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Abstract: Recent years have ushered in a transformative era in in vitro modeling with the advent of
organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully
harnessing the potential of organoids requires advanced imaging technologies and analytical tools
to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising
imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and
real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT im-
ages remain challenging due to various factors. Here, we propose an automatic deep learning-based
pipeline with convolutional neural networks that synergistically includes optimized preprocessing
steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing meth-
ods, showcasing good generalizability and tracking capabilities over an extended period of 13 days.
The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference
volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identifi-
cation. The proposed comprehensive approach enables the accurate tracking of organoid growth and
morphological changes over time, advancing organoid analysis and serving as a solid foundation for
future studies for drug screening and tumor drug sensitivity detection based on organoids.

Keywords: organoids; cancer; deep learning; optical coherence tomography; segmentation; tracking

1. Introduction

Recent advancements have significantly changed the field of in vitro modeling thanks
to the progression of research using organoids. Organoids are intricate, three-dimensional
structures that autonomously form through self-organization using stem cells or neoplastic
cells derived directly from patients and animal models [1,2]. Organoids also exhibit greater
similarities to derived organs in terms of both morphological and functional characteris-
tics [3] which make them essential tools for developmental biology and disease studies.

Diagnostics 2024, 14, 1217. https://doi.org/10.3390/diagnostics14121217 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14121217
https://doi.org/10.3390/diagnostics14121217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7225-7401
https://orcid.org/0009-0004-5370-9926
https://orcid.org/0000-0002-1723-2997
https://orcid.org/0000-0003-3471-0986
https://orcid.org/0000-0002-9311-7827
https://orcid.org/0000-0001-7911-3427
https://orcid.org/0000-0002-8862-5966
https://orcid.org/0000-0003-1150-2244
https://orcid.org/0000-0002-7302-6135
https://doi.org/10.3390/diagnostics14121217
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14121217?type=check_update&version=1


Diagnostics 2024, 14, 1217 2 of 17

Non-destructive analysis over long time periods is an unmet need of the organoid research
field, as some organoid models and assays require weeks to months to be established [4,5].
Current gold standard methods either necessitate endpoint analysis, manipulation with
fluorescent dyes, or are 2D imaging methods that only give a rough estimation of organoid
size and barely any on organoid morphology. However, enabling exact organoid tracking
over prolonged time allows for a more accurate assessment of the organoid’s characteristics,
e.g., differentiation status as reported on the identification of morphological and marker
changes, for example, in retinal organoids [6], disease progression in liver, intestinal, and
brain organoids [7], and the drug effect in cancer organoids [8]. As cancer organoids have
been reported to mimic patients’ drug response [9], the establishment of pipelines for
longitudinal monitoring with exact volumetric assessment is of high direct translational
value for clinics.

By mimicking tumors’ inter- and intra-heterogeneity in vitro, cancer organoids pro-
vide a platform for exploring tumor progression, therapy resistance, and precise drug
screening [10,11]. Realizing the full potential of organoids requires advanced imaging tech-
nologies to enable a comprehensive exploration of organoid structures and behaviors, as it
is of paramount importance to be able to analyze organoid growth in a non-destructive and
label-free manner to facilitate discoveries and advancements in personalized medicine [12].

Optical coherence tomography (OCT) is a promising imaging modality for organoid
analysis, as it can offer high-resolution, label-free, non-destructive, and real-time 3D imag-
ing of biological tissues [13,14] and vasculature if multiple volumes are acquired at the same
location through OCT angiography [15]. The label-free and non-destructive nature of OCT
is pivotal as it permits the longitudinal monitoring of organoids, allowing a quantitative
analysis of numerous important features of single organoid growth and status, such as
volume and internal structures [8,16,17]. In fact, within the dynamic field of organoid
imaging, advanced analytical techniques are crucial for understanding complex morpho-
logical changes and developmental processes [1]. Machine learning (ML) and deep learning
(DL) methods, such as convolutional neural networks (CNNs), are essential for extracting
detailed features and tracking developmental stages in organoids. Despite its potential,
accurately identifying and quantifying organoids in OCT images remains challenging due
to poor contrast, unclear boundaries, noise, and the small size of organoids at the beginning
of cultivation when starting at single cells. Numerous solutions have been proposed in the
literature for the segmentation and tracking of organoids, but the majority employ imaging
modalities such as fluorescence microscopy or traditional microscopy [18–20]. In the context
of organoid segmentation in OCT images, an initial study proposed by Gil et al. in 2021 [8]
demonstrated the feasibility of volumetrically tracking organoid growth in patient-derived
cancer organoids. The authors proposed an automated image analysis framework based
on preprocessing, registration, segmentation using k-means clustering, and a centroid
particle tracking algorithm to track individual organoids over multiple timepoints covering
48 h. Recently, Bao et al. [21] employed deep convolutional neural networks for organoid
segmentation and demonstrated the feasibility of detecting and tracking the growth of
3D bio-printed organoid clusters in OCT volumes using a deep learning approach. The
authors imaged the organoids over 7 days at an interval of every 24 h, and the results of
the study also demonstrated the influence of the organoid scale on segmentation accuracy.
The study by Bao et al. importantly demonstrates the reconstruction of organoid clusters’
multiscale structure and the quantitative analysis of growth dynamics using deep learning
but shows some important limitations. Firstly, the division of the dataset is not clearly
described, which could influence the method’s capability to generalize to new OCT volume
acquisitions. Secondly, the method allows for proper tracking over different timepoints but
is still partially limited by extension, as organoid growth is followed for 7 days.

