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France. E-mail: barthelemy.meynard@polytechnique.edu (B.M.-P.)

Associate Editor: Lenore Cowen

Abstract
Motivation: Being able to artificially design novel proteins of desired function is pivotal in many biological and biomedical applications. Generative
statistical modeling has recently emerged as a new paradigm for designing amino acid sequences, including in particular models and embedding
methods borrowed from natural language processing (NLP). However, most approaches target single proteins or protein domains, and do not take
into account any functional specificity or interaction with the context. To extend beyond current computational strategies, we develop a method for
generating protein domain sequences intended to interact with another protein domain. Using data from natural multidomain proteins, we cast the
problem as a translation problem from a given interactor domain to the new domain to be generated, i.e. we generate artificial partner sequences
conditional on an input sequence. We also show in an example that the same procedure can be applied to interactions between distinct proteins.

Results: Evaluating our model’s quality using diverse metrics, in part related to distinct biological questions, we show that our method
outperforms state-of-the-art shallow autoregressive strategies. We also explore the possibility of fine-tuning pretrained large language models
for the same task and of using Alphafold 2 for assessing the quality of sampled sequences.

Availability and implementation: Data and code on https://github.com/barthelemymp/Domain2DomainProteinTranslation.

1 Introduction

Generating novel protein sequences with desired properties is
one of the key challenges of computational biology. It is likely
that machine learning methods will play an important role in
this task, being already used for the generation of new
enzymes, biological sensors, and drug molecules (Wu et al.
2021). A promising approach is to leverage deep generative
models, which use neural networks for learning probability
distributions from known, naturally occurring protein
sequences (Alley et al. 2019, Madani et al. 2020, Hawkins-
Hooker et al. 2021, Shin et al. 2021, Repecka et al. 2021).
Apart from other uses, like the prediction of mutational
effects (Riesselman et al. 2018), these models can be used for
protein design by selecting high-probability sequences (possi-
bly under constraints) from the learned distribution.

Naturally occurring protein sequences are often comprised
of several domains, and domains can be classified into different
families (Alberts 2008). Models that work on the domain level
usually use as training data a single multiple sequence align-
ment (MSA) (Durbin et al. 1998), containing sequences from
the same domain family after aligning them, and make the as-
sumption that each sequence is constrained by the same fitness
landscape. This modeling paradigm neglects the dependence of

the sequence constraints on the specific context corresponding
to each organism, including other proteins interacting with the
sequence or other domains on the same protein. Together with
the fact that most of the crystallographic structures deposited
in the PDB database (Burley et al. 2017) are resolved only at
the single domain level (Zhou et al. 2022), this poses interesting
questions about the limitations of current approaches, e.g.
when predicting the relative orientation of multidomain pro-
teins (Wu et al. 2021). Another field where this issue arises is
immunology, where monoclonal antibody experiments are typ-
ically performed on mouse models and only later tested in
humans. This is related to the so-called humanization problem,
i.e. how to graft a promising variable receptor region (CDR)
from a murine to a human context (Clavero-Álvarez et al.
2018). For protein design, this approach may be especially rele-
vant. When redesigning a protein in order to increase its fitness,
one usually only has to redesign a specific active domain inside
the protein (Cheng et al. 2014, Reimer et al. 2019, Marchand
et al. 2022). Being able to condition this process on the context
(like, e.g. interacting domain inside the protein, or interacting
domain of another protein) could potentially improve the pre-
cision of the design.

Known families of interacting domains can be organized in
a paired MSA (pMSA), where the aligned interaction partners
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are concatenated (Muscat et al. 2020). Given the evolutionary
pressure for maintaining functional interactions between pro-
teins, amino acid substitutions at interaction surfaces are not
independent between the interaction partners. The interacting
sequence therefore can be used as additional information
when generating a novel sequence. The current work
addresses the task of generating domain sequences given an
interacting domain sequence. Given that this task is similar to
translation tasks in natural language processing (NLP), we ex-
plore the use of Transformers in this context. While there is
some recent work using Transformers for translating between
protein sequences (Wu et al. 2020) for specific applications,
there is, to the best of our knowledge, no systematic explora-
tion of this idea on the level of protein domain families on a
diverse dataset. We explore different architectural choices,
and regularization schemes and compare our results with a re-
cently published shallow autoregressive method (Trinquier
et al. 2021), which we use as a baseline. We also compare on
a smaller scale to fine-tuned large protein language models,
using Rita (Hesslow et al. 2022), and explore how structural
predictions from Alphafold 2 correlate with our results.

