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Abstract 

This works presents a Reinforcement Learning (RL) agent to 

implement a Cooperative Adaptive Cruise Control (CACC) system 

that simultaneously enhances energy efficiency and comfort, while 

also ensuring string stability. CACC systems are a new generation of 

ACC which systems rely on the communication of the so-called ego-

vehicle with other vehicles and infrastructure using V2V and/or V2X 

connectivity. This enables the availability of robust information about 

the environment thanks to the exchange of information, rather than 

their estimation or enabling some redundancy of data. CACC systems 

have the potential to overcome one typical issue that arises with 

regular ACC, that is the lack of string stability. String stability is the 

ability of the ACC of a vehicle to avoid unnecessary fluctuations in 

speed that can cause traffic jams, dampening these oscillations along 

the vehicle string rather than amplifying them. In this work, a real-

time ACC for a Battery Electric Vehicle, based on a Deep 

Reinforcement Learning algorithm called Deep Deterministic Policy 

Gradient (DDPG), has been developed, aiming at maximizing energy 

savings, and improving comfort, thanks to the exchange of 

information on distance, speed and acceleration through the 

exploitation of vehicle-to-vehicle technology (V2V). The 

aforementioned DDPG algorithm is also designed in order to achieve 

the string stability. It relies on a multi-objective reward function that 

is adaptive to different driving cycles. The simulation results show 

how the agent can obtain energy savings up to 11% comparing the 

first following vehicle and the Lead on standard cycles and good 

adaptability to driving cycles different from the training one. 

Introduction 

In the last decades the automotive field has faced increasingly steep 

challenges with respect to different industry needs, such as safety, 

comfort and energy consumption. Advanced Driver Assistance 

Systems (ADASs) are a set of technological developments that can 

increase road safety, reducing for example the number of 

accidents [1]. In the context of automated driving systems, vehicle 

platooning represents an enabler technology for both safety and 

energy savings. The latter has been investigated over the last decade 

as it represents a potential application in reducing the greenhouse gas 

emissions, since the road transport sector represents the major 

contributor [2]. A platoon of vehicles is a string of vehicles that move 

together at a certain safety distance. Different platooning projects 

from different countries were completed in the last 20 years 

investigating different systems, as reported in the extensive  review 

in [3,4], covering different vehicles, type of infrastructures and 

sensors. The focus of these projects was to investigate the potential 

energy consumption reduction and the road capacity increase, which 

is a key challenge of the transportation sector. The advantages linked 

to the drag reduction is a key aspect, investigated by many 

researchers as done by [5]. These works reveal that heavy-duty 

vehicles (HDV) are the most suitable for platooning systems, 

exploiting the benefits from the slipstream effect due to the impact on 

surface area. On the downside, driving close to the previous vehicle 

leads to a safety concern, but this problem can be addressed directly 

through the selection of the proper spacing policy [6].  

To fulfil platooning cooperative task cooperative adaptive cruise 

control (CACC) frameworks demonstrated to be more suitable than 

classic Adaptive Cruise Control (ACC), since they exploit more 

accurate information from the whole string of vehicles such as 

distance, velocity, and accelerations. The exchange of data relies on 

the V2X or V2V technologies. One of the advantages of the CACC is 

that it can guarantee the string stability, which is a well-known issue 

in regular ACC. For example, [7] investigated string stability by 

developing a delay-based spacing policy. 

Different cooperative strategies have been implemented in the 

literature. For example, a real-time controller based on the same 

principle underlying the equivalent consumption minimization 

strategy was developed by [8]. Moreover, in several works model 

predictive control (MPC) [9,10] has been suggested as one of the 

most promising solutions to CACC problems. In the last years, the 

innovations made in the field of reinforcement learning (RL) have 

allowed researchers to achieve surprising results in energy 

management problems [11]. 

Recently, deep RL algorithms have been applied to this field to 

overcome the hindrance of dimensionality, due to the discretization 

of large and continuous state and action spaces, typical of Q-learning 

and DP. The main goal of this paper is to show the effectiveness of 

the DDPG, a deep RL (DRL) algorithm, for optimal acceleration 

control of electric vehicles (EV) in enhancing comfort conditions 

while also achieving energy savings and string stability. Truck 

platooning is the subject of this analysis; thus, the platoon system has 

been modelled to include the aerodynamics effects on drag resistance. 

