
27 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning / Savino, Pierclaudio;
Tondolo, Francesco. - In: JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING. - ISSN 2190-5452. -
ELETTRONICO. - (2022). [10.1007/s13349-022-00618-9]

Original

Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning

Publisher:

Published
DOI:10.1007/s13349-022-00618-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970859 since: 2022-09-01T11:17:43Z

Springer



Vol.:(0123456789)

Journal of Civil Structural Health Monitoring 
https://doi.org/10.1007/s13349-022-00618-9

123

ORIGINAL PAPER

Civil infrastructure defect assessment using pixel‑wise segmentation 
based on deep learning

Pierclaudio Savino1   · Francesco Tondolo1

Received: 13 June 2022 / Revised: 17 July 2022 / Accepted: 2 August 2022 
© The Author(s) 2022

Abstract
Nowadays, the number of aging civil infrastructures is growing world-wide and when concrete is involved, cracking and 
delamination can occur. Therefore, ensuring the safety and serviceability of existing civil infrastructure and preventing 
an inadequate level of damage have become some of the major issues in civil engineering field. Routine inspections and 
maintenance are then required to avoid leaving these defects unexplored and untreated. However, due to the limitations of 
on-field inspection resources and budget management efficiency, automation technology is needed to develop more effective 
and pervasive inspection processes. This paper presents a pixel-wise classification method to automatically detect and quan-
tify concrete defects from images through semantic segmentation network. The proposed model uses Deeplabv3+ network 
with weights initialized from pre-trained neural networks. The comparison study among the performance of different deep 
neural network models resulted in ResNet-50 as the most suitable network for applications of civil infrastructure defects 
segmentation. A total of 1250 images have been collected from the Internet, on-field bridge inspections and Google Street 
View in order to build an invariant network for different resolutions, image qualities and backgrounds. A randomized data 
augmentation allowed to double the database and assign 2000 images for training and 500 images for validation. The experi-
mental results show global accuracies for training and validation of 93.42% and 91.04%, respectively. The promising results 
highlighted the suitability of the model to be integrated in digitalized management system to increase the productivity of 
management agencies involved in civil infrastructure inspections and digital transformation.

Keywords  Civil infrastructure · Automated inspection · Damages · Semantic segmentation · Deep learning · Computer 
vision

1  Introduction

The active management of aging civil infrastructure has 
become a twenty-first century challenge for transporta-
tion agencies around the world, committed to maintaining 
healthy infrastructure and preventing unexpected structural 
failures. However, there is clear evidence of reduced effi-
ciency, slow recovery operations and aged infrastructure 
assets. In the 1990s, the UK and Switzerland construction 
maintenance markets, already accounted for 50% of the total 
value of the construction markets [1]. The Report Card pub-
lished by the American Society of Civil Engineers in 2021 
stated that the United States has more than 617,000 bridges, 

42% of which are at least 50 years old and with the current 
investment rate it will take until 2071 to cover the $125 bil-
lion of rehabilitation cost [2]. In South Korea, regular annual 
inspections of 270,000 structures are required, although the 
budget and number of inspectors are gradually decreasing 
[3]. Moving to the European continent, much of the bridge 
infrastructures were built after World War II and are now 
beyond their useful lives. All these numbers highlighted 
the need for reliable and integrated systems of inspection, 
assessment and maintenance to ensure safety and efficient 
allocation of resources. Quickly and frequently surveys are 
required to plan essential maintenance and repairs in a pro-
active way before it becomes too dangerous and expensive. 
Currently, the assessment of structural condition involves 
the engagement of qualified inspector which perform on-site 
inspections with the use of photographs, annotations, draw-
ings and the collection of historical information. However, 
as these are carried out at pre-fixed time intervals, there is a 
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risk of performance below an established threshold between 
an inspection and another. Furthermore, such inspection can 
be time-consuming, costly, laborious and dangerous espe-
cially for inaccessible structures. Finally, depending on the 
expertise of the inspector, there are subjectivity and human 
error that can lead to a different classification for similar 
defects. To address all these issues, improved inspection 
with less human intervention, lower costs and higher spa-
tial resolution needs to be developed to enable automated 
assessment of civil infrastructures condition. In recent years, 
with the development of low-cost and high-quality imag-
ing devices, computer vision technique has been gathering 
increasing attention in the research of the civil engineering 
community. Indices for local condition assessment such as 
crack, spalling, corrosion, and delamination can be extracted 
from visual images containing structure surface. The advan-
tages of this method are related to the possibility to enable 
long-distance, non-contact, low-cost, objective and auto-
matic condition assessment [4, 5]. Moreover, vision sensors 
used in conjunction with vehicle or unmanned aerial vehi-
cles (UAV) is proposed as one of the promising strategies for 
fast scanning of higher spatial resolution without the need 
of traffic closure.

