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Summary

The reliability and performance of data centers play an essential role for the suc-
cess of plenty of today’s business and entertainment activities, while heavily depend-
ing on the effectiveness of the employed monitoring solutions. Data center opera-
tors need the ability to accurately monitor and dissect the behavior of their networks,
while the tenants of distributed cloud-native applications also strive for pervasive
monitoring intelligence to understand application performance.

Unfortunately, the rapid increase of networks scales and link speeds, and the radi-
cal transition from monolithic applications to microservice architectures, have signif-
icantly raised the expectations on both network and applications monitoring, as well
as their complexity. With ultra-fast link speeds, network telemetry reports can contain
millions of monitored events even on short timescales. Since a high monitoring time-
liness and accuracy is often translated into an increase in the frequency and volume
of telemetry reports, network monitoring can come at a huge overhead. At the same
time, the multi-platform multi-layer distributed microservice design has increased
the exposure of applications to failures, which also resulted into the explosion of the
volume of application-level telemetry, ultimately leading to a significant data bloat is-
sue for cloud-native application observability. Overall, monitoring at hyperscale is a
problem still far from being solved.

In this thesis, a major effort has been devoted towards devising in-network solu-
tions with the goal of increasing the monitoring performance for both the network
and cloud-native applications, while keeping overheads and costs disposable. To-
wards this objective, we developed a set of sketch-based algorithms and systems,
which helps to extract insightful statistics from high-speed data streams directly from
programmable network devices, such as Protocol Independent Switch Architecture
(PISA) switches and SmartNICs.

We first addressed the task of measuring the flow cardinality in a traffic stream,
which is a common input to many fundamental network management tasks, rang-
ing from attack detection to network planning. Specifically, we focused on turning
some popular cardinality estimation sketches (e.g., HyperLoglLog) into continuous-
time sketches, i.e., add the ability to answer queries at arbitrarily time instants accord-
ing to a sliding window model. Our proposed schemes allow overcoming the insensi-
tivity to data recency of existing sketches, and enable better timeliness with minimal
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interactions with a remote monitoring plane, due to the ability to continually com-
pute real-time statistics directly in the network switches.

Despite their memory-efficiency, sketches are practically limited by the amount of
SRAM memory available on a single switch, which is typically scarce for commodity
hardware. Therefore, a second contribution relates to the collaboration of multiple
switches to increase the accuracy of flow size estimation sketches. More specifically,
we looked into the concept of disaggregated sketches, in which fragments of a logi-
cally single sketch are distributed across the switches. We focused on characterizing
the interdependencies between the traffic patterns and the distribution of the mea-
surement workload across the fragments along the flow’s network path. We showed
that the estimation accuracy can be significantly improved only by carefully choosing
a subset of fragments to update.

In our final contribution, we complemented our sketch-based network monitor-
ing suite with a new sketch-based framework for cloud-native applications observ-
ability. We tackled the observability data bloat problem by proposing a novel three-
tier architecture to monitor cloud-native applications, which leverages the proxim-
ity of SmartNICs to the applications’ microservices to mitigate the high overheads
of observability. Our system stands out from the conventional observability tools by
incorporating local metrics processing stages at every server within a sketch-based
lightweight data plane running on SmartNICs. To the best of our knowledge, it is the
first attempt to accelerate observability processing tasks through the offloading to a
SmartNIC. As demonstrated on a production-grade Kubernetes cluster, our frame-
work can help operators narrowing the focus only on informative data, and can proac-
tively trigger actionable signals that anticipate Service-Level Agreements (SLAs) vio-
lations.

Altogether, we built a comprehensive suite of in-network monitoring tools and
sketches to troubleshoot data center performance end-to-end.
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Chapter 1

Introduction

Society is experiencing an enormous digital revolution. Online services and appli-
cations are pervasively employed in all aspects of society, changing the way we live,
work and interact each other. Communication networks represent the key enablers
of this revolution. Since the rise of the World Wide Web in the past century, commu-
nication networks have evolved according to a decentralized ownership model such
as the Internet. In the last decades, the advent of clouds and private cloud networks
has partially reshaped this model, by massively concentrating heterogeneous services
operated by both enterprises and private users to big interconnected Data Centers
(DCs), owned by few hyperscalers. As such, data centers have gained pivotal impor-
tance in the modern digital economy. This trend is not expected to change in the
near future, as the explosion of artificial intelligence and machine learning (AI/ML)
applications demands unprecedented computational power and storage capacity for
training models with trillions of parameters.

Consequently, data centers must guarantee uninterrupted availability and high
performance. Towards this goal, monitoring the performance of services running in
the data center, by means of collecting and processing data center monitoring, is a
fundamental task to ensure the quality of operations and respond to failures or per-
formance degradation. Data center monitoring should identify and localize perfor-
mance issues in real time, thus increasing customer satisfaction and minimizing rev-
enue loss. However, the scale and the complexity of modern data centers pose several
non-trivial engineering challenges to data center monitoring.

From a network perspective, the massive amount of traffic flowing through the
network makes it difficult to quickly identify and diagnose network performance is-
sues with traditional tools. With the latest standards (e.g., 400GbE) reaching link speeds
above 100Gbps, data center networks can carry hundreds of terabit-per-second traf-
fic with billions of flows, thus implying significant overheads to monitor network con-
nections. In addition, not responding timely to network issues may have larger impact
than in the past. Because of the higher link speeds, negative effects can affect a larger
amount of user traffic before the remedies are brought into effect.
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Similarly, from an application-layer perspective, monitoring applications is also
very daunting. Modern applications involve distributed interacting components (e.g.,
microservices, serverless) and several software abstractions running on top of the op-
erating system (e.g., orchestrators). Given the distributed nature and the associated
software complexity, it is not clear which performance metrics reflect the events of in-
terest and where they should be collected. In general, capturing the metrics relevant
to debug incidents or analyze performance typically result in huge overheads.

To tackle the above-mentioned challenges, this dissertation will focus on the de-
sign and implementation of novel algorithms and systems for data center monitor-
ing. We embrace the ability of new programmable network devices, specifically pro-
grammable data plane switches and programmable Network Interface Cards (NICs),
to host monitoring functions that were previously executed on dedicated servers, and
achieve higher coverage of relevant system events, better accuracy and lower costs.

The remainder of this introductory chapter addresses the following preliminary
objectives. First, we provide a brief overview of the evolution of data center networks
and emphasize the latest advances towards end-to-end programmable Data Center
Networks (DCNs). Second, we revise the role of monitoring in modern data centers
and discuss existing solutions through the lens of programmable networks, which
motivates the relevance of this thesis. Finally, we outline the structure of the disserta-
tion and summarize its new contributions to the state-of-the-art.

1.1 Programmable data planes

In 2008, McKeown et al. published the cornerstone paper “OpenFlow: enabling
innovation in campus networks” [1], which introduced the concept of Software De-
fined Networking (SDN). SDN decoupled the control plane from the data plane, and
moved the control plane into a logically centralized controller. This separation of
tasks allowed network operators to manage the network in a more flexible and pro-
grammable way: control plane algorithms could have a global network view at the
central controller, and enforce their policies to the network by communicating with
the data plane via a standard interface like the OpenFlow protocol. As soon as an
ever-growing number of SDN applications started to emerge, some missing features
of “traditional” SDN became evident. The OpenFlow protocol was designed to be a
simple protocol that allows the controller to programmatically configure the forward-
ing rules of the switches. However, the set of supported rules and protocols was still
limited by fixed-function switches and aligned to the OpenFlow standard, which lim-
ited the ability of network programmers to quickly roll out new protocols and features.
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Figure 1.1: A P4 architecture known as Tofino Native Architecture (TNA) [2]. It in-
cludes ingress and egress stages (dashed boxes), both according to the PISA reference
model. The P4 program net-app.p4 defines the behavior of each component in the
P4 architecture (long arrows) when processing packets, which logically traverse the
architecture from left to right (short arrows).

Protocol Independent Switch Architecture (Protocol Independent Switch Architec-
ture (PISA)) and P4

This limitation was a major bottleneck for the network, which struggled to evolve
with the same rapid pace of services and applications. Thus, it fostered the creation of
a language-based approach to program the network data plane. Over the last decade,
the PISA [3] abstraction was introduced to provide network programmers with a device
independent reference model to write custom programs to be run in the network
data plane. PISA is as a reference logical machine to represent the pipeline stages
involved into packet processing in the network data plane. Figure 1.1 depicts a high-
level overview of the PISA model, which includes three major components. The pro-
grammable parser permits to specify the structure of the header to be extracted from
the packets, and where in the bit stream these headers are located. Then, a sequence
of match-action units constitute the core programmable pipeline. Each stage of the
pipeline can be programmed to match the header fields identified at the parser and
intermediate results computed by previous stages. For the matched headers, the pro-
grammer can specify the actions to execute. A single match-action stage has multiple
memory blocks (e.g., tables, registers) and Arithmetic Logic Units (ALUs), which the
data plane program can access to implement custom (stateful) logic. Finally, the de-
parser is the block that re-serializes the packet metadata into the packet before it is
transmitted on the output link. Notably, the deparser can add new headers to the
packet, computed by the match-action pipeline, which enables new protocols to be
added to the network without changing the hardware.
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Essentially, programming a switch data plane consists in defining the desired be-
havior of every component in a PISA-like architecture. Currently, P4 [4] is the most
popular high-level language to program PISA devices. The P4 program, which de-
scribes the PISA logic, is then compiled into low-level platform-specific directives and
installed in the data plane of a target device. Different targets feature different P4 com-
pilers, which are distributed by manufacturers along with the architecture-specific li-
braries. Several platforms supporting P4 are emerging, including software switches
(the bmv2 Simple Switch [5], T4P4S [6] and DPDK [7]), ASICs (Intel Tofino Series [8]),
FPGA boards (NetFPGA [9]) and SmartNICs' (Pensando DSC [10]). Every platform ex-
poses PISA-like P4 architecture, which associates the P4 language with the specific P4
target. Many P4 architectures, such as Tofino Native Architecture (TNA) [2] (depicted
in Figure 1.1), replicate the reference PISA model both at the ingress and the egress, as
highlighted by the dashed boxes.

