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Abstract—Mobile systems will have to support multiple AI-
based applications, each leveraging heterogeneous data sources
through DNN architectures collaboratively executed within the
network. To minimize the cost of the AI inference task subject
to requirements on latency, quality, and – crucially – reliability
of the inference process, it is vital to optimize (i) the set
of sensors/data sources and (ii) the DNN architecture, (iii)
the network nodes executing sections of the DNN, and (iv)
the resources to use. To this end, we leverage dynamic gated
neural networks with branches, and propose a novel algorithmic
strategy called Quantile-constrained Inference (QIC), based upon
quantile-Constrained policy optimization. QIC makes joint, high-
quality, swift decisions on all the above aspects of the system,
with the aim to minimize inference energy cost. We remark
that this is the first contribution connecting gated dynamic
DNNs with infrastructure-level decision making. We evaluate
QIC using a dynamic gated DNN with stems and branches for
optimal sensor fusion and inference, trained on the RADIATE
dataset offering Radar, LiDAR, and Camera data, and real-world
wireless measurements. Our results confirm that QIC matches
the optimum and outperforms its alternatives by over 80%.

Index Terms—Network support to machine learning, Dynamic
DNNs, Energy efficiency, Mobile-edge continuum

I. INTRODUCTION

Several emerging mobile applications are powered by arti-
ficial intelligence (AI) algorithms, often processing and fusing
the data produced by multiple sensors and data sources. Many
of such algorithms take the form of deep neural networks
(DNNs). An intriguing class of neural architectures include
branches, also known as early exits [1]. These architectures
are dynamic, as the execution adapts to the characteristics
of the input: the branches are sequentially executed until a
satisfactory output is produced. The state of the art in neural
networks evolved past early exits, and recently models with
more structured and complex adaptability were developed.
Specifically, these models are articulated into sections, con-
nected by neural structures called gates. The gates directly
control the internal routing of information based on optimal
execution strategies learned during training [2]. In their sim-
plest form, gates pre-select a full model, or a set of models
in mixture of experts settings, based on simple features of the
input. In more complex instances, such as that in [3] and the
one considered in this paper, gated models are crafted as the
composition of stems extracting features from a diverse set of
sensors, and branches that process these intermediate features
to produce a final output. The gates, then, control the activation
of the stems, and the way features referring to different input
sensors are fused and analyzed, and, in the model developed in

this paper, the modality of sensor fusion. This class of models,
whose design and training are highly non-trivial, perform a
dynamic and context-aware form of sensor fusion.

Current literature develops and analyzes these models in
isolation, and considering execution on a single device. In
contrast, this paper represents the first contribution con-
sidering dynamic gated models in the context of lay-
ered computing/communication infrastructures – i.e., those
composed of interconnected mobile nodes and edge servers.
In such setting, these architectures represent a significant
opportunity, as they enable a flexible and efficient allocation of
computing and communication load across different layers of
the system. Importantly, as the gates control the structure of the
neural network model and the use of data sources (that is, the
combination of stems and branches mapping the input to the
output) in response to input characteristics, the whole resource
allocation strategy becomes context and input aware. We,
thus, define the gates as connected to an infrastructure-level
orchestrator that directly controls the activation of the DNN
sections, and the resources on which they will be executed.
That is, the model can be split at the gates and executed on dif-
ferent system resources (mobile nodes and edge server). Such
characteristics and interplay between the inner neural network
structure and the operations of the infrastructure becomes
especially important when considering multiple applications
– each with different accuracy and latency requirements –
coexisting on the same resources.

The use of such architectures therefore results in (poten-
tially) effective data analysis, improved efficiency, and lower
costs. At the same time, achieving these results requires swift,
high-quality, and joint decisions about such diverse aspects
as: 1) the data sources to leverage for each application; 2) the
DNN sections (i.e., stems and branches) to use; 3) the network
nodes where stems and branches shall run; 4) the computation
and communication resources to devote to each application and
at each node. All these decisions have to be made with the goal
of minimizing the cost (e.g., energy) of inference, subject to
inference quality (e.g., accuracy) and latency requirements. We
remark that each data source is connected to a different stem
of the DNN, which produces features that are then processed
by a branch tailored to the quantity and type of the data
the source produces (e.g., 2D or 3D images), to generate the
final inference output. Also, importantly, we do not express
inference quality requirements in terms of average/expected
values (e.g., the expected accuracy), but rather in terms of a
target quantile thereof (e.g., the 90th percentile of accuracy).



On the one hand, this reflects the time- and performance-
critical nature of many modern applications, which need to
make correct decisions with a guaranteed (high) probability.
At the same time, the added flexibility of targeting arbitrary
quantiles also accommodates the opposite scenario: applica-
tions for which occasional failures are acceptable and/or have
limited consequences can trade some accuracy for a lower cost.

On the negative side, making all the decisions mentioned
above while accounting for inference quality quantiles is
dauntingly complex, for three main reasons. The most straight-
forward is the scale of the problem, e.g., the very large number
of alternatives to consider. Furthermore, the combinatorial
structure of the problem (coming from, among other things,
the presence of a discrete set of stems and branches to choose
from) rules out direct optimization approaches. Finally, and
most important, the nature of the problem itself is utterly
new, which makes existing approaches, like those discussed
in Sec. II, impossible to apply to our scenario.