Computer vision-based inspection varies from conven-
tional approaches using image processing algorithms to 
recent attempts based on deep learning techniques. Tra-
ditional detection algorithms rely on the manual features 
extraction which transform the available data into valuable 
information, ranging from statistical-based method on grey-
scale distribution [6], colour and texture descriptors [7, 8], 
binarization methods [9] and machine learning-based model 
[10]. However, the application of image processing in an 
automated structural inspection environment is limited, as 
these techniques do not consider the contextual information 
provided by the regions around the defects. These techniques 
need to be tuned manually, depending on the type of target 
structures to be monitored [5]. Furthermore, varying the 
lighting and shadowing controlled during image capturing 
or acquiring skewed long-range images, could yield false 
and erroneous results. Real-world situations are very varied 
and building a general algorithm that can be successful in 
these general cases is quite complex.

The development of deep learning techniques has greatly 
extended the capability and robustness of traditional vision-
based damage detection by automatically extracting features, 
without requiring time-consuming and complex processes. 
As the features are defined by the machine, human bias/
error is avoided and replaced by the error of the system, 
moving from a knowledge-driven approach to a data-driven 
approach. Different applications for damage detection have 
been studied for a wide variety of structures and type of 
defects, ranging from cracks and spalling to corrosion. Con-
volutional neural network (CNN) architectures have been 

developed to build a classifier for detecting cracks of steel 
box girders [11], road pavement [12] and concrete surface 
[13]. All these methods, to locate the crack, first consider 
scanning the original images with sub-patches and then 
activating only those with defects. To overcome the rough 
localization based on sliding window detection, Quqa et al. 
[14] proposed a two-step approach that first identifies the 
“cracked” regions and then applies image processing tech-
niques only to locate the crack pixels. In order to avoid the 
need for a wide dataset to obtain high level of accuracy for 
CNNs trained from scratch, the transfer learning technique 
was adopted on pre-trained networks. The well-known 
AlexNet architecture has been fine tuned to classify crack-
ing [15, 16] and spalling [17] on concrete surface. Savino 
and Tondolo [18] compared eight pre-trained networks to 
classify images containing undamaged, cracked and delami-
nated structural elements, reaching the maximum accuracy 
of 94% with GoogLeNet architecture. Kruachottikul et al. 
[19] developed a defect-inspection system for reinforced 
concrete bridge substructure, able to classify cracking, 
erosion, honeycomb, scaling, and spalling defects with an 
accuracy of 81%. Since the image classification approach 
can only distinguish between images based on the expected 
class, object detection methods have recently been applied 
to recognize and locate multiple damages within bounding 
box. Cha et al. [20] proposed a Faster Region-based Con-
volutional Neural Network (Faster R-CNN) to detect in the 
same image concrete crack, steel corrosion, bolt corrosion 
and steel delamination with an average precision of 87.8%. 
Faster R-CNNs were also used to identify and locate dam-
age of masonry historic structures [21], urban shield tunnel 
lining [22] and large crane structures [23]. However, object-
detection-based methods, providing only class labels and the 
bounding box around the region of interest, cannot precisely 
define the shape of the damage but only identify and locate 
it. Moreover, suffering in the case of overlapping regions, 
they are unsuitable to provide morphological information 
and the extent of defects.

An effective method to delineate the precise location and 
shape of object is named semantic segmentation. More spe-
cifically, a semantic segmentation network classifies each 
pixel of an image with a certain label, providing an image 
that is segmented by class. To the knowledge of the authors, 
relatively few works used at the date of this paper, semantic 
segmentation neural networks for civil infrastructures defect 
assessment. Zhang et al. [24] proposed a CNN architecture 
for the pixel-level pavement crack detection on 3D asphalt 
surfaces with a precision of 90.13%. Zhu and Song [25] 
presented a weakly supervised segmentation and detection 
network based on autoencoder to identify cracks on asphalt 
concrete bridge deck. Most of the studies concerned pixel-
level surface crack detection using transfer learning [26] or 
combining the advantages of pre-trained networks [27–30]. 
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Fig. 1   Semantic segmentation 
neural network

Pozzar et al. [31] investigated the performance of different 
pre-trained models to detect multiclass concrete damages 
using thermographic images, identifying the VGG16 model 
as the most promising with average IoU values of 59.5% for 
delamination and 39.4% for crack.