The general idea of this work is summarized in Fig. 1.
Consider a protein with at least two interacting domains,
where interaction is defined as having a pair of amino acids at
a distance of less than 8 angstrom. We then search a database
of proteins for other sequences where these domains co-occur
in the same protein and assemble the pMSA and use it for

training the Transformer to translate from one domain to the
other. The decoder being a causal language model, we can ef-
ficiently calculate the probability of a target sequence given
the input sequence. This probability enables us to evaluate the
compatibility of domains, which can be used for matching a
domain to an interacting partner among several possible part-
ners. The model is generative in that it can be used for gener-
ating a novel target sequence given the input sequence. Given
a context, we can generate a new “translation” or target se-
quence and evaluate the new de novo proteins. In this setting,
we highlight that one model per pair of domains is trained.
We intend this article to fit into the line of work of domain-
specific models, like in Potts Models, Variational
Autoencoders (VAEs), and Restricted Boltzmann Machines
(RBMs) (Tubiana et al. 2019, Russ et al. 2020, Hawkins-
Hooker et al. 2021). We intend to provide a method for the
task of redesigning a specific domain/protein, e.g. to increase
its specific fitness for a specific task. We also explore the pos-
sibility of training one large Transformer for all the pairs,
without observing any clear transfer learning advantage cf.
Supplementary Appendix Section B.4.

2 Related literature

Generative modeling for protein design has a wide range of
applications and a considerable number of different models
have been proposed in the literature, recently especially

Figure 1. Summary of the work presented in this article. In the first box (Train), we extract interacting domains from known structures. We then build a

pMSA based on homologous sequences of these domains and train the Transformer to translate between them. In the second box (Evaluate), we use the

probabilities of the trained Transformers to match the source and target domains and assess the resulting accuracy. In the third box (Generate), we

sample novel target domains and use them for replacing the original target domain. We then use Alphafold to predict the structure of the modified

sequence and analyze the difference to the original structure.
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deep neural network models (Wu et al. 2021). These include
autoregressive models based on convolutional architectures
(Shin et al. 2021), generative adversarial networks (Repecka
et al. 2021), variational autoencoders (Hawkins-Hooker et al.
2021), LSTM-based architectures (Alley et al. 2019), and self-
attention-based architectures (Madani et al. 2020). The latter
work allows for sequence generation conditioned on tags cor-
responding to molecular function or taxonomic information.
Similar to results in NLP, scaling protein language models to
very large sizes seems promising for protein sequences
(Hesslow et al. 2022).

Transformer-based architectures (Vaswani et al. 2017),
which we use in the present work for sequence-to-sequence
prediction, have also been used, e.g. for creating generic
embeddings trained on almost all known protein sequences
(Rives et al. 2021), the prediction of mutational effects (Meier
et al. 2021), protein interaction prediction and protein family
classification (Nambiar et al. 2020), MSA-based language
modeling (Rao et al. 2021), protein contact prediction
(Zhang et al. 2021), inverse folding (Hsu et al. 2022,
McPartlon et al. 2022), and have been at the core of recent
breakthroughs in protein structure prediction (Jumper et al.
2021).

Recently, specific tasks have been cast as sequence-to-
sequence translation problems using Transformers, similar to
our approach. This includes, e.g. the generation of drug mole-
cules given a protein sequence the molecule should interact
with (Grechishnikova 2021) and the generation of short
signal-peptides guiding the secretion of industrial enzymes,
given the amino acid sequence of the enzymes (Wu et al.
2020).

Finally, non-neural network models borrowed from statisti-
cal mechanics have been extensively used in the context of se-
quence generation, e.g. generalized Potts models, a particular
form of Markov Random Field (Figliuzzi et al. 2018). This
type of model can be used for generating sequences using
MCMC strategies, albeit with a significant computational
cost. Relevant approximation strategies are, e.g. the recently
introduced autoregressive (shallow) variants (Trinquier et al.
2021), which show a similar performance to Potts models but
are computationally more efficient.

