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Abstract
The Enhanced Model Reference Adaptive Control (EMRAC) algorithm, aug-
menting the MRAC strategy with adaptive integral and adaptive switching
control actions, is an effective solution to impose reference dynamics to plants
affected by parameter uncertainties, unmodeled dynamics and disturbances.
However, the design of the EMRAC solutions has so far been limited to
single-input systems. To cover the gap, this paper presents two extensions of
EMRAC to multi-input systems. The adaptive mechanism of both solutions
includes the 𝜎-modification strategy to assure the boundedness of the adaptive
gains also in presence of persistent disturbances. The closed-loop system is ana-
lytically studied, and conditions for the asymptotic convergence of the tracking
error are presented. Furthermore, when the plant is subjected to unmatched
disturbances, the ultimate boundedness of the closed-loop dynamics, which are
made discontinuous by the adaptive switching control actions, is systematically
proven by using Lyapunov theory for Filippov systems. The problem of trajec-
tory tracking for space robotic arms in presence of unknown and noncooperative
targets is used to test the effectiveness of the novel multi-input EMRAC algo-
rithms for taming uncertain systems. Four EMRAC solutions are designed for
this engineering application, and tested within a high fidelity simulation frame-
work based on the Robot Operating System. Finally, the tracking performance of
the EMRAC implementations is quantitatively evaluated via a set of key perfor-
mance indicators in the joint space and operational space, and compared with
that of four benchmarking controllers.
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1 INTRODUCTION

Model reference adaptive control (MRAC) is an effective control design method for imposing the dynamics of a refer-
ence model to plants with uncertain parameters. An established theoretical framework supports this control approach,
which, over the past decades, has been shown to be a viable solution to control engineering plants with unknown param-
eters.1,2 Nowadays, MRAC research focuses on improving the closed-loop performance of the original algorithms (e.g., by
combining MRAC with other control techniques such as sliding mode control,3 iterative learning control4 or fuzzy algo-
rithms,5 just to name a few) and further extend the MRAC theory, for example, to fractional order systems,6 switching
control systems,7,8 and piecewise affine systems.9-11

To improve the closed-loop tracking performance in presence of plant parameter mismatches, unmodeled plant
dynamics, rapid varying disturbances, and unknown system nonlinearities, in Reference 12 the MRAC strategy was aug-
mented by an adaptive integral control action and an adaptive switching control action. Since then, the MRAC algorithm
equipped with these additional adaptive control actions, also known in the literature as Enhanced MRAC (EMRAC),13

has been shown to be an effective solution for steering the dynamics of engineering plants affected by disturbances and
model uncertainties toward those of a reference model. Examples of applications where the EMRAC has been successfully
implemented include electronic throttle valves,12 common rail systems,14 thermo-hygrometric control for multi-enclosed
thermal zones,15 and path tracking control for autonomous vehicles.16 Furthermore, in Reference 17 a discrete-time
version of the EMRAC algorithm was proposed, and it was shown experimentally that the adaptive integral and switch-
ing control actions are crucial for improving the tracking of the reference dynamics, compared to other robust adaptive
solutions and classical MRAC techniques.

However, the EMRAC algorithms available in the literature are limited to single-input systems, which is a severe
limitation of the current EMRAC theory to real systems characterized by multiple inputs. Hence, this paper aims to fill in
this gap in the literature by proposing multi-input EMRAC strategies. Specifically, two multi-input EMRAC algorithms
are designed and investigated. These solutions differ in the formulation of the multi-input adaptive switching control
action. A first formulation for the adaptive switching control action is based on the unit vector (UV) of the closed-loop
tracking error and is named EMRAC-UV, while the second one considers each component of the tracking error by using
an element-wise (EW) approach, and the resulting algorithm is denoted as EMRAC-EW. Furthermore, the adaptive
mechanism for the gains of the switching control action of the novel multi-input EMRAC solutions generalizes and
extends that of the single-input EMRAC, while guaranteeing also the limitation of the switching adaptive gains and their
first derivative.

To prevent the onset of unbounded adaptive gains in the presence of external disturbances and unmodeled dynam-
ics, which can degrade the closed-loop tracking performance and lead to instability,18 the adaptive laws of the proposed
multi-input EMRAC algorithms are equipped with the 𝜎-modification strategy to systematically limit the growth of the
adaptive gains to persistent disturbances (i.e., disturbances belonging to ∞).

The closed-loop system is systematically analyzed, and the closed-loop error dynamics are proven to be globally uni-
formly ultimately bounded also in presence of unmatched persistent disturbances, and the ultimate bound is provided.
Furthermore, as the EMRAC switching control action makes the closed-loop system nonsmooth, it is not possible to use
results available in the non-linear control theory for Lipschitz vector fields,19 and thus the extensions of Lyapunov the-
ory to Filippov systems presented in Reference 20 are used for proving the closed-loop ultimate boundedness. Moreover,
conditions for guaranteeing the asymptotic tracking of the reference model are also presented.

To confirm the effectiveness of the novel multi-input EMRAC algorithms to control the dynamics of challenging
multi-input engineering plants, four EMRAC solutions are designed for the path tracking control of robotic arms in the
space sector. Specifically, the EMRAC-UV and EMRAC-EW strategies have been implemented with and without feedback
linearization (FL) techniques, which are commonly adopted in robotics for compensating nominal system nonlinearities.

The nascent space robotics industry has been strongly demanding on-orbit servicing. On-orbit servicing particularly
focuses on using robotic arms sitting on spacecrafts to carry out manipulations and services for the potential targets
in space. These targets can be identified as cooperative and non-cooperative, while the service spacecraft are usually
classified as free-floating or free-flying.21,22

The target is said to be cooperative when it can communicate and be controlled in attitude and orbit to cooperate with
the service mission; on the contrary, a target is noncooperative when it has no ability to be controlled during the service
mission.23

In the case of a free-floating spacecraft, the attitude of the spacecraft platform remains uncontrolled during the manip-
ulation, while the platform attitude is actively controlled in the case of a free-flying spacecraft. The best example is
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5248 MONTANARO et al.

represented by the Canadarms on the International Space Station (ISS), where the attitude of the ISS is automatically
managed to compensate the impact on the ISS dynamics caused by the operation of the robot arm.

The objectives of on-orbit services include the removal of malfunctioning spacecrafts, refueling, deorbiting, and
in-space manufacturing. The services are usually achieved by executing three control tasks in sequence, that is, pre-
manipulation, grasp/capture and postcapture manipulation.24-26 To date, a good amount of research in space robotic
manipulation has been carried out to address the approaching, premanipulation, and grasping/capturing phases. These
studies cover the control and planning of space robotic systems, and address nonlinearities and nonholonomic planning
problems, as well as impedance and grasping/capturing control for both cooperative and noncooperative targets.23,27,28

For the postcapturing phase, accurate trajectory tracking is critical for mission safety and servicing performance. How-
ever, the robust manipulation and control of noncooperative targets during the postcapturing phase are still challenges
that limit the operating capability and range of the potential space applications. Path tracking control for noncooperative
targets poses a formidable control engineering challenge, due to the unknown inertial properties and dynamics of the tar-
gets, and the noncontrollable but still active Spacecraft Attitude and Orbit Control Systems (AOCS) of the targets, which
can significantly reduce the tracking accuracy of the space robotic arm.

Although adaptive control algorithms and MRAC strategies are effective solutions for control plants with parameter
mismatches, and have been successfully applied to robotic arms for terrestrial applications (for instance, see the recent
survey29), to the best of the authors’ knowledge, in the context of space applications, only few studies tried to address
the post-capturing trajectory tracking challenge for noncooperative missions by including some level of adaptation in
the control strategy. For instance, to counteract the unknown mass and inertia properties of the target, an adaptive reac-
tionless motion controller with a nonlinear regressor was proposed in Reference 30, while a control solution exploiting
an RLS-based algorithm for identifying the inertia parameters of the target was suggested in Reference 31. However,
the MRAC theory for the design of path tracking control solutions for noncooperative targets for space applications has
not been explored yet. Hence, in this paper four multi-input EMRAC solutions are devised to tackle the trajectory track-
ing control problem during the postcapturing phase for unknown and noncooperative targets for single space robotic
arm systems with a large attitude-controlled servicing spacecraft. Thus, for this case study, it is assumed that the target
has unknown inertial properties and its AOCS autonomously counteracts the motion that the robotic arm tries to impose
after the docking/connecting or grasping phase, thus generating a reaction force that acts as a disturbance on the robotic
arm dynamics.

For testing the effectiveness of the four EMRAC solutions, the EMRAC controllers have been compiled as a C++ code
and deployed within a real-time Robot Operating System (ROS) environment, with the simulations being carried out
through the state-of-the-art Gazebo dynamic simulator. The use of the industrial-standardized ROS framework can help
to efficiently and quickly implement controllers directly on real robots, and also shows the capability of the multi-input
EMRAC algorithms to run in real-time, despite the two additional adaptive control actions compared to the MRAC solu-
tions from the literature.2 Furthermore, the ROS-based framework is also used to show that the four EMRAC solutions
outperform four benchmark controllers with fixed gains.

The contributions of this paper are summarized as follows.

• To extend the EMRAC theory to multi-input systems through the design of two multi-input EMRAC strategies, along
with a systematic analysis of the closed-loop system by using extensions of Lyapunov theory to Filippov systems.

• To propose four multi-input EMRAC solutions to tackle the trajectory tracking control problem for space manipulators
operating in a free-flying mode for a noncooperative scenario during the postcapturing phase, and to test them in a ROS
based simulation environment. Due to the high risk of manipulating an unknown and noncooperative target in space,
the space industry and the blooming in-orbit servicing market only focus on the in-orbit servicing of communicable
and healthy satellites. This study discusses the potential robust trajectory tracking solution for inertia-changed and
noncooperative targets. This can greatly increase the servicing quality and expand the number of servable spacecrafts.

• To quantitatively compare the performance of the four proposed EMRAC solutions with four benchmarking feedback
controllers, including a proportional integral derivative (PID) controller embedded in ROS and three full-state FL-based
strategies, augmented either with a proportional integral (PI) controller, a proportional derivative (PD) controller, or
a robust strategy. The comparison is carried out via a set of key performance indicators (KPIs) in the joint space and
operational space.

In the remainder, n denotes the identity matrix in Rn×n, while n,m is the zero matrix in Rn×m. Given a symmet-
ric matrix  ∈ Rn×n, then 𝜆min() and 𝜆max() denote the minimum and maximum eigenvalues of , respectively.
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MONTANARO et al. 5249

Moreover, for a sequence of matricesj ∈ R
nj×nj , with j = 1, … ,m,Δ(1,2, … ,m) denotes the block diagonal matrix

in R(n1+···+nm)×(n1+···+nm) with the jth diagonal block beingj.
The paper is organized as follows. Section 2 presents the novel multi-input EMRAC algorithms, that is, the

EMRAC-UV and EMRAC-EW strategies, while the main theoretical results established therein are proved in Section 3.
Section 4 presents EMRAC solutions for trajectory tracking control for space manipulators. Simulation results and the
quantitative comparison of the closed-loop tracking performance are presented in Section 5. Finally, conclusions are
drawn in Section 6, while Appendix A and Appendix B, respectively, provide the mathematical background on Filippov
systems, used to prove the ultimate boundedness of the closed-loop tracking error, and details of the ROS simulation
framework for the simulation analysis.