In this work, we fill this gap by proposing a new solu-
tion strategy called Quantile-constrained Inference based on
quantile-Constrained policy optimization (QIC). QIC makes
decisions that are: (i) joint, as they account for data sources,
stems, branches, network nodes and resources to use for each
application; (ii) dependable, as they can guarantee an arbitrary
value of an arbitrary quantile of the inference quality; (iii)
efficient and effective, as near-optimal choices are made in
polynomial time. Our contributions in this work go beyond
QIC itself and can be summarized as follows:
• We provide (Sec. III) a comprehensive description of the
applications and scenario we target, along with (Sec. IV) a
synthetic, yet expressive, model accounting for all the most
relevant features of the system;
• We develop (Sec. III-B) a new instance of dynamic gated
neural model for object detection performing sensor fusion on
various types of data. Notably, the model’s internal config-
uration is connected to infrastructure-level decisions, and its
sections can be deployed over different system’s resources;
• We develop the QIC solution framework, which innova-
tively applies quantile-constrained optimization on the dy-
namic graph representing the system evolution over time, and
characterize its efficiency (Sec. V);
• We build a real-world reference scenario, including state-of-
the-art DNNs and real-world wireless measurements (Sec. VI);
• In this scenario, we study QIC’s performance (Sec. VII),
finding it to significantly outperform state-of-the-art ap-
proaches (80% and 50% reduction in, resp., energy and appli-
cation requirements failure) and closely match the optimum.

II. RELATED WORK

Dynamic DNNs have gained popularity for adding flexibil-
ity to inference processes and enhancing both the accuracy and
efficiency of deep learning-based object detection and image
classification [4], [5]. However, prior work has considered
input data from only one source or the fixed deployment
on a single computing node. In our work, we explore the
use of multiple data sources and the dynamic deployment of

the stem-branch architecture across the network nodes in an
energy-efficient manner.

Inference of DNNs using collaborative mobile device-
cloud computation has been modeled in [6] using a directed
acyclic graph. However, [6] does not consider the dynamic
variation of system parameters, multiple input sources, the
stem-branch architecture, or the reliability of the inference
process. While [3] delves into sensor fusion, it predominantly
focuses on the training phase, neglecting the inference stage.
On the other hand, [7] investigates energy-efficient inference
processes but does so by selecting all available inputs, resulting
in suboptimal energy utilization. Energy is instead considered
in [8], which develops a framework to deploy DNNs with
early-exits in distributed networks.

As for graph-based modeling of real applications, the dy-
namic graph model-based optimization [9] has been used,e.g.,
for wireless vehicular networks [10]. However, dynamic graph
modeling for real-time applications requires multi-constrained
temporal path discovery. In [11], this has been solved using
adaptive Monte Carlo Tree Search algorithm, MCTP. In our
work, we compare the performance of our proposed frame-
work to this state-of-the-art algorithm.

III. SYSTEM SCENARIO

This section first introduces the system scenario we consider
by characterizing the data sources and the mobile-edge con-
tinuum nodes, as well as their interaction. Then it describes
the dynamic gated DNN model that we developed and that we
take as reference neural network model for our study.

A. System components

We consider a network system consisting of data sources
(Camera (Left/Right), Radar, LiDAR), mobile devices, and
edge servers. As discussed in detail later in the paper, the
notion of context is instrumental for the overall optimiza-
tion, and the DNN configuration is greatly influenced by
environmental conditions. Each mobile device is associated
with an environmental context (e.g., Sunny, Motorway,
and Night), which, as discussed later, drives performance
given the configuration. Intelligent applications (denoted in
Fig. 1(a) using different arrow colors) require the inference
task to be performed with the required level of performance
guarantees (latency and accuracy). In the example scenario,
Application 1 (black arrows) uses Camera (L-R) input on a
mobile node in a Sunny context and the dynamic DNN for
this application is deployed on the mobile node and the edge
server (ES). Application 2 (blue arrows) uses LiDAR input
and the dynamic DNN is deployed on the mobile node with
the Motorway context and on the ES. The same ES is used
to deploy both Applications 1 and 2. Application 3 (green
arrows) uses Radar input and the DNN model is deployed on
the mobile node with Night context and on a different ES.

The devices acting as data sources, the mobile nodes,
and the ESs are connected over a wireless network (i.e.,
data sources could be either co-located with mobile nodes
or connected to them). The communication resources of the
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(a) Sample scenario (b) Static Inference Graph

Fig. 1. (a) System scenario with 3 applications, 4 data sources, 3 mobile
nodes, each associated with a different context, and 2 edge servers. (b) Graph-
based model of the system configuration.
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Fig. 2. Architecture implemented for object detection inference, illustrating
the process where the orchestrator selects the data source, followed by the
gate modules determining the appropriate stem and branch for deployment.

network and the computation resources of the mobile nodes
and ESs are shared for executing the inference tasks using the
dynamic deployment of a pre-trained dynamic DNN model.
To effectively support the applications, an orchestrator, located
in the network infrastructure, (i) determines the data sources
to be used to feed the DNN for the different applications,
and, accordingly, instructs the mobile nodes about the data
to be collected, (ii) instructs both the mobile nodes and the
edge servers about the DNN’s sections (stems or branches) to
deploy locally, and generates the configuration to be used by
the gates controlling the data processing throughout the DNN.