The paper is divided as follows: in the first part the vehicle platoon 

model and RL architecture are presented. Then, simulation results of 

a platoon with the lead vehicle following a FPT75 and a WLTP 

driving cycle are shown and conclusions are drawn.
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Platoon Model and Control Algorithm 

Platoon and Vehicle Model 

In this section the vehicle and platoon models are introduced. The 

latter is composed by a number N of heavy-duty electric vehicles. 

The first vehicle in the platoon is the lead vehicle, while the others 

are the followers or ego vehicles. Each vehicle is modelled 

individually in a simulation environment that was developed in 

Simulink, considering the longitudinal dynamics and the powertrain. 

The vehicles’ position, velocity, and acceleration (𝑥𝑖 , 𝑣𝑖 , 𝑎𝑖) are all 

measured in a fixed reference frame. The powertrain and vehicle 

model relates the torque command, which is controlled by the RL 

agent, to the vehicle’s acceleration, considering the e-machines’ 

speed and torque constraints as well as the single-speed transmission 

of the model and vehicle’s resistive load.  

The resistive load for vehicle i, 𝐹res,𝑖 , is: 

𝐹res,𝑖 = 𝑚𝑖  𝑔 sin(𝛼) + 𝑚𝑖  𝑔 𝑓0,𝑖  cos(𝛼)

+ (
1

2
𝜌 𝑐𝑥,𝑖(𝑑𝑖−1,𝑖)𝐴𝑓,𝑖) 𝑣𝑖

2, 
(1) 

where 𝑚𝑖 is the vehicle mass, 𝛼 is the road slope, 𝑓0,𝑖 is the rolling 

resistance coefficient, 𝜌 is the air density, 𝐴𝑓,𝑖 is the vehicle frontal 

area, and 𝑐𝑥,𝑖 is the drag coefficient. For the lead vehicle, 𝑐𝑥,0 is a 

constant (equal to the undisturbed drag coefficient), whereas for the 

ego vehicles 𝑐𝑥,𝑖 is a function of the inter-vehicle distance 𝑑𝑖−1,𝑖.  

The longitudinal dynamics and the powertrain model then relate the 

torque command 𝑇m,𝑖 to the vehicle’s acceleration, neglecting various 

driveline efficiencies for ease of notation, according to:  

𝑚tot𝑖
𝑎𝑖 =

𝑇m,𝑖𝜏𝑖
𝑟𝑤,𝑖

− 𝐹res,𝑖  , (2) 

where 𝑚𝑡𝑜𝑡,𝑖 is the equivalent total mass, accounting for translating 

and rotating mass and inertia, 𝑟𝑤,𝑖 is the wheel radius, and 𝜏𝑖 
represents the overall transmission ratio. In the test case presented in 

this work, all vehicles have the same parameters. 

In addition, the e-machine model evaluates the electrical power using 

a steady-state efficiency map and the battery model relates this to the 

state of charge (SOC) dynamics using an internal resistance model: 

Here 𝐼b, 𝑉oc, 𝑅b, 𝑃b and 𝑄b are respectively the battery current, open-

circuit voltage, internal resistance, power, and maximum capacity (in 

ampere-seconds).  

As stated in Eq. 1, the drag coefficient was modelled as a function of 

the inter-vehicle distance. In particular, the following semi-empirical 

relationship, derived by [12], was used to characterize the effect of 

the inter-vehicular distance on the drag reduction Δ𝐶𝑥: 

Δ𝐶𝑥(%) = (1 −
𝑎3,𝑖𝑑

3 + 𝑎2,𝑖𝑑
2, 𝑎1,𝑖𝑑 + 𝑎0,𝑖

𝑏3,𝑖𝑑
3 + 𝑏2,𝑖𝑑

2 + 𝑏1,𝑖𝑑 + 𝑏0,𝑖
) ⋅ 100 (5) 

Where 𝑑 represent the relative distance at which the vehicle is 

influenced by the reduction of the drag resistances, while 𝑎𝑛,𝑖 and 

𝑏𝑛,𝑖 are the experimental coefficient obtained by [12] based on 

empirical data. Figure 1 shows the trend of the drag reduction 

coefficient with respect to the inter-vehicle distance for a platoon 

composed by 4 HDVs. In our simulation framework, followers 1 and 

2 are considered as middle vehicles of a platoon. As expected, the 

two middle and the trail vehicles are the most impacted by drag 

reduction.  

 

Figure 1. Drag coefficient as a function of the inter-vehicle distance. 