2 EMRAC STRATEGIES FOR MULTI-INPUT SYSTEMS

Consider a multi-input plant of the form

ẋ = Ax + Bu + Ed + , x(t0) ∈ R
nx
, (1)

where x ∈ Rnx is the state vector of the plant, u ∈ Rnu is the plant input vector, nx and nu are the dimensions of the
state space and control input, respectively, and t0 ∈ R is the initial time instant. System (1) is subjected to two types of
disturbances, that is, the measurable disturbance d ∈ Rnd , with nd being the dimension of the space of the measurable
disturbance, and the nonmeasurable disturbance  ∈ Rnx . Both disturbances are assumed to be bounded (i.e., there exist
two constants ∞ > 0 and d∞ > 0, such that ||(t)|| ≤ ∞ and ||d(t)|| ≤ d∞, ∀ t ≥ t0). Moreover, A ∈ Rnx×nx , B ∈ Rnx×nu ,
and E ∈ Rnx×nd are the dynamic matrix, the input matrix and the matrix of the measurable disturbance, respectively,
which are assumed constant with unknown entries.

The control objective for the EMRAC is to steer the dynamics of system (1) toward those of a linear reference sys-
tem while guaranteeing the boundedness of all closed-loop signals. The reference model dynamics are given by an
asymptotically stable LTI system of the form

ẋm = Amxm + Bmr + Emd, (2)

where xm ∈ Rnx is the reference model state, r ∈ Rnu is the reference input assumed to be bounded, while Am ∈ Rnx×nx ,
Bm ∈ Rnx×nu , and Em ∈ Rnx×nd are the dynamics matrix, the input matrix, and the disturbance matrix of the reference
model, respectively, with Am being a Hurwitz matrix.

It is assumed that there exist some constant matrices Φ̂R ∈ Rnu×nu , Φ̂X ∈ Rnu×nx , Φ̂D ∈ Rnu×nd , and an invertible matrix
S ∈ Rnu×nu such that following matching conditions are satisfied

Bm = BΦ̂R, Am = A + BΦ̂X = A + BmΦ̂
−1
R Φ̂X , Em = E + BΦ̂D = A + BmΦ̂

−1
R Φ̂D, P𝜙 = Φ̂RS = STΦ̂

T
R > 0. (3)

The ideal gains Φ̂R, Φ̂X , and Φ̂D can be collected in the matrix Φ̂ ∈ Rnu×nw , with nw = 2nx + nu + nd, and in the vector
𝜙 ∈ Rnunw defined as

Φ̂ =
[

Φ̂X Φ̂R Φ̂D Φ̂I

]

=
[

B†Bm B† (Am − A) B† (Em − E) nu,nx

]

=
[

𝜙1 𝜙2 · · · 𝜙nw−1 𝜙nw

]

, (4)

𝜙 =
[

𝜙
T
1 𝜙

T
2 · · · 𝜙

T
nw−1 𝜙

T
nw

]T
, and ||𝜙|| ≤ M𝜙, (5)

where Φ̂I = nu,nx , 𝜙j, j = 1, 2, … ,nw, is the jth column of Φ̂ and M𝜙 is a known upper bound of ‖‖
‖
𝜙
‖
‖
‖

.
The disturbance  is parameterized as

 = Bm𝛿 + ̂, (6)
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5250 MONTANARO et al.

where both 𝛿 ∈ Rnu×nu and ̂ are assumed to be bounded, that is, there exist two constants 𝛿∞ > 0 and ̂∞ > 0, such that
||𝛿(t)|| ≤ 𝛿∞ and || ̂(t)|| ≤ ̂∞, ∀ t ≥ t0.

The control action provided by the EMRAC algorithm for the multi-input system (1) is

u(t) = uMRAC(t) + uD(t) + uI(t) + uN(t), (7)

where

uMRAC(t) = KX (t)x(t) + KR(t)r(t), (8a)

uD(t) = KD(t)d(t), (8b)

uI(t) = KI(t)xI(t), (8c)

where xI ∈ Rnx is the integral of the tracking error whose dynamics are computed as

ẋI = xe − 𝜎I (‖xI‖) 𝜌exI , and xe = xm − x, (9)

where xe is the state tracking error, 𝜌e ∈ Rnx×nx is a positive diagonal matrix and 𝜎I (‖xI‖) is the 𝜎-modification strategy to
prevent the drift of the integral of the tracking error (9) defined as

𝜎I (‖xI‖) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if ‖xI‖ ≤ M̂I ,

𝜂I

(
‖xI‖

M̂I
− 1

)

if M̂I < ‖xI‖ ≤ 2M̂I ,

𝜂I if ‖xI‖ > 2M̂I ,

(10)

where 𝜂I and M̂I are strictly positive constants.
The adaptive gains in (8) are computed as

KX = ΦX + STyexT
𝛽X , and Φ̇X = STyexT

𝛼X + FX , (11a)

KR = ΦR + STyerT
𝛽R, and Φ̇R = STyerT

𝛼R + FR, (11b)

KD = ΦD + STyedT
𝛽D, and Φ̇D = STyedT

𝛼D + FD (11c)

KI = ΦI + STyexT
I 𝛽I , and Φ̇I = STyexT

I 𝛼I + FI , (11d)

where 𝛼X , 𝛽X , 𝛼I , 𝛽I ∈ Rnx×nx , 𝛼R, 𝛽R ∈ Rnu×nu , and 𝛼D, 𝛽D ∈ Rnd×nd are strictly positive diagonal matrices and FX , FI ∈
Rnu×nx , FR ∈ Rnu×nu and FD ∈ Rnu×nd are the locking strategies for preventing the unbounded evolution of the gains (11)
in the presence of disturbances and unmodeled dynamics. Moreover, ye ∈ Rnu is computed as

ye = BT
mPexe, with Pe being the solution of PeAm + AT

mPe = −Q, (12)

where Q ∈ Rnx×nx is a strictly positive matrix.
The integral parts of the adaptive gains in (11) can be collected in the matrix Φ ∈ Rnu×nw and the vector 𝜙 ∈ Rnunw

defined as

Φ =
[

ΦX ΦR ΦD ΦI

]

=
[

𝜙1 𝜙2 · · · 𝜙nw−1 𝜙nw

]

, (13)

𝜙 =
[

𝜙
T
1 𝜙

T
2 · · · 𝜙

T
nw−1 𝜙

T
nw

]T
, (14)
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MONTANARO et al. 5251

where 𝜙j, j = 1, 2, … ,nw is the jth column of the Φ-matrix. Moreover, the leakage terms in (11) are computed as

FX = −𝜎𝜙(||𝜙||)ΦX𝜌X , FI = −𝜎𝜙(||𝜙||)ΦI𝜌I , FR = −𝜎𝜙(||𝜙||)ΦR𝜌R, FD = −𝜎𝜙(||𝜙||)ΦD𝜌D, (15)

where 𝜌X , 𝜌I ∈ Rnx×nx , 𝜌R ∈ Rnu×nu and 𝜌D ∈ Rnd×nd are strictly positive diagonal matrices and 𝜎𝜙(||𝜙||) is the
𝜎-modification strategy for the adaptive gains of the smooth control actions computed as

𝜎𝜙 (‖𝜙‖) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, if ‖𝜙‖ ≤ M̂𝜙,

𝜂𝜙

(
‖𝜙‖

M̂
𝜙

− 1
)

, if M̂𝜙 < ‖𝜙‖ ≤ 2M̂𝜙,

𝜂𝜙, if ‖𝜙‖ > 2M̂𝜙,

(16)

where 𝜂𝜙 and M̂𝜙 are strictly positive constants such that

M̂𝜙 ≥

√
√
√
√
√
√

𝜆max

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜆min

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)M𝜙, and 𝜂𝜙𝜆min

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

>

3
4
𝜆min(Q), (17)

where ⊗ is the Kronecker product and the strictly positive matrices Γ𝜌, Γ𝜌 ∈ Rnw×nw are defined as

Γ𝛼 = Δ (𝛼X , 𝛼R, 𝛼D, 𝛼I) = diag
(
𝛼1, 𝛼2, … , 𝛼nw

)
, and Γ𝜌 = Δ (𝜌X , 𝜌R, 𝜌D, 𝜌I) = diag

(
𝜌1, 𝜌2, … , 𝜌nw

)
. (18)

The control action uN(t) can be set either as u(uv)
N (t) or u(ew)

N (t) define as

u(uv)
N (t) = K(uv)

N (t)
ye

‖ye‖
, K(uv)

N = STΦN0, (19)

u(ew)
N (t) = K(ew)

N (t)𝜓(ye), K(ew)
N = STΦN , 𝜓(ye) =

[

sgn(ye1) sgn(ye2) · · · sgn(yenu)
]T
, (20)

where the dynamics of the adaptive gains ΦN0 ∈ R and ΦN = diag
(
ΦN1,ΦN2, … ,ΦNnu

)
∈ Rnu are

Φ̇N0 = 𝛼N0h0
(
‖ye‖Ω

)
− 𝜎N0 (‖ΦN0‖) 𝜌N0ΦN0, (21)

Φ̇Nj = 𝛼Njhj
(
|
|yej||

)
− 𝜎Nj

(
‖
‖ΦNj‖‖

)
𝜌NjΦNj, j = 1, … ,nu, (22)

where ‖ye‖Ω = yT
e Ωye with Ω ∈ Rnu×nu being a strictly positive matrix, 𝛼Nj, 𝜌Nj, j = 0, 1, … ,nu, are strictly positive

constants, and the h-functions are defined as

h0
(
‖ye‖Ω

)
=

‖ye‖
𝜍0
Ω

𝜉0 + 𝛾0‖ye‖
𝜍0
Ω

, (23a)

hj
(
|
|yej||

)
=

|yei|
𝜍j

𝜉j + 𝛾j|yei|
𝜍j
, j = 1, … ,nu, (23b)

with 𝜉j, 𝛾j, 𝜍j, j = 0, 1, … ,nu, are strictly positive constants.
The 𝜎-modification functions 𝜎Nj

(
||ΦNj||

)
, j = 0, 1, … ,nu, in (21) and (22) are defined as

𝜎Nj
(
||ΦNj||

)
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, if ‖
‖ΦNj‖‖ ≤ M̂Nj,

𝜂Nj

(
‖ΦNj‖

M̂Nj
− 1

)

, if M̂Nj < ‖
‖ΦNj‖‖ ≤ 2M̂Nj,

𝜂Nj, if ‖
‖ΦNj‖‖ > 2M̂Nj,

(24)
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5252 MONTANARO et al.

where 𝜂Nj and M̂Nj, j = 0, 1, … nu, are strictly positive constants and

M̂N0 >
𝛿∞

𝜆min(SP−1
𝜙

ST)
, and M̂Nj >

𝛿j∞

c̃j
, j = 1, … ,nu, (25)

where c̃j > 0 is the j-entry on the diagonal of the matrix SP−1
𝜙

ST and 𝛿j∞ > 0, j = 1, … ,nu, are constants such that |𝛿j| ≤

𝛿j∞.
In the rest of the paper, when the EMRAC control action (7) is equipped uN = u(uv)

N in (19), then the resulting control
strategy is named EMRAC-UV (i.e., EMRAC with the uN -term based on the unit vector in the direction of ye), while when
uN is set as uN = u(ew)

N in (20), the resulting strategy is referred to as EMRAC-EW (i.e., EMRAC with the uN -term based
on each entry of the vector ye).