B. Dynamic DNN model

One of the core contributions of this paper is accounting for
the deep interplay between innovative dynamic neural models
and the resource allocation strategy of the collaborative edge
computing system described previously. In this section, we
present the instance of dynamic gated neural network model
that we developed. At a high level, the architecture performs

dynamic, adaptive and context-aware sensor fusion on Camera,
LiDAR, and Radar data for object detection. Fig. 2 summarizes
the structure of the model. Our model architecture adopts and
extends the HydraFusion framework [3], introducing a scalable
design to accommodate the varying computational demands
of the applications to be supported via our gated mechanism.
We remark how the adaptation of the ability of the model to
change the computing workload is instrumental to integrate
the models in a system-wide resource allocation framework.

As illustrated in Fig. 2, a gate module controls the acti-
vation of the stems, determining how features from different
input sensors are fused and analyzed. Contrary to the gating
mechanism employed in [3], which selects branches during the
training phase to enhance accuracy, our study implements
the gating mechanism during the inference phase, in order
to optimize the tradeoff between output accuracy, energy
expense, and latency given the current context.

Our neural model architecture processes input data from
various modalities to facilitate object detection. We integrate
ResNet-18/50/101 [12], our base architecture, within a faster
Recursive-Convolutional Neural Network (R-CNN). Specifi-
cally, initial sensor data from various modalities are analyzed
by distinct CNNs, referred to as “stems”. These stems, serving
as feature extractors, are specialized to process the respective
sensor inputs, transforming them into initial sets of features.
These stems correspond to the first block of the ResNet
architecture. An early fusion mechanism concatenates the
features from each stem, resulting in three augmented stems
that enhance context-specific accuracy. A 2D convolution layer
merges these concatenated features, which are inputs to the
subsequent ResNet layers, termed “branches”.

The architecture consists of single-sensor branches as Left
Camera, Right Camera, LiDAR, and Radar, alongside early
fusion branches combining Left and Right Cameras, LiDAR
and Radar, and Left Camera and LiDAR. This configuration
results in 6 branches, each presenting 3 levels of complexity
aligned with the ResNet 18/50/101 models, resulting in a
total of 18 selectable branches. A second gate module then
determines the most suitable branch or branches for the task.

Furthermore, we integrate late fusion as a post-processing
step exclusively for the (less complex) ResNet18 branches,
constrained by computational efficiency. We applied Non-
Maximum Suppression (NMS) as our late fusion mechanism
to the outputs from the ResNet-18 branches to balance de-
ployment efficiency. Indeed, empirical evidence from our pre-
trained models indicates that late fusion improves accuracy.
However, it necessitates the complete deployment of multiple
branches, which escalates energy consumption. Consequently,
our gating mechanism consistently avoids selecting late fusion
for ResNet-50 and ResNet-101 branches.

Fig. 2 illustrates the decision process, highlighted by bold
arrows, starting from the selection of data sources, leading to
the choice of early fusion branches of a specific complexity
level, excluding late fusion. Dashed lines represent potential,
yet unselected, pathways available to the gating module.

We remark how different configurations of the gates result in
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a different computing load associated with stems and branches,
as well as a different data flow input-to-stems and stems-
to-branches. Further, this interrelation heavily depends on
the context. Intuitively, these quantities are quintessential to
define resource allocation. We also underline how the model
is splittable, i.e., stems and branches can be executed on
different nodes. This results in a data flow and computing
load between mobile nodes and edge servers that is dependent
on the configuration and on the allocation of computing tasks.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

We represent the above system scenario by defining a set
of network nodes, N={N s∪Nm∪N e}, including: 1) data
sources (hence, data modes) in N s; 2) mobile nodes (which
can host either only the stems or the stems along with the
branches of the DNN model) in Nm; 3) edge servers (ESs)
(which can host either only the branches or the stems along
with the branches of the DNN model), in N e. N=|N |, N s,
Nm, and N e denote (resp.) the number of all nodes, sources,
mobile nodes, and edge servers.

For each node n∈N s∪Nm, the amount of (uplink) commu-
nication resources at its disposal, e.g., the number of resource
blocks a mobile node can use to communicate with the edge
servers, is denoted with Bn. Similarly, Cn denotes the amount
of computational (e.g., CPU or GPU) resources (in number of
executable instructions/s) available at node n∈Nm∪N e, which
can be used for sensor fusion and inference.

Applications are denoted by elements h∈H, and are as-
sociated with a maximum latency requirement ℓhω,max and
a minimum accuracy requirement αh

ω,min, both expressed in
terms of the quantile ω ∈ [0, 1]. Considering different quantiles
allows us to balance efficiency (e.g., energy consumption)
against inference quality and latency guarantees. We can thus
limit the extent of an undesirable event (failing to meet the
application requirements) by tweaking ω, depending upon
the scenario and application at hand. Intuitively, one might
use more lightweight models in scenarios/applications where
occasional failures can be accepted. On the other hand, critical
scenarios where accuracy guarantees are required call for more
robust models – even if they have more substantial resource
requirements. We remark how the resource usage versus
accuracy performance tradeoff is informed by the context.

For each application h, we have a set of possible data
sources N h⊆N d, corresponding to nodes equipped with a
sensor (e.g., Camera, LiDAR, or Radar) that can be used for
application h. The quantity δhn represents the quantity of data
(in bits) emitted by source n when used for application h.

Also, each application is associated with a splittable
dynamic DNN model, composed of stems As,h and
branches Ab,h (although simply referred to as branches, the
latter ones may come with an additional stem at the end,
as described in Sec.III-B). More specifically, the model can
be split by deploying stems and branches at different nodes.
For each stem and branch in a∈As,h∪Ab,h, and for each
node i∈Nm∪N e, we know the quantity δha outgoing from
stem (or branch) a when used by application h. For each

stem a∈A,h (branch a∈Ab,h) and application h, we are also
given the computational complexity of each stem (branch),
expressed in number of operations oha (e.g., in CPU cycles per
bit of incoming data) necessary to run the stem (branch).