3 Data and methods
3.1 Dataset

Our data consist of 27 pMSAs containing domain sequence
pairs that are part of the same multidomain proteins, taken
from Muscat et al. (2020). The dataset contains only domain
pairs which form a structural contact in at least one resolved
PDB structure, making it likely that the two domains coevolve
in order to maintain compatibility. We also extended our
work to protein–protein interaction (PPI) by analyzing the
dataset of histidine kinases and response regulators (HK-RR),
which form the core of bacterial two-component signal trans-
duction systems. In the case of PPI, we consider one protein as
the context of the other, even if being on different proteins.
HK-RR are a good case for our framework, since there are
large and well-studied pMSA available (Anishchenko et al.
2017). Each dataset is comprised of M rows corresponding to
M sequence pairs, where M depends on the dataset and ranges
from a few hundred to more than 15 000, see Supplementary
Appendix Section A for a summary of the datasets used. The
sequences are already aligned using standard bioinformatics

tools (Finn et al. 2011), which means that sequences belong-
ing to the same domain family have the same length. Each
row l in a dataset represents a pair of domain sequences Bl

and Al, which are part of the same protein (or form an inter-
acting pair of proteins). Every sequence consists of symbols
denoting either 1 of 20 amino acids or an alignment gap,
making the total size of the vocabulary equal to 21.

The first sequence Bl ¼ ðbl
1; . . . ;bl

Nin
Þ is called the source or

input sequence and we denote its length by Nin. It is used as
an input to predict the second sequence, called the target or
output sequence, Al ¼ ðal

1; . . . ; al
Nout
Þ, which is of length Nout.

All source sequences fBlgM
l¼1 in the pMSA are members of the

same domain family, and all target sequences fAlgM
l¼1 in the

pMSA are members of the same domain family. Each dataset
was randomly split into a training set (70%) and a validation
set (15%). The last 15% were kept as a testing set in order to
be able to optimize hyperparameters for every domain, but
we did not use it in the experiments shown in this work. Since
sequences in an MSA are related to each other due to phylog-
eny, the validation set might contain sequences that are nearly
identical to some sequences in the training set. We therefore
further divided the validation set into two parts, one close to
the training set and one far from it. This allows us to control
for the effects of phylogeny on the performance metrics. This
second splitting was made based on the median of the
Hamming distance from the training set. The details for this
subpartition are found in Supplementary Appendix Section A.

3.2 Performance metrics
3.2.1 Log-likelihood and perplexity

An interesting property of autoregressive models, such as the
Transformer or arDCA, is that they define a tractable proba-
bility distribution over the space of sequences. Contrary to,
e.g. Potts Models and other energy-based models, we do not
have to evaluate a global normalizing constant over the com-
plete space of possible sequences. We can therefore calculate
the log-likelihood of a sequence A given B as

log PðAjBÞ ¼
XNout

i¼1

log ðPðaijB; a1; . . . ; ai�1ÞÞ: (1)

This is related to the cross-entropy, which we use as a loss
during training,

LðA;BÞ ¼ � log PðAjBÞ
Nout

; (2)

which we average over batches during training.
For assessing one aspect of the quality of our models, we

use the closely related perplexity PPðA;BÞ, which is a com-
mon quality metric for protein language models (Armenteros
et al. 2020), and can be defined as

PPðA;BÞ ¼
�YNout

i¼1

PðaijB; a1; . . . ; ai�1Þ
��1=Nout

: (3)

Below we show averages of the perplexity over the training
and validation sets and use the notation PPtrain and PPval for
these.
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3.2.2 Accuracy

While we use the perplexity as one metric for the quality of
our model, it is not always easy to interpret: A high perplexity
can result from a single wrong prediction with a high level of
confidence. We therefore also use the accuracy AðA;BÞ for
assessing our models. This measure takes the same input as
the cross-entropy (the conditional probability for every posi-
tion) and counts the fraction of times where the true amino
acid is the one with the highest probability, leading to

AðA;BÞ ¼ 1

Nout

XNout

i¼1

I
�

ai ¼ argmax
â2V

½PðâjB; a1; . . . ; ai�1Þ�
�
;

(4)

where V is the alphabet of symbols and I is an indicator func-
tion that is 1 if its argument is true, and 0 else. We define
Atrain and Aval as the average of the accuracy on the training
and validation set.