Let us now define the following vectors and matrices

Φe = Φ̂ − Φ, 𝜙e = 𝜙 − 𝜙, x̃e =
[

xT
e 𝜙

T
e

]T
∈ R

nx+nunw
, (26)

P̃ = Δ
(

Pe, P̃𝜙
)

∈ R
(nx+nunw)×(nx+nunw)

, with P̃𝜙 = Γ−1
𝛼
⊗ P−1

𝜙
∈ R

nunw×nunw
, (27)

and the positive constant and functions

𝜇1 =
3
4
𝜆min(Q), 𝜇2

(
̃∞

)

=
3‖Pe‖

2 ̃2
∞

𝜇1
+ 𝜇1

(

2M̂𝜙 + ||𝜙||

)2
, 𝜇

(
̃∞

)

=

√
√
√
√ 𝜇2

(
̃∞

)

𝜇1(1 − 𝜁)
with 𝜁 ∈ (0, 1), (28)

where

̃
2
∞ =

{
̂

2
∞, if ̂

TBm𝛿 ≥ 0 ∀t ≥ t0,


2
∞, otherwise.

(29)

Notice that when ̂
TBm𝛿 > 0, then || ̂(t)|| < ||(t)||, thus ̂

2
∞ < 

2
∞ and 𝜇( ̂∞) < 𝜇(∞). This condition is satisfied for

instance when the reference inputs for system (2) are decoupled, thus, after a permutation of the columns of Bm, the
reference input matrix can be expressed as Bm =

[


T
nx−nu,nu

BT
mc

]T , with Bmc = diag(bmc,1, bmc,2, … , bmc,nu) ∈ Rnu×nu .
Indeed, under this condition, the entries of the 𝛿-vector in (6) can be set as 𝛿j = j+nx−nu∕bm,j, j = 1, … ,nu, while
̂ =

[
1 … nx−nu 0 … 0

]T , thus ̂TBm𝛿 = 0, ∀ t ≥ t0.

Theorem 1 (EMRAC-UV). Consider system (1) and the reference model (2). Let the adaptive control action be
given by (7), where uN is set as u(uv)

N in (19) and the adaptive gains computed as in (11) and (21). Then, all the
closed-loop signals are bounded. Moreover,

a (a) if ̂ ≠ 0, then the tracking error dynamics are globally uniformly ultimately bounded, and there exists a time 
(dependent on x̃e(t0)) such that

‖
‖x̃e(t)‖‖ ≤

√

𝜆max(P̃)
𝜆min(P̃)

𝜇( ̃∞), ∀ t ∈ [t0 +  ,+∞), (30)

where P̃ and 𝜇 are computed as in (27) and (28), respectively;
b (b) if ̂ = 0, the closed-loop tacking error xe converges to zero as the time goes to infinite, that is,

‖xe(t)‖ → 0 when t → +∞. (31)

Theorem 2. (EMRAC-EW) Consider system (1) and the reference model (2). Let the adaptive control action be
given by (7) where uN is set as u(ew)

N in (20) and the adaptive gains are computed as in (11) and (22). If the matrix
SP−1

𝜙
ST is diagonal, then results (a) and (b) of Theorem 1 hold also for the EMRAC-EW algorithm.
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MONTANARO et al. 5253

As for the Minimal Control Synthesis (MCS) adaptive strategy,32 Theorems 1 and 2 hold also for linear time-varying
systems when the variation of the system matrices is slower than the adaptation rate of the integral part of the adaptive
gains in (11). Hence, the following corollary extends the results obtained for the MCS algorithm to the multi-input EMRAC
algorithm.

Corollary 1. Assume that the matrices of the plant (1) are time-varying with a rate of variation such that

dΦ̂
dt

− STyewTΓ𝛼 ≈ −STyewTΓ𝛼, (32)

where

w =
[

xT rT dT xT
I

]T
∈ R

nw
, (33)

then Theorems 1 and 2 still hold.

Remarks:

• For system (1), the measurable disturbance d models nonmanipulated plant inputs, while  represents unmodeled
dynamics and unmeasurable external disturbances.

• The multi-input EMRAC strategy enhances MRAC solutions with compensation of measurable disturbances2 by equip-
ping the control strategy (7) with two additional adaptive control actions, that is, the adaptive integral action uI(t) in
(8c), and the adaptive switching control action uN(t) computed either as in (19), for the EMRAC-UV strategy, or in (20),
in the case of the EMRAC-EW solution. The adaptive integral control action improves the tracking of the reference
model to unmodeled biases in the plant dynamics, for example constant disturbances, while the adaptive switching
control action increases the robustness of the closed-loop tracking performance with respect to rapid varying bounded
disturbances.

• The additional adaptive and integral control actions of the EMRAC, that is, uI(t) and uN(t), make this strategy
more computational demanding with respect to traditional MRAC algorithms. However, implementations of EMRAC
solutions in ROS, investigated in this paper, suggest that the two extra control actions do not jeopardize real-time
implementability of EMRAC algorithms.

• For engineering control problems, nominal plant models can be used to design the reference dynamics such that con-
ditions (3) hold. A possible approach is to select as a reference model the nominal plant model controlled via feedback
control actions (e.g., LQR strategies, see References 12,33). Furthermore, the range of variations of the plant parameters
and disturbances can be utilized to select the weights of the 𝜎-modification.34

• As for the multi-input MRAC strategies presented in Reference 18, the assumption on the existence of the matrix S in
(3) replaces the condition of the knowledge of the sign of Φ̂R for the single-input EMRAC.33 However, when consid-
ering the canonical form of the model of robotic manipulators, the matrix S can be set as the identity matrix (see also
Section 4).

• Compared to classical multi-input MRAC strategies,18 in addition to the adaptive switching control action and the
adaptive integral control action, the EMRAC algorithm augments the integral adaptive mechanism of the adap-
tive gains in (11) with (i) a proportional adaptive mechanism to improve the closed-loop tracking dynamics35 and
(ii) a 𝜎-modification strategy, which is used, together with (24), for guaranteeing the ultimate boundedness of the
closed-loop tracking error dynamics in presence of unmatched disturbances and unmodeled dynamics. Furthermore,
for each component of the regressor (33), there is an integral adaptive weight, a proportional adaptive weight and
leakage factor, thus allowing tailoring these control parameter for each entry of the regressor based on the control
application.

• The novel adaptive laws for the gains of the switching control actions, that is, (21) and (22), guarantee that the dynamics
of the gains ΦNj, with j = 0, 1, … ,nu, and their derivatives are bounded for any ye-trajectory as h0(||ye||Ω) and hj(|yej|)
in (23) are bounded and the 𝜎-modification strategy is adopted (see also Section 3.1).

• If nu = 1, both the EMRAC-UV and the EMRAC-EW algorithms reduce to the single-input EMRAC,33 thus confirming
that they are consistent extensions of the EMRAC family to the multi-input case. However, by using the novel adaptive
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5254 MONTANARO et al.

mechanism for the switching control action in (21) and (22), when nu = 1 the ultimate bound computed as in (30) is
smaller than that presented in Reference 16 for single-input systems. Furthermore, the adaptive mechanisms (21) and
(22) reduce to the one presented for the single-input EMRAC by selecting 𝜍j = 1, 𝜉j = 1 𝛾j = 0 in (23).

3 PROOF OF THE MAIN THEOREMS

The analysis of the closed-loop system is based on the Lyapunov theory for smooth and nonsmooth dynamic systems
and Barbalat’s lemma to prove convergence of the tracking error. In what follows, the ultimate boundedness of ΦN0 and
ΦN is first proven in Section 3.1. Then a quadratic auxiliary Lyapunov-like function is designed for the closed-loop error
dynamics in Section 3.2. This Lyapunov-like function will be then used along with the theory for non-smooth dynamic
systems presented in Appendix A to prove Theorem 1 and Theorem 2 (see Section 3.3, Section 3.4 and Section 3.5). Finally,
the proof of Corollary 1 is presented in Section 3.6.

The proof of the ultimate-boundedness of the closed-loop error dynamics requires the following lemma.

Lemma 1. The 𝜎-modification strategy (15) and (16) guarantees

−𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙 ≥ 0, ∀ 𝜙, and − 𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙 > 0, ∀ ||𝜙|| ≥ M̂𝜙. (34)

Moreover

−𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙 >

𝜂𝜙

2
𝜙

T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙e, ∀ ||𝜙|| ≥ 2M̂𝜙. (35)

Notice that, the proof of Lemma 1 follow identically to the proof of lemma 2 in Reference 34, thus and it is omitted
for the sake of brevity.

3.1 Ultimate boundedness of𝚽N0 and𝚽N

The ultimate boundedness, and thus the boundedness, of the adaptive gains ΦNj, j = 0, 1, … ,nu in (21) and (22) can be
proved by using the theory of smooth nonlinear dynamics systems is19 as follows.

By selecting for each gain ΦNj, j = 0, 1, … ,nu the functions VN , WNa and WNb as

VN
(
ΦNj

)
= WNa

(
ΦNj

)
= WNb

(
ΦNj

)
=
Φ2

Nj

2
, (36)

then

WNa
(
ΦNj

)
≤ VN

(
ΦNj

)
≤ WNb

(
ΦNj

)
, ∀ ΦNj, j = 0, 1, … ,nu. (37)

As each hj, j = 0, 1, … ,nu in (23) is bounded and by using the 𝜎-modification functions in (24), after some algebraic
manipulations the derivative of VN can be upper-bounded as

V̇ N = 𝛼NjhjΦNj − 𝜎Nj
(
‖
‖ΦNj‖‖

)
𝜌NjΦ2

Nj

≤ −𝜌Nj𝜂Nj(1 − 𝜁Nj)Φ2
Nj − 𝜌Nj𝜂Nj𝜁NjΦ2

Nj +HNjΦNj

≤ −WNj
(
ΦNj

)
, if ‖

‖ΦNj‖‖ ≥ 𝜇Nj = max
{

2M̂Nj,
HNj

𝜌Nj𝜂Nj𝜁Nj

}

, j = 0, 1, … ,nu, (38)

where HNj = 𝛼Nj∕𝛾Nj, 𝜁Nj ∈ (0, 1) and WNj
(
ΦNj

)
= 𝜌Nj𝜂Nj(1 − 𝜁Nj)Φ2

Nj, j = 0, 1, … ,nu.
As the dynamics in (21) and (22) are smooth and (37) and (38) hold, it is possible to apply theorem 4.18, p. 172 in

Reference 19, which guarantees the boundedness and the ultimate boundedness of the evolution of each ΦNj, and the
ultimate bound is W−1

Na(WNb(𝜇Ni)) = 𝜇Ni, j = 0, 1, … ,nw.
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MONTANARO et al. 5255

3.2 Closed-loop dynamics and the Lyapunov-like function candidate

The closed-loop error dynamics are obtained through (1)–(3), (7), and (11) and they are

ẋe = Amxe + BmΦ̂
−1
R Φew − BmΦ̂

−1
R SyewTΓ𝛽w − BmΦ̂

−1
R uN − , (39a)

𝜙̇e = f𝜙(𝜙, 𝜙e, ye,w), (39b)

with f𝜙 being a smooth vector field for the dynamics of integral part of the adaptive gains 𝜙e. The entries of 𝜙̇e can be
collected in the matrix Φ̇e ∈ Rnu×nw obtained by derivingΦe in (26). After some algebraic manipulations, the dynamics of
Φe are

Φ̇e = −Φ̇ = −STyewTΓ𝛼 − F, with F = −𝜎𝜙(||𝜙||)ΦΓ𝜌. (40)

As the control action uN , computed either as (19) or (20), is discontinuous, the vector field of system (39a) is dis-
continuous, thus it is not possible to use the theory presented in Reference 19 to prove the ultimate boundedness of the
closed-loop error system in (39). Consequently, the theory presented in Appendix A for Filippov systems is used, and the
differential equation (39) is replaced with the corresponding differential inclusion

where x̃e is defined in (26) and K[ ]
(

t, x̃e
)

is the Filippov set valued map for the discontinuous closed-loop vector field,
which is computed as

In the case of the EMRAC-UV, K[uN] is

K[uN] = K[u(uv)
N ] = STΦN0K

[
ye

‖ye‖

]

, with K
[

ye

‖ye‖

]

=

{
y⃗e, if ‖ye‖ ≠ 0,
u, if ‖ye‖ = 0,

(43)

with K
[

ye

‖ye‖

]

being the set-valued vector function in Reference 36, where y⃗e is the unit vector in the direction of ye and
u is the closed unit sphere in Rnu centered in the origin.

