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Abstract

Event-based cameras are devices based on neuromor-
phic sensors that are gaining popularity in different fields,
including robotics. They are suitable for tasks where high-
speed, low-latency, low-power operations are required.
Person detection is one of these, to allow mobile robots
to monitor areas and navigate in crowded environments.
Most of the available event-based datasets that contain an-
notated human figures and collected with a moving cam-
era are designed for autonomous driving tasks. Yet, robotic
tasks are certainly not limited to the recognition of pedestri-
ans walking on sidewalks, which makes the above datasets
of limited utility. To address this impasse, we introduce
a new dataset called PEDRo, which is fully manually la-
beled. This dataset has been specifically developed for per-
son detection and it counts a total number of 43 259 bound-
ing boxes included in 119 recordings. A moving DAVIS346
event-based camera has been used to collect events in a
large variety of indoor and outdoor scenarios with vari-
ous lighting and meteorological conditions (such as sunny,
rainy and snowy). To the best of our knowledge, this is now
the largest available dataset for event-based person detec-
tion, which has been recorded with a moving camera and
manually labeled.

1. Introduction

Event-based cameras [10, 25] are neuromorphic video
recording devices that enable low-power and high temporal-
resolution acquisition of visual information. They have
gained an increasing popularity in a large variety of fields,
including surveillance [37, 38], autonomous driving cars
[4,5,24,40] and robotics [2,8,41,43]. The sensors used for
these devices offer a fundamentally different way of repre-

(a)

(c) (d)

(b)

Figure 1. Some of the 43 259 bounding boxes manually anno-
tated contained in PEDRo. The dataset focuses on people and it
presents recordings taken in a large variety of environments such
as a) woods, b) beaches, c) lakes, d) indoor scenarios.

senting visual information compared to traditional frame-
based cameras, providing a sparse and asynchronous events
stream where each event corresponds to a change in the
scene brightness. More specifically, an event is represented
by the coordinates of the pixel location where the illumi-
nance change occurs, as well as by the polarity and the time
at which the event has been detected. Event cameras typ-
ically provide a very high temporal resolution, with an ac-
quisition time of the order of microseconds and a high dy-
namic range (up to 120 dB) thanks to the logarithmic char-
acteristic of the pixel response. Moreover, their compact
size and low power consumption make them well-suited for
deployment in mobile and battery-powered robots. In par-
ticular, this kind of sensors has shown great potential for
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tasks that require fast and accurate motion detection and
tracking in a large variety of scenarios with different light-
ing conditions. As an example, person detection is one of
these, to help robots monitoring areas for intruders and nav-
igating through crowded spaces.

The state-of-the-art approach to solve person detection
problems is to adopt deep learning architectures, whose pro-
ficient training is made possible using large quantities of an-
notated data. However, the number of event-based datasets
is notably smaller compared to what is currently available
for frame-based cameras, mainly due to the still limited
adoption of event sensors. While synthetic data can be used
to tackle this problem, their use can lead to suboptimal per-
formance because of the potential disparities between sim-
ulated and real events [11, 39].

In recent years, efforts have been made to create large
event-based datasets specifically designed for object detec-
tion in the context of autonomous driving [6, 32]. These
datasets are recorded using a sensor mounted on the dash-
board of a car and data are acquired driving in real-world
scenarios. To the best of our knowledge, these are the
only datasets containing a large number of labeled people
recorded using a moving camera. Because of this, the train-
ing of algorithms for person detection in robotics applica-
tions becomes a challenge. In fact, robots can move both in-
doors and outdoors and in a variety of environments which
are not limited to roads or highways. Moreover, pedestrians
are typically walking on the sidewalks far from the camera,
while when dealing with robots navigation, people can be
close and their figure may be partially out of frame.