3.2.3 Matching specificity

We expect the interaction between two domains to affect the
probability distribution of the target sequence only margin-
ally, with much of the variability in the distribution being ex-
plainable by constraints internal to the target sequence. As a
consequence, a good performance in the quality measures de-
fined above might be due to the decoder being a good lan-
guage model of the target protein, possibly ignoring the input
sequence altogether. We therefore also evaluate the specificity
of the predicted target sequence given the source sequence.

Specificity is also related to the task of matching pairs of
protein sequences, which is an active domain of research in
bioinformatics (Bitbol et al. 2016, Gueudré et al. 2016,
Szurmant and Weigt 2018). We implement this task by sepa-
rating the source and target sequences in the validation
pMSA, resulting in two separate MSAs with the same number
of rows, one containing the source sequences and one the tar-
get sequences. We then shuffle the rows in the target MSA
randomly and attempt to use our models to find the permuta-
tion of the target sequences that matches the original order. In
order to create a matching based on a model, we calculate the
log-likelihood of every combination of source and target
sequences in the shuffled validation set and create a matching
between source and target sequences based on the Hungarian
algorithm (Kuhn 1955).

We then use the fraction of correctly matched pairs as an
additional metric for the performance of our model, formally
defining it as

Mval ¼ # of correctly matched pairs in validation set

Mval
; (5)

where Mval is the size of the validation set. Note that the diffi-
culty of this task increases with the size of the validation set,
since the expected fraction of correctly matched pairs using a
random matching is 1=Mval.

3.3 Transformers and baselines

We mainly used two Transformer models with different sizes,
calling one the shallow and one the large model. The shallow
Transformer consists of two layers with a single attention
head, has an embedding dimension of dmodel ¼ 55, and a for-
ward dimension of dff ¼ 2048. The large Transformer

consists of three layers and has an embedding dimension of
dmodel ¼ 105 with the same forward dimension and number
of heads as the shallow transformer. Further details on their
architectures can be found in Supplementary Appendix
Section B.1. Both models are relatively small compared with
Transformers trained on large protein sequence databases (cf.
e.g. Hesslow et al. 2022, Lin et al. 2022). This can be
explained in two ways. Firstly, when looking at one pair, the
task is simpler as we only need to model a small fraction of
the protein space where sequences can be aligned. Secondly,
the smaller the number of training points gives rise to a com-
plex overfitting problem that we analyze in Section 3.4 and
Supplementary Appendix Section C.1. We compare their per-
formance to the recently introduced shallow autoregressive
model called arDCA (Trinquier et al. 2021) and a fine-tuned
version of Rita L (Hesslow et al. 2022). While details on these
methods can be found in Supplementary Appendix Section
B.2, we note here that Rita was pretrained on a large corpus
of unaligned, full-length sequences, which is a different setting
from the pMSAs that we use for the Transformers. We, there-
fore, evaluated Rita only on unaligned, full-length sequences.
For arDCA, which we train from scratch on pMSAs, there is
no such mismatch and we can use it on the same pMSAs as
the Transformers. For the datasets used in this work, the
training time of the Transformer models ranges from less than
an hour to about 1.5 days for the large Transformer on the
largest dataset. The training was done using a single Nvidia
V100 GPU. When using entropic regularization, which we
will introduce in a later section, the training time increases sig-
nificantly. In addition, we also trained a larger Transformer
trained on nearly all the pairs. This Transformer has five
heads, four layers, and a dmodel ¼ 205. The goal was to under-
stand whether training on the joined dataset would enable
transfer learning, or if, by mixing sequences from different
families and alignments, it would make the task harder for
the model. To enable a fair comparison we also replaced the
<SOS> token with a token indicating the domain pair it was
modeling. We need to give this hint to help the model know
which family it has to generate. We held out three pairs of
domains in order to check whether this joined Transformer
was showing some transfer learning between families. We ob-
served a loss of performance of approximately 3% in accu-
racy, 7% in matching, and 0.7 in perplexity. We concluded
that a specialized Transformer for each pair, smaller and
trainable in a few hours, is more suitable for the protein do-
main redesign task of this work. Complete results of the
joined Transformer can be found in Supplementary Appendix
Section B.4. We provide a table with training times in
Supplementary Appendix Section B.5.