For the EMRAC-EW, K[uN] is

K[uN] = K[u(ew)
N ] = STΦNK [𝜓(ye)] , (44)

with

K [𝜓(ye)] =
[

K
[
sgn(ye1)

]
K

[
sgn(ye2)

]
… K

[
sgn(yenu)

]]T
, (45)

where K
[
sgn(yej)

]
, j = 1, 2, … nu, is the set-valued map

K
[
sgn(yej)

]
=

⎧
⎪
⎨
⎪
⎩

− 1, if yej < 0,
[−1, 1], if yej = 0,
1, if yej > 0.

(46)
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5256 MONTANARO et al.

For system (41), the Lyapunov-like function is selected as

V
(

x̃e
)
= x̃T

e P̃x̃e, (47)

where P̃ is the strictly positive matrix defined in (27). The Lyapunov-like function (47) can be bounded as

W1
(

x̃e
)
≤ V

(
x̃e
)
≤ W2

(
x̃e
)
, with W1

(
x̃e
)
= 𝜆min(P̃)‖‖x̃e‖‖

2
, W2

(
x̃e
)
= 𝜆max(P̃)‖‖x̃e‖‖

2
, (48)

where W1, W2 ∈ ∞. Moreover, V
(

x̃e
)

can be rewritten as

V(x̃e) = V(xe, 𝜙e) = xT
e Pexe + 𝜙T

e

(

Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙e = xT
e Pexe +

nw∑

j=1
𝜙

T
ej

P−1
𝜙

𝛼j
𝜙ej = xT

e Pexe + tr
[

ΦT
e P−1

𝜙
ΦeΓ−1

𝛼

]

. (49)

As the function V(x̃e) is smooth, its generalized derivative can be computed as ̇̃V = ∇V TK[ ] (see also Appendix A). By
using (3), (12), (40), and (42), after some algebraic manipulations, ̇̃V takes the following form

̇̃V = −xT
e Qxe + 2yT

e Φ̂
−1
R Φew − 2yT

e SP−1
𝜙

STyewTΓ𝛽w − 2yT
e Φ̂

−1
R K[uN]

− 2tr
[

ΦT
e P−1

𝜙
STyewT

]

− 2tr
[

ΦT
e P−1

𝜙
FΓ−1

𝛼

]

− 2xT
e Pe. (50)

Now, as

yT
e Φ̂

−1
R Φew = tr

[

yT
e Φ̂

−1
R Φew

]

= tr
[

yT
e SP−1

𝜙
Φew

]

= tr
[

wTΦT
e P−1

𝜙
STye

]

= tr
[

ΦT
e P−1

𝜙
STyewT

]

, (51a)

tr
[

ΦT
e P−1

𝜙
FΓ−1

𝛼

]

= −𝜎𝜙tr
[

ΦT
e P−1

𝜙
ΦΓ𝜌Γ−1

𝛼

]

= −𝜎𝜙
nw∑

j=1
𝜙

T
ej
𝜌j

𝛼j
P−1
𝜙
𝜙j = −𝜎𝜙𝜙T

e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙, (51b)

yT
e SP−1

𝜙
STyewTΓ𝛽w ≥ 0, ∀ ye ∈ Rnu

, and ∀ w ∈ Rnw
, (51c)

̇̃V can be upper-bounded as

̇̃V ≤ −xT
e Qxe − 2yT

e Φ̂
−1
R K[uN] − 2xT

e Pe − 2
[

−𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙

]

. (52)

Furthermore, by using (17), (35), Lemma 1 and Φ−1
R = SP−1

𝜙
, after some algebraic manipulations, ̇̃V can be further

upper-bounded as

̇̃V ≤ −3
4
𝜆min(Q)‖xe‖

2 − 𝜆min(Q)
‖
‖
‖
‖

xe

2
+ 2Pe

𝜆min(Q)
‖
‖
‖
‖

2
+ 4‖Pe‖

2||||2

𝜆min(Q)

− 2yT
e SP−1

𝜙
K[uN] − 2

[

−𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙

]

≤ −3
4
𝜆min(Q)‖xe‖

2 +
4‖Pe‖

2


2
∞

𝜆min(Q)
− 2yT

e SP−1
𝜙

K[uN] − 2
[

−𝜎𝜙(||𝜙||)𝜙T
e

(

Γ𝜌Γ−1
𝛼
⊗ P−1

𝜙

)

𝜙

]

≤ −3
4
𝜆min(Q)‖xe‖

2 +
4‖Pe‖

2


2
∞

𝜆min(Q)
− 2yT

e SP−1
𝜙

K[uN] +
3
4
𝜆min(Q)

((

2M̂𝜙 + ||𝜙||

)2
− ‖𝜙e‖

2
)

≤ −3
4
𝜆min(Q)‖‖x̃e‖‖

2 +
4‖Pe‖

2


2
∞

𝜆min(Q)
+ 3

4
𝜆min(Q)

(

2M̂𝜙 + ||𝜙||

)2
− 2yT

e SP−1
𝜙

K[uN]

= −𝜇1‖‖x̃e‖‖
2 + 𝜇2(∞) − 2yT

e SP−1
𝜙

K[uN], (53)

where 𝜇2 in (28) is computed by using ̃
2
∞ = 2

∞.
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MONTANARO et al. 5257

In the case ̂TBm𝛿 ≥ 0, ∀t ≥ t0, with the same steps, ̇̃V can be upper-bounded as

̇̃V ≤ −𝜇1‖‖x̃e‖‖
2 + 𝜇2( ̂∞) − 2yT

e 𝛿 − 2yT
e SP−1

𝜙
K[uN], (54)

where 𝜇2 in (28) is computed by using ̃
2
∞ = ̂

2
∞ < 

2
∞.

3.3 Proof of Theorem 1a

In the case of the EMRAC-UV, from (43) the term yT
e SP−1

𝜙
K[uN] in (53) and (54) become

yT
e SP−1

𝜙
STΦN0K

[
ye

‖ye‖

]

=
⎧
⎪
⎨
⎪
⎩

‖ye‖ y⃗T
e SP−1

𝜙
STΦN0y⃗e, if ye ≠ 0,

0, if ye = 0, ∀ v ∈ K
[

ye

‖ye‖

]
,

and thus

yT
e SP−1

𝜙
STΦN0K

[
ye

‖ye‖

]

= ‖ye‖ y⃗T
e SP−1

𝜙
STΦN0y⃗e ≥ 0. (55)

.
Hence, (53) can be further upper-bounded as

̇̃V ≤ −𝜇1𝜁‖‖x̃e‖‖
2 − 𝜇1(1 − 𝜁)‖‖x̃e‖‖

2 + 𝜇2(∞) ≤ −W3(x̃e), when ‖
‖x̃e‖‖ ≥

√

𝜇2(∞)
𝜇1(1 − 𝜁)

= 𝜇(∞), (56)

where 𝜁 ∈ (0, 1) and W3(x̃e) ∈  is the positive function defined as

W3(x̃e) = 𝜇1𝜁‖‖x̃e‖‖
2
. (57)

Since (48) and (57) hold, Theorem 3 in Appendix A can be applied, thus the closed-loop error dynamics (39)–(41) are

ultimate bounded and the ultimate bound is W−1
1 (W2(𝜇(∞))) =

√
𝜆max(P̃)
𝜆min(P̃)

𝜇(∞) as stated in Theorem 1a when ̃
2
∞ = 2

∞.

Moreover, there exist a -class function Ψ ∶ R+ ×R+ → R+, a time interval  and a function 𝛾b ∈ ∞ such that the
error dynamics are bounded as

‖
‖x̃e(t)‖‖ ≤ 𝛾b(t), with 𝛾b(t) =

⎧
⎪
⎨
⎪
⎩

Ψ
(
‖
‖x̃e(t0)‖‖ , t − t0

)
, if t0 ≤ t < t0 +  ,

√
𝜆max(P̃)
𝜆min(P̃)

𝜇(∞), if t > t0 +  .
(58)

Consider now the case ̂
TBm𝛿 > 0 ∀ t ≥ t0, along with the decomposition of the disturbance  in (6). Under these

conditions, by using also (21), (25), there exists a time instant t⋆0 > t0 such that ΦN0 > 𝛿∞∕𝜆min

(

SP−1
𝜙

ST
)

, for all t > t⋆0 .

Hence, by considering also (55), ̇̃V in (54) can be upper bounded as

̇̃V ≤ −𝜇1‖x̃e‖
2 + 𝜇2( ̂∞) − 2yT

e 𝛿 − 2 ‖ye‖ y⃗T
e SP−1

𝜙
STΦN0y⃗e

≤ −𝜇1‖x̃e‖
2 + 𝜇2( ̂∞) + 2 ‖ye‖ 𝛿∞ − 2ΦN0𝜆min

(

SP−1
𝜙

ST
)

‖ye‖

= −𝜇1‖x̃e‖
2 + 𝜇2( ̂∞) − 2𝜆min

(

SP−1
𝜙

ST
)

‖ye‖

⎡
⎢
⎢
⎢
⎣

ΦN0 −
𝛿∞

𝜆min

(

SP−1
𝜙

ST
)

⎤
⎥
⎥
⎥
⎦

≤ −𝜇1𝜁‖‖x̃e‖‖
2 − 𝜇1 (1 − 𝜁) ‖‖x̃e‖‖

2 + 𝜇2( ̂∞) ≤ −W3(x̃e), when ‖x̃e‖ ≥

√

𝜇2( ̂∞)
𝜇1 (1 − 𝜁)

= 𝜇( ̂∞), (59)
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5258 MONTANARO et al.

where 𝜁 ∈ (0, 1) and W3(x̃e) ∈  is the function defined in (57). As (48) and (59) hold, similar to the previous case,
Theorem 3 in Appendix A can be applied, thus the closed-loop error dynamics (39)–(41) are ultimate bounded, and the

ultimate bound is W−1
1 (W2(𝜇( ̂∞))) =

√
𝜆max(P̃)
𝜆min(P̃)

𝜇( ̂∞) as stated in Theorem 1a when ̃
2
∞ = ̂

2
∞. Moreover, there exists a

-class function Ψ⋆ ∶ R+ ×R+ → R+, a time interval  ⋆ and a function 𝛾
⋆

b ∈ ∞ such that the error dynamics are
bounded as

‖
‖x̃e(t)‖‖ ≤ 𝛾

⋆

b (t), with 𝛾
⋆

b (t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛾b(t), if t0 ≤ t < t⋆0 ,
Ψ⋆

(
||x̃e(t⋆0 )||, t − t⋆0

)
, if t⋆0 ≤ t < t0 +  ⋆,

√
𝜆max(P̃)
𝜆min(P̃)

𝜇(∞), if t > t⋆0 + 
⋆
.