In most of the previous research, neural networks were 
trained with images collected under near-ideal laboratory 
conditions, such as camera positions and angles, depend-
ing on the appearance and location of the defects. Fur-
thermore, as they were considered datasets with hundreds 
of images, much smaller images were cropped from the 
original images to increase their number. However, this 
approach cannot cover the diversity of the on-field environ-
ment because it is difficult to reproduce ideal conditions 
and continuously control lighting direction, positions and 
angles of cameras installed on UAV. This condition makes 
most existing image-based methods highly dependent on the 
data used, generalizing poorly to other datasets. Most of the 
research efforts, as mentioned previously, only focused on 
the semantic segmentation of specific defect at a time. To 
the knowledge of the authors, never have been investigated 
the performance of pre-trained semantic segmentation mod-
els to detect multiclass concrete defects. Based on the men-
tioned gaps, this research proposed a CNN able to perform 
the semantic segmentation of images containing “Crack”, 
“Delamination” and “Background” in several civil infra-
structures. The first objective was to train a robust neural 
network that is not affected by quality of images and that is 
effective for a wide range of on-field inspection. Therefore, 
the neural network has been developed considering a data-
set of 1250 images, collected from Internet, on-field bridge 
inspections and Google Street View. The images are affected 
by a broad range of noise linked by the sources and repre-
sent real environmental conditions with several background. 
The second objective was to find among the existing pre-
trained neural networks the most suitable for civil engineer-
ing defects detection task. It will allow further research to 
detect additional types of structural damage, such as corro-
sion, efflorescence, stain moisture and voids. Furthermore, 

morphological information were extracted to prove the 
superiority of the semantic segmentation approach over the 
existing object detection methods in providing quantitative 
information about civil infrastructure defects.

2 � Semantic segmentation

The general architecture for the semantic image segmenta-
tion task is a CNN which associates each pixel of an image 
with a corresponding class label. Generally, the architec-
ture of CNN consists of shallow layers to learn low-level 
features and deep layers specialized on high-level details. 
For image classification task, aimed to learn what the image 
contains, the expensive computation of deep neural networks 
is relieved by down-sampling of feature maps with pooling 
or strided convolutions. However, for image segmentation 
task, the full-resolution semantic prediction must be pre-
served by adopting encoder/decoder structures (Fig. 1). The 
encoder part down-samples the input into low-resolution 
feature maps and learns to discriminate between classes, 
the decoder part up-samples from a low-resolution map to a 
full-resolution segmentation map.

The down-sampling part is actually a very deep CNN 
which is built adopting multiple layers, such as convolu-
tion, pooling and activation layers. Since the excessive 
downsizing of encoder part due to consecutive pooling 
operations results in a loss of information which cannot 
be recovered in the decoder part, Chen et al. [32] proposed 
DeepLabv3+ decoder to refine the segmentation results. 
The proposed model employs Atrous Spatial Pyramid Pool-
ing (ASPP) to capture multi-scale contextual information 
without losing spatial resolution. Finally, the softmax layer 
predicts the class of each pixel after a series of transpose 
convolutions which upsample the resolution of the feature 
maps.
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Fig. 2   Convolutional operation example

Fig. 3   Pooling layer example

2.1 � Convolutional layer

Convolutional layers are the main building blocks used in 
CNNs, responsible for capturing different level of features. 
The first element involved in a Convolutional layer to per-
form convolution operation is called kernel or filter. A con-
volution is a linear operation that involve an element-wise 
multiplication between the input and the weights contained 
in the filter (Fig. 2). The sliding step size of the kernel on 
the input is defined as a stride and affects, together with the 
padding, the size of the convolved feature.

Assuming the case of one-dimensional convolution, the 
output of the convolution process is

where x (i) is the input, w (k)  is the filter of length K and b is 
the bias. Systematic application of the filter across an image, 
allows to extract a feature anywhere in the image and create 
a feature map. It is important to note that the local depend-
encies in the original image depend on the weights that are 
automatically tuned during the training process. Since the 
convolution is a linear operation, the Convolutional layer 
ends with an activation function to introduce nonlinear 
transformation components. The most used activation func-
tion is the Rectified Linear Unit (ReLU) which returns the 
value provided as input directly, or zero for negative input. 
Because ReLU is linear for positive values, it facilitates 
much faster computation during the training process of a 
neural network with backpropagation.

2.2 � Pooling layer

Similar to the Convolutional layer, the Pooling layer 
decreases the size of the convolved feature to reduce the 
probability of overfitting and the computational power. The 
key features are commonly extracted by two types of Pool-
ing: Max Pooling and Average Pooling (Fig. 3).