Problem formulation. The decisions the orchestrator needs
to make are: 1) the data source(s), stem(s), and branch(es) to
use for each application; 2) where to deploy them; 3) how
to distribute the computation and communication resources
available at nodes across applications. Once it makes the
decisions (1) and (2), then the orchestrator also generates
the logic to be executed by the gates of the dynamic neu-
ral model. We express the first two decisions through vari-
ables σ(h, n)∈As,h∪Ab,h∪{data, ∅}, expressing how applica-
tion h∈ uses node n∈. Such variables can take the following
values: ∅, if node n is not used by application h; data, if that
node is a data source used by application h; a value in As,h or
Ab,h, if application h uses node n to deploy a stem or branch
(respectively). We also indicate with σ (in bold) the |H|×|N |
matrix collecting the values of all σ-variables.

Concerning resource allocation, we indicate with chn (in no.
instructions/s) and bhn (in no. of resource blocks), respectively,
the computational and radio resources that are allocated to
application h at node n, and with ρn the per-resource block
bit rate associated with the highest Modulation and Coding
Scheme (MCS) that node n can use for uplink transmissions.
Accordingly, Rh

n denotes the (outgoing) data rate available to
application h at node n, i.e., Rh

n=bn·ρn.
Given the values of the above decision variables, the system

performance can be derived as follows. The overall system
energy consumption is driven by the computational and com-
munication resources allocated at each node, hence:

ϵ(σ, b, c)=
∑
n∈N

∑
h∈H

(
ϵcnc

h
n + ϵbnb

h
n

)
, (1)

where ϵcn and ϵbn represent the energy consumption associated
with the usage of each unit of (resp.) computational and
communication resources at node n.

The time for sensor fusion and inference then includes
two components: the computational latency and the network
latency. Given application h, the former is given by:

ℓhc (σ, c)=
∑

n∈N : σ(h,n)∈As,h∪Ab,h

ohσ(h,n)

chn
, (2)

while the latter is given by:

ℓhb (σ, b)=
∑

n∈N : σ(h,n)=data

δhn
Rh

n

+
∑

n∈N : σ(h,n)∈As,h∪Ab,h

δhσ(h,n)

Rh
n

.

(3)
In other words, computational latency is incurred for each
node that is used for either a stem or a branch (top), while
network latency (bottom) accounts for the size of data and
available data rate. Combining the above, the total latency for
application h is: ℓh(σ, b, c) = ℓhc (σ, c) + ℓhb (σ, b), and we
indicate with ℓhω(σ, b, c) the ω-quantile of the sensor fusion
and inference time and with ω ∈ [0, 1] the target quantile we
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are interested into. Notice that, in general, ℓhω(σ, b, c) depends
upon the distribution of the bitrate resulting from the selected
MCS. Concerning accuracy, its distribution and quantiles can
be estimated through several methodologies, e.g., [3], yielding
the accuracy quantile αh

ω(σ).
Considering a snapshot of the system under study mod-

eled through the static sensor fusion and inference graph,
and combining all the above, we can formulate the orchestra-
tor’s decision problem as the following optimization problem:

min
σ,b,c

ϵ(σ, b, c) (4a)

s.t. αh
ω(σ) ≥ αh

ω,min ∀h ∈ H (4b)

ℓhω(σ, b, c) ≤ ℓhω,max ∀h ∈ H (4c)∑
h∈H

chn ≤ Cn ∀n ∈ N (4d)∑
h∈H

bhn ≤ Bn ∀n ∈ N . (4e)

The orchestrator seeks to minimize the total energy con-
sumption (4a), subject to the constraints that all applications
achieve their target accuracy quantile (4b) within their target
application latency (4c). In doing so, the orchestrator must be
mindful of the total amount of computational (4d) and radio
(4e) resources available at each node. Intuitively, obtaining
a better performance (thus satisfying (4b) and (4c)) tends to
require more resources, but doing so would increase the energy
consumption (4a). At the same time, (4d) and (4e) prevent
the orchestrator from using particularly desirable (e.g., well-
connected) nodes beyond their capabilities.

Property 1: The problem of minimizing (4a) subject to
constraints (4b)–(4e) is NP-hard.

Proof: We prove the property via a reduction from the
knapsack problem, which is NP-hard.Given an instance of
the knapsack problem with a set a set I={i} of items with
weight wi and value vi, and given the maximum weight wmax,
we can build a heavily simplified, one-application version of
our problem where items are mapped into data sources, the
source corresponding to item i increases the energy consump-
tion by vi and the accuracy by wi, the accuracy target is equal
to wmax, and selecting an item is mapped into not selecting
the corresponding data source. Then solving our problem is
equivalent to solving the knapsack problem. Finally, it can be
seen by inspection that reduction is polynomial in complexity
– indeed, constant, as it has no loops.

In summary, although helpful to formalize the problem that
the orchestrator needs to face, the problem complexity and the
fact that the mobile network system and context are dynamic
in nature (they both vary with time) demand for an efficient
algorithmic solution strategy. Below, we address this need by
proposing our QIC solution, which effectively and efficiently
copes with both the system complexity and dynamics.