(60)

The boundedness of ‖‖x̃e‖‖, guaranteed either by (58) or (60), implies the boundedness of xe,𝜙e andΦe. As xe is bounded
(i.e., xe ∈ ∞) then ye is bounded, and because xm in bounded by assumption, then also x is bounded, while the bounded-
ness of xI can be proven as in Reference 34. The boundedness ofΦe, xe, d, r imply that KX , KR, KI and KD are bounded. The
boundedness of the signals x, xe, d, r,ΦN0, KX , KR, KI , and KD implies that also u and ẋ are bounded. Hence, the bounded-
ness of all closed-loop signals remains proven when the EMRAC-UV is used, thus concluding the proof of Theorem 1a.

3.4 Proof of Theorem 1b

In the case ̂ = 0, by using (34), (43), and (55), ̇̃V in (52) can be upper-bounded as

̇̃V ≤ −xT
e Qxe − 2yT

e 𝛿 − 2 ‖ye‖ y⃗T
e SP−1

𝜙
STΦN0y⃗e

≤ −𝜆min(Q)‖xe‖
2 − 2𝜆min

(

SP−1
𝜙

ST
)

‖ye‖

⎡
⎢
⎢
⎢
⎣

ΦN0 −
𝛿∞

𝜆min

(

SP−1
𝜙

ST
)

⎤
⎥
⎥
⎥
⎦

. (61)

From (21) and (25), there exists a time instant t⋆0 > t0 such that for t > t⋆0 , (61) can be further upper-bounded as

̇̃V ≤ −W(xe), with W(xe) = 𝜆min(Q)‖xe‖
2
. (62)

According to Appendix A, dV
dt
(x̃e(t), t)∈a.e ̇̃V(x̃e(t), t), thus

dV
dt
(x̃e(t), t) ≤ −W(xe), almost everywhere. (63)

Now, according to References 10,37, from (63) for any closed-loop xe-trajectory we have

∫

+∞

t⋆0
W(xe(𝜏))d𝜏 ≤ V

(
x̃e(t⋆0 )

)
. (64)

Since W(xe) is a continuously differentiable positive-definite function, Barbalat’s Lemma can be applied, and W(xe(t))
convergences to zero when t → +∞.10,37 Consequently, the state tracking error xe(t) convergences to zero when t → +∞,
thus concluding the proof of Theorem 1b.

3.5 Proof of Theorem 2

In the case of the EMRAC-EW, when the matrix SP−1
𝜙

ST is diagonal, the term yT
e SP−1

𝜙
K[uN] in (53) and (54) becomes

yT
e SP−1

𝜙
STΦN K [𝜓(ye)] =

nu∑

j=1
c̃jΦNjyejK

[
sgn(yej)

]
.
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MONTANARO et al. 5259

When yej = 0 then yejK
[
sgn(yej)

]
= 0, ∀v ∈ K[0], thus

yT
e SP−1

𝜙
STΦNK [𝜓(ye)] =

nu∑

j=1
c̃jΦNj|yej| ≥ 0, ∀ yej, j = 1, … nu. (65)

Hence, (53) can be upper-bounded as in (56). Consequently, as shown in Section 3.3, the closed-loop error dynamics

(39)–(41) are ultimate bounded, and the ultimate bound is W−1
1 (W2(𝜇(∞))) =

√
𝜆max(P̃)
𝜆min(P̃)

𝜇(∞).

Moreover, from (22) and (25) there exists a time instant t⋆0 > t0 such that ΦNj > 𝛿j∞∕c̃j, j = 1, … ,nu for all t > t⋆0 .
Hence, in the case ̂TBm𝛿 > 0, ∀ t ≥ t0, and the decomposition (6) of the disturbance  is used, by using (65) when t > t⋆0 ,
̇̃V in (54) can be upper bounded as

̇̃V ≤ −𝜇1‖‖x̃e‖‖
2 + 𝜇2( ̂∞) − 2

nu∑

j=1

(
c̃jΦNj|yej| − 𝛿j∞|yej|

)

≤ −𝜇1‖‖x̃e‖‖
2 + 𝜇2( ̂∞) − 2

nu∑

j=1
c̃j|yej|

(

ΦNj −
𝛿j∞

c̃j

)

≤ −𝜇1𝜁‖‖x̃e‖‖
2 − 𝜇1(1 − 𝜁)‖‖x̃e‖‖

2 + 𝜇2( ̂∞) ≤ −W3(x̃e), when ‖
‖x̃e‖‖ ≥

√

𝜇2( ̂∞)
𝜇1(1 − 𝜁)

= 𝜇( ̂∞), (66)

where 𝜁 ∈ (0, 1) and W3(x̃e) ∈  is the function defined in (57). As (66) provides the same upper-bound for ̇̃V given by
(59), the proof of the ultimate-boundedness of the closed-loop error dynamics (39)–(41) with ultimate bound given by

W−1
1 (W2(𝜇( ̂∞))) =

√
𝜆max(P̃)
𝜆min(P̃)

𝜇( ̂∞) as well as the boundedness of all closed-loop signals follow equivalently as shown in

the proof of Theorem 1a.
Finally, when ̂G = 0, by using (34), (44), and (65), ̇̃V in (52) can be upper-bounded as

̇̃V ≤ −xT
e Qxe − 2yT

e 𝛿 − 2
nu∑

j=1
c̃jΦNj|yej| ≤ −xT

e Qxe − 2
nu∑

j=1
c̃j|yej|

(

ΦNj −
𝛿j∞

c̃j

)

. (67)

From (22) and (25), there exists a time instant t⋆0 such that ̇̃V can be further upper-bounded as in (62) for all t > t⋆.
Hence, the convergence to zero of xe follow equivalently as shown in the proof of Theorem 1b in Section 3.4, thus also
Theorem 2 remains proven.

3.6 Proof of Corollary 1

The proof of Corollary 1 is an extension of the proof of Corollaries 1 and 2 presented in Reference 34 to multi-input systems
and an extension of the result presented in Reference 32 to the case the model of the plant is not in control canonical form.

In the case the matrices of the plant (1) are constants then also the matrix Φ̂ is constant, and thus Φ̇e = −Φ̇ in (40).
On the other hand, for time varying matrices,

Φ̇e =
̇Φ̂ − STyewTΓ𝛼 − F.

Nevertheless, the approximation (32) yields

Φ̇e ≈ −STyewTΓ𝛼 − F = −Φ̇.

Consequently, (40) still holds, and therefore the proofs of Theorems 1 and 2 follow identically.
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5260 MONTANARO et al.

4 APPLICATION OF MULTI-INPUT EMRAC SOLUTIONS TO SPACE
ROBOTIC ARMS

The free-flying space robot system is the spacecraft platform whose attitude is controlled during the manipulation.24,38

When the position and orientation of the base-spacecraft are kept fixed by the AOCS39 during the postcapturing phase of
a noncooperative micro-satellite target, the model of a free-flying robotic manipulator with n links is expressed as

(q)q̈ + (q, q̇)q̇ + vq̇ +  T
p (q)fp = 𝜏, (68)

where q ∈ Rn is the vector of the joint variables, 𝜏 ∈ Rn is the vector of the torques and forces provided to each joint (con-
trol variables),(q) ∈ Rn×n is the inertial matrix, (q, q̇) ∈ Rn×n is a matrix such that (q, q̇)q̇ is the vector of Coriolis and
centrifugal torques and forces, v ∈ Rn×n is the matrix of the damping coefficients, p(q) ∈ R3×n is the submatrix of the
geometric Jacobian of the manipulator relating the joint velocities to the end-effector linear velocity. The force fp ∈ R3 is
the reaction disturbance force provided by the AOCS of the noncooperative target, and is modeled in accordance with an
ideal cold gas thruster on the target spacecraft. Specifically, the AOCS measures the first- or second-order derivatives of
the attitude or orbit drifts, and feedbacks them for attitude or orbit control.40 For this study it is assumed that the target
spacecraft uses the cold gas thruster as AOCS actuator, as it is a common solution for micro and small spacecrafts.41 Fur-
thermore, it is assumed that (i) the thruster control constant 𝜅, which depends on the fuel used and the mechanical design
of the nozzle of the thruster,42 is a positive constant; (ii) the target is rigidly moved with the end-effector of the service
robotic arm during the postcapturing phase, thus the acceleration drift of the target measured by the AOCS sensor is that
of the end-effector (i.e., p̈); (iii) the reaction forces are sensitive to the second-order derivative of the longitudinal orbital
change as this variation is usually used by AOCS to compensate for external forces causing target orbital changes; and
(iv) the residual orbital station-keeping and hypothetical anti-capture controls are activated during the entire postcapture
servicing phase and provide uncooperative forces proportional to the second derivatives of orbital changes through the
thruster control constant 𝜅 to resist the manipulation action. Hence, the following simplified model is used to account
for the effect of the AOCS onto the manipulator dynamics

fp = 𝜅p̈. (69)

According to Reference 43, when a full-state FL is used for compensating the term (q, q̇)q̇ in (68) to make the
closed-loop system behave as an n-dimensional decoupled mass-spring-damper system with stiffness K ∈ Rn×n and
damping matrix Θ ∈ Rn×n, the resulting plant to control takes the form in (1) with ̂ = 0, d = 0, E = 0, nu = n, nx = 2n
and

x =

[
q
q̇

]

, A =

[
n,n n

−K −(Θ + v)

]

, B =

[
n,n

n

]

,  = B𝛿, (70a)

𝛿 = 𝛿1 + 𝛿2, 𝛿1 = (n − −1 ̂)y + −1(̂(q, q̇) − (q, q̇))q̇, y = −Kq − Θq̇, and 𝛿2 = −1


T
p fp. (70b)

where ̂(q) and ̂(q, q̇) are estimates of the matrices (q, q̇) and (q), respectively. Similarly to the robust control design
in Reference 43, as the joint positions are confined in a finite set, and saturations exist on the maximum velocities and
accelerations of the motors, then the resulting nonmeasurable disturbance 𝛿 is bounded. Notice that for system (70a) the
interaction force fp and friction have not been compensated. Moreover, the matrices K and Θ are diagonal.

For the robotic manipulator, EMRAC solutions can be designed for imposing reference trajectories in the joint space,
despite the imperfect compensation of the robot nonlinearites, parameter uncertainties and disturbances.

The reference model for imposing a reference trajectory denoted as qR(t) takes the form in (2), where Em = 0 and

xm =

[
qm

q̇m

]

, Am =

[
n,n n

−K −Θ

]

, Bm =

[
n,n

n

]

, xm(0) =

[
qR(0)
q̇R(0)

]

, r(t) = q̈R(t) + KqR(t) + Θq̇R(t). (71)

Hence, the matching conditions (3) are satisfied and S = n.
In what follows, the EMRAC solutions that are used for correcting the imperfect FL strategy and imposing trajectories

in the joint space are referred to as EMRAC-FL strategies. Moreover, to further test the robustness of the novel EMRAC
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MONTANARO et al. 5261

algorithms, EMRAC solutions with no feedback linearization (NFL) control action are also tested when the reference
model is set as in (71). These EMRAC solutions are named as EMRAC-NFL strategies.