The Max Pooling returns the maximum value for a por-
tion of the feature map covered by the kernel, whereas the 
Average Pooling computes the mean value. The Pooling 
layer is frequently used after the Convolutional layer in 

(1)y(i) =

K
∑

k=1

x(i + k) ⋅ w(k) + b

order to intensify the important features kept in the Con-
volutional layers and discard all the information irrelevant 
for the output.

2.3 � Atrous spatial pyramid pooling

DeepLabv3+ applies several parallel Atrous convolution, 
also called hole convolution or dilated convolution, to 
capture the features computed by CNNs at different scale. 
Atrous convolution is a type of convolution that increases 
the filter size using the same number of parameters (Fig. 4). 
The dilation rate, l, indicates how much the filter is widened, 
l-1 is the number of hole or zeros filled between consecutive 
filter parameters.

When the rate is 1, it corresponds to a standard convolu-
tion; when the rate is equal to 2, the receptive field goes to 
5 × 5 while having 3 × 3 convolution parameters. Similarly, 
the Atrous convolution with dilation rate 3 is able to get 
the information of 7 × 7 convolution with the same number 
of parameters. In case of one-dimensional convolution, the 
Atrous convolution for each location i on the output feature 
map results:

where x (i) is the input of a pixel, and w (k) is the filter of 
length K. As pointed out above, the standard convolution is 
a special case in which the dilation rate is l = 1.

In the ASPP model, four parallel Atrous convolutions 
with different rate are applied to ensure detailed spatial 
information and capturing features at each scale. After the 
parallel operations, the results are concatenated by convert-
ing to a 1-dimensional vector.

(2)y(i) =

K
∑

k=1

x(i + lk) ⋅ w(k)
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2.4 � Transposed convolutional layer

To produce the pixel-to-pixel prediction results, an upsam-
pling operation is introduced to increase the spatial resolu-
tion of a coarse feature map to the dimension of the original 
image. This operation is called transposed convolution and, 
unlike the Convolutional layer, the output becomes larger 
than the input. As presented in Fig. 5, each element in the 
input is multiplied by the kernel (i.e., the element containing 
the weights) and then these middle matrices are combined 
with strides in both width and height directions. Finally, the 
assembled values in overlapping regions are added together 
to extract the extended input.

In contrast to the regular convolution where strides are 
specified for the input, in the transposed convolution, they 
are specified for intermediate matrices increasing the size 
of the output.

2.5 � Softmax layer

At the last layer of the CNN, it is necessary to have a layer 
that assigns a score with each class to each pixel within the 
original image. To convert the vector of output number into 
a vector of multiclass categorical probability distribution by 
a normalized exponential, it is used the softmax function, 
which is expressed as

where yi are the elements of the input vector to the softmax 
function and K is the number of classes in the multiclass 
classifier. To quantify how far the network prediction are 

(3)�(y)i =
eyi

∑K

j=1
eyj

from the actual classes, it is calculated the Cross-Entropy 
loss function, defined as

where ti is ground truth and pi is the Softmax predicted score 
at the specific pixel. The smaller the loss function, the closer 
the predicted values are to the right classes.

3 � Training process

In this study, to minimizes the Cross-Entropy loss during the 
training process, it has been selected the stochastic gradi-
ent descent algorithm with momentum. This is an iterative 
method for optimizing the loss by adjusting the weights of 
the network and increasing accuracy. To define the most suit-
able architecture for the damage detection task, it has been 
used the transfer learning of pre-trained networks on Ima-
geNet dataset. The transfer of learned generic features helps 
to achieve better performance with less training time without 
considering randomly initialized weights from scratch. On 
the other hand, the fine-tuning of deep layers and the new 
classification layer refines the representations of the high-
level features of the new dataset in the base model. Further-
more, for the best performing network the hyperparameters 
configuration has been optimized to define the optimal archi-
tecture. In this work Deeplabv3+ networks have been cre-
ated, with weights initialized from pre-trained MobileNet-v2 
[33], Xception [34], ResNet-18 and ResNet-50 [35] net-
works. The MATLAB Deep Learning Toolbox allows easy 
implementation of the “deeplabv3plusLayers” to create a 
DeepLabv3+ layer with the specified base network, number 

(4)LCE = −

n
∑

i=1

ti log
(

pi
)

Fig. 4   Atrous convolution 
(3 × 3) with different dilation 
rates of 1, 2, and 3, respectively

Fig. 5   Transposed convolution with a 2 × 2 kernel and stride of 1 for a 2 × 2 input
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of classes, and image size. In addition, the “pixelClassifica-
tionLayer” function creates a pixel classification output layer 
to provide the categorical label for each image pixel. The 
training has been performed using MATLAB on a NVIDIA 
GeForce GTX 1650 Ti with 4 GB of GPU memory.