P4 triggered a second generation of SDN which enabled a top-down approach to
develop network applications and quickly add new features without having to wait for
long release cycles because of the interaction between vendors, operators and institu-
tions. Importantly, data plane programmability opened the door to a completely new
generation of monitoring tools based on P4. This is still a very active research area,
whose efforts are mainly devoted to solve the challenges of implementing complex
monitoring logic in P4 switches.

Programming constraints of PISA switches. Programming a P4 switch implies deal-

ing with several implementation constraints, which arise from the need to keep up

with terabit per second line rates. Without delving into the specifics, we outline the
main constraints using the following two categories.

* Language constraints. P4 targets do not support loops neither floating point arith-
metic. To iterate over a set of elements, the programmer must unroll the loop and
manually replicate the logic for each element. Similarly, floating point arithmetic
is not supported, and the programmer must use fixed-point arithmetic, which ul-
timately leads to the creation of original approaches to relax the dependence from
floating-point arithmetic [11], [12].

e Memory access constraints. Due to strict timing requirements, when a packet ar-
rives, it can access only a few addresses in the per-stage memory, but not read or
write the entire memory block. In addition, each stateful memory block can be ac-
cessed only from a single stage of the pipeline, therefore a packet can access the
same memory block only once as it moves through the pipeline.

We will see in the next section that these constraints have actually turned into an

opportunity and stimulated the originality of numerous researchers to develop new

(monitoring) algorithms and data structures tailored to P4 switches.

! This family of programmable network equipment may also be referred to as Infrastructure Process-
ing Unit (IPU) or Data Processing Unit (DPU), depending on the hardware manufacturer.
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1.2 Data center monitoring

Before describing the structure of the dissertation, we briefly characterize the data
center environment and its workloads, which will motivate the increasing expecta-
tions on the performance of the data center monitoring systems. Then we define the
terminology of the thesis and outline its research context.

Navigating the data center’s ecosystem

Data centers host a wide spectrum of services and applications, which include
social networks, e-commerce, video streaming, AI/ML model training and inference,
virtual conferencing, online gaming, and more. This workload is increasingly diverse,
and evolves frequently driven by an always expanding user base and its requirements.
In order to match the scale, heterogeneity and velocity of this evolution, both the in-
terconnection network and the applications’ software have being designed with the
divide et impera principle in mind, today resulting in large-scale modular systems.
Data center networks can comprise thousands of switches and several thousands of
links, which are continuously expanded “horizontally” by deploying additional equip-
ment, rather than upgrading existing instances to higher grade devices [13]. Similarly,
the applications’ software infrastructure has largely transitioned to a distributed de-
sign, where several interacting components, such as microservices, serverless func-
tions, etc. run on top of several layers of abstractions including orchestrators, virtual
machines and containers.

Unfortunately, while modularity promotes flexibility for system upgrades and low-
ers down the costs, it also increases dramatically the likelihood of wrong configura-
tions, software bugs, hardware failures and hotspots. This is especially critical for to-
day’s applications for at least two reasons.

First, because of the distributed design, differently from the past, applications
heavily hinge on network communication to fulfill their logic. As a result, application
performance is tightly coupled to network performance. Criticalities in the network,
e.g., bandwidth declines, microbursts or long-tailed latencies, translate into severe
slowdowns for the application more easily than in the past. This is especially critical
today, with ultra-high link speeds (e.g., 100-400Gbps) and a rapid development of fast
network stacks at the end-hosts (e.g., RDMA, DPDK, etc.), because the impact of even
small incidents in the network is amplified. For a data transfer on a 400Gbps link,
some tens of us of variation in the network latency may be negligible for a traditional
TCP connection, for which the processing time at end host is the main limiting fac-
tor. However, they have big incidence on a Remote Direct Memory Access (RDMA)
connection, which expects a very low latency from the network since it bypasses the
host’s CPU.

Second, even not considering problems in the network, failures or anomalies hap-
pening in one of the interacting software components may quickly propagate to other
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Figure 1.2: The notation used in the thesis about monitoring systems.

components, thus causing cascaded application errors or slowdowns. Some of these
failures — called gray failures — are hard to detect, because they do not result in com-
ponents crash, yet have a significant impact on the performance of the application.
As a simple example, consider a backend service (e.g., key-value store) which pro-
cesses slowly the requests coming from upstream fronted services (e.g., due to mem-
ory leak). In this case, the slow downstream service may progressively cause large
queue buildups in the upstream frontend services, which in turn may become slow.
Thus, an issue of a single software component may slow down the entire application,
without any visible symptom in the root-cause component.

Within this ecosystem, a fundamental prerequisite to guarantee high availability
and performance is to continuously monitor the data center across several layers and
components. The holistic dimension is what significantly complicates monitoring
compared to the past. Traditional monitoring tools are specialized, with focus on a
very circumscribed context and producing only component-specific local informa-
tion. To pinpoint the cause of a problem in today’s distributed scenario, local infor-
mation is not sufficient and monitoring must integrate data from multiple context
and tools.

1.2.1 Terminology, roles and objectives

Figure 1.2 illustrates the organization of a typical monitoring system and clari-
fies the difference between monitoring and telemetry. Monitoring can be intended as
the wide process of analyzing data center health and performance in order to ensure
correct operations. We focus on monitoring of the interconnection network and the
distributed applications running on top of it as primary targets. Monitoring is com-
posed of a set of specific monitoring tasks, such as heavy hitter and superspreader
detection for network monitoring, or tracing the interactions between component in
a distributed application. Monitoring is achieved by aggregating and processing a set
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of measurements obtained from the monitor targets, usually on a dedicated manage-
ment plane (e.g., SDN controller). The output of the monitoring tasks is eventually
useful for answering operator’s queries or automatically triggering alerts if deviations
from the desired behavior are detected. In parallel, telemetry refers to the procedures
of reporting (or collecting) the measurements useful to monitoring — also referred to
as telemetry data. Thus, telemetry is mainly concerned with the data collection itself.
We will adopt this terminology throughout the thesis.

The quality of the monitoring can be understood according to the following four
dimensions.

1) Accuracy. Quantifies how much the outputs of a monitoring task reflect the ground
truth of the task’s objective.

2) Timeliness. The speed (inverse of the delay) at which the monitoring output is
made available for analysis and action, which is essential for quick detection and
response.

3) Visibility (or coverage). The scope of the outputs of a monitoring task, in terms of
covered system elements, e.g., per-flow, per-sampled flow, etc.

4) Overhead. Resource consumption and related costs required for implementing the
monitoring system, i.e., telemetry and telemetry aggregation/processing.

Ideally, the monitoring should achieve high visibility, high accuracy, low overhead,
and high timeliness, simultaneously. Unfortunately, the previous discussion already
highlighted how achieving all goals simultaneously is challenging in the data center
ecosystem, where it exists a fundamental tension between visibility and overhead. On
the one hand, the large-scale modular design enforces to gain ever-more fine-grained
visibility in order to get insights and explain complex system behaviors. For exam-
ple, Google [14] and Alibaba [15], [16] have recently quantified for their production
data centers how performance degradation occur in multiple points, including appli-
cations, kernel/TCP stack, virtual or physical networks, and are difficult to diagnose.
On the other hand, the way the distributed modular design is conceived implies that
collecting and processing telemetry from several sources makes difficult to sustain
monitoring at disposable overheads. While a simple practical solution is to sample
data to reduce the overhead, this may lead to a loss of accuracy. In this thesis, we will
study techniques to achieve a lower telemetry overhead, and consequently monitor-
ing overhead, without sacrificing accuracy or visibility.

Besides, the studies of Google and Alibaba have also disclosed how, even among
hyperscalers, monitoring tools are rather compartmentalized and disconnected, with
some tools looking into the nefwork and others into distributed applications. Admit-
tedly, this rigidity makes still an open issue understanding which segment of system
causes problems that manifest to the application. Network monitoring tools have
limited or zero visibility into end hosts, and vice versa. Historically, the monitoring
systems for the network have matured independently of the monitoring systems for
distributed applications, and have been devised by different communities. For this

7
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. Performance objectives
Method type Representative examples )

Accuracy Visibility Overhead Timeliness

Soriiglle @ SNMP stats [17] NetFlow [18],

(fixed-function) sFlow [19], EverFlow [20], low low medium low
cSamp [21]
INT[22], PINT [23], IOAM [24],
Packet telemetry AM-PM [25], *Flow [26], high high high medium

NetSight [27]
NetSeer [16], PacketScope [28],
Sonata [29], BurstScope [30],
HashPipe [31], QPipe [32], medium high low high
ConQuest [33], BeauCoup [34],
ElasticSketch [35]

In-network
offloading

Table 1.1: The landscape of switch-based passive network monitoring methods.

reason, in the following we review the two separately to introduce the background
useful to this dissertation.

1.2.2 In-network monitoring with programmable switches

Monitoring the network infrastructure and its traffic (e.g., identifying congestion
hotspots, detecting lossy links, forecasting security threats) is indispensable to the
successful management of hyper-scale data centers. The output of the monitoring
process is used to dispose network management actions, including the optimization
of traffic control schemes, capacity planning, users’ bills accounting, among others.
While network monitoring has been studied since the rise of communication net-
works, the advent of programmable network devices has brought new opportunities
and challenges to the field, leading to a surge of research works in the field over the
last few years. This thesis focuses on passive switch-based network monitoring, as
its methods are directly impacted by the programmability of the data plane. In the
following, we quickly review the evolution of passive network monitoring from fixed-
functions switches to programmable switches, classifying existing solutions into three
main categories.