Consequently, four EMRAC solutions denoted as EMRAC-UV-FL, EMRAC-EW-FL, EMRAC-UV-NFL, and
EMRAC-EW-NFL are tested and compared for a case study.

5 NUMERICAL RESULTS

The multi-input EMRAC solutions are tested for a threelink anthropomorphic arm whose fundamental parameters are
reported in Table 1.

The simulation scenario is set to emulate the working conditions of a noncooperative interaction between a
micro-satellite and the robotic arm in the post-capturing phase (see also Section 4). For this case study, the micro-satellite
body is modeled as an unknown load at the end-effector, with cubic shape of side 1 m and mass mload = 100 kg (see also
Figure 1 for a schematic of the manipulator within the simulation environment, notice that the servicing spacecraft model
in Figure 1 is based on SpaceX dragon for illustration purposes). The satellite thrusters try to counteract the trajectory
imposed by the space robotic arm, thus generating the disturbance fp in (69) (or equivalently the disturbance 𝛿2 in (70b)).
Furthermore, as the mass of the micro-satellite is supposed to be unknown, the resulting FL control action provides an
imperfect compensation (i.e., ̂ ≠  and ̂ ≠ ), thus generating the disturbance term 𝛿1 in (70b).

The path to be imposed to the end-effector position in the operational space is shown Figure 2A. The position on the
path (i.e., the trajectory) is obtained by using two fifth-order interpolating polynomials. The resulting reference trajectory,
denoted as pR(t), lasts 250 s, and consists of five submaneuvers, which are listed in Table 2.

The trajectory in the operational space is converted into the trajectory in the joint space by using the second-order
closed-loop inverse kinematic algorithm presented in Reference 43. The resulting reference joint positions and speeds are
depicted in Figure 2B and C, respectively.

T A B L E 1 Parameters of the three-degree-of-freedom manipulator.

Link Length (m) Mass (kg) Diameter (m)

1 L1 = 0.5 m𝓁1
= 50 1 = 0.4

2 L2 = 4 m𝓁2
= 200 2 = 0.4

3 L3 = 4 m𝓁3
= 200 3 = 0.4

F I G U R E 1 The three-link-anthropomorphic arm within the Gazebo-robot operating system simulation environment.
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5262 MONTANARO et al.

Time (s) Time (s)

F I G U R E 2 Reference trajectory: (A) path in the operational space, (B) reference joint position, and (C) reference joint speed.

T A B L E 2 Trajectory of the end effector.

Identifier Time interval (s) Description

INIT [t0, t1], with t0 = 0 and t1 = 55 Initial trajectory with pR(t0) = [8 0 0.5]T m,

pR(t1) = p = [5 3 4]T m, and ṗR(t0) = ṗR(t1) = 0

First-STST [t1, t2], with t2 = 60 First steady-state at p

First-LAP [t2, t3], with t3 = 150 First lap on the circumference with radios 2.5 m centered in pC = [2.5 3 4]T m

Second-LAP [t3, t4], with t4 = 240 Second lap on the circumference

Second-STST [t4, t5], with t5 = 250 Second steady-state at p

The matrices of the reference model (2) have been chosen as in (71) with K = 10−3diag(6.7, 2, 1) and Θ =
10−2diag(16.8, 9, 6.2), while the adaptive weights have been selected as a trade-off between convergence time and reactiv-
ity of the control actions. Furthermore, similarly to References 12,33, in order to avoid unwanted chattering phenomena,
the discontinuous terms in (19) and (20) have been smoothed as

ye

‖ye‖
=

ye

‖ye‖ + 𝜖0
, and sgn(yej) =

yej

|yej| + 𝜖j
, j = 1, 2, 3, (72)

where 𝜖j, j = 0, 1, 2, 3, are strictly positive constants.
To challenge the ability of the closed-loop system to adjust to unknown working conditions, the adaptive gains of the

four EMRAC solutions have been initialized to zero. Hence, no preliminary knowledge of the plant is used to initialise
the EMRAC adaptive mechanisms.

In addition to the four EMRAC solutions, four benchmark controllers have been designed and implemented. The
benchmark controllers are (i) a PID controller embedded in ROS (denoted as ROS-PID) and (ii) three full-state FL-based
strategies, augmented with a proportional-integral controller (PI-FL), a proportional derivative controller (PD-FL), or the
robust strategy in Reference 44 (ROBUST-FL).

The feedback gains of the PI-FL strategy have been selected through a trial-and-error approach, with the aim to pre-
serve closed-loop stability and minimize the tracking error. The proportional (KP) and derivative (KD) gains of the PD-FL
control action have been chosen to have ideal linear closed-loop dynamics given by the eigenvalues of the matrix Am in
(71), thus they have been set as KP = K and KD = Θ, respectively. For the same reason, for the ROBUST-FL controller,
the proportional feedback gain Krb weighting the state tracking error has been selected as Krb = [K Θ], while a heuris-
tic approach has been used to tune (i) the gain that modulates the magnitude of the robust sliding mode-based control
action (indicated as 𝜌rb) and (ii) the threshold modulating the boundary layer within which the tracking error is allowed
to vary (indicated as 𝜖rb). Specifically, 𝜌rb and 𝜖rb have been heuristically selected respectively as the largest value and the
smallest value which allow to avoid chattering in the control action.

For the implementation in the ROS environment detailed in Appendix B, the EMRAC control solutions and the
benchmark controllers have been discretized with a sampling time Ts = 5 ms, with the reference model and the required
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MONTANARO et al. 5263

Time (s) Time (s)

F I G U R E 3 Validation of the mathematical model used for the design of the feedback linearization control action, where q̂ and ̇q̂ are
the solution of the model, while q and q̇ are provided by the detailed simulator under nominal conditions (i.e., mload = 0 and fp = 0): (A)
position and (B) speed.

integrators being discretized by using the Tustin method. Furthermore, the benchmark controllers and the EMRAC
solutions run in the ROS environment with a real-time factor equal to 1 during the simulations.

For implementing the control strategies requiring the nominal full-state FL control action, that is, EMRAC-UV-FL,
EMRAC-EW-FL, PI-FL, PD-FL, and ROBUST-FL, a mathematical model of the robotic arm has been developed by assum-
ing mload = 0 and fp = 0 (nominal robotic arm model). The effectiveness of the designed mathematical model to reproduce
the dynamics of the simulator in Appendix B under nominal conditions is shown in Figure 3, where the response of
the simulator and the solution of the mathematical model of the robot are depicted when the torques at the joints are
𝜏i = Mi sin(2𝜋∕20t), with i = 1, 2, 3, and M1 = 100 Nm, M2 = 70 Nm and M3 = 40 Nm. However, the presence of the mass
of the micro-satellite and the disturbance force (69) severely alter the plant dynamics, thus requiring closed-loop control
systems for tracking the reference trajectory.

5.1 Closed-loop dynamics

The norm of the closed-loop tracking error in the joint space provided by the four EMRAC solutions is depicted in Figure 4.
The norm of the joint speed error never exceeds 0.01 rad/s as shown in Figure 4B. Furthermore, Figure 4A shows that
the norm of the joint position error is always below 0.04 rad, except for the EMRAC-UV-NFL, which, however, remains
below 0.075 rad.

When t > t⋆ = 35 s, Figure 4A also shows that the norm of the residual joint position error is much smaller than the
magnitude of each reference joint position in Figure 2B. Hence, better tracking of the reference trajectory in the opera-
tional space is expected when the time exceeds the threshold t⋆. This is confirmed by Figure 5A , which shows that when
t > t⋆ the norm of the position tracking error remains below 10 cm. The highest values of the position tracking errors
are at the beginning of the maneuvers (i.e., within the INIT sub-maneuvers) due to the zero initialisation of the adaptive
gains of the EMRAC solutions. Indeed, during the initial part of the maneuvers, the control gains are not tuned for pre-
cisely compensating the unmodeled dynamics and the disturbance fp. Furthermore, the effect of the zero initialization
conditions on the tracking error is more severe for the EMRAC-NFL solutions, where also the initial contribution of the
nominal FL action is excluded. However, as time evolves, the control gains adapt to the actual operating condition, result-
ing in better tracking of the reference trajectory in the operational space. Specifically, when the initialisation maneuver is
completed (i.e., t > 55 s), the residual position error in the operational space remains below 3.5 cm for the EMRAC-NFL
solutions, while for the EMRAC-FL strategies the 3.5 cm threshold is exceeded only for a time interval of about 10 s at the
end of the first-LAP maneuver (see also Figure 5A). Furthermore, the residual speed error is below 0.020 m/s for all the
adaptive solutions, as shown in Figure 5B. As the tracking errors provided by the EMRAC solutions for t > t⋆ are negli-
gible when compared to the magnitude of the reference trajectory, a precise tracking of the reference path is obtained as
shown in Figure 6.
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5264 MONTANARO et al.

Time (s) Time (s)

F I G U R E 4 Enhanced model reference adaptive control tracking performance in the joint space: (A) norm of the joint position tracking
error and (B) norm of the joint speed tracking error.

Time (s) Time (s)

F I G U R E 5 Enhanced model reference adaptive control tracking performance in the operational space: (A) norm of the position
tracking error and (B) norm of the speed tracking error.

F I G U R E 6 Closed-loop trajectories with the implemented enhanced model reference adaptive controllers.
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MONTANARO et al. 5265

Time (s) Time (s)

F I G U R E 7 Norm of the integral part of the EMRAC adaptive gains for: (A) the continuous control actions (i.e., ||𝜙||) and (B) the
discontinuous control action, where Φ̃N = ΦN for the EMRAC-EW solutions and Φ̃N = ΦN0 for the EMRAC-UV strategies, respectively.

F I G U R E 8 (A) Norm of the demanded torques by the enhanced model reference adaptive control (EMRAC) solutions and (B) norm of
the demanded accelerations by the EMRAC-FL solutions.

Figure 7A,B shows the bounded evolution of the norm of the integral part of the adaptive gains for the continuous
control action and discontinuous control action, respectively, while the proportional part of the adaptive gains is bounded
as the residual tracking error in Figure 4 is bounded. Consequently, Figures 7 confirms the ability of the 𝜎-modification
strategies embedded within the EMRAC adaptive laws to prevent an unbounded drift of the adaptive control gains also
in presence of persistent disturbances that could ultimately jeopardize the tracking of the reference trajectory.45 Without
the 𝜎-modification strategy in (24), the adaptive gains of the discontinuous control actions diverge, thus resulting in
chattering in the control action, which could damage the robot actuators or induce closed-loop instability.

As the control gains and the state variables are bounded, the torque demanded at each joint is bounded, as depicted in
Figure 8A , where the norm of the torque is shown for each EMRAC solution. The demanded torques coincide with the
control action for the EMRAC-NFL solutions. For the EMRAC-FL solutions, the control action is the required acceleration
to each joint, which is also bounded, see Figure 8B. As the unit of measurement of the control action for the EMRAC-FL
solutions is different from that of the EMRAC-NFL solutions, the order of magnitude of the corresponding adaptive
control gains varies significantly, as depicted in Figure 7.