To address the current limitations and further show the potential to track volume
changes in tumor organoids, we propose an OCT-based deep learning method with convo-
lutional neural networks (CNNs). The main contributions of this paper can be summarized
as follows:
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• The development of an optimized preprocessing step to highlight organoids within
the noisy OCT volume.

• The implementation of a state-of-the-art deep learning model and ad hoc postprocess-
ing methods, showing good generalizability on an external test set.

• The development of an automatic algorithm for the quantitative analysis of organoid
growth dynamics, demonstrating results over an extensive 13 days.

2. Materials and Methods

The implemented pipeline acquires insights into the behavior and morphological char-
acteristics of organoids over time from OCT volumes, as illustrated in Figure 1. Initially, to
improve the overall quality of the images, volumes undergo a series of custom preprocess-
ing steps designed to enhance the visibility of organoids and increase the signal-to-noise
ratio. Given the high intrinsic variability of these types of images, a CNN is employed to
generate binary masks. These masks are then subjected to a postprocessing phase aimed at
enhancing their accuracy. Finally, the masks are used to extract critical information for the
biological analysis of organoids and for their tracking over time.
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Figure 1. An overview of the proposed pipeline: (1) acquisition, where the raw image volume
is captured; (2) preprocessing, illustrating the enhancement techniques applied to improve image
quality; (3) segmentation, showing the result of organoid segmentation from the enhanced image;
and (4) tracking, depicting the final stage where individual organoids are identified and labeled
across sequences.

2.1. Organoid Preparation and Culture and Image Dataset

Murine BRCA1-deficient breast cancer organoids oKB1P4s were used and cultivated as
described [22]. For the OCT longitudinal experiment, 1000 cells were seeded at a 50:50 ratio
of media and basal membrane extract (Cultrex BME, bio-techne R&D Systems, Minneapolis,
MN, USA) in 8-well plates (Ibidi, Gräfelfing, Germany), incubated for 45 min at 37 ◦C,
then covered with 300 µL media and cultivated at 37 ◦C, 5% CO2. On the third day, the
culture was subjected to 8 µM carboplatin for 5 days, after which normal media were used
for replacements.

Organoid imaging was performed using a home-built spectral-domain OCT system
using a laser source (EBD290002, EXALOS, Schlieren, Switzerland) with 845 nm central
wavelength and 131 nm bandwidth [23]. The OCT system has a lateral resolution of 3.4 µm
and an axial resolution of 2.68 µm in tissue (a refractive index of 1.38 was taken). A 3.0 mm
× 1.8 mm field-of-view was scanned with a step size of 2.52 µm in the transverse directions
at a scan speed of 10 kHz. After acquisition, the organoid data underwent the standard
OCT processing procedure, including background removal, resampling, and fast Fourier
transform, as well as acquisition artifact correction.

The acquired OCT volumes were then systematically partitioned into training, val-
idation, and testing sets to facilitate the development and assessment of the proposed
algorithm. Volumes from samples w1 and w2, each comprising 5 timepoints, were al-
located for algorithm training and validation. In contrast, sample w3, which includes a
broader temporal range with 7 timepoints, was reserved for testing the algorithm across
a more diverse set of time steps. Each volume consists of 698 slices with dimensions of
1200 × 800 pixels. Table 1 provides a comprehensive overview of the data utilized in this



Diagnostics 2024, 14, 1217 4 of 17

study, while Figure 2 shows an example of the maximum intensity projection (MIP) images
of unprocessed OCT volumes.

Table 1. An overview of the datasets employed.