3.4 Entropic regularization

When experimenting with the large Transformer, we observed
strong overfitting of the perplexity, especially when trained
on smaller datasets. While this could be expected, we found
that the matching performance was not following the same
trend: While the perplexity started to degrade at some point
during training, which is indicative of overfitting, the accu-
racy, and the matching performance were still increasing, see
Supplementary Appendix Section C.1. While the shallow
Transformer is less prone to overfitting, most likely due to its
limited capacity, we found it necessary to introduce regulari-
zation for the large Transformer. We experimented with
dropout and weight decay with limited success. While both
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schemes prevent overfitting in terms of perplexity, the match-
ing performance and the accuracy dropped significantly. We
show this effect in Supplementary Appendix Section C.1 for
different training set sizes and regularization settings.

In order to find models with a good performance on per-
plexity, matching, and accuracy at the same time, we explored
other regularization approaches.

In this section, we present an approach based on entropic
regularization, where we enforce the probability of a target se-
quence A given a source sequence B to be similar to other
sequences sampled from the model conditioned on B. This
encourages the model to give similar weights to different pos-
sible interaction partners, even if there is only a single one pre-
sent in the training set.

We therefore add a regularization term 1
T

PT
l¼1 RentðAl;BlÞ

to the loss, where l indexes the input sequence Bl and the target

sequence Al in the batch and T is the batch size. We sample S

different target sequences for Bl from the model. We denote the

kth sampled sequence conditioned on Bl as Al;k. We sample us-
ing a Gumbel-Softmax distribution (Jang et al. 2016), which
enables back-propagation through the sampling step. For com-

putational efficiency, we sample every amino acid in Al;k condi-

tioning on the preceding amino acids of the true Al. Then we

evaluate the log-likelihoods Rl;k of the target sequence Al;k

given Bl and the log-likelihood of the true pair Rl,

Rl;k ¼ log PðAl;kjBlÞ 8k ¼ 1; . . . ; S
Rl ¼ log PðAljBlÞ: (6)

We then use these quantities as the input for a log-softmax
operation, resulting in

RentðAl;BlÞ ¼ log PðAljBlÞ

�log
�

PðAljBlÞ þ
XS

k¼1

PðAl;kjBlÞ
�
:

This term is multiplied by a factor a > 0 to regulate its
strength and added to the loss function, meaning that we aim
to minimize it. This enforces similar probabilities for the true
target sequence Al and the sampled target sequences Al;k, con-
ditioned on Bl. A diagram summarizing the regularization ap-
proach can be found in Fig. 2. A closer look reveals that it is a
form of entropic regularization, maximizing the conditional
Rényi entropy of order 2, see Supplementary Appendix
Section C.2.

4 Results
4.1 Performance gain from context sequence

We first tested whether the input sequences had any effect on
the perplexity of the target sequence. As already mentioned
before, this is not self-evident, since the Transformer decoder
itself could be a good model for the target sequence distribu-
tion without taking the input into account. We, therefore,
trained two shallow Transformer models, one with the nor-
mal training set and one where we randomly shuffled the pair-
ing between input and output sequences. We then evaluated
the models on the normal validation sets, without shuffling.
We expect that if the model trained on the normal training set
exploits the information in the inputs when predicting the
output, it should show a considerably lower perplexity than
the model trained on a shuffled dataset.

We show the results of these experiments in Fig. 3. As can
be seen, the models trained on the normal dataset have a sig-
nificantly lower perplexity than the models trained on a shuf-
fled dataset. This corroborates and quantifies the idea that
domain sequences that appear in the context of a second do-
main contain information that can be used for modeling the
constraints on the sequence of the second domain. We note
that the difference in the logarithm of the perplexity, which is
equivalent to the cross entropy, can be seen as a rough esti-
mate of the mutual information between the output and the
input. When the input sequence is randomly chosen, there is
no correlation between the input and the output, and the cor-
responding probability can be seen as the marginal probabil-
ity of the output sequence. We can therefore write

MI ¼
X
a;b

P a;bð Þ log
PðbjaÞ
PðbÞ

� �

�
X

a;b2V

log
�

PðbjaÞÞ–logðPðbÞ
�
; (7)

where a and b are paired sequences. On the left-hand side of
the equation, the sum is on the complete sequence space
whereas on the right-hand side, the sum is only over the
sequences in the validation set.