V. QIC: A DYNAMIC DEPENDABLE SOLUTION

Given the dynamic nature of the system, in our solution
approach we introduce the notion of time by extending the

QCPO

selected config.

network, channel state, and application context

Graph builder action 
(system config.)

Fig. 3. QIC solution framework.

static sensor fusion and inference graph model (discussed in
the previous section) to an attributed dynamic graph model.
Then, in light of the problem complexity, we also apply the
Quantile Constrained Policy Optimization (QCPO) reinforce-
ment learning algorithm [13] to the attributed dynamic graph
and find the efficient set of data sources to be used and the
DNN deployment configuration and resource allocation in the
dynamic system for heterogeneous applications.

A schematic illustration of our proposed QIC framework
is presented in Fig. 3. It consists of two blocks: the Graph
Builder and the QCPO. Given time t=0, the first block creates
the initial attributed dynamic graph, G(0)

t , i.e., the attributed
graph reflecting the system at the initial time instant. The
QCPO block instead performs quantile constrained reinforce-
ment learning (RL) [13]. It takes G(0)

t as input and selects the
action, i.e., the configuration (DNN stems and branches, where
they are deployed and the corresponding resource allocation),
that maximizes a reward function matching the objective in
(4a). Based on the selected action, the Graph Builder updates
the attributed dynamic graph, yielding G(1)

t . The procedure is
repeated for Pmax epochs, thus generating G(τ)

t at every epoch
τ , and the solution to be enacted at time t will be given by
the action selected in the last epoch.

Below, we give further details on our solution approach.

A. Attributed dynamic graph model

We account for the temporal variations of the applications,
network conditions, and context (e.g., Sunny, Motorway,
Night) by combining the static sensor fusion and inference
graph representation of the system (Fig. 1) given for each time
instant into an attributed dynamic graph model (Fig. 4). By
doing so, the attributed dynamic graph can represent a time-
based deployment of dynamic DNNs with stems and branches
in the mobile-edge continuum to provision sensor fusion and
inference tasks for heterogeneous applications.

Each edge in an attributed dynamic graph contains multiple
dynamic attributes, each specifying a different system-level
constraint. This facilitates the identification through the graph
of the solution to our time-varying, multi-constrained problem.

The dynamic graph is G={G1, G2, . . .GT }, where:
• Gt={Vt, Et,Ft}, t=1, . . .T , models the system at time t;
• Vt is the set of vertices of Gt, representing data sources

nsti , i ∈ {1, 2, . . . Ns}, mobile nodes nmt
i , i ∈ {1, 2, . . . Nm},

and edge servers neti , i∈{1, 2, . . . Ne}, plus a source, Sv , and
a destination, Dv , as fictitious vertices representing (resp.) the
starting and ending point of the system configuration process;

• Et is the set of edges of Gt. An edge e∈Et is defined
as a tuple

(
u, v, {bhu, chu}h∈[1,H], ρu

)
where: (i) u, v∈Vt, (ii)

the number of resource blocks (bhu) and compute resources
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Fig. 4. Dynamic sensor fusion and inference graph over three time slots. At
t1, it reflects the example in Fig. 1; at t3, it includes 4 applications, 5 data
sources, 4 mobile nodes, and 2 edge servers.

(chu) is the assignment for each application h at node u such
that σ(h, u)=a, with a∈As,h ∪Ab,h, if one or more stems or
branches of the DNN are deployed on node u for application h,
(iii) and ρu is the uplink per-resource block data rate at u. The
same holds if σ(h, u)=data, but for the compute resources
allocation which in this case is chu=0;

• By setting K to the number of constraints plus the
objective function in our optimization problem (4b)–(4e)
(i.e., K=5), Ft={f1, . . . fK} is the set of normalized con-
straint attribute functions that assign to every edge e∈Et

a non-negative value fj(e), with fj(e):
(
u, v, { bhu, chu}h, ρu

)
∈Et→R+, j∈{1, . . .K}. Each fj(e) corresponds to the value
of the objective function (if j=1) or of a normalized constraint
(if j=2, . . .K), setting the right hand side in the constraints
expression to 1, associated with edge e.
Computational complexity. Generating the dynamic graph
has low, namely, polynomial computational complexity. In-
deed, the graph has at most N+2=Ns+Nm+Ne+2 vertices,
hence, O(N2) edges. Each edge has 2H+1 attributes, giving
a total complexity of O(N2+H); assuming that there are
more nodes than applications, the complexity can be further
simplified to O(N2), i.e., quadratic in the number of nodes.

B. The QCPO solution framework

Using the QCPO approach [13], the decision process can
be modelled as a constrained Markov decision process and,
accordingly, the dynamic system can be defined by the tuple
<Ss,Sa, r, c,M, γ>, where Ss is the state space, Sa is the
action space, r : Ss×Sa→R is the reward function, c :
Ss×Sa→R+ is the cost function, M : Ss×Sa×Ss→[0, 1] is
the state transition probability, and γ is a discount factor used
for computing the accumulated cost of the Markov decision
process over the epochs. In the following, we fix the time
instant t and drop the dependency on t whenever clear from
the context. We instead denote with τ the epoch of the QCPO
process, which is performed at each t to adapt the selected
configuration to the system’s dynamics. The system state is

then given by the set st=sτ={Bn, Cn, ρn}n and an action
is represented by the set aτ={σ, bhn, chn}h,n (with at=aPmax ,
i.e., the action to be enacted at time t is the one selected at
τ=Pmax). QCPO implements a policy π, which selects the
action maximizing the reward function (specified below). The
edges (Et) and attribute function values (Ft) of the dynamic
graph G

(τ)
t are updated at every epoch (τ∈[1, Pmax]) based

on system state and action.
We define the reward function as a positive (negative)

inverse of energy consumption based on success (failure) in
meeting the system and application constraints, given by:

r(sτ , aτ ) =
∑
e∈Et

ψ(e)

1 + f1(e)
(5)

ψ(e) =

{
1, if fj(e) ≤ 1, j=2, . . .K, i.e., (4b)–(4e) are met
−1, otherwise.