Subset Sample ID
Days

(Each Day Represents
One Volume)

Dimension Total Number of
Images

Training w1 d5, d7, d11, d13 1200 × 800 × 698
5584w2 d5, d7, d9, d11 1200 × 800 × 698

Validation
w1 d9 1200 × 800 × 698 698
w2 d13 1200 × 800 × 698

5584
Testing w3 d1, d3, d5, d7, d9, d11,

d13 1200 × 800 × 698
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Figure 2. MIPs from the top view of the same organoid culture at different timepoints. The sequential
images highlight the dynamic growth of the organoids, capturing the progressive changes in size and
structure through various stages of development.

2.2. Preprocessing

The dataset consists of OCT scans stored in 16-bit unsigned integer (uint16) format.
The preprocessing aims to standardize intensity, enhance contrast, and reduce noise. First,
histogram normalization is applied based on the 95th percentile of the summed histograms
from the training set volumes [24]. This standardizes intensity dynamics across scans. The
normalized volume V′ is obtained as follows:

V′ =

(
pS

95
p95

)
· V (1)

where V is the original image data, and p95 is the 95th percentile from its luminance
histogram H. pS

95 is the 95th percentile from the reference histogram HS, which is defined
as follows:

HS = ∑
j∈T

Hj (2)

where T represents the set of volumes belonging to the training set. Next, histogram
stretching is conducted between the 1st and 99th percentiles on each normalized volume,
increasing organoid contrast relative to the background. Previous studies have shown that
speckle noise in OCT scans has a Poisson distribution [25]. To improve the effectiveness
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of the subsequent filtering steps, the noise is redistributed from Poisson to Gaussian via
square root transformation:

V ′′ =
√

V′ (3)

where V′ is the intensity-normalized and stretched image data, and V ′′ is the transformed
data. This transformation is ultimately inverted by squaring the image volume after the
last preprocessing step. The effect of the square root transformation on noise intensity
distribution is illustrated in Figure 3.
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Figure 3. Quantile–quantile (QQ) plots showing noise intensity distribution before (left) and after
(right) the square root transformation, from a sample volume excluding the organoids and regions
outside the drop. In these plots, the x-axis represents the theoretical quantiles of a standard normal
distribution, and the y-axis represents the observed quantiles of noise intensities. A closer alignment
to the red dashed reference line indicates that the noise distribution conforms more closely to a
Gaussian distribution.

Subsequently, we perform the sharpening of the volumes by subtracting a smoothed
version (U), called “un-sharpening mask” [26], to highlight the edges of the organoids:

Vu(x, y, z) =
b

2b − 1
V′(x, y, z)− 1 − b

2b − 1
U(x, y, z) (4)

where the parameter b defines the relative weight between the original volume and its
filtered version. In this work, we set b equal to 2

3 . U is the filtered version of the volume
obtained by applying the Gaussian filter g(x, y, z, σ) with parameter σ set equal to 3:

g(x, y, z, σ) =
1

2πσ2 exp
(
− x2 + y2 + z2

2σ2

)
(5)

Subsequently, we apply a median noise reduction filter with a cubic kernel of size 7.
Finally, we convert the volumes to uint8 format. Figure 4 displays the main preprocessing
steps of the algorithm.
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Figure 4. The preprocessing steps of the algorithm: (a) Original OCT image. (b) Image after histogram
normalization and contrast stretching to enhance clarity. (c) Image following the application of a
sharpening filter to accentuate specific features. (d) Resultant image after median filtering to reduce
noise. Below each panel, the luminance histogram illustrates the distribution of intensity values,
highlighting the effects of each preprocessing step.

2.3. Deep Learning Segmentation and Postprocessing

The network architecture used for organoid segmentation is a K-Net [27] implemented
using the MM Segmentation framework [28]. K-Net is an encoder–decoder network with a
SwinTransformer [29] backbone and a kernel generation decoder head. The architecture of
the employed model is shown in Figure 5. Since the datasets consist of 3D OCT volumes,
single 2D slices were extracted from each volume for network training. This allows for the
use of a 2D architecture to handle the slice-by-slice prediction task efficiently. The Swin
Transformer backbone extracts multiscale features from each input and is employed thanks
to its efficiency and capability to capture long-range dependencies in 2D images. Moreover,
its hierarchical structure facilitates a potential future scaling of the model to different image
resolutions and complexities (e.g., fine-tuning for other types of biological organoids), and
studies have shown good generalization and robustness in numerous image processing
tasks [29,30].
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The decoder head consists of a kernel generation module that leverages self-attention
to capture global organoid shape contexts. It generates convolutional kernels conditioned
on the input feature maps. These dynamic kernels are then used to decode semantic
features [27]. Three sequential kernel update blocks further refine the features with skip
connections from low-level encoder outputs. Each block updates the kernels based on
preceding features. An auxiliary head is also used to complement the main prediction
tower during training. It applies the same decoder but operates at 1/4 input resolution.