To overcome this, we introduce in this work an event-
based dataset for Person Detection in Robotics applica-
tions (PEDRo), made of 119 recordings of variable dura-
tion taken with a moving DAVIS346 camera. The dataset,
containing 43 259 bounding boxes, was manually annotated
and focuses on human figures in a large variety of environ-
ments, atmospheric and lighting conditions, as in Fig. 1. To
the best of our knowledge, this is also the largest manually
annotated event-based dataset for person detection recorded
with a moving camera.

2. Related Works
Event-based datasets Early examples of event-based
datasets have been generated from already existing frame-
based datasets by extracting events from frames. In [31],
the MNIST [23] and the Caltech-101 [9] datasets have been
converted into events stream by moving an event camera in
front of a screen where the frames were displayed. A sim-
ilar strategy has been adopted in [18], where the authors
generate events datasets from image datasets [13, 22, 36],
and where the event-based camera was still and the mo-
tion was performed by sliding the images on the monitor.
These approaches allow to obtain very large datasets with-

out the need for manual labeling, but the 2D characteristic
of the screen and its limited refresh rate negatively impact
the quality of the events stream. An alternative procedure
has been proposed in [11] where Gehrig et al. leverage the
capabilities of event simulators, like [19, 34], to transform
popular frame-based datasets into their event-based coun-
terparts. As such, clearly real data are still needed to fully
exploit the properties of the event cameras and to accurately
replicate noise and sensor nonidealities.

Over the past few years, the number of event datasets
collected by using event-based sensors has in fact increased.
For example, in [1,16] and in [44] two datasets collected in
driving scenarios with a single and a stereo configuration of
a DAVIS346 camera respectively are presented to estimate
quantities such as the steering angle, depth, and odometry.

Event-based datasets for person detection More re-
cently, the number of event-based datasets for person de-
tection has increased. In [27], Shu et al. present a small
dataset completely focused on pedestrians composed of 12
sequences recorded using a fixed DAVIS346 event camera
containing 4670 labeled people. This dataset is mainly used
for surveillance and it contains also sequences for action
recognition and fall detection. Another example is the one
produced by Bolten et al. in [3] collected with three fixed
CeleX-4 DVS [14] event cameras. It features recordings
of an outdoor urban public area, and it has been devel-
oped for long time monitoring purposes. In 2020, Prophe-
see released two large datasets recorded in driving scenarios
which are the GEN1 Automotive Detection Dataset [6] and
the 1 Megapixel Automotive Detection Dataset [32]. The
former presents a total of 255 781 manually-labeled bound-
ing boxes (228 123 cars, 27 658 pedestrians) collected for
39 hours with a Prophesee Gen1 sensor [33] at a resolu-
tion of 304×240 pixels, while the latter is the most compre-
hensive event-based dataset to date and it counts 15 hours
of recordings with a resolution of 1280×720 pixels and 25
million automatically-labeled bounding boxes. The people
labeled in these two datasets are mainly pedestrians walking
on sidewalks.

Event-based cameras in Robotics The interest in event-
based cameras is increasing also in robotics and their us-
age has been investigated for Simulatenous Localization
And Mapping (SLAM) [35], control strategies [2, 43], and
the estimation of quantities like the pose [29, 46], the op-
tical flow [12, 42, 45] and the trajectory of moving objects
[15, 28]. Event-based sensors find applications in diverse
tasks, ranging from guiding ground robots [2] or underwater
platforms [43] to developing obstacle avoidance or SLAM
algorithms for Unmanned Aerial Vehicles (UAVs) [8, 41].
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3. Dataset
PEDRo is a dataset recorded with a moving camera and

completely focused on person detection, specifically de-
signed for service robotics applications1 It contains 43 259
bounding boxes associated to 27 000 samples with a du-
ration of 40ms each, extracted from 119 recordings with
an average duration of 18 s. Each sample features at least
one and at most six bounding boxes. The dataset presents a
wide variety of indoor and outdoor scenarios, ranging from
office and house environments to mountains, lakes land-
scapes and seafronts. The recordings are taken with dif-
ferent meteorological conditions such as sunny, rainy and
snowy during day and night. The dataset has been collected
in 6 months from September 2022 to February 2023 and the
people recorded in PEDRo range from 20 to 70 years of age.
Most of the labeled subjects are walking, although there are
examples of people standing still, sitting, or running. We
obtained informed written consent from all the recorded in-
dividuals, and we further protect their privacy by publishing
only the events and the labels of the recordings.