Sample & mirror (fixed-functions) methods . Black-box switches only support a
restricted set of fixed telemetry data, which consist in coarse-grained counters ag-
gregated per-port, per-device or per-sampled-flow granularity, typically collected via
protocols such as SNMP [17]. Another widely adopted tool is NetFlow [18], which was
developed by Cisco and can collect per-flow statistics, e.g., packet counts, flow start
and finish time. High-end routers (e.g., Cisco Catalyst series) implement NetFlow us-
ing dedicated silicon [36] to maintain the active set of flows and update data struc-
tures in hardware, while sustaining high data rates. However, these ASICs implemen-
tation sacrifice flexibility, by hard-coding monitoring functions. For example, NetFlow
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summarizes traffic at the fixed granularity of the 5-tuple and does not allow express-
ing user-defined statistics. Besides, data center networks have traditionally opted for
commodity switches equipped with merchant silicon and not expensive custom ASIC.
For them, NetFlow can execute in software in the switch control plane. However, in
order to limit the stress on the switch CPU and the interference with other control
plane functions (e.g., routing), only a few packets are sampled and mirrored from the
data plane to NetFlow in the control plane [37], thus resulting in poor accuracy.

To overcome the rigidity of NetFlow, the final solution with black-box switches
was (selective) packet mirroring or traffic replays, which consists in sending a copy
of (selected) packets headers to a remote collector for later processing. In this way,
operators have the flexibility of extracting arbitrarily per flow statistics and perform
advanced network-wide monitoring tasks. Packet to be mirrored can be selected by
means of random sampling [21] or pre-configured matching rules on packet headers.
For instance, EverFlow [20] samples every SYN packet and Cisco ERSPAN [38] proto-
col allows filtering by VLAN identifiers. However, also in this case the sampling rates
are typically high in order to saturate the network with mirrored traffic, resulting in
poor performance.

Packet telemetry methods. They obtain fine-grained telemetry on a per-packet basis.
The main advantages of packet telemetry is that network devices can append arbitrary
metadata to packet headers, which can provide per-packet per-hop visibility. These
advantages are becoming more prominent as the data-plane becomes more config-
urable. For example, with In-band Network Telemetry (INT) [22], [39] programmable
switches can query and report detailed information about their internal structures or
stateful logic, e.g., queue occupancy. Thus, INT achieves both full-visibility of network
state and a temporal resolution in the order of magnitude of microseconds. However,
packet telemetry methods are faced with the high costs for reporting and aggregat-
ing telemetry data to the servers where the monitoring plane runs. INT can mirror
packets at each switch (postcard mode) or mirror packets only at the sink switches
(passport mode), but in both cases the traffic is at least doubled, which is a huge over-
head for the network. Moreover, only for data aggregation, INT can saturate more than
100 production-grade server's CPU cores in a hyper-scale DCN [40]. Recent advance-
ments, such as Direct Telemetry Access (DTA) [40], allow programmable switches to
populate data structures residing in the servers’ RAM without involving the servers’
CPU. While DTA mitigates the telemetry aggregation overhead, INT still takes exces-
sive network bandwidth for mirroring packets to the servers.

In-network offloading methods . The rise of programmable data plane switches has
initiated a new generation of network monitoring tools and opened a space for en-
tirely new research works in the field. The ability to execute custom logic in the data
plane has put forward several opportunities for improvement over traditional meth-
ods. First, differently from fixed-function methods that either mechanically mirror
sampled packets to the control plane or require expensive ASICs, modern switches
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support custom measurements in the data plane. Because measurements can be
taken on a per-packet granularity, programmable switches enable the computation
of more accurate traffic statistics (e.g., flow counts) and with higher visibility. Sec-
ond, (part of) the monitoring logic itself can be moved from a remote management
(i.e., “monitoring”) plane directly into the network, thus offloading the monitoring
functionalities from dedicated servers to the switches. For example, researchers have
recently proposed solutions to discover large flows entirely in P4 switches [31], and
even more general frameworks that can partition the executions of Spark-like queries
between the control and the data plane [29]. Embedding monitoring logic in the
switches allows reporting ready-to-use results, as opposed to raw telemetry reports,
saving bandwidth in the network and processing cycles at the remote servers. Third,
programmable switches can take local decisions based on monitored traffic and en-
force reactive measures without any interaction with the remote management plane
(e.g., dropping, re-routing, scheduling, etc.), which increases the monitoring timeli-
ness.

—— Remark
With data plane programming languages, e.g., P4, operators can embed the
monitoring logic to (i) measure, (ii) process and (iii) react to network events
directly in network devices. This paves the way to new monitoring tools with
higher accuracy, lower overheads and better timeliness, as it reduces the de-
pendencies on dedicated remote servers.

In this thesis we do not consider host-based methods, which leverage active probes
and/or measurements at the host stack to infer network performance. Active probe
methods [41], [42] inject additional probe packets into the network and combine mea-
surements from multiple probes to infer (e.g., via network tomography algorithms)
where issues (e.g., packet drops, latency increases, black-holes, etc.) happen in the
network. However, they cannot deduce which user flows are impacted by failures, be-
cause probe traffic is independent of application traffic. Passive host methods mon-
itor the socket parameters at the host stack to infer network performance [43]. How-
ever, they have limited visibility for network events happening on short time scales,
providing milliseconds time resolution at best. Since these methods are less aligned
with programmable switches, they are out of the scope of this thesis.

Sketch algorithms for in-network monitoring

The new capabilities of in-network offloading methods acted as a major driving
force for the proliferation of P4-based monitoring tools. The main challenge for these
tools consists in deriving sophisticated traffic statistics, while accommodating the im-
plementation constraints of programmable switches (Sec. 1.1). As a consequence, the
last decade has seen a surge of research proposals [32]-[35], [44]-[46] aimed at this
objective, through the design of appropriate algorithms and data structures. In this
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Figure 1.3: Generic representation of sketch algorithms for monitoring elements from
a high-speed data streams, typically used in network monitoring tasks.

thesis, we also contribute to this research area to capitalize the opportunities of in-
network monitoring offloadings.

Sketches are a family of fast and memory-compact data structures, thus they rep-
resent a popular choice for the above-mentioned objectives. In a nutshell, a sketch
(summarized in Figure 1.3) is a mechanism that uses a constant space and constant
update time data structure, while monitoring a large number of elements (e.g., net-
work flows) coming from high-speed data streams (e.g., network traffic). To achieve
its goal, the sketch aggregates in a compact memory space the statistics from multi-
ple stream’s elements. In other words, a pool of buckets (or counters) is multiplexed
across different elements of the stream. A common way to multiplex memory buckets
and keep the synoptic information is via hashing techniques. We will discuss explicit
methods in the details in Chapters 2 and 3 for several sketches. Finally, in order to
provide answers to per-element queries, the sketch typically leverages probabilistic
techniques to recover per-element statistics from the “sketched” synoptic informa-
tion available in the shared memory buckets. Therefore, the user will generally receive
approximate answers, where the approximation error is due to the collisions between
elements multiplexed to the same bucket, and can be bounded by the sketch’s design.

Today’s sketch-based tools for network monitoring, such as BurstScope [30], Elas-
ticSketch [35], QPipe [32], cover most of the measurement tasks related to network
monitoring, including heavy hitter detection, flow cardinality estimation, microburst
detection, delay estimation, etc. While sketch structures have been studied for long
in the past, the non-trivial implementations challenges of programmable data planes
has stimulated new attention. Among others, it is worth mentioning that one chal-
lenge with sketches arise from their tight coupling with the statistic they measure:
typically a sketch is specifically tailored to a single statistic (e.g., element frequency,
stream cardinality). As a consequence, to support several measurement objectives si-
multaneously, many heterogeneous sketches should execute in parallel, which might
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put pressure on the switch data plane. Notably, many of these problems are still un-
solved and remain active research areas.

1.2.3 Cloud-native applications observability

In this section we introduce the context of cloud-native applications and the mean-
ing of observability in this context.

Cloud computing, and more recently edge and fog computing, have gained trac-
tion owing to their ability to mask the provisioning and management of IT resour-
ces to business organizations and software developers. This paradigm shift has also
apported significant changes to the way applications are designed, deployed, and
evolved, with the microservice/serverless architecture becoming the de-facto stan-
dard for modern software development. The Cloud-Native Computing Foundation
(CNCF) [47], as a vendor-neutral organization bringing together developers, users and
vendors, and putting together a large ecosystem of open-source projects?, is the most
evident testament to the ambition of making these technologies ubiquitous. Among
the various challenges acknowledged by the CNCF, observability is one of the most
critical.

Evolution of distributed applications: from monoliths to cloud-native

With cloud computing, the IT infrastructure has become commodity to applica-
tion developers. Physical hardware resources are virtualized and can be dynamically
allocated at needs, introducing elasticity in the infrastructure provisioning. To fully
take advantage of this agility, the software industry has transitioned from monolithic
applications to distributed microservice-based applications. In a traditional mono-
lithic application, software is developed and shipped as a single execution unit, which
tightly integrates all its functionalities. While simple to deploy, this architecture is
cumbersome to upgrade and scale. Any change to application’s functionalities trans-
lates into the need of re-building and re-deploying the entire executable, introducing
business interruptions and dependencies among different teams.