The choice of training data from specific timepoints during organoid development is
crucial for optimizing the deep learning model’s performance. Data from days 1 and 3 were
not included due to the small size of the organoids during these initial stages of growth,
which poses challenges for manual segmentation tasks. The limited resolution and contrast
of small organoids can hinder the accurate manual delineation of organoid boundaries. By
focusing on the later stages of organoid development (day 5 onwards), where the organoids
have grown to a sufficient size and exhibit more distinct morphological features, we ensure
that the training data are of high quality and can effectively guide the learning process of
the deep learning model. Our data preprocessing resizes all input images to 1024 × 1024. It
also applies photometric distortions, flipping, and normalization for data augmentation
during training. The network is trained end-to-end using a Dice loss for 100 epochs with a
batch size of 4. Pretrained weights are used for initialization, and training is fine-tuned for
our dataset.

During inference, the trained network is applied to each 2D slice extracted from the
3D OCT volumes. Predictions are made on a per-slice basis. As a postprocessing step,
each detected organoid from all slices is further processed. First, the organoid’s volume is
approximated as a sphere. Then, the spherical volume is compared to a reference volume of
a sphere with a diameter of 25 µm. Any objects having a volume smaller than this reference
spherical volume are removed [21].

2.4. Tracking Algorithm

Following the segmentation and postprocessing steps, which delineate individual
organoids within the 3D volumes, our tracking algorithm is deployed to meticulously
document the dynamic evolution of organoids across the entire time series. This includes
capturing both growth patterns and morphological changes.

At the outset, our dual branch tracking algorithm selects a reference volume from the
time series, establishing an anchor point that bifurcates the tracking into ascending and
descending branches, as shown in Figure 6. The selection of the reference volume is a critical
step, as it determines the efficacy and accuracy of the tracking process. The reference volume
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is not arbitrarily fixed but is systematically optimized through experimental evaluations.
Various volumes within the time series are assessed to identify which one offers the
best trade-off between the number of organoids successfully tracked and the accuracy of
the tracking. This optimization is crucial as it ensures a stable and consistent baseline
for tracking. The final selection is based on achieving the maximum possible tracking
continuity while maintaining high accuracy, assessed through a detailed three-dimensional
visual analysis of the tracked organoids.
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Figure 6. Visualization of tracking algorithm and matching process: (a) Overview of tracking
algorithm: initial selection of reference volume, division into descending and ascending branches
for forward and reverse temporal tracking, respectively, and integration of results to obtain labeled
organoid volumes. (b) Mechanism of organoid matching: comparison of reference organoid with
potential candidates, calculation of probability matrix, and determination of most probable match
based on probability matrix.

The ascending branch advances forward in time from the reference volume, tracking
organoid progression to subsequent volumes, with each volume analyzed becoming the
new reference for the next stage. Conversely, the descending branch conducts a reverse
analysis, meticulously charting organoid growth back to the initial stages.

During the matching phase, each organoid’s key attributes—centroid position, vol-
ume, and shape descriptors—are evaluated within the reference and subsequent evaluation
volumes. Organoids in the reference volume are then compared to those in the evaluation
volume based on these properties, incorporating spatial positioning, volume, and morpho-
logical characteristics, alongside the Intersection over Union (IoU) score. This comparison
is supported by specific cut-off criteria to ensure the accuracy of matches. If the centroid
distance between matching candidates exceeds a predefined limit, set in the range of 20 to
40 µm, that pairing is immediately excluded to dismiss potential mismatches. Additionally,
the algorithm adjusts for volume oscillations between sequential scans: in the ascending
branch, a decrease inside the tolerance interval is permissible to account for segmentation
errors, while any increase is expected; conversely, in the descending branch, an increase
inside the tolerance interval is allowed, and a general decrease in volume is expected.
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The tolerance interval is set in the range from 5% to 15%. Matches that fall outside these
parameters for centroid distance or volume changes are assigned a zero-probability score,
ensuring that only plausible matches are considered. These defined thresholds ensure that
the tracking remains robust and specific, aligned with the expected biological behavior of
the organoids and the precision of the segmentation process.