3.1 � Pretrained networks

Pretrained networks are layered architectures shared by their 
respective teams, which allows to replace the final layer and 
retrain some of the previous layer to reach a stable state 
on a new task. Deep learning models have different accu-
racy, speed and size which should be considered as a start-
ing point in the choice for a new classification system. The 
present experimental study involved balanced fast/accurate 
pre-trained network to be deployed with high performance 
on embedded system, such as MobileNet-v2, Xception, 
ResNet-18 and ResNet-50.

MobileNet-v2 is a neural network architecture announced 
by Google researcher to run efficiently on devices with low 
computational power. The main idea behind MobileNet 
architecture is the split of the convolution layer into a depth-
wise convolution layer and 1 × 1 convolution layer to form 
a “depthwise separable” convolution block. The depthwise 
convolution applies a single convolutional filter for each 
channel image, the pointwise convolution builds new fea-
tures through computing linear combinations in depth 
dimension. In v2, 1 × 1 expansion and 1 × 1 projection lay-
ers were added at the beginning and end of the depthwise 
convolution to form the Bottleneck Residual block which 
allows the use of low-dimension tensors and reduces the 
number of computations. The full MobileNet-v2 architec-
ture, then consists of 17 of these building blocks followed 
by a 1 × 1 convolution, a global average pooling layer and a 
classification layer (Table 1).

Xception Model was developed by Google researchers 
as extension of inception architecture, involving “depthwise 
separable” convolutions and Max Pooling, all linked with 
shortcuts connections. Adding connections which skip one 
or more layers, avoid degradation problem related to learn-
ing of identity mappings for deeper networks. The specificity 
of Xception is that the depthwise convolution is not followed 
by a pointwise convolution, but the order is inverted. The 
feature extraction base is formed by a linear stack of 36 Con-
volutional layers structured into 14 modules. The diagram 
in Fig. 6 shows in detail the number of filters, the filter size 
and the strides.

The shortcuts connections were introduced for the first 
time within the deep Residual Network which made it pos-
sible to train hundreds or thousands of layers without run-
ning into the vanishing gradient problem. There are sev-
eral variants of ResNet architecture that are based on the 

same concept but with different number of layers, such as 
ResNet-18 and ResNet-50. ResNet networks consist mainly 
of five types of convolution blocks called conv1, conv2, 
conv3 and conv5 followed by a fully connected layer and 
a softmax layer. Each convolution block uses 2 convolution 
layers of size 3 × 3 for ResNet-18 or 3 convolution layers 
of size 1 × 1, 3 × 3 and 1 × 1 for ResNet-50. In Table 2 is 
reported a summary of the output size at every layer and the 
dimension of the convolutional filters at every point in the 
architectures.

Table 3 provides further details about the network archi-
tectures adopted in this study. The depth is defined as the 
number of sequential convolutional or fully connected layers 
from the input layer to the output layer.

3.2 � Building database

The performance of a neural network is related to the variety 
of the training images. Considering a training dataset with 
images characterized by constrained conditions may lead 
CNNs to poorly perform in case of classification task outside 
the assumptions. In order to obtain training images under a 
wide variety of possible situations, the training dataset was 
established collecting raw images from Internet, on-field 
bridge inspection, and Google Street View. The use of three 
different sources allowed to gather images with different 
quality, resolution and background, increasing the useful-
ness of the research also for on-field applications with low-
cost sensors. A total of 1250 images have been manually 
labeled, using the MATLAB Image Labeler app, where the 
pixels are labeled as “Delamination”, “Crack” and “Back-
ground”, respectively. Figure 7 shows examples of collected 
raw images used to build the datastore and their ground truth 
annotation. Withe pixels correspond to “Background”, yel-
low color is used to annotate “Delamination” and cyan is 
used for “Crack” annotation.

Table 1   MobileNet-v2 architecture

Input Operator n

224 × 224 × 3 conv2d 1
112 × 112 × 32 bottleneck 1
112 × 112 × 16 bottleneck 2
56 × 56 × 24 bottleneck 3
28 × 28 × 32 bottleneck 4
14 × 14 × 64 bottleneck 3
14 × 14 × 96 bottleneck 3
7 × 7 × 160 bottleneck 1
7 × 7 × 320 conv2d 1 × 1 1
7 × 7 × 1280 avgpool 7 × 7 1
1 × 1 × 1280 conv2d 1 × 1 –
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To decrease the computational cost and training time, all 
the images have been cropped into 300 × 300 pixels reso-
lution after the labeling operation. Furthermore, to make 
neural networks invariant to distortions in image data and 

decrease the probability of overfitting, the amount of train-
ing data is increased by applying randomized augmenta-
tion with a combination of rotation, reflection and shear. 
After data augmentation, the doubled database is randomly 
divided by 80% for the training set and 20% to validate the 
model. Specifically, 2000 images are randomly selected to 
generate the training set and another 500 are used to create 
the validation set.