4.2 Results on performance metrics of the shallow

Transformer

We next compared the shallow Transformer models to the
arDCA baseline. Shallow Transformers outperform arDCA
on nearly all datasets above a certain training set size in terms
of perplexity, accuracy, and matching with a large margin, as

Figure 2. Diagram explaining training with entropic regularization: Panel (A) corresponds to the training batch, with yellow being the input protein

sequences and blue the output protein sequences. At (B), the batch is sent to the Transformer and the log-likelihood Data LL is computed. At (C), Ns

output protein sequences are sampled from the Transformer for every input protein sequence using the Gumbel softmax operation. At (D), we evaluate

the log-likelihood of the sequences sampled at (C) and call it Samples LL. At (E), we measure how well the loglikelihood separates the training sequences

from the sampled sequences using a logarithmic softmax, creating an additional loss term; At (F), the losses calculated at (E) and (B) are combined. Gray

boxes correspond to operations that do not include learnable parameters.
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can be seen in Fig. 4. We note here that the Transformer mod-
els, both shallow and large, have fewer parameters than
arDCA for every family size we tried: The number of parame-
ters in the Transformer models is independent of the length of
the input and target sequences, while the number of parame-
ters in the arDCA models scales quadratically with the
concatenated input length.

The best performance is achieved for the families with the
largest training sets, indicating that the performance of the
Transformer might further increase with increasing training
set size. Comparing the fraction of correctly matched paired
between pairs is not straight forward. The matching task gets
harder with the size of the validation set. For each input se-
quence, there is only one correct partner, which has to be
identified in between all other proteins in the validation set.
We repeated the calculation of the matching performance on
subsampled versions of the validation set in order to obtain a
better understanding of the matching performance of the
model, see Supplementary Appendix Section F.

We also considered the possibility of using a large language
model trained on protein sequences for our task. To this end,
we tested and fine-tuned Rita L (Hesslow et al. 2022), a 680-
M parameters model trained for predicting the next amino
acid in a sequence.

Given that Rita is trained on full-length unaligned sequen-
ces, we used RITA also on full-length unaligned sequences,
comparing the metrics only on match positions as predicted
by the Pfam HMM of the corresponding domain family (ex-
cluding gaps and inserts).

According to our metrics, a large language model like
RITA seems to underperform our family-specific Transformer
by a large margin see Fig. 5. We, therefore, fine-tuned RITA
for each of the domain–domain pairs. We should also note
that RITA is only able to model single, full-length, proteins,
meaning that it cannot be applied to the PPI task of HK-RR.

The details of the fine-tuning can be found in
Supplementary Appendix Section B.3. The results are compa-
rable with the domain-to-domain Transformer model, see
Fig. 6, with the Transformer having a slightly higher accu-
racy. We note that Rita models are trained on Uniref100 and

we suspect that most of the sequences in our validation set are
in the training set of Rita, so this comparison is likely biased
in favor of Rita.

4.3 Performance of the entropic regularization

We performed a set of experiments on the 27 datasets in order
to see if this type of regularization improves the performance.
We retrained the large Transformer with and without the en-
tropic regularization. We used S ¼ 5 and a ¼ 0:7 for the
experiments. The results can be seen in Fig. 7, where we plot
the performance of the shallow Transformer against the per-
formance of the large Transformer for different regularization
schemes and arDCA. The details of the training, models, and
of performance for every family can be found in
Supplementary Appendix Section C.2.1. The large

Figure 4. Perplexity PPval , accuracy Aval , and the matching performance

Mval for shallow Transformers and arDCA on validation set. The families

pairs are ordered by training set size, followed by the PPI pair, HK-RR.

Perplexity below 2000 examples: arDCA is always below Transformer

with an average difference of 0.33. Perplexity above 2000 examples:

Transformer is below arDCA in 91% of cases with an average difference

of 0.48. Accuracy below 2000 examples: arDCA is always above

Transformer with an average difference of 0.02. Accuracy above 2000

examples: Transformer is below arDCA in 81% of cases with an average

difference of 0.01. Matching fraction below 2000 examples: arDCA is

above Transformer in 83% of cases with an average difference of 0.07.

Matching fraction above 2000 examples: Transformer is below arDCA in

77% of cases with an average difference of 0.05.