This comparison results in a probability score for each match, indicating the likelihood
of organoid identity continuity across timepoints. The probability score P is calculated
as follows:

P(match) =
1

1 + e−S (6)

where S represents a composite score calculated from the weighted sum of normalized
differences between key organoid attributes (centroid position, volume) and similarity
metrics (shape descriptors, Intersection over Union (IoU) score). Specifically, S is defined
as follows:

S = wc·Dc + wv·Dv + wp·Dp + wIoU ·IoU (7)

where Dc, Dv, and Dp denote the normalized differences in centroid positions, volumes,
and other organoid properties, respectively. The weights wc, wv, and wIoU can range from
0 to 1, reflecting the relative importance assigned to each metric in the tracking process. A
weight of 0 indicates that the attribute does not influence the matching decision, while a
weight of 1 gives it full influence. Matches with high degrees of similarity are deemed high
probability, reflecting a strong likelihood of matching organoid entities across volumes. It
is important to notice that only matches with probability scores above a certain threshold
are considered to ensure the robustness and specificity of the algorithm.

Each probability score is then inserted in a comprehensive probability matrix, which
quantitatively assesses the likelihood of matches based on the evaluated organoid prop-
erties. The process is inherently iterative, allowing for the refinement of tracking as high-
probability matches are identified and prioritized. To enhance the analysis’s specificity
and accuracy, organoids that have been matched are subsequently excluded from further
consideration, eliminating redundancy. Furthermore, each organoid is assigned a unique
numerical label within the time series, enabling the detailed analysis of individual organoid
evolution over time.

Tracking organoids consistently over time posed challenges due to varying growth
rates, morphological differences between organoids, and misalignment issues across time-
points. To address these challenges, the tracking algorithm parameters were optimized
through a heuristic process aimed at balancing two goals: maximizing the number of
organoids tracked long-term and ensuring accurate tracking throughout the dataset. For
each sample dataset, numerous configurations were tested by altering the following param-
eters: reference timepoint, centroid distance thresholds, and volume oscillation thresholds.
The configurations that resulted in the most organoids being successfully tracked over
time were selected as optimal. In addition, the qualitative visual analysis of the labeled
3D renderings of the tracked organoids complemented the quantitative tracking metrics
during configuration selection. This optimization process enabled the customization of
the tracking algorithm to handle inherent variability in organoid growth patterns and
morphology across different samples.

2.5. Performance Metrics

To ensure a comprehensive assessment of our proposed deep learning-based pipeline
for organoid segmentation and tracking, we employed a set of widely used performance
metrics, including DICE score, accuracy, sensitivity, and precision. The DICE score, which
ranges from 0 to 1, provides a balanced measure of segmentation accuracy by considering
both precision and recall. A higher DICE score indicates better segmentation performance.
Accuracy, on the other hand, measures the overall correctness of the segmentation. Sensi-
tivity and precision are complementary metrics that assess the model’s ability to correctly
identify organoid pixels and background pixels, respectively. High sensitivity indicates that
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the model effectively captures most of the organoid regions, while high precision suggests
that the model has a low rate of false positive predictions. These metrics were carefully
selected based on their ability to accurately capture various aspects of segmentation quality
and their widespread use in the field of medical image segmentation.

2.6. Computational Resources

The deep learning model used in this study was trained and evaluated using a high-
performance computing system equipped with an NVIDIA RTX3090 with 24 GB of memory.
The training process was performed using the PyTorch deep learning framework (version
1.9.0) and the Python programming language (version 3.8.5). The training of the K-Net
model with a Swin Transformer backbone required approximately 6 h to complete, uti-
lizing a batch size of 4 and running for 100 epochs. During inference, the trained model
processed a single OCT volume (698 slices with dimensions of 1200 × 800 pixels) in about
30 s, enabling the efficient segmentation and tracking of organoids in real time. The infer-
ence process was performed using the same NVIDIA RTX3090 GPU, ensuring consistent
performance and speed.

It is important to note that while the training process requires significant computational
resources and time, the inference process is relatively fast and can be performed on less
powerful hardware, such as a standard desktop computer with a modern GPU. This makes
the proposed deep learning-based pipeline accessible and practical for researchers and
clinicians working with OCT images of organoids.

3. Results
3.1. Segmentation Results

To select the most suitable deep learning model for our segmentation and track-
ing tasks, we conducted a comprehensive evaluation of several state-of-the-art architec-
tures. We trained and compared the performance of four models: DeepLabV3+ [31],
ConvNeXt [32], K-Net [27], and Swin Transformer [29]. Our choice of the K-Net architec-
ture with a Swin Transformer backbone was based on its superior performance in capturing
long-range dependencies and generating dynamic convolutional kernels conditioned on
the input feature maps. In Table 2, the segmentation performance metrics for the test set are
detailed, demonstrating the algorithm’s effectiveness across various measures. The DICE
score is reported at 0.726 ± 0.152, highlighting the algorithm’s accuracy in segmentation
tasks. Additionally, the reported accuracy of 0.996 ± 0.002 underscores the high overall cor-
rectness of the segmentation, while sensitivity and precision are noted at 0.740 ± 0.202 and
0.743 ± 0.132, respectively, indicating the algorithm’s ability to correctly identify organoid
pixels and differentiate them from the background.