3.1. Data collection and labeling

The dataset has been entirely recorded using a
DAVIS346 event-based camera [20] which has a resolution
of 346×260 pixels and outputs simultaneously events and
grayscale frames. The camera is in motion, it has been
hand-carried to capture the events and the position of the
sensor varies among recordings. The dataset has been fully
manually labeled by the authors using the grayscale frames
and all the bounding boxes have been double-checked. In
our case, automatic labeling performed by state-of-the-art
object detection models like YOLOv8x [21] does not pro-
vide reliable results, probably due to the low resolution of
the grayscale frames offered by the camera.

In order to highlight this, we evaluate the quality of the
predicted bounding boxes using the Intersection over Union
(IoU) as a criterion. More specifically, given two bounding
boxes, one true (manually labeled) and one predicted, the
IoU measures their degree of overlap as the ratio of their
intersection area to their union area (e.g., 1 means perfect
overlap, 0 no overlap). Since a frame can contain multi-
ple bounding boxes, we select the optimal true-predicted
couples and then we evaluate the average IoU. The optimal
true-predicted couples are selected as follows:

• the IoU is evaluated for all the combinations of true
and predicted bounding boxes;

• the true and predicted bounding boxes associated with
the maximum IoU value are selected as an optimal
couple and removed from the computation, and this is
repeated until there are no couples remaining;

1PEDRo is publicly available and it can be obtained via the following
link: https://github.com/SSIGPRO/PEDRo-Event-Based-Dataset.git

Figure 2. Bounding boxes predicted by the YOLOv8x model are
shown with solid light blue lines, while the manually annotated
labels are shown with dashed green lines.

• all the unpaired bounding boxes count as zero IoU
value.

With the largest pretrained YOLOv8 model, 22% of the
27 000 greyscale frames used for labeling do not reach an
average IoU of 0.85 and almost 45% do not reach an average
IoU of 0.90. This means that, for this dataset, automatic la-
beling is not a suitable option to obtain high-quality ground
truth. Fig. 2 shows two frames that result to be wrongly
labeled using the YOLOv8x model.

3.2. Dataset Format

The 119 recordings that compose the dataset have been
split into train, validation and test subsets. To avoid overlap
of data, every single recording belongs entirely to one of
these three groups. The number of bounding boxes in the
dataset is 43 259, of which 34 243 (79.2%) in train, 4372
(10.1%) in validation and 4179 (9.7%) in test.

Each subset is associated to a text file that lists the
recordings and the names of the samples it contains. With
sample, we refer to the stream of events collected in a time
interval of 40ms preceding the timestamp of the frame used
to obtain the corresponding labels. This time interval is de-
termined by the acquisition rate of the grey-scale images
used for the manual labeling process (25 fps).

The events (with positive and negative polarity) are
stored in a numpy structure, while their corresponding la-
bels are provided in Pascal VOC format [7]. Each sample
can be coupled with its corresponding label by considering
the matching names (e.g. file frame0000001.npy is as-
sociated with frame0000001.xml).

3.3. Analysis and Statistics

To better highlight some peculiarities of our dataset, we
extract some statistics and we compare them to the ones ob-
tained from the GEN1 Automotive Detection Dataset [6].
We select the GEN1 dataset as it is the most extensive auto-
motive dataset with hand-labeled annotations and its spatial
resolution is similar to PEDRo.