5.2 Evaluation of the closed-loop performance via KPIs

To quantitatively compare the EMRAC solutions to the benchmark controllers, the root mean square error (RMSE) and
the maximum error (ME) are used as KPIs for measuring the closed-loop tracking performance. By denoting as 𝓁 a
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5266 MONTANARO et al.

closed-loop vector signal of interest , the corresponding RMSE and the ME are computed as

RMSE||𝓁|| =

√

1
tf − ti∫

tf

ti

‖𝓁R(t) − 𝓁(t)‖2dt and ME||𝓁|| = max
t∈

[
ti,tf

] {‖𝓁R(t) − 𝓁(t)‖} , (73)

where𝓁R is the reference value for the signal𝓁, while ti and tf are the initial and final time instants, respectively, delimiting
the time interval on which the KPIs are computed.

The control effort is measured by the integral of the norm of the demanded torque normalized with time (I||𝜏||), and
the maximum norm of the torque (M||𝜏||) defined as

I||𝜏|| =
1

tf − ti∫

tf

ti

||𝜏(t)||dt and M||𝓁|| = max
t∈

[
ti,tf

]{||𝜏(t)||}. (74)

The KPIs in (73) and (74) are computed for each submaneuver in Table 2. Table 3 shows the tracking performance
KPIs for the joint position and speed, and the KPIs for the control effort, while Table 4 shows the tracking perfor-
mance KPIs for the position and speed of the end-effector. As the PD with FL and the ROS-PID become unstable
while performing the second lap of the circumference, it was not possible to compute the KPIs for the second-LAP and
second-STST submaneuvers.

The following remarks are based on Table 3 and Table 4.

• All EMRAC solutions outperform the PD controller for the sub- maneuvers where the KPIs for the PD algorithm
can be computed (i.e., over the time intervals before the closed-loop stability is lost). For instance, compared to the
PD controller, the EMRAC solutions reduce the RMSE||q|| and RMSE||q̇|| by at least four times and 2.5 times during
the INIT-maneuver, respectively. The reduction of the KPIs becomes even more significant over the first-STST and
first-LAP submaneuvers. Specifically, for these submaneuvers, the adaptive solutions reduce, for instance, the RMSE||q||
and RMSE||q̇|| by at least 70 and 23 times, respectively (see the results for EMRAC-UV-NFL and EMRAC-EW-FL,
computed over the first-STST maneuver) which result in a reduction of at least 24 and 29 times of the RMSE||p|| and
RMSE||ṗ||, respectively.

• All EMRAC solutions provide better tracking performance compared to the built-in ROS-PID controller over all
sub-maneuvers before the ROS-PID solution becomes unstable. For instance, over the INIT maneuver, the adaptive
solutions reduce the RMSE||ṗ|| by a factor that ranges from 2.5 times and up to nine times. Furthermore, in the
first-STST maneuver, the adaptive solutions provide a reduction of the ME||q|| and ME||q̇|| in excess of 14 and 50 times,
respectively, which corresponds to a reduction of the ME||p|| and ME||ṗ|| by at least 28 and 60 times, respectively.

• Over the INIT maneuver, the KPIs measuring the position tracking performance (i.e., RMSE||𝓁|| and ME||𝓁|| with 𝓁 =
{q, p}) provided by the ROBUST-FL and PI-FL controllers are smaller than those obtained with the adaptive solutions.
The reduced tracking performance of the adaptive solutions along the first submaneuver is due to the zero initialization
of the adaptive gains, which generates larger initial errors over the first 35 s, referred to as t⋆ in the remainder (see
also Figures 4A and 5A), and results in larger KPIs when the INIT maneuver is completed. The effect of the zero
initialization on the KPIs is more severe for the EMRAC-NFL strategies, which, compared to the EMRAC-FL, are not
equipped with the nominal FL control action.

• When the INIT maneuver is completed, the EMRAC adaptive gains have been self-adjusted to the actual plant dynam-
ics, thus the residual tracking error and consequently the KPIs measuring the tracking performance shrink drastically.
Furthermore, for the remaining submaneuvers (i.e., first-STST, first/second-LAP, second-STST), the KPIs measuring
the tracking performance provided by the EMRAC solutions are always smaller compared to those obtained with the
benchmark controllers (the ROBUST-FL strategy and the PI-FL controller). For instance, compared to the ROBUST-FL
strategy, the EMRAC strategies reduce the RMSE||p|| by a factor that ranges (i) from 2.8 to 8.9 times in the case of the
first-LAP maneuver, and (ii) from 5.2 to about 10 times over the second-LAP. Similarly, when compared to the PI-FL
controller, the EMRAC strategies reduce the RMSE||p|| of a factor that ranges (i) from 2.6 to 8 times over the first-LAP
maneuver, and (ii) from to 8.6 to 16.2 times over the second-LAP maneuver. A similar trend can be noted when com-
paring the KPIs tracking performance in the joint space of the adaptive solutions to those of the PI-FL and ROBUST-FL
strategies over the first-LAP and second-LAP .
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MONTANARO et al. 5267

T A B L E 3 Performance indicators computed in the joint space (RMSE||q|| (rad), RMSE||q̇|| (rad/s), ME||q|| (rad), ME||q̇|| (rad/s), I||𝜏||
(Nm), M||𝜏|| (Nm)).

EMRAC controllers Benchmark controllers

EW-FL EW-NFL UV-FL UV-NFL ROBUST-FL PI-FL PD-FL ROS-PID

INIT RMSE||q|| 1.58e-02 1.91e-02 8.36e-03 3.04e-02 9.19e-03 1.01e-02 1.32e-01 5.13e-02

RMSE||q̇|| 2.20e-03 2.65e-03 1.17e-03 4.34e-03 8.40e-04 9.57e-03 1.06e-02 1.20e-02

ME||q|| 3.55e-02 4.23e-02 1.82e-02 7.04e-02 1.46e-02 2.52e-02 2.72e-01 9.81e-02

ME||q̇|| 4.57e-03 6.48e-03 2.64e-03 9.26e-03 1.41e-03 2.59e-02 1.79e-02 2.22e-02

I||𝜏|| 2.46e+01 1.94e+01 2.34e+01 2.00e+01 1.67e+01 2.64e+01 1.28e+01 4.51e+01

M||𝜏|| 6.29e+01 4.56e+01 6.43e+01 7.03e+01 3.33e+01 5.59e+01 2.24e+01 9.78e+01

First-STST RMSE||q|| 9.18e-04 3.17e-03 1.21e-03 4.06e-03 7.82e-03 8.59e-03 2.87e-01 5.06e-02

RMSE||q̇|| 3.05e-04 1.51e-04 1.98e-04 2.43e-04 1.16e-03 4.99e-03 7.13e-03 1.45e-02

ME||q|| 1.17e-03 3.29e-03 1.42e-03 4.35e-03 1.07e-02 9.29e-03 3.03e-01 6.13e-02

ME||q̇|| 4.24e-04 2.55e-04 3.11e-04 3.20e-04 1.24e-03 5.99e-03 7.29e-03 2.11e-02

I||𝜏|| 1.31e+01 3.51e+00 1.30e+01 1.79e+00 2.87e+00 2.15e+01 3.66e+00 3.78e+01

M||𝜏|| 1.43e+01 4.14e+00 1.51e+01 2.03e+00 3.28e+00 3.04e+01 4.00e+00 6.05e+01

First-LAP RMSE||q|| 9.78e-03 1.84e-03 6.23e-03 2.68e-03 3.25e-02 2.59e-02 6.21e-01 4.46e-02

RMSE||q̇|| 1.85e-03 3.92e-04 1.13e-03 4.88e-04 4.05e-03 1.58e-02 1.27e+00 2.17e-01

ME||q|| 2.83e-02 4.11e-03 2.01e-02 6.32e-03 9.38e-02 6.20e-02 7.33e+00 1.24e-01

ME||q̇|| 5.62e-03 1.53e-03 3.78e-03 1.88e-03 1.14e-02 3.51e-02 1.52e+01 7.23e+00

I||𝜏|| 2.71e+01 2.33e+01 2.79e+01 2.27e+01 2.14e+01 4.07e+01 8.96e+02 1.34e+02

M||𝜏|| 1.09e+02 1.04e+02 1.05e+02 1.05e+02 1.05e+02 1.19e+02 2.00e+05 4.58e+03

Second-LAP RMSE||q|| 8.56e-03 2.28e-03 5.95e-03 2.91e-03 3.82e-02 5.30e-02

RMSE||q̇|| 1.05e-03 3.73e-04 6.87e-04 5.22e-04 3.93e-03 3.31e-02

ME||q|| 2.08e-02 5.80e-03 1.54e-02 8.57e-03 9.76e-02 9.93e-02

ME||q̇|| 3.27e-03 9.38e-04 2.23e-03 1.93e-03 8.87e-03 6.72e-02

I||𝜏|| 2.17e+01 2.22e+01 2.29e+01 2.17e+01 2.13e+01 7.19e+01

M||𝜏|| 5.27e+01 5.48e+01 5.70e+01 5.34e+01 5.66e+01 1.34e+02

Second-STST RMSE||q|| 1.81e-04 1.78e-04 3.34e-04 2.22e-04 4.74e-03 5.63e-02

RMSE||q̇|| 3.18e-05 1.75e-05 1.41e-04 1.42e-05 2.89e-04 3.53e-02

ME||q|| 2.15e-04 1.85e-04 4.49e-04 2.41e-04 5.40e-03 7.22e-02

ME||q̇|| 5.07e-05 3.09e-05 3.00e-04 1.92e-05 3.35e-04 4.50e-02

I||𝜏|| 5.99e+00 3.67e+00 6.05e+00 1.26e+00 1.28e+00 9.05e+01

M||𝜏|| 6.23e+00 3.83e+00 7.10e+00 1.34e+00 1.47e+00 1.36e+02

• Over the last maneuver (i.e, the second-STST maneuver), the tracking performance of the EMRAC solutions out-
performs those of the ROBUST-FL algorithm even more. For instance, the EMRAC strategies reduce the RMSE||q||
by a factor ranging from 14.2 to 26.2 times. Moreover, the ME||p|| reduces by a factor that ranges from 11.5 to
27 times.

• For the PI-FL strategy, the RMSE||𝓁|| indicators, with 𝓁 = {p, ṗ, q, q̇}, have an increasing trend over the last four
maneuvers, which might mark the onset of unstable dynamics. For the ROBUST-FL algorithm, the magnitude of
the KPIs measuring the tracking performance mainly depends on the trajectory to follow (e.g., the RMSE||𝓁||, with
𝓁 = {p, q}, for the maneuver first-STST and second-STST are similar). However, for the EMRAC solutions, the mag-
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5268 MONTANARO et al.

T A B L E 4 Performance indicators computed in the operational space (RMSE||p|| (m), RMSE||ṗ|| (m/s), ME||p|| (m), ME||ṗ|| (m/s)).