Table 2. Performance metrics on test subset.

Method DICE Score Accuracy Sensitivity Precision

DeepLabV3+ [31] 0.702 ± 0.159 0.995 ± 0.004 0.786 ± 0.223 0.682 ± 0.145
ConvNext [32] 0.700 ± 0.170 0.994 ± 0.003 0.785 ± 0.232 0.684 ± 0.148

K-Net [27] 0.702 ± 0.149 0.995 ± 0.003 0.786 ± 0.209 0.673 ± 0.146
Swin [29] 0.698 ± 0.184 0.994 ± 0.003 0.775 ± 0.244 0.678 ± 0.163

K-Net+Swin
(proposed) 0.726 ± 0.152 0.996 ± 0.002 0.740 ± 0.202 0.743 ± 0.132

Figure 7 provides a visual representation of the segmentation process across different
developmental stages of the organoids, with example slices from days 3 and 9. This
illustration not only showcases the algorithm’s capability to adapt as the organoids grow
but also emphasizes the consistent performance from day 5 onwards, when the organoids
become more distinguishable from the surrounding noise. It is noteworthy that the lower
performance observed during the early days is attributed to the small size of the organoids
and their resemblance to surrounding noise, which poses a challenge for segmentation
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accuracy. This factor contributes to the initial variability in performance metrics, as the
algorithm gradually improves its capability to differentiate between organoids and noise
with the growth of the organoids.
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Figure 7. Daily DICE score progression in the time series with segmented slice examples. The trend
line illustrates the variation in the DICE score across the days, reflecting the performance of the
organoid segmentation algorithm at each timepoint. The insets highlight slices from days 3 and 9,
with automatic segmentation contours marked in red and manual ground truth contours in green.

3.2. Tracking Results

After the segmentation phase and the generation of automatic masks, the tracking algo-
rithm was employed to elucidate both the collective and individual dynamics of organoids
within the test set sample w3. Figure 8a offers a detailed visual account of organoid de-
velopment across selected timepoints, providing labeled volumes that map the growth
trend of the organoids. This sequence visually demonstrates an evident increase in both the
size and complexity of the organoids, highlighting the algorithm’s proficiency in adapting
to their evolving morphological characteristics. In finding the optimal configuration for
the tracking algorithm, a tuning process was undertaken, varying all parameters such as
centroid distance threshold, volume oscillation tolerance, weights for matching criteria,
and the reference day. The configuration that achieved the best results included a centroid
distance threshold of 30 µm and a volume change tolerance of 10%. The optimized weights
were equal to 0.9 for the centroid position, 0.6 for volume changes, and 1 for the Intersection
over Union (IoU) score. These adjustments specifically addressed the challenge of misregis-
tration across different imaging days. For the test set (i.e., sample w3), which includes days
1, 3, 5, 7, 9, 11, and 13, the tuning process revealed that day 3 was the most effective starting
point for tracking. This outcome was primarily due to the lower incidence of fusion events
on day 4, which could complicate tracking in later days by causing a significant loss of iden-
tifiable organoids. Opting for an earlier reference day thus allowed for a more stable and
clearer baseline for the tracking process. The optimized configuration enabled the algorithm
to successfully track a total of 142 organoids across the entire time series when an initial
253 organoids were located in the reference volume (56%). In parallel, Figure 8b presents a
quantitative analysis of the organoids’ mean volume over time, incorporating error bars to
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denote the standard error and capture the variability of these measurements. The graph
reveals a clear growth trend, characterized by an average growth rate of 0.077 mm3/day.
This rate quantifies the volumetric expansion of the organoids throughout the observation
period, serving as a pivotal metric for quantitatively assessing organoid development. It
attests to the tracking algorithm’s capability in accurately quantifying growth dynamics.
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Figure 8. Tracking results and growth trend analysis: (a) Tracked volume sequence: labeled volumes
from day 3 to day 13, illustrating organoid growth. Each frame shows organoids’ development,
highlighting the tracking algorithm’s efficacy in capturing growth patterns. (b) Growth trend graph:
quantifies the organoids’ volumetric expansion over time, presenting the mean organoid volume per
day, with error bars for standard error and a growth rate of 0.077 mm3/day.