 The inter-vehicle distance and its derivative are defined as: 

{
𝑑𝑖−1,𝑖 = 𝑥,𝑖−1 − 𝑥𝑖 − 𝑙𝑖−1

�̇�𝑖−1,𝑖 = 𝑣𝑖−1 − 𝑣𝑖
 

(6) 

The vehicle platooning is designed to achieve the advantages due to 

the implementation of a CACC. In the present paper a platoon of 

vehicles is designed so that the lead vehicle presents a PID logic 

following a specific mission, while the follower vehicles are 

controlled by their own control units, that exploit the information of 

the sensor measures (i.e. the velocity 𝑣𝑖 and the inter-vehicle distance 

𝑑𝑖−1,𝑖), and those available thanks to the V2V communication, (i.e. 

leader acceleration). The control unit computes the torques and 

transfers the signals to the actuators.  

Control Algorithm 

In this section, we describe the Reinforcement Learning agent that 

was implemented in this work. The role of a Reinforcement Learning 

agent is to evaluate and execute decisions, also called actions. Each 

action is evaluated through a reward function that expresses its 

effectiveness and in achieving the control. RL agents learn through 

trial and error, leading the trained agent to achieve an optimal policy 

in an external environment, that can be described by an observable 

state s. The agent takes an action a that is evaluated through a reward 

r which can also depend on the observed state. This interaction 

between agent and environment is the learning source of the agent. 

The objective of an RL agent is maximizing the cumulative reward 

over the whole mission. Comparing RL with supervised learning the 

 𝐼b =
𝑉oc −√𝑉oc

2 − 4 𝑅b 𝑃b
2 𝑅b

, (3) 

𝑆�̇�𝐶 =
𝐼b
𝑄b
. (4) 
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biggest difference is that RL does not require data before starting the 

training process whose duration is set as the maximum number of 

runs, called episodes. For this work, the latter was set to Emax = 2000.  

DDPG Algorithm 

The deep deterministic policy gradient (DDPG) algorithm [13] 

estimates the action-value 𝑄(𝑠, 𝑎), defined as discounted sum of 

rewards through deep neural networks (DNNs), that work as function 

approximators, addressing the problem of variables discretization that 

affects tabular Q-learning. Moreover, it is a model-free approach; 

hence, it does not require a prediction model of the system as, for 

instance, in model predictive control (MPC). 

DDPG is an actor-critic algorithm characterized by a continuous 

action space and an observation space that can be either continuous 

or discrete. Since it is a deep RL algorithm, it is more suitable for 

large action and state spaces (as is the case for the control of vehicle 

platoons) with respect to more classical RL approaches. The agent 

uses four simple feed-forward neural networks (function 

approximators): two actors μ and two critics Q characterized by θμ  
and θQ  weights. Each net contains three hidden layers with 56 

neurons, using the rectified linear unit (ReLU) activation function. 

The observed state of the environment is the input of the actor 

networks, whose output is the action; the latter and the state are the 

input of the critic nets that estimate the Q values.  

The use of two networks for actor and for critic is necessary for the 

stability of Q-values. A target actor μt and a target critic Qt are 

characterized by weights θ𝜇t  and θ𝑄t , at first initialized equal to θμ  
and θQ respectively, and updated for each training episode using a 

smoothing method for target update:  

θ𝜇t = τθ𝜇 + (1 − τ)θ𝜇t , (6) 

θ𝑄t = τθ𝑄 + (1 − τ)θ𝑄t , (7) 

where τ ≪ 1 is a smoothing factor. This was set to τ = 10−3, which 

is a common value in literature [13] to strike a reasonable balance 

between stability and speed of the training process (the extent to 

which the target actor and critic networks are updated). 

To balance exploration and exploitation, an Ornstein-Uhlenbeck 

action noise model is used, to enhance exploration. The default noise 

mean value is 0, while standard deviation is here set to 0.6. To push 

toward the exploitation as the training process progresses, we set the 

standard deviation decay rate parameter to 1 ∗ 10−5. 