A common issue in concrete damage datasets is the 
unbalance of class distribution between pixels containing 
cracks and the others because in general they cover less 
area in images. When a dataset is unbalanced, the error of 
the overrepresented classes contributes much more than the 

Fig. 6   Xception architecture

Table 2   ResNet-18 and ResNet-50 architectures

Layer Output ResNet-18 ResNet-50

conv1 112 × 112 7 × 7 × 64, stride 2
conv2 56 × 56 3 × 3 maxpool, stride 2

[

3 × 3 × 64

3 × 3 × 64

]

  × 2
⎡

⎢

⎢

⎣

1 × 1 × 64

3 × 3 × 64

1 × 1 × 64

⎤

⎥

⎥

⎦ × 3
conv3 28 × 28

[

3 × 3 × 128

3 × 3 × 128

]

 × 2
⎡

⎢

⎢

⎣

1 × 1 × 128

3 × 3 × 128

1 × 1 × 128

⎤

⎥

⎥

⎦ 
× 4

conv4 14 × 14
[

3 × 3 × 256

3 × 3 × 256

]

  × 2
⎡

⎢

⎢

⎣

1 × 1 × 256

3 × 3 × 256

1 × 1 × 256

⎤

⎥

⎥

⎦  
× 6

conv5 7 × 7
[

3 × 3 × 512

3 × 3 × 512

]

 ×2
⎡

⎢

⎢

⎣

1 × 1 × 512

3 × 3 × 512

1 × 1 × 512

⎤

⎥

⎥

⎦ ×3
– 1 × 1 avgpool, 1000-fc, softmax

Table 3   Pretrained networks properties

Network Depth Size (MB) Parameters 
(Millions)

MobileNet-v2 53 12 3.5
Xception 71 85 22.9
ResNet-18 18 44 11.7
ResNet-50 50 96 25.6
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error contribution of the underrepresented classes, making 
poor performance for the underrepresented classes. To avoid 
a semantic segmentation biased toward the dominant classes, 
a class weighting has been adopted during the training to 
increase or decrease the importance of a pixel. The weight 
of each class, wc, has been defined computing the median 
frequency weighting according to

where the frequency f represents the number of pixels of 
the class divided by the total number of pixels in the images 
that contain an instance of the class c. The number of pixels 
for each class within the training set, denoted by “Pixel 
count”, its frequency and the class weights, can be seen in 
Table 2.

(5)wc =
median(f )

f c

From Table 4, it can be noticed for the “Crack” class, the 
lower number of pixels and frequency corresponding to a 
heavier weighting.

4 � Comparative analysis and evaluation

Defined the model architectures and the dataset, the model 
hyperparameters need to be configured to start with the 
training process. Being external to the networks, these 
values cannot be directly estimated from data but can be 
set using heuristics. Thus, the optimal network architec-
ture has been explored considering a fixed number of 10 
epochs, a mini-batch size of 16 images, a momentum of 
0.9 and a L2 regularization of 0.0001. To identify a suit-
able initial learning rate, have been examined with the 
training process of each network the values 10–3, 10–4 
and 10–5. A comparative study has been first established 
according to the percentage of correctly classified pixels, 
defined as

where GA is the global accuracy, TP is the number of true 
positives, TN is the number of true negatives, FP is the 
number of false positives and FN is the number of false 
negatives. Figure 7 depicts the validation accuracy recorded 
during the training process of each network for different 
learning rates.

As reported in Fig. 8, the best performing networks have 
been ResNet-18 and ResNet-50 with a learning rate of 0.001, 
achieving a global accuracy of 88.76% and 88.57% respec-
tively. However, this metric can present misleading results in 
case of class imbalance, resulting biased towards the classes 
that dominate the image. For this reason, to define the net-
work with superior segmentation ability, we considered 
accuracy and intersection-over-union (IoU) for individual 
classes. The IoU metric is the ratio between the amount of 
overlap and the union between the predicted segmentation 
and the ground truth:

The lower the IoU, the worse is the prediction result. 
Tables 3 and 4 show the accuracy and IoU-related measures 
for ResNet-18 and ResNet-50, respectively.