We also define the cost function as the weighted (weight
µj) sum of the normalized constraint attribute functions
that correspond to the problem constraints, i.e., c(sτ , aτ ) =∑
e∈Et

5∑
j=2

µjfj(e). The estimated cumulative sum cost is:

Xπ(s)=
∞∑
τ=0

γτc(Sτ ,Aτ ) where, given π the policy function,

Aτ∼π(·|Sτ ) and Sτ∼M(·|Sτ−1,Aτ−1). Importantly, the pol-
icy π implemented by QCPO selects an action so that the
quantile of the distribution of the Xπ(s) does not exceed a
specified threshold (dth). By doing so, it satisfies the system
latency and accuracy constraints within the selected quantile.

QCPO implements a policy π maximizing the reward and
limiting the quantile of the cumulative cost by leveraging two
neural networks, namely, the policy and value neural networks.
The former, also known as actor, is used to choose actions
and update the policy; the latter, also known as critic, is used
to estimate the value function. More specifically, the original
optimization problem, given in (4), is modified for QCPO and
expressed in terms of expected cumulative reward and quantile
of the estimated cumulative cost functions, as follows:

max
π

V π(s0) = Eπ

[ ∞∑
τ=0

γτr(sτ , aτ )

]
(6a)

s.t. qπω ≤ dth, (6b)

where ω-quantile of the r.v. of the estimated cumulative sum
cost is qπω(s)= inf{x|Pr(Xπ(s)≤x)≥ω}. We compute the
quantile and tail probability of the cumulative sum cost (mod-
elled through the Weibull distribution) via the distributional
RL with the large deviation principle [13]. QCPO meets the
constraint after the RL policy and value network training.

Policy and value networks. The objective function of
the policy network is based on the parameter ϕ given by:
L(ϕ)=E[J(ϕ)]. The objective function of the value network
is: L(Ω) = E[J(Ω)], where, J(Ω) represents the temporal
difference error of the value function.

QCPO uses the proximal policy optimization (PPO) [14]
to enable frequent policy optimization depending on ear-
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lier policy and, in general, it shares the parameters be-
tween policy and value networks. By performing clip-
ping operation on the policy probability ratio (PPR), i.e.,
p(ϕ)= πϕ(aτ |sτ )

πϕo (aτ |sτ ) , the clipped policy objective function is:

J(ϕ) = E
[
L̂(p(ϕ))Âπϕo

(sτ , aτ )
]

where: L̂(p(ϕ)) is 1 −
θ for p(ϕ) ≤ 1 − θ; 1 + θ for p(ϕ) ≥ 1 + θ; and p(ϕ)
otherwise. Here, πϕo

(aτ |sτ ) and Âπϕo
(sτ , aτ ) represent the

previous policy and estimate of advantage function, respec-
tively, while θ is the clipping parameter. ϕo is the policy
parameter prior to update. The value (quantile) advantage
function is an estimate of the difference between the total
weighted reward (cost) and the estimated value (quantile)
function for a selected action, on the completion of an epoch.
A positive value means that the chosen action is preferred.
QCPO takes the policy gradient using the sum of the value
and the quantile advantage [13]. The update expression of the
policy network parameter for each proposed policy is:

ϕt+1 = ϕt +
η

Pmax

Pmax∑
τ=1

▽ϕJ(ϕ) (7)

where ▽ϕ is the policy objective function gradient.
The overall state-based (on-policy) procedure of QIC using

the QCPO action selection function is given in Algorithm 1.

Algorithm 1: QCPO Algorithm
Input: st
Function I: QCPO action selection(st):

1) Init. policy neural network with rand. seed, ϕt∈(0, 1]
2) Init. state value function with random seed, Ω∈(0, 1];
3) for τ = 1, 2, . . . Pmax do

3.1) Observe the present state sτ
3.2) Compute current reward r(aτ , sτ ) using (5)
3.3) Set temp = 0, aτ = NULL;
for a ∈ Sa do

3.4) Estimate sτ+1 based on action a
3.5) Compute r(a, sτ+1)
if
(
r(a, sτ+1) > temp

)
then

temp = r(a, sτ+1);
aτ = a;

end if
end for
3.6) Estimate the value function V π(sτ ) for return
3.7) Estimate the quantile function
qπω(sτ ), ω ∈ {ω1, ω2, . . . ωq}
3.8) Approx. right tail distrib. PXπ(sτ ) via Weibull
distrib. and compute advantage functions [13].
3.9) Take policy gradient using sum of value and
quantile advantage [13].

3) end for
4) at = aτ

5) Update ϕt+1 via (7) and Ω to maximize L(Ω)

return at

Output: at

Computational complexity. The QCPO action selection
function has polynomial computational complexity. Indeed, we
have at most Pmax epochs and |Sa| number of actions. Given
that |Sa| is O(|H| · |N | · |As,h| · |Ab,h|), the total complexity
of QCPO is O(Pmax · |H| · |N | · |As,h| · |Ab,h|).