Figure 3. Performance (lower better) increases when taking domain

sequence in context into account. We plot the perplexity PPval for target

sequences on the validation set, once for a shallow Transformer trained

with the true pairings (Paired) and once for a shallow Transformer trained

with shuffled pairs in the training set. (“Paired” is always below

“Shuffled” with an average difference of 0.48).
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Transformer outperforms the shallow Transformer in terms
of accuracy and matching both with and without regulariza-
tion, indicating that the large Transformer extracted more
useful information from the training set. However, the large

Transformer without regularization has a significantly higher
perplexity on the validation set, indicating overfitting. Adding
the entropic regularization leads to a good performance of the
large Transformer in all metrics.

We also performed a systematic comparison of the entropic
regularization scheme with standard weight decay, testing dif-
ferent weight decay values for the large Transformer. The
details of the experiments and the results for every family can
be found in Supplementary Appendix Section C.3.

4.4 Generalization and phylogeny

One specific characteristic of protein sequences, compared
with data in NLP, is the structure of the data. The sequences
in our datasets have a phylogenetic bias, visible as clusters of
similar sequences in the data, that are simply explained by a
close common ancestor. This bias makes a random split
unsuitable since the test set will contain sequences that are
very similar to some sequences in the training set. We, there-
fore, evaluate our model on different subsets of the test set,
which are selected based on the similarity to the training set.

We show the perplexity on target sequences in the valida-
tion set in dependence of the distance from the training set in
Fig. 8, where the distance of a sequence to the training set is
the smallest Hamming distance from the sequence to any
training sequence. Interestingly, it seems that the advantage in
performance of Transformer models over arDCA is mostly

Figure 5. Perplexity PPval and accuracy Aval for shallow Transformers

and RITA L on validation set. The families are ordered by training set size.

RITA L inverse refers to RITA when given the inverse sequence as input

(RITA is trained on both original and inverse sequences).

Figure 6. Perplexity PPval , accuracy Aval , and the matching performance

Mval for shallow Transformers and fine-tuned RITA L on the validation

set. The families are ordered by training set size. RITA L inverse refers to

Rita when given the inverse sequence as input (Rita is trained on both

original and inverse sequences).

Figure 7. Comparison of the performance of the large Transformer

without regularization (red), with entropic regularization (green) and arDCA

(orange), and the shallow Transformer. The blue lines have a slope 1.
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due to sequences far away from the training set, indicating
that Transformers generalize better in regions of sequence
space far away from the training set. We also verified that this
advantage holds for matching. To do so, we split the test set
into the half closer and the half further from the training set.
When matching the pairs, we look at the performance on
these two subdatasets. The details of these results can be
found in Supplementary Appendix Section E.1 for the shallow
Transformer and at Supplementary Appendix Section C.3 for
the large and regularized Transformer.

4.5 Structural information and generative properties

In this section, we show further results on the performance of
the shallow Transformer.

We tested whether the target sequence distribution of
trained Transformers is integrating structural information. To
do so, we explored the correlation of our metrics with scores
related to structure prediction when using Alphafold (Jumper
et al. 2021). To this end, we selected the protein Q1H158
from the validation set, which contains the Pfam domains
PF00289 and PF02785. We then replaced the domain
PF00289 with homologous sequences from the validation set,
keeping the rest of the Q1H158 sequence unmodified. The
resulting sequences contain natural sequences for both
domains but in a combination that does not exist in any
known protein. We then used Alphafold to predict the struc-
ture of the original sequence and the modified sequence, com-
paring them using the TM-score and the RMSD on the two
domains. We found these structural metrics to be well-
correlated with the cross-entropy of the resampled PF00289
of the shallow Transformer conditioned on PF02785, see
Fig. 9. We stress here that all domain sequences assessed here
are natural sequences with presumably a high fitness, which
makes it more likely that a higher cross-entropy for a pair is
due to a decreased mutual incompatibility, reflected in the
structural scores. We present results for more proteins in
Supplementary Appendix Section D.1.