Another important option in the DDPG algorithm is the experience 

replay memory. For every training iteration, a batch of n random 

arrays (𝑠, 𝑎, r, 𝑠′) are sampled from the replay memory and are used 

to train the critic and actor networks through the respective loss 

functions 𝐿𝑐 and 𝐿𝑎: 

𝐿𝑐 =
1

𝑛
∑(𝑦 − 𝑄(𝑠, 𝑎|𝜃𝑄))2,

𝑛

𝑖=1

 (8) 

𝐿𝑎 =
1

𝑛
∑𝑄(𝑠, 𝜇(𝑠). )

𝑛

𝑖=1

 (9) 

Control strategy 

The present work scenario comprehends a platoon of N vehicles 

travelling in a longitudinal-only dynamics (or hypothetically on a 

straight and flat road). The follower vehicles receive the information 

about the other vehicles. As already mentioned, the strong 

assumption made at this stage is that all the information is 

instantaneously available and without any error. The state variables, 

chosen among the available data are the time gap between the 𝑖𝑡ℎ 

vehicle and its preceding one, the time to collision of the same two 

vehicles, their velocities and the acceleration of the leading vehicle of 

the platoon.  

The main objective of the agent is to enhance energy savings, safety, 

comfort, and the stability of the string of vehicles, satisfying inter-

vehicle distance limits. In this work the spacing policy does not rely 

on the measured distance (in meters) but on the time, called time 

headway, during which the front bumper of the preceding vehicle and 

the front bumper of the following vehicle pass a fixed position on the 

road. In order to achieve these objectives, the following reward 

function is used: 

𝑟 =
𝑤𝑡ℎ𝑟𝑡ℎ + 𝑤𝑇𝑇𝐶𝑟𝑇𝑇𝐶 + 𝑤𝑎𝑐𝑐𝑟𝑎𝑐𝑐

𝑤𝑡ℎ + 𝑤𝑇𝑇𝐶 + 𝑤𝑎𝑐𝑐
, (10) 

where 𝑟𝑡ℎ, 𝑟𝑇𝑇𝐶  𝑎𝑛𝑑 𝑟𝑎𝑐𝑐 are respectively reward functions for time 

headway, time to collision and acceleration, while 𝑤𝑡ℎ, 𝑤𝑇𝑇𝐶 and 

𝑤𝑎𝑐𝑐  are the weights of the respective rewards. This multi-objective 

reward function is composed as the weighted sum of three rewards, 

each with value saturated between -1 and 1, and thus have value 

oscillations in the same range. Different attempts have been made, 

and the following values were ultimately retained: 

{

𝑤𝑡ℎ = 0.5
𝑤𝑇𝑇𝐶 = 0.5
𝑤𝑎𝑐𝑐 = 0

  if  𝑎𝑙𝑒𝑎𝑑 ≥ 0.5
𝑚

𝑠2
 or 𝑎𝑙𝑒𝑎𝑑 ≤ −0.5

𝑚

𝑠2
, 

{

𝑤𝑡ℎ = 0.25
𝑤𝑇𝑇𝐶 = 0.25
𝑤𝑎𝑐𝑐 = 0.5

  if − 0.5
𝑚

𝑠2
< 𝑎𝑙𝑒𝑎𝑑 < 0.5

𝑚

𝑠2
. 

The following distribution allows to focus on safety, through time 

headway mainly, at higher accelerations, and on comfort at lower 

acceleration, when the acceleration is more likely to present frequent 

small changes. Since we are dealing with a fully electric vehicle the 

main advantages in terms of energy consumption derive from drag-

distance correlation and regeneration during braking. For this reason, 

since the reward defined aims at optimizing the distance, through the 

time headway and time to collision terms, and the acceleration, no 

term directly regarding SOC is added. During training, when the 

distance between two consecutive vehicles becomes too high or zero, 

or the speed of the ego vehicle is negative the episode is stopped, the 

reward is set at the most negative value, in order to penalize such a 

condition. In general, each term of the reward function is built in 

{
 
 

 
 
𝑡ℎ
𝑖

𝑇𝑇𝐶𝑖

𝑣𝑒𝑔𝑜
𝑖

𝑣𝑒𝑔𝑜
𝑖−1

𝑎𝑙𝑒𝑎𝑑

. 
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order to penalize bad actions and enhance the good ones. To achieve 

this the reward terms are shaped as follows: 

𝑟𝑡ℎ = 1 − 2
𝑠𝑖𝑔𝑛(𝑡ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑡ℎ) ∙ (𝑡ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑡ℎ)

2, (11) 

𝑟𝑇𝑇𝐶 = 1 +
𝑇𝑇𝐶 − 𝑇𝑇𝐶𝑐𝑟𝑖𝑡𝑖𝑐
𝑇𝑇𝐶𝑐𝑟𝑖𝑡𝑖𝑐 − 4

, (12) 

𝑟𝑎𝑐𝑐 = 1 − |𝑎𝑐𝑐|. (13) 

With this reward definition, the platoon of vehicles is able to achieve 

stability, comfort, energy savings and safety with good adaptability to 

different driving cycles. 