We start this analysis by looking at the distribution of the
bounding boxes in the two datasets using heatmaps, com-
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Figure 3. On the left, the heatmap displaying labeled bounding
boxes for pedestrians of the GEN1 dataset, while on the right, the
heatmap for people in our dataset.
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Figure 4. On the left, the distribution of the length (in pixels) of the
diagonals of bounding boxes for pedestrians in the GEN1 dataset,
while on the right, the diagonals for people in our dataset.

puted by counting the number of bounding boxes cover-
ing each pixel over the entire dataset. We normalize the
count by dividing it by the total number of bounding boxes
in the datasets, resulting in heatmaps containing values in
the range [0, 1] as in Fig. 3. Since the GEN1 dataset is col-
lected using a camera on a vehicle, detected people are typ-
ically pedestrians walking on sidewalks, so bounding boxes
are confined to the image margins. On the contrary, our
dataset focuses more on people which are closer to the cen-
ter of the image and to the camera. Moreover, Fig. 4 shows
the distribution of sizes of bounding boxes diagonals in the
GEN1 and in our dataset. The automotive dataset presents
a long tail distribution and most of the bounding boxes have
a small diagonal while our dataset features more bounding
boxes with a wider range of diagonal sizes. These charac-
teristics highlight how PEDRo features labeled data whose
properties are missing in automotive datasets like GEN1.

4. Experimental Results
In this section we evaluate the performance of YOLOv8x

on PEDRo and we compare it with the performance on
GEN1. For each dataset, we start from the pre-trained
YOLOv8x architecture and we train the model for 5 epochs
with Stochastic Gradient Descent (SGD), learning rate of
0.01 and a batch size of 64. Each input sample consists
in events organized in a Surface of Active Events (SAE)
[27, 30]. With SAE, the events from a sample are aggre-
gated together in a single two-channel tensor (i.e. a two-

Test
Train GEN1 PEDRo GEN1 + PEDRo

GEN1 0.716|0.341 0.487|0.205 0.718|0.342
PEDRo 0.437|0.237 0.895|0.586 0.794|0.504

Table 1. Results expressed as mAP50|mAP50:95 with YOLOv8x
trained on different training sets and evaluated on various test sets.

channel image). One channel is generated from positive
events, while the other from negative ones. For each chan-
nel, the value corresponding to each pixel is proportional to
the timestamp of the most recent event, i.e. the more recent
is the event, the higher is the value. In order to make SAE
compliant with YOLOv8x, the values are normalized be-
tween 0 and 255 (which is typical for images). Furthermore,
since the pre-trained YOLOv8x model accepts 3 channels
images, we have removed the third input channel from the
model.

To compare the performance, we consider the mean Av-
erage Precision value (mAP) [26] which is a widely used
metric for understanding the performances of a neural net-
work employed for an object detection task [17, 32]. Tab. 1
presents the results in terms of mAP50 and mAP50:95 ob-
tained on different test sets. Here we see that GEN1 and
PEDRo actually are uncorrelated datasets, being the mAP
values quite low when cross-training YOLOv8x, i.e. when
a model trained on GEN1 is tested on PEDRo and vice-
versa. This means that GEN1, being an automotive dataset
focused on pedestrians, is not suited for person detection
where human figures are the main subject of the scenes. On
the contrary, PEDRo allows the training of structures ca-
pable of detecting persons closer to the camera and in dif-
ferent environments, which is relevant for different robotic
and surveillance applications. Furthermore, by training
YOLOv8x with GEN1 in conjunction with PEDRo, there
is no loss in performance on the recognition of pedestrians
while the model becomes also capable of recognizing tar-
gets contained in PEDRo.

5. Conclusions
This paper presents PEDRo which is, to the best of

our knowledge, the largest manually annotated event-based
dataset recorded with a moving camera and explicitly de-
signed for people detection. This dataset focuses on people,
with a wide variety of recording environments and different
lighting conditions, making it a relevant addition to other
existing event-based datasets, such as the GEN1 Automo-
tive dataset. PEDRo presents an opportunity for enhancing
the prediction capabilities of deep learning object detection
models with events as input, which can pave the way for
novel research avenues and potential applications in diverse
fields including but not limited to robotics and surveillance.
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