TABLE I
SIZE OF STEM RAW INPUT/OUTPUT AND COMPLEXITY

Data Stem In. Stem-Branch FLOPS [G]
L/R cam. 672x376 64x168x94 3.552

Radar polar 1152x1152 64x288x288 31.00
Lidar proj. 672x376 64x168x94 5.900

VI. REFERENCE SCENARIO

In this section, we describe the sensors dataset we use for
our performance evaluation, as well the radio link measure-
ments we carried out to account for real-world conditions.

Dataset and dynamic DNN model. We employ the RA-
DIATE dataset [15], which offers data of Navtech CTS350-X
Radar, a Velodyne HDL-32e LiDAR, and left and right ZED
stereo camera for autonomous vehicle perception in diverse
weather conditions such as Sunny, Night, and Motorway.
The variety of weather conditions represents different contexts
associated with different levels of difficulty in achieving a
satisfactory value of inference accuracy. Thus, this dataset
presents challenges for object detection across varying envi-
ronmental scenarios, prompting our investigation into dynamic
model deployment tailored to distinct operational constraints.

Our dynamic DNN (see Sec. III-B) integrates early fusion
techniques [3], leveraging a ResNet-18 backbone [12]. We
extended it to ResNet-50 and ResNet-101, thereby offering
varied complexity levels for enhanced adaptability. Further-
more, we partitioned the ResNet architecture, designating the
initial block as the stem for each sensor modality, and then
applied early fusion for merging these stems. The integrated
features are then processed through the subsequent ResNet
branches [3], and late fusion was added as a post-processing
step only for the (less complex) ResNet 18 branches.

The system’s architectural complexity and the size of input
data from different modalities are summarized in Tables I and
II. Table I outlines the size of the raw sensory inputs and
the corresponding outputs from the initial processing stage
(stem), which serve as inputs to the various branches. Table I
also presents the computational load in terms of floating point
operations per second (FLOPS). Table II details the complexity
of different branches, including the total number of parameters
(in millions) and the FLOPS for each branch. The architectures
vary from specific sensory branches, e.g., CameraBranch18,
RadarBranch18, and LidarBranch18, to more complex fusion
architectures, e.g., DualCameraFusion101 and RadarLidarFu-
sion101. The branches denoted with ’18’, ’50’, and ’101’
indicate the architecture’s depth. The parameter count reflects
the model’s size, while the FLOPS give insight into the
computational load during inference.

Radio link measurements. As radio link performance is
key to establish a balance between edge computational and
communication demands, we incorporate real-world radio link
traces into the evaluation of QIC. Through real-world exper-
iments, we collected TCP throughput and MCS values under
two contexts: Outdoor and Indoor. The former is an outdoor
open space with low interference from other devices and
objects, the latter is an environment with walls as obstacles.
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TABLE II
NUMBER OF PARAMETERS AND COMPLEXITY OF THE BRANCHES

Architecture No. of param. (M) FLOPS (G)
CameraBranch18 40.20 21.76
RadarBranch18 40.20 115.86
LidarBranch18 40.20 23.00

DualCameraFusion18 40.28 270.8
RadarLidarFusion18 40.28 586.6

CameraLidarFusion18 40.31 286.6
CameraBranch50 165.06 85.14
RadarBranch50 165.06 352.5
LidarBranch50 165.06 89.10

DualCameraFusion50 165.06 982.6
RadarLidarFusion50 165.06 2202

CameraLidarFusion50 165.06 1084
CameraBranch101 184.05 184.1
RadarBranch101 184.05 573.4
LidarBranch101 184.05 132.4

DualCameraFusion101 184.05 1496
RadarLidarFusion101 184.05 3434

CameraLidarFusion101 184.05 1562
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Fig. 5. Transport layer throughput (left) and MCS (right) over the radio link,
for increasing distance between transmitter and receiver.

We used a mobile node that travels a fixed trajectory while
transmitting data through simultaneous connections through
WiFi (802.11ac) for 150 s. Our mobile node is composed
of a 4-wheel outdoor rover equipped with an Nvidia Jetson
Nano operable through Linux OS and a WiFi antenna dongle
to transmit data. In the Outdoor context, the mobile node
follows a circle trajectory with a radius of ∼6m. This circular
trajectory facilitates the variation in the signal strength due
to the changes in the distance between the receiver and the
transmitter. In the Indoor case, instead, the node follows an
L-trajectory so that, at the turn, multiple walls are between
the transmitter and receiver. Each experiment, lasting 150 s, is
characterized by a number of mobile node’s TCP connections
ranging from 2 to 128. TCP packets are generated using the
iPerf3 tool, and we capture the link performance every 100 ms
with iw [16] link status tool available in Linux OS.

Fig. 5 compares the Outdoor and Indoor contexts using
two metrics: transport-layer throughput (aggregated over all
the mobile node’s active TCP connections) and MCS. As
expected, the throughput decreases for both contexts as the
distance between the ES and the mobile node grows. However,
the Indoor throughput decreases faster than the Outdoor, due to
the presence of obstacles between transmitter and receiver. In
both cases, the throughput measurements are highly correlated
with the MCS index. Further, Fig. 5 shows how the variance
in the MCS value for the Indoor context is higher than in the
Outdoor context. The MCS index represents the maximum

TABLE III
PARAMETER SETTINGS

Parameter Value Parameter Value
#epochs 50 Learning rate (QCRL) 10−3

Update parameter, ϱ 0.001 #neurons 300
Update rule Adam Steps per epoch 10000
Tests per epoch 10 Steps per test 2000
Channel bandwidth 50 MHz Carrier spacing 15 KHz
Frequency 3.4 GHz Number of data carriers 1200

data rate possible for a given channel bandwidth: the larger
the bandwidth, the higher the data rate, hence the throughput.