EMRAC controllers Benchmark controllers

EW-FL EW-NFL UV-FL UV-NFL ROBUST-FL PI-FL PD-FL ROS-PID

INIT RMSE||p|| 1.20e-01 1.34e-01 6.41e-02 2.33e-01 5.03e-02 3.19e-02 5.14e-01 3.56e-01

RMSE||ṗ|| 1.64e-02 1.82e-02 8.40e-03 3.18e-02 4.59e-03 2.72e-02 4.60e-02 7.71e-02

ME||p|| 2.71e-01 2.98e-01 1.45e-01 5.45e-01 7.96e-02 5.57e-02 1.08e+00 6.46e-01

ME||ṗ|| 3.58e-02 4.33e-02 2.06e-02 6.45e-02 8.41e-03 5.94e-02 7.26e-02 1.31e-01

First-STST RMSE||p|| 4.97e-03 1.69e-02 5.13e-03 2.16e-02 3.74e-02 4.05e-02 1.19e+00 2.67e-01

RMSE||ṗ|| 1.59e-03 6.80e-04 9.77e-04 1.23e-03 5.87e-03 2.31e-02 4.39e-02 8.00e-02

ME||p|| 6.30e-03 1.75e-02 6.19e-03 2.30e-02 5.21e-02 5.21e-02 1.29e+00 3.23e-01

ME||ṗ|| 2.20e-03 1.00e-03 1.59e-03 1.41e-03 6.28e-03 3.03e-02 4.62e-02 1.12e-01

First-LAP RMSE||p|| 3.07e-02 9.71e-03 2.10e-02 1.24e-02 8.68e-02 7.91e-02 1.92e+00 2.93e-01

RMSE||ṗ|| 5.89e-03 1.56e-03 3.46e-03 1.97e-03 1.15e-02 4.47e-02 3.63e+00 4.29e+00

ME||p|| 9.96e-02 1.85e-02 7.24e-02 2.28e-02 2.54e-01 1.63e-01 9.30e+00 1.93e+00

ME||ṗ|| 2.03e-02 4.33e-03 1.31e-02 6.43e-03 3.75e-02 9.45e-02 3.65e+01 1.01e+02

Second-LAP RMSE||p|| 2.21e-02 1.18e-02 1.49e-02 1.59e-02 1.15e-01 1.91e-01

RMSE||ṗ|| 3.33e-03 2.19e-03 2.53e-03 3.45e-03 1.06e-02 1.17e-01

ME||p|| 4.91e-02 2.66e-02 4.92e-02 4.32e-02 2.66e-01 3.21e-01

ME||ṗ|| 1.37e-02 6.27e-03 6.69e-03 1.41e-02 2.13e-02 1.93e-01

Second-STST RMSE||p|| 9.25e-04 6.42e-04 1.23e-03 8.44e-04 1.68e-02 2.47e-01

RMSE||ṗ|| 1.63e-04 8.02e-05 6.42e-04 5.17e-05 9.27e-04 1.56e-01

ME||p|| 1.10e-03 6.77e-04 1.59e-03 8.82e-04 1.83e-02 3.33e-01

ME||ṗ|| 2.65e-04 1.61e-04 1.24e-03 6.61e-05 1.05e-03 2.06e-01

nitude of the KPIs could decrease for the same maneuver, because of the adaptation process.12 For this case study,
the reduction of the tracking errors caused by the gain adaptation is significant for the STST maneuvers. For instance,
when second-STST is compared to first-STST, the RMSE||p|| reduces by 5.4 times and 25.6 times for the EMRAC-EW-FL
and the EMRAC-UV-NFL, respectively.

• The KPIs measuring the control effort (i.e., I||𝜏|| and M||𝜏||) show that the magnitude of the control action required by
the EMRAC strategies matches the one demanded by the benchmark controllers that complete the entire maneuver
(i.e., the ROBUST-FL controller and the PI-FL strategy).

6 CONCLUSIONS

This paper has presented two extensions of the EMRAC strategy to multi-input plants. The novel multi-input EMRAC
strategies, named EMRAC-UV and EMRAC-EW, include the 𝜎-modification strategy to systematically bound all the adap-
tive gains also for not vanishing perturbations, but differ based on how the adaptive switching control action is computed.
For both strategies, a proof of the global uniform ultimate boundedness of the closed-loop error dynamics has been
derived, based on the Lyapunov theory for Filippov systems. The effectiveness of the multi-input EMRAC control frame-
work has been numerically evaluated by designing and implementing, in a ROS-based simulation environment, four
EMRAC solutions for controlling space robotic manipulators during the postcapturing phase, in case of unknown and
noncooperative targets without any initial knowledge of the operating conditions. The simulation analysis has confirmed
the ability of the adaptive closed-loop system to adjust to the unknown working conditions, thus providing low resid-
ual tracking errors. The EMRAC solutions have been compared with four benchmark controllers, that is, an embedded
ROS PID controller, and PD, PI and robust controllers equipped with a full-state FL strategy. An extensive quantitative
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MONTANARO et al. 5269

analysis carried out through the use of KPIs defined in the joint space and operational space has confirmed that the
closed-loop tracking performance of the EMRAC solutions outperforms those of the benchmark controllers after an ini-
tialization maneuver. Future work will investigate the experimental assessment of the proposed multi-input EMRAC
schemes.
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APPENDIX A. ULTIMATE BOUNDEDNESS OF NON-SMOOTH DYNAMIC SYSTEMS

This appendix provides details about the theory of nonsmooth dynamic systems, which has been used to prove the ulti-
mate boundedness of the closed-loop error system when the multi-input EMRAC solutions are used. The theory can be
applied to nonsmooth time-varying systems of the form

where x̃ ∈ Rn is the state of the system and ∶ R ×Rn → Rn is a discontinuous vector field.
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According to References 46,47, a vector function x̃(⋅) is a Filippov solution of the discontinuous system (A1) for t ∈
[t0, t1] if (i) x̃(⋅) is absolutely continuous, and (ii) for almost all t ∈ [t0, t1]

where K[ ] is the Filippov set valued map,
⋂
𝜋(S)=0 denotes the intersection of all sets  of Lebesgue measuring zero, co

is the convex closure, and (x̃, 𝜐) is the open ball centered at x̃ with radius 𝜐 > 0. Furthermore, according to theorem 2.2
in Reference 46, given a Lipschitz regular function V ∶ R+ ×Rn → R, then the function V(t, x̃(t)) is absolute continuous
along the Filippov solutions of system (A2), d

dt
V(t, x̃(t)) exists almost everywhere and

d
dt

V(t, x̃(t))∈a.e. ̇̃V(t, x̃(t)), (A3)

where the set-valued map ̇̃V is computed as

where 𝜕V(t, x̃) is the Clarke’s generalized gradient,48 and ΞV is the set of measure zero where the gradient of V is not
defined. Furthermore, according to Reference 46, when V is a smooth function (i.e., a differentiable function) with respect
to x̃ and does not depend on time, (A4) reduces to

Similarly to the case of smooth dynamic systems,19 the solutions of system (A1) are said to be uniformly ultimately
bounded with ultimate bound 𝜖ub > 0 if there exists a time interval  (dependent on x̃(t0)) and a -function Ψ ∶
R+ ×R+ → R+ such that

||x̃(t)|| ≤ Ψ
(

x̃(t0), t − t0
)
, ∀ t0 ≤ t ≤ t0 +  , and ||x̃(t)|| ≤ 𝜖ub, ∀ t ≥ t0 +  . (A6)

Unfortunately, the theory presented in Reference 19 cannot be used to system (A1), as it assumes a locally Lipschitz vector
field. However, the conditions for guaranteeing the ultimate boundedness have been recently extended to nonsmooth
systems in Reference 20 , and the main result is summarized below.

Theorem 3. Assume that the differential inclusion (A2) is well-posed in the sense of Filippov solutions for any
initial condition, and there exists a positive globally Lipschitz continuous function V ∶ R+ ×Rn → R, two positive
functions W1, W2 ∈ ∞, a positive function W3 ∈  and a constant 𝜇 > 0 such that

W1(x̃) ≤ V(t, x̃) ≤ W2(x̃), and ̇̃V(t, x̃) ≤ −W3(x̃) ∀ ||x̃|| ≥ 𝜇. (A7)

Then the nonsmooth system (A1) is globally uniformly ultimately bounded and the ultimate bound is given by
W−1

1 (W2(𝜇)).

Theorem 3 is a special case of theorem 3.1 in Reference 20 by assuming (i) absence of time delays, (ii) the exis-
tence of the solution of the differential inclusion (A2) for any initial condition, and (iii) definition of V(t, x̃) over
the entire Rn.

APPENDIX B. SIMULATION ENVIRONMENT AND DEPLOYMENT OF CONTROLLERS IN ROS

The multiplatform simulation framework used for testing the EMRAC solutions and the benchmark controllers in
Section 5 consists of (i) ROS, which is widely used for various real time robotic applications; (ii) Gazebo, which is a
three-dimensional multirobot simulator and includes the C-based Open Dynamics Engine for simulating rigid body
dynamics; and (iii) MatLab/Simulink with build-in ROS Toolbox which interfaces MatLab/Simulink and ROS, and
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supports C++ code generation. The simulation framework is completed with two ad hoc in-house C++ and Python codes
whose uses are detailed below.

The robotic arm within the simulator is modeled through the Unified Robotic Description (URDF) format. The
micro-satellite attached to the end-effector is modeled in the URDF file as an additional fixed link. A picture of Gazebo
when the URDF is loaded is shown in Figure 1.

The non-cooperative target disturbance in (69) is emulated by using the IMU plugin sensor,49 the apply_body_wrench
service,50 and the in-house Python script. The IMU plugin is a build-in feature provided in Gazebo. It measures and
publishes the acceleration information of a selected ’link’. In the simulation, the IMU plugin is added to the target. The
in-house Python script is used to subscribe the acceleration information of the target and subsequently calculate the
reaction forces generated by the target in (69). Then the apply_body_wrench ROS service50 is recalled to apply the attitude
disturbance forces to the target.

The four EMRAC solutions and the benchmark controllers (except for the ROS-PID controller) in Sections 4 and 5
are implemented in Matlab/Simulink and connected to the ROS environment through the ROS Publish and Subscribe
blocks (available in the MatLab ROS toolbox). The Publish block uses the node of the Simulink model to create a ROS
publisher for a specific topic. The input of this block is a Simulink nonvirtual bus that corresponds to the specified ROS
message type and publishes it to the ROS network. For the specific simulation framework, one Publish block was used for
each of the three joint torques, creating the topics named /space_arm/joint_i_position_controller/command (i = 1, 2, 3)
and providing the torque values (computed by the controller) using the std_msgs/Float64 message type. The block is
responsible for converting the Msg input from a Simulink bus signal to a ROS message and publishing it at each sampling
time. In code generation, the input is a C++ ROS message.51 The Subscribe block uses the Simulink model node to
create a ROS subscriber for a specific topic, takes a specified ROS message type as input, and provides a corresponding
Simulink nonvirtual bus as output. The URDF model publishes the joint states values to the /space_arm/joint_states topic
using sensor_msgs/JointState message type, thus, a Subscribe block was used to feed the manipulator’s joint position and
velocities to the controller. The block is responsible, on each simulation step, for checking if a new message is available
on the specific topic and, if it is, retrieving the message and converting it to a Simulink bus signal.51 The combined use of
these two blocks allows for providing the controller output torques to the URDF manipulator which, in return, feeds the
joint states signals to the control algorithm, therefore enabling to close the control loop. An additional “To File” block
is added in the Simulink model in order to collect all the simulation data and store them into a MAT-file. The “To File”
block is compatible with C++ code generation and has minimal memory overhead during simulation, which means that
it will not affect the performance of the controller.

The Simulink code of each controller is converted into a C++ code by using Simulink Coder and Embedded Coder.
Furthermore, to finalize the deployment of the code of the controller into the simulation framework, the in-house C++
code has been developed which subscribes to the /space_arm/joint_i_position_controller/command topic and applies the
controller’ input torques values to the URDF manipulator joints using the EffortJointInterface hardware interface. Finally,
after the simulations in Gazebo, a MAT-file with all the simulation data will be created.
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