The spacing policy affects the string stability, as mentioned in [6]. 

The time headway reward term was used as the main factor in 

meeting the car-following objective. The acceleration reward term 

was then added to mitigate steep accelerations and therefore improve 

comfort and, to a minor extent, energy savings. Finally, reward term 

based on TTC was added to improve the training phase in specific 

situations: specifically, when the ego vehicles proceed at low speed 

and the action chosen by the agent led to lower time headways than 

the desired one. The addition of the TTC term proved in practice to 

improve convergence during training. 

Results 

In this section, simulation results obtained by the trained agent are 

described. The agent was trained in a car-following scenario, with 

one lead vehicle and one ego vehicle. The training cycle was a 

segment of the FTP75 driving cycle (specifically, the time interval 

[605s, 1022s]), saturated at a minimum velocity of 2 m/s to avoid 

reverse movement. The choice has been made in order to take a 

representative segment of the driving cycle while reducing the 

training time. Once the agent was trained, it was deployed and used 

as the controller for all follower vehicles. In particular, a platoon of 

four vehicles was tested (1 leader and 3 followers) over the training 

cycle, the WLTP class 2 cycle and the FTP75 complete cycle.  

Figure 2 shows the velocity of all vehicles on a portion of the WLTP 

cycle. These results show that all following vehicles can track the 

speed profile of their preceding vehicle while gradually attenuating 

the peaks present in the leader vehicle profile, which indicates a 

visibly stable behaviour for the platoon. As expected, a similar 

behaviour is also obtained in the training cycle, as shown by the 

results in Figure 3. 

 

Figure 2. Velocity profiles over the WLTP cycle in the time interval 
[500s,1000s]. 

 

Figure 3. Velocity profiles over the training cycle (the time interval 
[605s,1022s] of the FTP75 cycle). 

To further analyse the stability of the string of vehicles, the inter-

vehicular distance of the vehicles in the platoon is represented in 

Figure 4. In fact, as stated by [14], several definitions of string 

stability exist, all considering the amplification of oscillation of a 

signal. Considering the oscillations in velocity, Figures 2 and 3 show 

an attenuation under most conditions. Considering instead the inter-

vehicle distance, Figure 4 for shows a less stable behaviour: in some 

of the peaks the inter-vehicle distance from one vehicle to its leader is 

slightly decreasing along the platoon, while at other times the 

distance is slightly increasing. However, this increase is always very 

small. 

It is useful to remark that in DRL-based control, there are no 

theoretical guarantees for string stability as the trained agent is 

essentially a black box. Instead, [15] proposed an empirical measure 

of string stability that can be evaluated by considering attenuations in 

the norm of acceleration values (the ratios identified as dampening 

ratio 𝑑𝑝,𝑖): 

𝑑𝑝,𝑖 =
||𝑎𝑖

𝑡||
2

||𝑎0
𝑡 ||

2

=
(∑ |𝑎𝑖

𝑡|
2𝐾

𝑡=0 )

1
2

(∑ |𝑎0
𝑡 |2𝐾

𝑡=0 )
1
2

, (14) 

and ensuring that 𝑑𝑝,𝑖 ≤ 1, ∀𝑖 ∈ [1,2,… , 𝑁]. Here, 𝑎𝑖
𝑡 is the i-th 

vehicle acceleration at timestep t and K is the total number of 

timesteps, and index 0 refers to the leading vehicle.  

According to this definition, we achieved: 𝑑𝑝,1 = 0.933; 𝑑𝑝,2 =

0.871; 𝑑𝑝,3 = 0.807 which is compatible with the requirement that 

𝑑𝑝,𝑖 ≤ 𝑑𝑝,𝑖−1. While this is not a substitute for a theoretical guarantee 

of string stability, it can still be considered a relevant metric if 

combined with the considerations of the previous paragraphs. 

 

Figure 4. Inter-vehicular distance (IVD) profiles over the WLTP cycle in the 
time interval [500s,1000s]. 
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For what concerns the safety requirements, Figure 5 shows that the 

time headway remains between 2s and 1s for all vehicles in the 

platoon, when considering the whole WLTP test cycle. As stated by 

[16], this is the most frequent situation in a car-following scenario. 

Nevertheless, even time headways lower than 1s can be still 

considered safe under some conditions such as at low speed when the 

situation ahead is easily predictable.  