The adoption of microservice architectures, together with the DevOps design phi-
losophy, had as a main goal to overcome this rigidity, which contrasted with the elas-
ticity offered by the cloud. A microservice application is structured as a collection
of multiple loosely coupled polyglot services, which are small application units in-
dependently deployable and scalable. To collectively realize application’s function-
alities, these services coherently communicate with each other through HTTP APIs,
or the like. As opposed to monolithic applications, this architecture permits making

2counting up to about 180 in the early Dec 2023: https://landscape.cncf.io/.
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Figure 1.4: Comparison between the traditional monolithic application and the
cloud-native scenario. The intensity of the green arrow quantifies the presence of
latent (and unknown a priori) failure events. On the right, the three pillars of observ-
ability: metrics, traces and logs.

frequent changes with minimal effort, and, combined with infrastructure virtualiza-
tion, to scale different services according to individual demands, thus also promot-
ing cost efficiency. Likewise, it enabled a set of new practices for software develop-
ment, known as DevOps. In DevOps, small teams of developers (Dev) can be orga-
nized around specific business capabilities and can concentrate only on the contin-
uous agile development and testing of services, ignoring their actual installation and
operation. In parallel, operations team (Ops) can focus on managing service runtime,
including infrastructure provisioning and performance optimization.

All together, the modern distributed microservice-based application design and
the set of DevOps practices are referred to as cloud-native technologies.

Observability in cloud-native applications

Cloud-native technologies turned building complex applications into an incredi-
bly easy development task. At its extreme, developing a web application scalable to
thousands of users is as simple as putting together ready-to-use components, such as
a backend web server (e.g., nginx [48]) and a database service (e.g., MongoDB [49]),
generating some frontend pages, and configuring orchestrators, such as Kubernetes
(k8s) [50], to automatically rescale the number of service instances depending on the
load volume.

However, the simplicity of development is counterbalanced by the complexity of
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monitoring and troubleshooting performance. Aspects of monitoring that were rou-
tine, including debugging, profiling, and performance management, are now orders
of magnitude more complex to realize. Figure 1.4 illustrates the difference between
a traditional monolithic scenario, on the left, and a state-of-the-art cloud-native sce-
nario, on the right. Monitoring a traditional monolithic application was, broadly speak-
ing, a relatively static and deterministic problem. Performance bottlenecks could
have been tested for, and intercepted, during development cycles, and the applica-
tion was either in an up or down state at runtime. Operators were used to set up auto-
mated checks (e.g., via Nagios [51]) which could access a few handful self-contained
logs data. Moreover, being monolithic, the application was deployed over a single
runtime, like a Java Virtual Machine (JVM), which could be configured to provide rich
monitoring information about code execution.

In contrast, in a microservice architecture, services are developed over a plethora
of diverse runtimes and frameworks, and with extremely rapid development cycles.
The operations teams have often limited understanding of applications code and,
more importantly, they might not have access to how the services generate their logs.
Service instances are volatile and continuously deployed and migrated across servers
with potentially heterogeneous runtime conditions. Lastly, every application func-
tionality is accomplished via the interaction of multiple services and the network,
which makes it difficult to understand the root cause of performance glitches. Overall,
the application state cannot anymore be explained by checking few pre-determined
conditions, but requires a global birds-eye view of the system.

Monitoring and observability. Observability is a fresh concept that has recently ma-
tured as a remedy to this complexity. While observability and monitoring are, espe-
cially in the academic community, often erroneously used to refer to the same con-
cept, they actually indicate to two different — but complementary — things. As ex-
plained in Sec. 1.2.1, monitoring is the process of accomplishing a set of pre-defined
tasks to verify system’s health and performance. It implies that we know in advance
what we are looking for, and we collect a set of telemetry data finalized to this ob-
jective (e.g., check CPU utilization). On the other hand, observability — defined as
“the ability to infer the internal state of the system only by its external outputs” [52] —
has the more ambitious objective of understanding for any failure, potentially never
seen before, where and why it occurred. In other words, while monitoring is con-
cerned with verifying a set of pre-formulated hypothesis (i.e., proactive), observability
is more concerned with dealing with unknown events, providing granular insights into
the system’s internals, as well as enough context to dissect complex unknown faults
(i.e., reactive). The two concepts though are complementary: observability does not
replace monitoring, and monitoring is a crucial prerequisite for observability, which
can leverage several monitoring frameworks to check the telemetry data that we de-
scribe next.

Metrics, traces and logs. In its current implementations, observability hinges on a
pervasive collection and analysis of three types of telemetry data, which are delivered
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by practically all vendors [53]-[57] and are commonly referred to as the three observ-
ability pillars: metrics, logs and traces.

1) Metrics are numerical data that describes applications and system performance
over time. They are collected from a variety of software layers, including orchestra-
tors, sidecar proxies that handle communication between services [58], [59], and the
services themselves, which can define custom metrics specific to their business logic.
Examples of metrics include service CPU utilization, memory usage, network traf-
fic, active and terminated connections, etc. They are typically collected at regular
intervals and labeled with metadata, such as the timestamp, the service name, the in-
stance ID, etc., allowing Ops teams to aggregate and filter them according to several
dimensions. Metrics are typically displayed over live dashboards and are used to trig-
ger alerts based on automated analysis tools [60]. Operators can eventually correlate
metrics across the components of infrastructure to get a more comprehensive view of
system health.

2) Traces. Metrics alone do not provide any information about the interactions be-
tween services occurring to realize the application functionalities. Traces are the de-
tailed recordings of the user requests that have committed work to do to the appli-
cation. A trace is a collection of events that describe the execution of a single user
request across chains of multiple services. Thus, a trace describes the causal de-
pendencies among visited components and the end-to-end structural flow of request
executions (e.g., in the form of a directed acyclic graph). Traces were pioneered by
Google with its Dapper tracing infrastructure [61] and have become lifesavers to iden-
tify the services’ contribution to the end-to-end request latency, and to detect the root
cause of performance issues. Some popular open source tools are Jeager [62] and Zip-
kin [63], which follow the model pioneered by Google’s Dapper.

3) Logs are typically unstructured textual data (or semi-structured) that are generated
when specific part of codes execute. Logs are the most detailed but voluminous source
of information, and are now re-gaining traction thanks to the advancements of natu-
ral language processing capabilities (e.g., Generative Pre-trained Transformer models,
abbreviated as GPT). In the distributed context of cloud-native, contrarily to mono-
lithic applications, logs are no longer self-contained files containing consequential
information generated by a single executable, but they are generated by multiple ser-
vices, runtimes and frameworks. This factor is what makes difficult to correlate logs
telemetry across the application.

A synthesizing example. Overall, observability combines data from metrics, logs and
traces to dissect the internals of a cloud-native application and go beyond fixed mon-
itoring tasks. As an illustrative example, consider a service A that tries to access a key-
value store used as an in-memory cache (e.g., Redis [64]) and falls back to a (slower)
persistent storage if the desired content is not found in the cache layer. Suppose that
service A starts making use of the cache service after a recent service update, and that
the cache memory limit is now misconfigured as it does not account for the cache ac-
cesses of A. As a result, more cache entries would be evicted, thus causing A’s request
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to fall back to the persistent storage and increase pressure to it. By looking at metrics,
an Ops teams would know about an increase in cache evictions and a corresponding
increase of the number of HTTP requests to the persistent storage. However, it could
not understand the root cause, i.e., service A also using the cache. The traffic gener-
ated by A could also fall under the radars of network monitoring tools — e.g., heavy
hitter detection — without triggering any alarm. However, thanks to traces, the Ops
team would know that service A started using the cache service and how intensively.
In addition, the application logs of service A could reveal why the service started using
the cache and take informed decision to restore performance.

In this thesis, we focus on improving the monitoring aspects of observability and
the quality of collected telemetry data, leveraging programmable NICs at the hosts. As
we will anticipate in the next section (and address in the details in Chapter 4), we pro-
pose NIC-local sketch algorithms to monitor and filter relevant metrics. This explains
the reason why we adopt the terminology monitoring for the thesis contribution?,
even in the context of cloud-native applications.

1.3 Structure and contributions of the thesis

In this dissertation we focus on the design and implementation of novel sketch-
based algorithms for single-switch network monitoring (Chapter 2), cooperative cross-
switch network monitoring (Chapter 3) and cloud-native application observability
(Chapter 4). Overall, the novelties proposed in this thesis constitute an end-to-end
scheme, which advance the state-of-the-art in data center monitoring on both the
network and application layers.

This is achieved by seizing the opportunity of placing monitoring logic into emerg-
ing programmable network platforms (Sec. 1.1) at every layer of the data center. In the
network, our solutions build upon the ability of P4 switches to run sketches that derive
fine-grained traffic statistics at line rate. We demonstrate through three novel sketches
how to improve the reactiveness and accuracy of some important network monitoring
tasks, including Distributed Denial of Service (DDoS) attack detection and identifica-
tion of heavy-hitters and superspreaders flows (e.g., network port mappers). Similarly,
for applications, we present the first attempt of offloading expensive cloud-native ob-
servability operations to IPU accelerators, e.g., Nvidia BlueField2 SmartNIC, showing
either noteworthy cost savings or better accuracy for the tenants’ applications. Fig-
ure 1.5 provides an overview of the topics covered in the thesis.

In the first contribution (Chapter 2), we limit our attention to a single switch and
introduce two new algorithms for flow cardinality estimation that support queries on
a temporal sliding window. Cardinality estimation is a required input to many classi-
cal problems in network monitoring, such as detection of DDoS attack of horizontal

3apart from conforming to others academic studies [60], [65]-[67].
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Figure 1.5: Roadmap of the thesis, covering solutions for both network and applica-
tion monitoring via programmable data-plane devices.

network scanning activities, e.g., subnets or port mappers. As an example DDoS traffic
is characterized by the sudden increase in the number of distinct source IP addresses
contacting a victim server. Once detected this abnormal behavior, the network can
block the attack by dropping or rate-limiting traffic towards the victim server. Count-
ing the number of distinct source IP addresses for every desired server, i.e., cardinality
estimation, is key to undertake repairing actions.