4. Discussion

OCT imaging is emerging as a highly promising technique for organoid analysis,
offering important advantages over other imaging modalities thanks to its non-destructive,
label-free, and high-resolution imaging capabilities. The joining of OCT imaging and
organoid analysis will be crucial in the future for precision medicine and drug development,
by enabling researchers to monitor the growth, development, and function of individual
organoids with unprecedented detail [33].

In this study, an algorithm was proposed for segmenting and tracking the growth
of cancer organoids in OCT volumes. The steps include data acquisition, preprocess-
ing through image normalization, training a K-Net CNN for the segmentation of single
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organoids at multiple timepoints, and finally tracking single organoid growth over time.
The original OCT volumes typically show poor contrast, unclear boundaries, and a no-
ticeable amount of noise. To mitigate these issues, the proposed preprocessing stage was
included to improve the visible quality of the volumes and to increase the contrast between
the background and the organoid structure. For the segmentation phase, a state-of-the-
art segmentation model was implemented, based on the K-Net. The Swin Transformer
backbone within the architecture is fundamental as it aids in extracting multiscale features
from each input image and in capturing long-range dependencies in 2D images [34,35].
The accurate segmentation of single organoids obtained by the K-Net then served as a
stepping-stone for the crucial task of tracking single organoids at multiple timepoints over
13 days.

The accuracy of organoid segmentation is influenced by factors such as size, shape, and
internal structure [21]. Hence, it is important to mention that the training and validation of
the segmentation network were conducted on samples acquired from day 5 to day 13 after
the initial organoid cultivation. On the other hand, the test set included multiple days that
were not present in the training and validation set, specifically in the early days right after
the initial cultivation. This provides an intrinsic hurdle to overcome for the segmentation
network, yet the performance results for the early days are in line with previous studies
that have shown that smaller organoids are more challenging to segment accurately due to
their small size and similarities to background noise [21]. The segmentation performances
obtained on the days that were also included in the samples for the training and validation
sets were, as expected, satisfactory (DICE = 0.80).

A crucial aspect of OCT imaging and organoid analysis is the ability to longitudinally
track organoid growth. The complexity of the tracking process is compounded by the
fact that different wells exhibit slightly different morphological characteristics, and some
organoids demonstrate unique biological behaviors, such as varying growth rates, which
can complicate the tracking process. To address these challenges and reduce cases of mis-
tracking, the proposed solution takes into consideration various key organoid attributes
such as the centroid position, volume, and shape descriptors. This proved to be key in
accurately matching organoids at different timepoints and allowed us to deal with chal-
lenging merging and division events that may inevitably occur. Figure 8a shows the single
tracked organoids with a unique color code. The average growth rate of 0.077 mm3/day is
both quantitatively and qualitatively appreciated, along with the fact that not all organoids
present the same growth pattern. Some organoids (e.g., the purple-coded organoid) in
Figure 8a shows a rapid growth rate, whereas others show a much smaller growth rate,
especially on later days (e.g., the teal-coded organoid). The extensive tuning of algorithm
hyperparameters, informed by quantitative and 3D visual assessments, optimized the
tracking. This calibration allows the algorithm to adapt to diverse organoid conditions,
maintaining good robustness. Studies have provided evidence that tumor organoids’ re-
sponse to therapy are similar to that of the patients they were derived from, reflecting the
genetic and acquired mutational make-up [36,37]. However, these retrospective studies
were only true for a subset of patients. This may arise due to analyzing the bulk organoid
culture via gold standard 2D imaging or ATP-based endpoint viability assays, thereby not
taking the heterogeneity of cancer organoids within a culture into account [38]. Allowing
for the assessment of single organoid growth kinetics—in contrast to bulk culture—upon
treatment is crucial to improve the analysis of drug sensitivity and tackle the intratumoral
heterogeneity of therapy response [8]. In this work, we lay the foundation for an AI-assisted
segmentation and analysis pipeline to track the behavior of individual cancer organoid
structures. This will have a high impact on the identification of rare, rapidly growing
organoids that so far have remained hidden in bulk analysis approaches and will open new
avenues for the early clonal identification of rare drug-resistant tumor cells, which may
provide the seed of therapy resistance observed in patients.