 

Figure 5. Time headway profiles over the WLTP cycle. 

Figure 6 shows the time profiles of the battery state of charge for 

each vehicle. Clearly, all follower vehicles have a higher SOC than 

the lead vehicle. This is mainly attributable to two factors: the 

reduced air drag that the follower vehicles face with respect to the 

lead vehicle, and a reduction in the acceleration. This reduction can 

be inferred from Figure 7), which represents the root mean square 

(RMS) acceleration values for each vehicle. The fact that the 

difference in the final SOC between the lead and follower 1 vehicles 

is larger than the difference between the followers themselves is 

probably a reflection of the largest contribution attributable to air 

drag reduction with respect to the reduction in acceleration. 

 

Figure 6. SOC profiles over WLTP cycle. 

 

Figure 7. RMS Accelerations values over WLTP cycle 

Finally, the agent’s performance in comfort can be quantified by the 

reduction in jerk obtained by the follower vehicles with respect to the 

lead vehicle. Table 1 shows these reductions in terms of RMS: all 

follower vehicles in the platoon have lower jerk than the lead vehicle. 

Our results also showed reductions in peak jerk values (not 

represented here). The same table also reports the reduction in energy 

consumption of each follower vehicle with respect to the lead 

vehicle; this, together with the previous discussion related to the SOC 

profiles, confirms the effectiveness of the agent with respect to 

energy saving. 

Table 1. Summary of simulation results. 

Train 

cycle 

Test 

cycle 

Energy savings w.r.t. 

lead (%) 

RMS jerk reduction 

w.r.t. lead (%) 

FTP75 

(605-

1022s) 

 Ego1 Ego2 Ego3 Ego1 Ego2 Ego3 

FTP75 

(605-

1022s) 

10.5 9.9 6.5 69.2 71.3 69.2 

FTP75 10.5 13.2 13.0 41.0 47.3 48.0 

WLTP 

class 2 
11.0 13.8 13.9 25.3 26.7 18.8 

 

Still considering Table 1, we now turn our attention to the differences 

between the three considered cycles. As previously mentioned, the 

training cycle was the time interval [605s, 1022s] of the FPT75 cycle, 

while the whole FTP75 cycle as well as the WLTP class 2 cycles, 

were used as test cycles. For all cycles, the trained agent proved to 

achieve significant energy savings and a comfort improvement. 

The first noticeable difference is that the energy savings for the 

second and third followers in the training cycle appear to be worse 

than the test cycles. This can be explained by the characteristic of the 

training cycle, which is characterized in large part by a highly 

dynamic sequence of steep accelerations and braking phases. As a 

consequence, the last two vehicles in the platoon do not have enough 

time to exploit regenerative braking to the same extent as the leader. 
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Similar results were obtained and discussed in a work by [17] using 

an optimization algorithm based on dynamic programming. This 

difference is not present for the two test cycles, for which the energy 

savings are quite similar.  

On the other hand, significant differences appear in the jerk values. In 

particular, the WLTP class 2 driving cycle shows the smallest 

savings. Rather than an issue with the training process, this was 

attributed to the fact that the jerk of the lead vehicle itself is much 

lower on this cycle (RMS 0.12 m/s3) compared to the FTP75 cycle 

(RMS 0.23 m/s3); as a result, there is a much lower margin for 

improvement. 

Conclusions 

In this paper, we addressed the problem of torque control for a 

platoon of fully electric vehicles following a lead vehicle on a 

straight road. The main objective of this work is to show the potential 

of DRL algorithms to achieve significant energy savings for the 

controlled vehicles (the platoon), enhancing comfort and safety 

conditions. The first main innovative contribution of this work is the 

use of a DDPG agent with the main objective of obtaining energy 

savings, still guaranteeing safe driving conditions. Moreover, the use 

of an adaptive multi-objective reward function able to achieve good 

results on different driving cycles without the necessity of tuning 

parameters is enabled thanks to the definition of a reward function 

that is not affected by the training driving cycle. The agent is trained 

and tested on different standard driving cycles such as FTP75 and 

WLTP, achieving good results and showing great adaptability also to 

conditions not seen during training. The main limitations of the work 

are related to the relatively simple driving scenario and to the ideal 

assumption of no communication delay. Possible future work might 

be building a higher-fidelity simulation model of the vehicle, 

allowing also steering actions and including errors or delays in the 

signals sent through the V2V communication.  
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