑘𝑎)
] ′

, (12)

𝜆N𝑘

𝑞 =
j𝑘𝜋𝑎

2
𝐽′𝑞 (𝑘𝑎)𝐻

′(2)
𝑞 (𝑘𝑎) . (13)

When discretizing one of O with the BEM with test functions
𝑡𝑚 and source basis functions 𝑓𝑛, defined on a uniform mesh of
𝛤 characterized by 𝑁 mesh elements of length ℎ, the element
(𝑚, 𝑛) of the resulting matrix O is

O𝑚𝑛 =
1
ℎ

∫
𝛤

d𝑠 𝑡𝑚 (𝑠)
(
O 𝑓𝑛

)
(𝑠) , (14)

and the eigenvalues of the matrix are in the form [2]

�̂�O𝑞 =

∞∑︁
𝑠=−∞

𝜆O
(𝑞+𝑠𝑁 )𝑇−(𝑞+𝑠𝑁 )𝐹(𝑞+𝑠𝑁 ) , (15)

where 𝑇𝑞 and 𝐹𝑞 represents the 𝑞−th Fourier coefficient of the
test and source basis functions. From this, a spectral relative
error can be defined as

𝐸O
𝑞 ≔

�̂�O𝑞 − 𝜆O
𝑞

𝜆O
𝑞

= 𝐸𝑃
𝑞 + 𝐸𝐴,O

𝑞 , (16)

where

𝐸𝑃
𝑞 ≔ 𝑇−𝑞𝐹𝑞 − 1 , (17)

𝐸𝐴,O
𝑞 ≔

1
𝜆O
𝑞

∑︁
𝑠≠0

𝜆O
(𝑞+𝑠𝑁 )𝑇−(𝑞+𝑠𝑁 )𝐹(𝑞+𝑠𝑁 ) (18)

represent a projection and aliasing error contributions [2].

III. High-Frequency Analysis

In this contribution, we propose a high-frequency analysis
of the boundary integral equations described above in terms of
spectral and current error, i.e., we analyze the accuracy achiev-
able by BEM formulations in the presence of discretization-
related errors (neglecting all other possible sources of error)
when increasing the frequency and the number of unknowns
proportionally.

A. Spectral Error

First, we study the relative difference between the eigen-
values of the continuous and discrete operators 𝐸𝑞 for indices
𝑞 < (𝑘𝑎) (hyperbolic region), 𝑞 ≃ (𝑘𝑎) (transition region), and
𝑞 > (𝑘𝑎) (elliptic region). The analyses leverage on different
asymptotic expansions of the special functions in equations
(11), (12), (13) depending on the regime. In particular we use
large argument expansions ([3, Section 9.2]) in the hyperbolic
region and large order expansions ([3, Section 9.3]) in the
transition and elliptic regions. By applying these expansions,
we notice that the modulus of the eigenvalues in the transition
region increases as (𝑘𝑎)1/3 and decreases as (𝑘𝑎)−1/3, respec-
tively, for S and N , while the remaining part of the spectra
has a constant behavior. This corresponds to a decreasing as
(𝑘𝑎)−1/3 and increasing as (𝑘𝑎)1/3 contribution of |𝐸𝐴,S

𝑞 | and
|𝐸𝐴,N

𝑞 | for indices 𝑞 ≃ (𝑘𝑎). By following the same reasoning,
|𝐸𝐴,D

𝑞 | decays as (𝑘𝑎)−1 in the hyperbolic and transition
regions (away from resonances), while the discretization of the
identity operator (i.e. the gram matrix) is characterized by a
constant in frequency aliasing contribution. The magnetic field
integral operator (MFIO), given by the sum of two commuting
operators, is characterized by the relative spectral error

𝐸TM/TE-MFIO𝑘

𝑞 = 𝐸𝑃
𝑞 +

1
2𝐸

𝐴,I
𝑞 ± 𝜆D𝑘

𝑞 𝐸
𝐴,D𝑘

𝑞

1
2 ± 𝜆D𝑘

𝑞

(19)

dominated by the identity contribution in the aliasing term and
hence constant in the high-frequency limit. The Calderón com-
bined field integral operator (CCFIO), sum of the Calderón
electric and Calderón magnetic field integral operators (CEFIO
and CMFIO), is affected by the error

𝐸CCFIO𝑘

𝑞 =
𝜆CEFIO𝑘

𝑞 𝐸CEFIO𝑘

𝑞 + 𝜆CMFIO𝑘

𝑞 𝐸CMFIO𝑘

𝑞

𝜆CEFIO𝑘

𝑞 + 𝜆CMFIO𝑘

𝑞

, (20)

where

𝐸TM/TE-CEFIO𝑘

𝑞 =
(1 + 𝐸N �̃�/𝑘

𝑞 ) (1 + 𝐸S𝑘/�̃�
𝑞 )

(1 + 𝐸I
𝑞 )

− 1 , (21)

𝐸TM/TE-CMFIO𝑘

𝑞 =
(1 + 𝐸TE-MFIO�̃�/𝑘

𝑞 ) (1 + 𝐸TM-MFIO𝑘/�̃�
𝑞 )

(1 + 𝐸I
𝑞 )

− 1 .

(22)

The presence of the hypersingular operator in both the TM
and TE formulations causes an increase of the spectral relative
error in the transition region as 𝑘1/3 of the CCFIO.