Importantly, the performed measurements give a good in-
dication of the data transfer performance through an OFDM-
based radio interface. For QIC’s evaluation, we thus compute
ρn for the 5G NR frequency range 1 [17] using the MCS index
measured over time and the radio parameters in Table III. We
also compute Bn (the available no. of resource blocks) as the
ratio of the measured throughput to the obtained value of ρn.

VII. PERFORMANCE EVALUATION

We now show QIC’s performance in a small- and a large-
scale dynamic scenario, against the following benchmarks:

• Multi-Constrained Shortest Temporal Path selection
(MCTP) [11], applied on the attributed dynamic graph. It is
based on an adaptive Monte Carlo Tree Search, which finds
a path between a graph source and destination nodes so as
to satisfy the multiple end-to-end constraints on the attributed
edge weights. We select [11] because no scheme exists that
specifically tackles the problem at hand.

• Optimum (Opt), obtained through exhaustive search (only
in the small-scale scenario where its computation is feasible).

Parameters are set as listed in Table III. As mentioned, in
both the small-scale and large-scale scenario, the available
radio resources and the MCS index that can be used by each
mobile node are changing over time.

Small-scale scenario. The scenario, depicted in Fig. 1(a),
includes 4 data sources, 3 mobile nodes, 2 ESs, and 3 appli-
cations. We associate each mobile node with one application
and a specific context, and investigate the impact on energy
consumption of accuracy and latency constraints. We begin
by looking at the performance in the case of the mobile node
with the Sunny context. In Fig. 6(a), we fix the latency target
to ℓhω,max=50 ms with quantile ω=0.9 and vary the accuracy
target αh

ω,min; as one might expect, a tighter accuracy target
results in a larger energy consumption for all strategies. More
importantly, QIC greatly outperforms MCTP, yielding savings
that exceed 25%, and it almost always matches the optimum.
In Fig. 6(b), we fix the accuracy target to αh

ω,min=50%
with quantile ω=0.9 and change the latency target (again,
MCTP cannot meet the target accuracy and latency with
higher ω’s). Besides noticing that shorter latency results in
higher energy consumption, remarkably, QIC can achieve
the same performance as the optimum, except when latency
constraints are very tight, and consistently outperforms MCTP,
on average, by 80%. The same behavior can be observed
for the Night and Motorway contexts (Figs. 6(c)–6(d)
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(e) ℓhω,max =50 ms
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Fig. 6. Small-scale scenario: Total energy consumption obtained through MCTP, QIC, and Opt, in the Sunny (a,b), Night (c,d), and Motorway (e,f)
context, as the target inference latency and accuracy quantiles vary.
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Fig. 7. Large-scale scenario: Performance as the number of mobile nodes increases (ℓhω,max=50 ms, αh

ω,min=50 %, ω = 0.9).

and Figs. 6(e)–6(f), resp.). Since the maximum accuracy for
Night and Motorway is now limited to the less stringent
requirement of 60%, the difference between the different
schemes is occasionally slightly smaller than in the Sunny
context. Nevertheless, QIC consistently makes optimal or near-
optimal decisions, while MCTP always incurs 25% higher
energy consumption relatively to QIC.

Large-scale scenario. Next, we apply QIC to a scenario
with multiple mobile nodes and 10 ESs. Context (Sunny,
Night, and Motorway) and applications are uniformly as-
signed to mobile nodes. We set ℓhω,max=50ms, αh

ω,min=50%,
and ω=0.9 for all applications (for larger ω’s MCTP can-
not meet the requirements). Fig. 7 compares QIC to the
benchmark, in terms of average performance of energy and
churn rate (ratio of the no. of mobile nodes that fail to meet
the application requirements to the total number of mobile
nodes in the system), with the average value computed over
the entire duration of the radio link measurement trace and
the number of mobile nodes. Figs. 7(a)–7(b) underline the
increase of the above metrics as the number of mobile nodes,
hence the load on the edge servers, grows. More interestingly,
QIC has excellent energy performance and always meets the
application target accuracy and latency quantiles, even with
high number of mobile nodes, whereas MCTP fails to meet
these requirements for more than 8 mobile nodes. Overall, QIC
results in more than 80% reduction in energy consumption and
on average 70% higher number of mobile nodes meeting their
application requirements as compared to MCTP. Figs. 7(c)–
7(d) shed light on MCTP’s high churn rate, by depicting the
average latency and accuracy for both QIC and MCTP. It is
clear that for more than 8 mobile nodes, MCTP violates the
latency requirement and it does so by a large margin.

VIII. CONCLUSIONS

We targeted dynamic scenarios where multiple DNN-based
applications can leverage multiple data sources for their in-
ference task. Given DNN’s architecture with multiple stems

and branches that can be dynamically selected, we proposed
QIC to jointly choose (i) the input data sources and (ii) the
DNN sections to use, and (iii) the nodes where each stem and
branch is deployed, along with (iv) the resources to use therein.
We proved QIC’s polynomial worst-case time complexity and,
using a dynamic DNN architecture, a real-world dataset and
radio link measurements, showed that QIC closely matches
the optimum and outperforms its benchmarks by over 80%.
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