While existing literature have vastly studied efficient solutions for cardinality es-
timation over traffic streams, only few have focused on supporting queries on a tem-
poral sliding window. In contrast, the practical assumption many systems make is to
define an observation window of interest and periodically reset the sketch structure
at intervals equal to a window duration. This inevitably leads to issues related to es-
timation accuracy. As a trivial example, consider a DDoS attack started halfway the
reset interval and lasts for an observation window. Notice that the cardinality within
every interval is halved. In this case, even in the best-case hypothesis that an operator
has guessed right an alarm threshold exactly equal to the cardinality of the attack 4,

4trivially, this would be the best possible choice.
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this threshold would be double of the one capable of detecting the attack. Therefore,
using a simple approach such as periodic reset, the attack would go undetected and
potentially cause performance degradation or, worse, total service disruption.

A second gap of existing solutions is the lack of support to continuous-time queries.
In other words, existing solutions do not allow to estimate the flow cardinality of a traf-
fic stream at any arbitrary point in time, but only in correspondence of the end of ev-
ery reset interval. As a consequence, state-of-the-art cardinality estimation sketches
may incur large delays before the detection of anomalous events, resulting in poor
timeliness. Notice that reducing too much the reset period can have dramatic impact
on detection accuracy due to counting very few flows within the interval. Therefore,
existing solutions either sacrifice accuracy or timeliness.

We propose two novel sketches as a first contribution: TimeStamp-augmented
PCSA (TS-PCSA) and Staggered HyperLoglog (ST-HLL), which address the preced-
ing issues. The former is a novel sketch that augments the Probabilistic Counting
with Stochastic Averaging (PCSA) [68] data structure with a timestamp mechanism
to support continuous-time queries. The latter moves a step further and achieves the
same objective without incurring the timestamp memory overhead. Notably, the ba-
sic mechanism underlying ST-HLL is general and can be adapted to other similar data
structures. Through an extensive analysis we characterize analytically our solutions.
Then, we evaluate their performance against real traffic traces showing that they out-
perform state-of-the-art solutions for the same memory footprint.

Chapter 2 contributions highlights

We advance the in-network monitoring state-of-the-art by designing two novel
sketches for cardinality estimation that support continuous-time queries over
a temporal sliding window.

While TS-PCSA and ST-HLL greatly boost the accuracy of continuous-time car-
dinality estimation sketches, they’re performance are still capped by the small-sized
SRAM memory available on single switches. Programmable switches available on the
market, like the Intel Tofino line [8], are equipped with dozens of megabytes of mem-
ory at most. While this amount of fast SRAM memory is remaining basically constant
over generations, the number of concurrent flows in the data center keeps increasing,
pushing the feasibility of the these methods to their limits.

Our second contribution build on the observation that a major current limitation
is that every sketch is placed as a whole on a single switch, and multiple switches work
independently. Thus, the accuracy of the monitoring tasks is constrained by the mem-
ory available only in a single switch. Moreover, packets that pass multiple switches are
counted repeatedly, drastically increasing the redundancy in the collected telemetry.

To close these gaps, in our second contribution (Chapter 3) we extend the scope of
the problem from a single-switch sketch to a collaborative cross-switch setting. In

18



1.3 - Structure and contributions of the thesis

our solution multiple switches cooperate to the construction of a logical network-
wide sketch. Specifically, we disaggregate a logical sketch on multiple physical smaller
sketches that are distributed along a flow path. We characterize the accuracy of this
solution for the frequency estimation monitoring task, which can be used to detect
heavy-hitter flows. The main outcome of our investigation is that is possible to opti-
mize the monitoring accuracy by selecting for every flow a subset of physical sketches
to be updated. With respect to state-of-the-art solutions, we point out that in such a
disaggregated setting, when the selection of the physical sketches to be updated also
consider the traffic matrix and flow routing, the monitoring error can be reduced by
almost a factor 2.

—— Chapter 3 contributions highlights

We advance the state-of-the-art of sketches for frequencies estimation by study-
ing the collaborative approach of disaggregated sketches, where multiple phys-
ical sketches along the flow paths contribute to a larger logical network-wide
sketch, and showing the impact of traffic patterns on the monitoring accuracy.

Our previously described contributions have focused exclusively on network mon-
itoring tasks. In Chapter 4, we complement our sketch-based network monitoring
solutions with a new sketch-based framework for cloud-native applications observ-
ability. Altogether, with this thesis we aspire to build better telemetry tools that can
help data center’s administrators to inspect performance end-to-end. Specifically,
we will focus on mitigating the overheads that microservice observability (Sec. 1.2.3)
poses on system resources and the contentions that this causes with the monitored
services. To understand the dimension of the problem, consider that Netflix collects
about 2M metrics [60], Uber aggregates 500M metrics/s and stores the resulting 20M
metrics/s globally [69]. Furthermore, using AWS-managed Prometheus [70] backend,
ingesting 500M metrics/s would cost 21M$/month, and storage costs with 150-day re-
tention would be 210k$/month. Therefore, coping with the escalating telemetry data
represents an increasing financial strain. This observability bloat happens because,
driven by the common-sense rationale that larger telemetry data volumes increases
the chance of having useful data for future needs, many organizations just try to max-
imize the amount of collect data from their microservices. However, most of the col-
lected telemetry data contain clutter information which is rarely useful in practice.

In our last contribution, inspired by what happened in the network monitoring
space, we propose for the first time a new three-tier architecture to the problem of
cloud-native application observability, which aims at reducing the costs and increase
the quality of telemetry data collected from distributed microservices. Towards this
goal, our main thought is to introduce the SmartNIC as an intermediate tier, sitting
between the monitored nodes and the centralized monitoring server(s), to host ob-
servability functionalities. Our relatively intuitive but previously unexplored idea is
that SmartNICs, thanks to their ability to run custom software, and their proximity to
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the monitored services, can help to narrow the focus on informative data and filter
out clutter telemetry data. Chapter 4 will develop a framework, named pView, and
demonstrate the effectiveness of this idea in a production quality cloud-native appli-
cation. In this chapter, we will solve the challenges related to accessing and manip-
ulating the monitored telemetry data residing in the servers where applications run,
from the monitoring logic residing in the external SmartNIC accelerator. Moreover,
we will innovatively apply sketches to the microservices’ observability domain, and
present a prototype implementation on a BlueField2 SmartNIC.

—— Chapter 4 contributions highlights <
We advance the state-of-the-art of cloud-native applications observability with

a framework, uView, that combines streaming sketches and SmartNICs to of-
fload observability tasks and improve the quality of telemetry data, while re-
ducing overheads.
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Chapter 2

Continuous-Time Sketches for Flow
Cardinality Estimation

Part of the work presented in this chapter has been published in:

e A. Cornacchia, G. Bianchi, A. Bianco, and P. Giaccone, “Staggered HLL: Near-
continuous-time cardinality estimation with no overhead”, Computer Commu-
nications, vol. 193, 2022.

* A. Cornacchia, G. Bianchi, A. Bianco, and P. Giaccone, “Designing Probabilis-
tic Flow Counting over Sliding Windows”, in 2022 IEEE 11th IFIP International
Conference on Performance Evaluation and Modeling in Wireless and Wired Net-
works (PEMWN), 2022.

Given a data stream which contains repeated items, the goal of cardinality estima-
tion (i.e., distinct counting or count-unique) consists on finding how many items are
distinct.!

For network monitoring, measuring the number of distinct flows that are active
within a network traffic aggregate is a crucial task. Several applications, including
intrusion detection [73]-[75], traffic engineering [76], packet scheduling and router
design [77], can benefit from a fast and accurate estimation of flow cardinality. Notice
that different applications adopt different flow definitions, and monitor the spreading
behavior towards/from multiple target streams in parallel. For example, in a DDoS at-
tack, several sources flood a victim host with a huge amount of connections in order
to make it unavailable. Therefore, a DDoS detection system counts the number of
distinct source IP addresses (i.e., flows) that are currently active within the portion of
traffic destined to a single host (i.e., target stream). If the intrusion detection system

n this chapter, we focus on sketches for network monitoring over traffic streams. In this context, an
item is represented by a network flow, and the terminology ifem or flow might be used interchangeably
with the same semantic.
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is deployed upstream multiple target hosts, it monitors them in parallel. Similarly, de-
tecting a port scanning attack can be performed by counting the distinct destination
ports (flows) in a set of packets from the same IP subnet address space (target stream).
Furthermore, the spreading nature of a flow can be taken into account also for traffic
engineering, e.g., by applying specific routing policies to superspreaders [76].

Existing literature about streaming algorithms for cardinality estimation [68], [78]—
[80] has vastly addressed how to get accurate count estimates by processing the input
traffic stream using a constant-time per-packet operations and logarithmic (or sub-
logarithmic) memory footprint compared to the input stream size. Unfortunately,
most of these widely adopted count-unique sketch data structures do not provide
natively the possibility to devise a sliding window approach in a way to forget out-
dated information and consider only “recent” traffic. Yet, the capability to track in
continuous-time the traffic statistics of interest is an essential property for the afore-
mentioned network monitoring algorithms. The sudden increase (or decrease) in the
number of flows can bring evidence about anomalies or attacks, or reveal patterns in
users’ network activity. Refactoring such structures so as to permit them to operate
using a sliding window or an exponential smoothing coefficient would provide this
“short term” memory. While this problem has been studied for other sketch-based
data structures [81]-[84], an analysis of the state-of-the-art shows that, among hun-
dreds of works focusing on count-unique sketch data structures, only a couple specifi-
cally tackle the problem of devising a sliding-window-based cardinality counters [85]-
[87].