B. Current Error

The relative error between the currents from the discrete (𝐽)
and continuous (𝐽) formulations evaluated at the mesh vertices
in (𝑎, 𝜙𝑛) in polar coordinates can be expressed as

𝐽𝑛 − 𝐽𝑛

𝐽𝑛
=

∑∞
𝑞=−∞𝑈𝑞𝜐𝑞 𝑒

−j𝑞𝜙𝑛∑∞
𝑞=−∞𝑈𝑞 𝑒

−j𝑞𝜙𝑛
, (23)



where 𝑈TM
𝑞 = 2j−𝑞/(𝜋𝜂𝑘𝑎𝐻 (2)

𝑞 (𝑘𝑎)) and 𝑈TE
𝑞 =

2j−𝑞/(𝜋𝜂𝑘𝑎𝐻 (2) ′
𝑞 (𝑘𝑎)). As already shown in [2], for the EFIE

𝜐TM/TE-EFIE
𝑞 =

𝑇−𝑞 (1 − 𝐹𝑞) − 𝐸
𝐴,S𝑘/N𝑘

𝑞

1 + 𝐸
S𝑘/N𝑘

𝑞

. (24)

Similarily, for the MFIE

𝜐MFIE
𝑞 =

𝑇−𝑞 (1 − 𝐹𝑞) − 𝐸
𝐴,MFIO𝑘

𝑞

1 + 𝐸MFIO𝑘

𝑞

. (25)

In the CCFIE case instead our derivations, omitted here due
to space constraints, show that 𝜐𝑞 is given by the weighted
average

𝜐CCFIE
𝑞 =

�̂�CEFIO
𝑞 𝜐EFIE

𝑞 + �̂�CMFIO
𝑞 𝜐MFIE

𝑞

�̂�CEFIO
𝑞 + �̂�CMFIO

𝑞

. (26)

Different measures of the current relative error are available
and significant for diverse purposes. We consider here the
𝐿2−measure,

𝑟𝐿2 (𝛤 ) B

(∑∞
𝑞=−∞ |𝑈𝑞𝜐𝑞 |2∑∞
𝑞=−∞ |𝑈𝑞 |2

)1/2

, (27)

the measure in the standard norm of the current space 𝐻𝑠 (𝛤),
with 𝑠 = ∓1/2 for the TM/TE formulations,

𝑟𝐻𝑠 (𝛤 ) B

(∑∞
𝑞=−∞ |𝑈𝑞𝜐𝑞 |2 (1 + 𝑞2)𝑠∑∞
𝑞=−∞ |𝑈𝑞 |2 (1 + 𝑞2)𝑠

)1/2

, (28)

and the measure in a different norm in 𝐻𝑠 (𝛤),

𝑟𝐻𝑠
𝑘
(𝛤 ) B

(∑∞
𝑞=−∞ |𝑈𝑞𝜐𝑞 |2 (𝑘2 + 𝑞2)𝑠∑∞
𝑞=−∞ |𝑈𝑞 |2 (𝑘2 + 𝑞2)𝑠

)1/2

, (29)

commonly used in high-frequency scattering applications [4].
Following the spectral analysis in Section III-A, one can

show that, for indices 𝑞 ≃ (𝑘𝑎), |𝜐TM-EFIE
𝑞 | and |𝜐TM/TE-MFIE

𝑞 |
have a constant behavior in frequency. On the contrary, the
increasing behavior as 𝑘1/3 of the aliasing spectral error of the
hypersingular operator translates into an increase of |𝜐TE-EFIE

𝑞 |
at the same rate. Hence, the relative current error in the three
measures considered does not increase in frequency for the
TM-EFIE, TM/TE-MFIE and TM-CCFIE, while it does for
the TE-EFIE. The Calderón preconditioning and combination
of equations in the TE-CCFIE on the other hand significantly
attenuates the error increase due to the increase of |𝜐TE-EFIE

𝑞 |.

IV. Numerical Results
To showcase the validity of the theoretical results presented

in Section III, we estimated the current error for increasing
frequency, both out of the application of the formulae above
and from the solution of our BEM solver. The geometry
has been discretized at length ℎ approximately equal to the
wavelength over four. Testing and source basis functions
employed have polynomial order 1. Figures 1 and 2 show
the frequency dependency of 𝑟𝐻𝑠

𝑘
(𝛤 ) for TM and TE formu-

lations. The circles, representing values from formulae, and
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Fig. 1. Frequency dependency of 𝑟𝐻𝑠
𝑘
(𝛤 ) of the TM formulations: comparison

between predicted (p.) values and numerical (n.) results from BEM.
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Fig. 2. Frequency dependency of 𝑟𝐻𝑠
𝑘
(𝛤 ) of the TE formulations: comparison

between predicted (p.) values and numerical (n.) results from BEM.

crosses, representing values from the BEM solver, are in good
agreement. In the EFIE and MFIE case the error increases
sharply in correspondence of resonance frequencies, which are
approximately the same for the TM-EFIE and the TE-MFIE
and for the TM-MFIE and the TE-EFIE, while the CCFIE
is immune from spurious resonances. Finally, we notice the
increase as 𝑘1/3 of 𝑟𝐻𝑠

𝑘
(𝛤 ) for the TE-EFIE current away

from resonances, resulting from the same order increase of
|𝜐TE-EFIE

𝑞 | in the transition region.

V. Conclusion

We analyzed the effects of the discretization of boundary
integral operators on the spectra of their discrete counterparts.
We proceeded in studying the consequences on the achievable
accuracy of some of the most common equations in computa-
tional electromagnetics.
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