The proposed deep learning-based pipeline for organoid segmentation and tracking
provides quantitative insights into the key aspects of organoid growth and development
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over time. Specifically, the segmentation results allow for the assessment of organoid size,
volume, shape, and morphology, which are crucial indicators of growth rate, viability, and
overall health. Tracking organoids across multiple timepoints facilitates a longitudinal
analysis of growth rates and morphological changes. Together, segmentation and track-
ing allow for an automatic quantification of the dynamic processes related to organoid
formation and differentiation. Thereby, such deep learning-based pipelines can heavily
assist in interpreting the results obtained from cancer organoids screened against a library
of drug compounds, especially when combined with gene expression analysis, protein–
protein interactions, and pathway information to enhance the power of drug sensitivity
prediction [39]. Generating patient-derived organoids and subjecting them to drug screens
accompanied with imaging techniques such as OCT coupled with deep learning-assisted
analysis could facilitate the establishment of pipelines for a faster and individual treatment
regimen [8,38,40]. Using patient-derived organoid platforms as “avatars” for predicting
drug response in precision medicine provides an unmatched prospect to improve preclini-
cal drug discovery [41]. However, some hurdles still need to be tackled for use in clinical
settings driving patient care, such as the lack of standardized sample isolation and automa-
tion for culture approaches which may result in experimental variations across different
research labs [41,42]. Likewise, for deep-learning approaches, no unified framework exists
to compare drug response models in a standardized fashion [39]. Albeit patient-derived
organoids allow for individualized treatment selection, discussions on ethical constraints
related to the utilization of organoids in drug testing may derive from the safeguarding
of patient privacy and the high cost of development, as both of these aspects make this
approach only available to a subset of patients [43].

Future work will aim to substantially increase the dataset size which will improve
segmentation accuracy and robustness across timepoints. Furthermore, incorporating addi-
tional imaging modalities, such as fluorescence microscopy or histological staining, could
provide valuable information about the internal structure and composition of organoids,
enabling a more comprehensive understanding of organoid biology. Larger volumes of
training data will enhance the networks’ capability to generalize to new samples, especially
improving performance on early-stage organoids. The approach presented here can also
easily be employed to assess differences between organoid cultures that are, for example,
treated with a specific drug and cultures that do not receive any drug treatment. This
can provide an important basis for drug sensitivity evaluation. Currently, the organoid
culture was removed from an incubator shortly prior to imaging and returned afterward,
which still may allow for a growth kinetics difference due to temperature change. To
further tailor the system for organoid culture applications, an incubator and automatic
stage could be included to enable imaging at cell culture conditions (37 ◦C, 5% CO2) at
pre-specified positions and time to reduce tedious manual work. Moreover, once organoids
grow bigger in size, the imaging penetration depth is limited. This can be tackled by using
acoustic tweezers [44] or a rotating stage to turn the sample [23]. Another potential area
for future optimization is the development of instance segmentation techniques to handle
the challenges posed by organoid fusion at later stages of growth. As organoids continue
to grow and expand, they may merge with neighboring organoids, making it difficult to
accurately distinguish and segment individual structures. Applying instance segmenta-
tion approaches and implementing algorithms specifically designed for separating fused
organoids could be an interesting avenue for future research, enabling the more precise
tracking and analysis of organoid development over extended periods. Additionally, fu-
ture improvements in our tracking algorithm will focus on the dynamic and automatic
optimization of parameters tailored to each individual organoid, ensuring the tracking
process continuously adapts to the unique conditions of each experiment. Finally, this
study presents a segmentation and tracking method for organoids that have been cultured
following a specific protocol and relative to a specific tissue. While the overall approach
can be easily extendable to other types of organoids and experimental circumstances, the
segmentation network and tracking algorithm would need to be fine-tuned to take into
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consideration macro-differences in organoid morphology, size, and organoid density within
the analyzed culture.

In addition to segmentation and tracking, future work will also focus on develop-
ing radiomic applications for analyzing the morphology, heterogeneity, and texture of
organoids in OCT volumes. Radiomics involves extracting quantitative features from medi-
cal images and has shown promise in determining tumor status or response to treatment
in cancer research [45]. Applying these techniques to organoids could provide valuable
insights into their developmental trajectories and overall health status. This information
would be crucial for personalized medicine applications, where understanding the unique
characteristics of tissues is essential for designing effective treatments.

5. Conclusions

In conclusion, OCT imaging and organoid analysis are emerging techniques that will
play a critical role in precision medicine. Advanced imaging techniques such as deep
learning-based segmentation have shown promise in providing accurate segmentation that
can then be employed to track the growth and development of single organoids over time.
The framework presented provides an important tool for longitudinal organoid analysis,
which will help enable applications in drug screening and precision medicine. Specifically,
the approach can be used to evaluate drug effects by comparing segmentation and tracking
metrics between treated and untreated organoid cultures. Future work should focus on
developing applications to further enhance our understanding of these complex structures’
biology and function, ultimately leading to more effective personalized treatments.
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