We next assessed the generative power of domain-to-
domain Transformer models. To this end, we again used the
protein Q1H158 as a test. We sampled novel PF00289 do-
main sequences conditioned on the PF02785 sequence found
in Q1H158 using the shallow Transformer model. We then
replaced the original domain sequence in Q1H158 with the
sampled sequences and compared the structures predicted

with Alphafold based on the original and modified sequences.
For comparison, we also sampled sequences from Rita using
beam search. We note that one reason for choosing Q1H158
is that the domain we want to redesign is at the end of the se-
quence, enabling a causal language model like RITA to sam-
ple the domain conditioned on the rest of the protein. We
show the results in Fig. 10, where several sequences sampled
with RITA have a significantly lower TM-score than sequen-
ces sampled from the Transformer. A closer analysis showed
that some of these sequences did not contain a domain recog-
nized by the Pfam HMM for family PF00289, indicating the
fine-tuned Rita model did not always complete the sequence
with the same domain as is found in the original sequence, as
desired. While such alternative completions might very well
correspond to a domain organization found in natural
sequences, it shows that some care has to be taken when using
unconditional language models for redesigning parts of a se-
quence, even if the model has been fine-tuned only with exam-
ples for the desired domain organization. On the other hand,
the decoder of the shallow Transformer has been trained only
for sampling the desired domain.

Finally, we looked at a method for unsupervised structural
prediction called direct coupling analysis (DCA). We sampled
for each input protein sequence of the training set eight target
sequences, adding all sampled sequences together with the in-
put sequences to a pMSA, which therefore contained natural
sequences from the input domain concatenated to artificial

Figure 8. Perplexity (lower is better) and accuracy (higher is better) for

every sequence of the validation set in dependence on the distance of the

sequence from the training set. The distance of a sequence to the training

set is the Hamming distance to the closest sequence in the training set.

Figure 9. TM-scores and RMSD values when comparing the Alphafold-

predicted structures of true sequences with Alphafold-predicted

structures of sequences where single domains have been replaced with

homologous natural sequences. The results are based on Q1H158, which

contains domains PF00289 and PF02785, which are in contact in PDB

5ks8. Homologous PF00289 sequences are sampled from the validation

set and inserted into the Q1H158 sequence, measuring the change in

structural scores and in cross-entropy in the shallow Transformer model

(abscissa).

Figure 10. TM-scores comparing Alphafold structural predictions based

on original and modified sequences of the protein Q1H158, which

contains domains PF00289 and PF02785. The sequences are modified by

resampling PF00289 from the shallow Transformer and Rita.
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sequences from the target domain. We then attempted to ex-
tract structural contacts between the two domains using
plmDCA (Ekeberg et al. 2013), a popular method for predic-
tion contacts. While the performance in contact prediction is
worse than when using the natural target sequences directly,
see Supplementary Appendix Section D.2, there is a strong
signal with several correctly predicted contacts among the
highest scoring residue pairs.

5 Discussion

In this work, we explored the use of Transformers for gener-
ating protein domain sequences while taking into account
other domain sequences that are part of the same multido-
main protein. We cast the problem as a translation task,
which allowed us to directly use Transformers developed for
translation between natural languages. We showed that this
architecture is capable of outperforming state-of-the-art shal-
low autoregressive models in several metrics and explored a
new regularization scheme optimized for our use case.
Casting the task as a translation problem allowed us to use
metrics like the matching performance for assessing the qual-
ity of the generative models.

Our work is placed at the intersection of two streams of re-
search: There is a long history of building domain-specific
generative models on aligned sequences for tasks like drug de-
sign or mutational effect prediction. More recently, however,
large models based on Transformer architectures trained on
all or nearly all unaligned protein sequences available have
shown remarkable capabilities for capturing complex patterns
in the data. Our work, on the other hand, solves a very ge-
neric sequence-to-sequence prediction task using smaller
Transformer architectures, specialized for a family pair and
using aligned sequences, which allows for domain-specific
models. One limitation of our work is that we consider only a
single domain as the context when predicting the sequence of
an interacting domain, disregarding additional domains that
might be present in the same protein. Conceptually, it would
be interesting to enrich the context to multiple other domains
or other biological information such as location or
phylogeny.

An interesting question for further research is if we could
observe a gain in performance due to transfer learning when
training one model on a very large number of pairs. Given the
successful extension to HK-RR, it would be interesting to ap-
ply this approach to other PPI problems, such as TCR-epitope
binding.

Supplementary data

Supplementary data are available at Bioinformatics online.
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