From Tables 5 and 6, it can be noticed that accuracies 
for “Delamination” and “Crack” classes improve from 

(6)GA =
TP + TN

TP + TN + FP + FN

(7)IoU =
TP

TP + FP + FN

Fig. 7   Examples of images used to build the datastore and their 
ground truth

Table 4   Pixel numbers and median frequency class weights for each 
class

Delamination Crack Background

Pixel count 1.4801 × 107 4.3806 × 106 1.3743 × 108

Frequency 0.1620 0.0273 0.7635
Class weight 1 5.9286 0.2122



Journal of Civil Structural Health Monitoring	

123

ResNet-18 to ResNet-50 network. It can be also noticed 
a corresponding slight decrease in both the accuracy and 
the IoU metric for the “Background” class. Overall, since 

the mean accuracy improves from 0.87739 to 0.89427, 
by approximately 1.7%, and the mean IoU from 0.5909 to 
0.59213, in this work as a reference architecture it has been 
chosen the one of the ResNet-50 network.

5 � Results and discussion

As shown in the previous section, ResNet-50 achieved bet-
ter results than ResNet-18. Therefore, an empirical evalua-
tion of optimal hyperparameters has been performed for a 
further improvement of performance. An extensive search 
has been conducted to define the best contribution of the 
previous parameter update to the current learning iteration 
given by momentum. Furthermore, the regularization term 
L2 for the weights to the loss function has been assessed to 
reduce overfitting. To observe the complete convergence 
behavior and avoid overfitting, the loss function has been 
minimized considering a training process with 20 Epochs 
and training iterations on mini-batch with size 8. The final 
configuration of tuned hyperparameters is: learning rate 
0.001, momentum 0.9, regularization 0.0001, epochs 20 
and mini-batch size 8. Figure 9 depicts the final training 
and validation results for the network considered in this 
work.

The latest training and validation accuracies achieved 
after a training time of about 3 h are 93.42% and 91.04%, 
respectively. Table 7 summarizes semantic segmentation 
quality metrics for each class.

The result proves that among the three classes, “Crack” 
has the lowest accuracy whereas “Delamination” has the 
highest. This finding about the difficulty to recognize the 
pixel of this class make sense from a visual point of view, 
since “Delamination” and “Background” have more easily 
distinguishable spatial features. To examine the performance 
of the trained and validated network, it has been presented 
in Fig. 10 an example of images used for the validation pro-
cesses. The first column contains the original images, the 
second column consists of ground truth and the last column 
represents the predictions.

 

 

 

0

20

40

60

80

100

0 125 250 375 500 625 750 875 1000 1125 1250

V
al

id
at

io
n 

ac
cu

ra
cy

 [%
]

Iteration

Learning rate = 0.01

ResNet-18
MobileNet-v2
Xception
ResNet-50

0

20

40

60

80

100

0 125 250 375 500 625 750 875 1000 1125 1250

V
al

id
at

io
n 

ac
cu

ra
cy

 [%
]

Iteration

Learning rate = 0.001

ResNet-18
MobileNet-v2
Xception
ResNet-50

0

20

40

60

80

100

0 125 250 375 500 625 750 875 1000 11251250

V
al

id
at

io
n 

ac
cu

ra
cy

 [%
]

Iteration

Learning rate = 0.0001

ResNet-18

MobileNet-v2

Xception

ResNet-50

Fig. 8   Validation accuracy during training processes with different 
learning rates

Table 5   Accuracy and IoU for ResNet-18 network

Accuracy IoU

Delamination 0.89331 0.65435
Crack 0.85088 0.243
Background 0.88799 0.87536

Table 6   Accuracy and IoU for ResNet-50 network

Accuracy IoU

Delamination 0.91743 0.65907
Crack 0.883 0.2438
Background 0.88227 0.87353
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Despite the good performance of the proposed network, 
it still has some inaccuracies in detecting mainly cracks. 
The typical incorrect prediction refers to the thickness of 
the cracks being larger than the ground truth. Although 
minor errors, the results demonstrate the reliability of this 
model for the automatic assessment of existing concrete 
structures. Therefore, a larger training database could 
improve model capacity and generalization in future 
applications. On the other hand, performance and results 
could be improved considering high-resolution images. 
Figure 11 shows some examples on test images with high-
resolution, that are never used for both training and valida-
tion phase. 

Test images showed that considering high-resolution 
images could add significant capability to classify civil 
infrastructure damages, even those related to the “Crack” 
class. Looking into the details, the proposed method is not 
susceptible to various background patterns, concrete texture, 
exposure and environment, resulting useful for on-field civil 
infrastructure inspection.