To this end, in this chapter we present two novel mechanisms that enable con-
tinuous-time (CT) operations for two popular state-of-the-art cardinality estimation
sketches. The first mechanisms that we propose is Staggered HyperLogLog (ST-HLL),
which adds CT support to the well-known HyperLoglog (HLL) [79] sketch. The most
noteworthy feature of ST-HLL is that it does not require any timestamp mechanism to
discard outdated information. We refer to this property as timestamp-free sketch. At
its core, ST-HLL leverages a single timeout, available on most commercial hardware,
to circularly reset HLL registers one by one. Thus, it approximates a sliding triangular-
shaped window at zero extra memory cost compared to vanilla HLL.

In the second part of the chapter, we focus on timestamp-augmented approaches,
and we consider specifically Probabilistic Counting with Stochastic Averaging (PCSA)
(also known as FM sketch). We propose a second CT scheme, the TimeStamp-aug-
mented PCSA (TS-PCSA) sketch, which extends PCSA sketch to support CT queries.
The key novelties of TS-PCSA are a set of optimizations aimed at compressing the
number of bits for the timestamp representation. We numerically quantify the per-
formance of ST-HLL and TS-PCSA (Sec. 2.4) at the end of the chapter. We evaluate the
achieved trade-off between memory and accuracy and confront our approach against
the current continuous-time HLL [85] under realistic settings.

In short, the main contributions presented in this chapter are the following:
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* we propose ST-HLL, a new LogLog sketch that enables near-continuous-time
measurements at no extra cost with respect to a vanilla HLL. To the best of our
knowledge, ST-HLL is the first timestamp-free sketch for cardinality estimation;

* we propose TS-PCSA, an algorithm to enable PCSA counting distinct flows over
sliding windows and optimized its memory footprint;

* we compare the accuracy of the two solutions, and show their different trade-
off between accuracy and memory footprint. For the same memory budget, ST-
HLL and TS-PCSA are up to 55% and 25% more accurate than state-of-the-art
solutions, respectively.

2.1 Probabilistic count-unique sketches

Efficient cardinality estimation of a target stream via probabilistic data structures
is a problem pioneered by Flajolet and Martin as early as 1985 [68], and then further
addressed and improved in many subsequent works, including [78]-[80], [88]-[90]. In
this section we provide the background on some of the most popular sketches and
their extensions to support continuous-time measurements.

2.1.1 Static time window scenario

We first consider the problem of counting unique flows on a pre-determined and
static time window. We refer to these baseline sketches as cumulative counting tech-
niques, as they can only increase their estimation over time with the contribution of
new arrivals. In other words, cumulative counting sketches do not provide any means
to forget “old” flows within the window.

Streaming sketches for cumulative distinct counting is a long-standing research
problem for which several solutions have been proposed. Some well-known exam-
ples include Linear Counting [88], PCSA [68], MinCount [80], [91], Multiresolution
Bitmap [92], LogLog and SuperLogLog [78] and the latest evolutions HyperLogLog [79]
and HyperLogLog++ [93]. A comprehensive overview and quantitative comparison
can be found in the survey papers of Metwally et al. [94] and Harmouch et al. [95].
In this section we focus on two widely adopted sketches, namely Probabilistic Count-
ing with Stochastic Averaging [68] and HyperLogLog [79], and provide the necessary
background required for the remaining of this chapter. We chose these sketches as
they are implemented in several commercial Big Data query engines. For instance,
HLL is part of Google BigQuery [96], Microsoft Kusto Query Language [97] and Face-
book distributed SQL engine [98].
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Figure 2.1: The workflow of the two most common cardinality estimation sketches:
HLL [79] and PCSA [68] to estimate the cardinality of a set of flows from an input traffic
stream.

HyperLogLog (HLL) and Probabilistic Counting with Stochastic Averaging (PCSA)

Figure 2.1 illustrates the logical scheme adopted by both PCSA and HLL to esti-
mate n. While some operations reported in the figure can be avoided depending on
the algorithm, in the interest of comprehensiveness it is useful to abstract both algo-
rithms under a common logical framework and highlight the implementation details
when relevant.

The goal is to evaluate the cardinality 7 of a set of flows X, i.e., with | X| = n, con-
tained in a stream of packets. The packet stream can be viewed as a flow multiset, i.e.,
a set where each element can appear multiple times (in the example of Fig. 2.1 this
is {x1, x2,..,x1,x,}). Each packet in the input traffic stream is assigned uniformly at
random to one out of m traffic substream, each substream updating a different mem-
ory register as described in the following. Let’s initially focus on a single substream,
with cardinality n/m on average by construction. For each packet in the substream,
these sketches evaluate (step (1)) a hash function h(x) on the flow identifiers x € X.
Then, by looking at the binary representation of h(x), step (2) consists in extracting
the left-most position? p(h(x)) where a bit equal to 1 is found. This position is re-
ferred to as the rank of a flow x and is the key quantity used to estimate the cardinality
of the substream. In the example of Figure 2.1, the resulting ranks are 1,2,4 for flow
X1, X2 and x,, respectively. Next, the ranks are stored in a bitmap C;, with boolean en-
tries C;[b], where b is the bth Least Significant (LS) bit. For each flow x, the bitmap is
modified as C;[R(x)] = 1 to store the flow rank (step (3)). Note that packets belonging

2We assume indexes are counted starting from one.
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2.1 - Probabilistic count-unique sketches

to the same flow result into the same hash value and thus, after the first packet of a
flow, subsequent packets have no effect on the bitmap state (e.g., flow x;). In other
words, every flow is counted only once by construction.

Let R(x) = p(h(x)) be the random variable associated with the rank of a flow x and
observe that Prob(R(x) = r) = 277, i.e.,, R(x) follows a geometric distribution, given
the uniformity property of the hash function. This suggests the main idea behind the
HLL and PCSA’s estimation. Consider the state of a bitmap C;, after the insertion of 2"
flows. Ideally, i.e., if we could average over a large number of realizations of the traffic
stream, we would expect to observe in C; a block of zeros in the Most Significant (MS)
bits and a block of r ones in the LS bits. Thus, according to the property discussed
before, we would estimate the cardinality as 2" where r is the number of ones in C;.

While this holds on average, in practice we are provided with a single realization of
each substream. Due to the randomness of the traffic and hash function, C; is typically
composed of a block of zeros (MS bits), followed by non-continuous sequences of
zeros and ones, and finally a block of only ones (LS bits). PCSA and HLL provide two
different — although very similar — techniques to interpret the bitmaps and estimate
cardinality (steps @) and (5)).

The next step (4) consists in choosing which information in the bitmap to use to
estimate cardinality within the i-th substream.

* In HLL, consider only the left-most bit equal to 1 in the bitmask, i.e., the maximum
rank Ry, = maxyex p(h(x)), and approximate the distinct number of flows in a sub-
stream as 71/ m = 2Rmax,

* In PCSA, consider the entire bitmask of ranks (i.e., register) and approximate the
. . . ) . .
number of distinct flows in a substream as n/m = 25 where kl(.” is the size of the

rightmost one block, or equivalently kED + 1 corresponds to the position of the first
zero in C; starting from the least significant bit;

It is worth noticing that, from an implementation perspective, PCSA requires the en-
tire bitmask C to be stored in a memory register, whereas HLL only to keeps track of
the maximum value of the rank. Since only the position of the maximum within the
bitmap needs to be stored, the asymptotic memory cost of HLL is mlog,log,(n/m)
bits, whereas for PCSA is mlog,(n/m) bits. Thus, HLL can be deployed using smaller
memory registers than PCSA, by a logarithmic factor in the number of bits.

Up to now we have focused on individual substreams. However, it’s easy to see that
within a single stream the above techniques are characterized by a large variance. In
HLL, a single occurrence of an outlier flow, i.e., a flow with R(x) > log, n, would sig-
nificantly bias the estimation. Likewise, in PCSA it's enough the “absence” of a single
rank in the bitmap to underestimate cardinality. Stochastic averaging [68] is a tech-
nique that was introduced to reduce the estimation variance. It leverages the m traffic
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substreams and mimics m independent estimators®. The estimations obtained from
the m substreams are averaged (step (5)) to reduce noisy fluctuations.

e In HLL, the harmonic mean of the substream estimations 2%max is used to filter the
impact of outlier flows. The overall cardinality estimate 72 is given by:

m2

m i
m —R!
E i=12 max

n=a (2.1)

where «a,, is a constant factor that depends on m and derived in [79]. Notice that
since the harmonic mean should be near n/m, it is further scaled by a factor m to
estimate the overall stream cardinality 7.

. M e
* In PCSA, the substream estimates 2% = are multiplied each other and scaled by a
factor m/a to obtain the overall cardinality estimate 7.
m kW

m
fy = - omIitik; 2.2)

where a = 0.77351 [68] corrects a systematic bias. Essentially, PCSA uses the arith-
metic mean of the rightmost one-blocks lengths kl(l) to estimate the “average” sub-
stream cardinality. Then, the overall cardinality is obtained by multiplying the sub-
stream estimates and scaling by a factor m/a.

Error guarantees . In terms of accuracy, Flajolet et al. [79] demonstrated that for HLL,

the harmonic mean across register estimations gives a relative error to 1.04//m on av-

erage. Notably, this guarantee is almost 30% better than its predecessor, LoglLog [78],

whose relative estimation error is 1.30//m. Instead, PCSA, while requiring more mem-
ory, it's more accurate, with an average error as low as 0.78//m. Intuitively, this is

because PCSA uses the rightmost one-blocks lengths kl(.l) to estimate substream car-

dinality, which is a more robust statistic than the maximum rank.