5.1 � Damages’ measurement

Once the damages have been detected, it is possible to 
extract morphological information to determine durability, 

conditions of exposure, and to define economic and safety 
impact. Currently, the actual need and urgency are defined 
with an approximate and qualitative way, according to quick 
survey on the infrastructural heritage. For each defect on 
the structure, extension and intensity are indicated through 
constant coefficients without referring to quantitative anal-
yses. Complexity, level of detail and the cumbersome of 
investigations are conversely related to the number of infra-
structures on which they are applied and to the uncertainty 
of the results. The proposed deep learning-based inspection 
approach not only makes the process automatic but provides 
useful data to reconstruct damage evolution without operator 
dependent errors.

Once predicted the class for each pixel, properties of 
image regions can by quantified by using the MATLAB 
function “regionprops (Image, ‘properties’)”. Table 8 lists 
some measurements on the test images of Fig. 11 related 
to the actual number of pixels in the region classified as 
“Delamination”, “Crack” and “Background” (‘Area’).

Furthermore, the amount of damage can be defined in 
terms of percentage of the total area, or other units, given a 
proper spatial calibration factor.

6 � Conclusions

This paper proposed an automated civil infrastructure 
inspection based on deep learning to detect and quantify 
“Delamination”, “Crack” and “Background” regions on 
real structures, at pixel level. To ensure a wide range of 
adaptability, the training and validation dataset were built 

Fig. 9   Accuracies for each 
epoch
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Table 7   Accuracy and IoU for the optimal tuned hyperparameters

Accuracy IoU

Delamination 0.92489 0.71144
Crack 0.86449 0.28453
Background 0.90934 0.90035
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collecting images from the Internet, on-field bridge inspec-
tion and Google Street View under uncontrolled situa-
tions. Multiple environments, concrete texture and photo 
properties have been considered in order to obtain a very 
robust model suitable for real on-field inspections. For the 
collected images, each pixel has been manually labeled to 
create ground truth data for training semantic segmentation 
algorithms. Data augmentation was implemented to enhance 
diversity and expand the dataset. After augmentation, the 
number of images used for training and validation was 2000 
and 500, respectively.

A comparison study has been performed between pre-
trained networks to define the most suitable for the semantic 
segmentation of civil infrastructure defects. To find the best 
training model, the best learning rate has been selected with 
empirical method. The most performing ResNet-50 network 
has been fine-tuned to set hyperparameters configuration, 
achieving the highest validation accuracy of 91.04%. With 
the validation datasets, it is observed that the highest accu-
racies correspond to “Delamination” and “Background” 
classes whereas “Crack” class is found the most challeng-
ing to detect accurately. In addition, the performance of the 
trained network was tested considering test images with 
high-resolution, not used for training and validation. This 
analysis demonstrated that the proposed method could pro-
vide very accurate detection results with reference to all 
classes. Furthermore, the proposed method has been used 
not only for detection task but also to quantify defects by 
extracting morphological information. This research con-
firmed a high degree of applicability and advantage for 
computer vision-based inspection in civil infrastructures, 
which may significantly improve the productivity in the 
future.

To improve the performance of the semantic segmenta-
tion networks and allow engineers to apply this technique 
for their specific tasks, the datastore can be downloaded as 
open source from the website (https://​drive.​google.​com/​
drive/​folde​rs/​1sdzP​Aai6d​6fVgM-​qEFCn​Cl0MQ​kIG7N​TN?​
usp=​shari​ng).

Future research will concern the improvement of the 
semantic segmentation metrics considering a larger dataset 
and multispectral images that provide further information 
about each pixel. Furthermore, LiDAR sensor data and digi-
tal models will be integrated to develop a fully automated 
inspection procedure. Thus, computer vision-based method 
is expected to replace traditional visual inspection in the 
near future because of the objective assessment and the sav-
ing in resources.

Fig. 10   Examples of detection result by the proposed network

https://drive.google.com/drive/folders/1sdzPAai6d6fVgM-qEFCnCl0MQkIG7NTN?usp=sharing
https://drive.google.com/drive/folders/1sdzPAai6d6fVgM-qEFCnCl0MQkIG7NTN?usp=sharing
https://drive.google.com/drive/folders/1sdzPAai6d6fVgM-qEFCnCl0MQkIG7NTN?usp=sharing
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Fig. 11   Test images with high-resolution: a underside of stairs; b piers; c girders; d piers; e pier cap; f abutment; g pier cap; h concrete surface
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