Time binning

The preceding sketches very efficiently address the main obstacle behind the dis-
tinct counting problem, namely how to efficiently remember which items have al-
ready been seen in the past to avoid double counting. In practice network managers
need to collect measurements not only on a single interval, but for the entire up-time

3Stochastic averaging can be implemented to mimic the effect of multiple independent estimations
using just a single hash function. The first log, (m) bits of i(x) are used to assign flow x to a substream
and the remaining bits to extract the rank. In this efficient implementation, the hash computation
shown in Figure 2.1 would be performed before, and not within, the register’s substream block.
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Figure 2.2: Time binning: the data structure is reset at the end of each reset interval
(epoch) and the cardinality is estimated on the entire interval.

of the network. A typical deployment strategy is to operate the sketch structure on
slotted time intervals (i.e., epochs) and reset the entire structure at the end of every
interval before starting the next one, as shown in Figure 2.2. However, this solution,
which we refer to as time binning, presents several downsides. An immediate and
inherent drawback is that time binning fails to detect the spreading behavior of a traf-
fic aggregate whenever this happens in the middle of two consecutive epochs. This
is because in this case the corresponding flow cardinality would be split across two
independent estimates.

Second, by working with static and non-overlapping measurement intervals, this
simple solution cannot answer queries about a past observation window at arbitrary
point in time, but only synchronously to interval boundaries (i.e., reset times). This is
because the accuracy of the results is determined by the number of registers and their
size, which is in turn chosen depending on the expected number of flows within the
observation window.

Third, it is challenging to set the proper interval size, as it requires to strike a deli-
cate balance between latency and detection capabilities. A large interval would intro-
duce high reaction delays, being results available only at the end of the interval. At the
same time, short intervals might not be able to detect a slow spreader.

2.1.2 Sliding window scenario

Many network monitoring application would rather benefit from the capability
of “tracking”, in continuous time, the spreading behavior of traffic aggregate. Un-
like in the classical and consolidated time binning strategy, an alternative solution are
sketches that natively — i.e., by initial design — support continuous-time operations.

Existing sketches that by design offer this capability can be referred to as timestamp-
augmented. This is because timestamp-augmented algorithms [77], [85], [99] typically
build upon a sketch for cumulative counting and augment the information main-
tained in the sketch data structure with timestamp information. Since the sketched
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information is tagged temporally, these techniques can distinguish and disregard out-
dated information with arbitrary precision by choosing a sufficiently high resolution
for representing the time. In fact, by properly choosing the resolution, they can pre-
cisely use only the knowledge coming from traffic within the current observation win-
dow. As a downside, timestamp-augmented solutions are characterized by a remark-
ably high resource consumption, due to the need of storing timestamps and the com-
plexity of managing outdated entries. As such, timestamp-augmented solutions pose
a few challenges for their implementation on resource-constrained programmable
switches [100].

HyperLogLog over sliding windows

In this section we review existing timestamp-augmented extensions of the HLL
algorithm to support continuous-time measurements over a sliding window. An ob-
vious solution for this problem is to buffer all the ranks observed within the current
observation window, for every substream. In this way, at any point in time the ranks
of all “recent” flows are kept in memory. Therefore, this straw man would be capable
of deriving the m maxima for every substream, and answer time-range queries using
the standard HLL mechanisms discussed in Sec. 2.1. However, this simple solution
doesn’t scale well, as the amount of ranks to keep in memory can grow fast for in-
creasing window sizes. Sliding HLL [85] improves the straw man solution, thanks to
the intuition that only the ranks eligible to become maxima in the future need to be
maintained. Sliding HLL keeps m distinct lists called List of Possible Future Maxima
(LPFM), containing pairs of the kind (timestamp, rank). When the rank of a new item
isinserted into one of the LPFMs, all ranks smaller than the new one are evicted from
the list, together with the ranks oldest than a past window. Therefore, differently from
the straw man solution, the arrival of a large possible future maxima evicts several
smallest entries and permits freeing up the LPFMs. As a consequence, Sliding HLL is
functionally equivalent to the exhaustive storage solution (i.e., straw man), but with
significantly lower memory consumption needed to maintain recent information.

As shown by the authors, the asymptotic memory cost of Sliding HLL can be up-
per bounded by (b +1og, log, (n/ m))mIn(n/m) bits, being n the maximum number of
flows per window and assuming b-bit timestamps. Compared to the asymptotic cost
of mlog,log,(n/m) of vanilla HLL, this cost is higher due to storing the LPFMs entries.

2.2 The Staggered HyperLogLog continuous-time sketch

Timestamp-augmented solutions are characterized by augmenting the synoptic
information contained in a counting sketch with information about the insertion time.
Managing timestamps involves (1) additional memory overhead, which grows with
the timestamp resolution, and (2) high complexity to ignore outdated entries during
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Figure 2.3: Staggering three HLLs, each of them with 4 registers. The query reads a
single HLL and can happen just before resetting the register.

queries and periodically prune them. Together these two factors make timestamp-
augmented solutions challenging to implement on resource-constrained program-
mable switches.

This leads to the question that motivates our first contribution: is there a way to
turn a HLL-like data structure into a continuous-time one, at no extra resource cost
in terms of increased number of internal counters, or increased per-counter memory,
or extra hardware? We introduce a novel solution that satisfies all preceding require-
ments, To the best of our knowledge, our solution is the first sketch for cardinality es-
timation that supports continuous-time queries over sliding windows while keeping
the same complexity of vanilla HLL. We denote our solution as Staggered HyperLog-
Log (ST-HLL), as it is based on the idea of staggering the internal registers of a single
HLL to approximating a sliding window filter without dealing with timestamps. ST-
HLL initiates a new family of cardinality estimation algorithms, which we refer to as
timestamp-free. While applied to HLL, our staggered approach could in principle be
adapted to other algorithms, provided they preserve the same functional architecture
based on registers (e.g., MinCount [80] and LogLog [78] alternatives).

The next sections describe how ST-HLL achieves our goals. In Sec. 2.2.1 we high-
light a general scheme that will serve as a reference solution in the design of ST-HLL.
We discuss why ST-HLL takes inspiration from this scheme, but it approximates it at
a much smaller memory cost. Then, we explain some analytical findings (Sec. 2.2.3)
which are pivotal to properly scale and equalize the registers’ outputs when answering
queries with our solution (Sec. 2.2.4).
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Figure 2.4: Staggering the 4 registers using a single HLL.

2.2.1 Problem formulation

Before delving into the details of our scheme, let us first describe a straw man so-
lution to the problem. If we could afford to deploy and run multiple HLL sketches in
parallel, as opposed to a single HLL reset every W seconds, one could rely on a stag-
gered approach of multiple HLL sketches, as shown in Fig. 2.3. Remember that the
main problem of time binning was to dimension the time epoch: to achieve low re-
action latency, one had to choose a small time epoch, thus compromising accuracy.
In contrast, such a combined straw man structure would permit to employ a possibly
long measurement window W, but would also allow to track the traffic dynamics at a
finer timescale 7 = W/N, where N is the number of parallel HLLs deployed. Each HLL
would in fact “learn” about the incoming new items (equivalent to new traffic flows),
but only one “active” HLL (the “oldest” one) would have accumulated arrivals for W
time and would be in charge to report the current cardinality estimation (the bottom
one in Fig. 2.3). Hence, the straw man solution could achieve both high accuracy and
low reaction latency.

Such a straightforward approach is practically ruled out by the unbearable N-fold
increase in required resources, as N fully fledged HLL should be deployed instead of
a single one. Notice that for N — oo this straw man would attain arbitrarily low time
granularity (7 — 0), thus mimicking an ideal sliding window filter.

Despite its unbearable complexity, this baseline approach naturally suggests the
following apparently naive idea:

would it be possible to achieve the same result by staggering the
internal registers of a single HLL?

As shown in Fig. 2.4, this operation would come along with zero additional resource
cost - it would suffice to deploy a staggered timer which periodically resets only one
single HLL register at a time - anything else would be left unmodified.

While being a relatively simple intuition, we faced a major technical caveat to turn
such a naive idea into an effective approach. Since the registers are staggered in time,
they now “count” items on different time windows. Hence, we cannot neither resort
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to the classical HLL stochastic averaging process to reduce the estimation error, nor
their simple aggregation would work. It is trivial to check (see also discussion at the
end of Sec. 2.2.2) that the estimation error would increase rather than decrease. In the
following, we devise an analytical framework to model this behavior and tackle the
issue of aggregating staggered registers.

2.2.2 Notation and assumptions

Similarly to a standard HLL data structure, let us consider m registers. We in-
troduce two different time scales: i) a smoothing timescale W, and ii) an updating
timescale T. W is a window size which defines the target memory depth of the data
structure. T <« W is the timescale at which the HLL is updated. For reasons that will
become clear later on, it is convenient to set T = 2W/m. Considering that m is usu-
ally set to a relatively large value, say 512 or 1024, a relatively long window W, e.g., 4
minutes, would be updated at a rate of about 1 or 2 times per second, thus producing
a near-continuous-time effect for monitoring applications which aim to follow traffic
dynamics and updates at a timescale in the order of seconds.

Our staggered HLL approach builds upon the idea of resetting only one among
the m registers at each time slot 7. More specifically, we reset counters in a circular
fashion, as shown in Fig. 2.5. This implies that each register in the HLL will track a
different time period: At the time in which a register is reset, the previously reset one
will have tracked its fraction of traffic arrived in the latter slot 7, the second previous
one will have tracked a time interval 2 - 7, and so on. Remember that in HLL (Sec. 2.1)
the registers contain the maximum observed rank R’,,.. For ease of notation, it is
convenient to rank all the registers based on the reset time. Let’s denote with M; the
value (i.e., R.,,.) stored in the i-th most recent register to have been reset, with 1 <
i < m. Owing to the above convenient notation, at an arbitrary time instant ¢, register
M; will have counted arrivals in the interval (L ¢/7]7 — (i — 1)7, £].

Let us now assume throughout the remainder of this chapter that the number of
new items recorded by each register is proportional to the size of its measurement period
- see also Fig. 2.4 (we'll discuss this assumption in more depth in Sec. 2.4.2). If we
“read” the status of all registers at a time ¢ exactly in the middle of the updating time
slot 7, and we assume that the overall rate of new arrivals is A items per second, then
register i, which tracks 1/ m-th of the traffic, will have recorded a fraction A/m of new
arrivals for a time period (i —1/2) -7 = (i —1/2)- % Hence, by summing the content
of all the m counters, we would trivially obtain an estimate* of the number of new

This explains why we have specifically selected T = 2W/m. With such setting, the “shorter” time of
the most recently reset counters is compensated by the “older” counters which can account for up to a
time interval of 2W before being reset.
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Figure 2.5: Register-based Staggered HyperLoglog with 4 registers sampled at time #;
(when the sorted sequence of registers is [M;, M», M3, My]) and at time f, (when the
sorted sequence of registers is [M», M3, My, M;]).

arrived items in a time period W, as shown in the following:

noA 2W
Y —(i-1/2)-— =AW
i=1 M m
Unfortunately, summing the content of all counters is not a viable approach, as the
variance of the so-obtained estimator would dramatically increase rather than de-
crease. The estimation error would reduce by taking a stochastic average, but this
is not anymore straightforward in our case, as the registers record estimates taken on
different time periods, hence they ultimately estimate different quantities.

2.2.3 Analytical model of heterogeneous registers

As anticipated in the previous section, the above described construction brings
about a crucial difference with respect to the classical HLL data structure. In stan-
dard HLL, the uniform split of the traffic across the m deployed registers makes such
registers statistically homogeneous, i.e., each register yields an estimate of the same
quantity. In our case, each register instead used a different measurement window,
and therefore accounts for a different number of items.

Since in the following analysis we are considering a single register, let us simplify
notation and avoid indexing the i-th register with the superscript, e.g., R := R!, etc. To
establish a quantitative insight on how each register’ statistics depend on the number
of accounted items, it is instructive to note that this relation would become trivial
if the value in each register, instead of being an integer geometric random variable
R, were approximated by a continuous random variable denoted as R. Indeed, for
such “continuous”-valued register, the probability that a new arriving item “hits” a
given (real-valued) register position would now follow an exponential law instead of
the geometric one introduced in Sec. 2.1, i.e., Prob(R > x) =277,

Let us now assume that n items are accounted by the register. It readily follows that
the random variable Ry, representing the current register’s state, i.e., the maximum
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value among the n values drawn from the above exponential distribution, has cumu-
lative probability distribution given by the product of the n exponential distributions;
in formulae:

Prob(Rmax < %) = (1-27%)"

Such continuous distribution is very convenient, as it yields very simple closed-form
expressions for the statistical moments®. Routine computation indeed yields the reg-
ister’s expected value:

——+log,(n) (2.3)

HRmal =100y % o

where H, =}, 1/i are the well known Harmonic numbers Hy,, and the approxima-
tion follows from the definition of the Euler constant y = lim,,_..(H, —Inn) =0.5772.

For our purposes, it is important to further note that the variance of the register
does not diverge for large n, but rather converges to a constant quantity:

H,(,lZ) n—0o0 7[2

VarlBmadd = 17555 % G2

=3.424

where H,({) = ?:1 1/i" is the Harmonic number of order r, and lim,,_. H,(lZ) = %/6.

In Fig. 2.6 we show the coefficient of variation of R,«, denoted as:

v/ Var(Rmax)

AL
Vlfmax) = —p B

which can be seen as the relative error of a HLL for a given number of flows counted in
a HLL register. From the plot, it is clear that the most inaccurate registers are the ones
with few arrived flows. This is a crucial observation, since in ST-HLL, by construc-
tions, the error depends on the register, differently from a standard HLL in which all
the registers are fed by homogeneous arrivals, leading to errors identical on average.
The main problem arises when combining together the estimations provided by the
registers, since the average should take into account the different levels of accuracy
characterizing each register.

So far, for simplicity, we have assumed “continuous” - exponentially distributed
- register values, whereas a HLL register of course can only assume integer values.
However, this is trivially accommodated by adding a constant 1/2 that accounts for

SBeing a positive random variable, the moments can be directly computed from the complementary
cumulative probability distribution as

o0

E[X'] = r/ X IP(X > x)dx = rf - (1-27%)") dx
x=0 0
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Figure 2.6: Evaluation of relative error Cv(Ry,y) in a HLL register given a number 7 of
recorded flows.

such quantization. More formally, this extra constant yields from eq. (2.8) in [101],
which provides an explicit approximation for the expectation of the maximum ofi.i.d.
geometric distributions. It follows that equality (2.3) is readily adapted to the discrete
case as

1 _
E[Rmax] = > +E[Rmax] =7 +10g, (1) (2.4)

where the superscript g refers to the geometric distribution of the actual HLL regis-
ters, and y' = 1/2+y/In(2) = 1.332. Observe that (2.4) provides the most accurate
formula we will need in the following for actual value stored in a HLL counter, given
n recorded flows. Fig. 2.7 shows the true value for E[Rpax] and its approximation ac-
cording to (2.4). The relative error is very small (e.g., < 4% for n = 5) and decreases
with n. Thus, the approximation (2.4) is accurate also for small values of r.

2.2.4 Algorithm design
Querying heterogeneous registers: scaling and equalization

We now have all the tools necessary to specify our proposed ST-HLL scheme, de-
scribed in details in the pseudocode of Fig. 2.4. In a nutshell, we address the hurdle
introduced in the previous section by “equalizing” the registers by a proper scaling, in
such a way that all registers will estimate the rate on the “same” time window. This
permits to exploit the well-known results for classical HLLs and compensate for the
systematic errors with standard techniques.

Assume, withoutloss of generality, that we are interested in reading the overall HLL
count at a time instant ¢ corresponding to the end of a time slot 7, i.e. right before the
“next” register is reset, and define W; as the time window span of the i-th register M;,
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Figure 2.7: Evaluation of the error in E[Rpnax] when considering the approxima-
tion (2.4).

i € {1, m}. Owing to our notation,
; 2W
Wi=ixt=1i—"01.
m
Let now ¢ be the actual HLL reading time. Since each register receives a fraction 1/m
of the items, the expected number of items n; accounted by each register M; in its

time window W; is:
V¢
n; = f Qd[
t—W; m

If we now assume a constant arrival rate within the past W; interval of time, i.e., A(¢) =
A, then:

nij=——I (2.5)

which provides an explicit relation between A and the expected number of arrivals in
aspecific register. By inverting (2.5) it, we can derive a local estimation i,- of the arrival
rate at register M;:
s mm?
Yo2wi
Thanks to (2.4), we can estimate the expected value of a generic register M; based on
its corresponding window W; as

(2.6)

E[M;] =y +1og,(n;)
and then, by a first order approximation, we can claim
ni = 2Mi_Y’
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1: procedure QUERY()

2: fori —1to mdo > For each register
2

A _pym

3 Aj=2Mi=D Wi > Estimate A locally
i

4 A=am HARMONICMEAN([;li];’il) > Estimate A globally

5: if A< %m then > Small range corrections - linear counting

6: v=|{M;,iefl,..., m}|M; = 0}| > Num. zero registers

7: if v # 0 then

8: return mln(m/v)

9:  ifi> %232 then > Large range corrections

10: return —2321n(1 - 1/232)

11:  return > Medium range - no corrections

Figure 2.8: The query algorithm for ST-HLL.

which allows to rewrite (2.6) as follows:

m2
2Wi

A =2Mir 2.7)

It follows that the above equation (2.7) permits to turn the heterogeneous registry
values M; into estimators A; of a same quantity A, namely the overall arrival rate of
new items to the HLL data structure. We can hence now proceed exactly as in the
case of a standard HLL, i.e., compute the harmonic mean of all A; by scaling by a
proper factor a,,, which has been computed in [79] and also accounts for y’ in (2.5).
Approximately, a,, = 0.7.

The pseudocode of the query function is reported in Fig. 2.8. At a first step, a local
estimation of the rate at each register is evaluated using (2.7) (In. 2-3). As second step,
the local estimations are combined though a harmonic average, according to the stan-
dard methodology for HLL (In. 4). Finally, some well-known correction factors to the
rate estimator, as derived in [79] for standard HLL, are applied to consider different
level of “occupancy” of each register (In. 5-11).

In terms of implementation complexity, the proposed solution is identical to a
standard HLL, without the need of additional memory as in alternative solutions, as
discussed in Sec. 3.4. Thus, the total memory is mlog,log,(n/m) where n is the max-
imum number of flows during the observation window. An internal timer must be
available to trigger the reset of a single register every 7 time.

Low-counter variance compensation

As discussed in Sec. 2.2.3, Fig. 2.6 shows that the accuracy of the estimated num-
ber of flows in a register greatly depends on the number of recorded flows, and con-
sequently the estimators referring to the lowest ranked registers (M;, M>,...) are the
most inaccurate. In order to reduce the variance in the final evaluation of the rate es-
timator, we propose the following heuristic approach: when computing the harmonic
mean (In. 3 in the pseudocode of Fig. 2.8), we consider only the registers with index i
larger than a given threshold ij,. Even if iy, requires some tuning, we could observe
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agood trade-off between accuracy and temporal granularity by setting imin = m/8, i.e.,
we neglect the 12.5% of the lowest (supposed) registers.

This variant of ST-HLL with the variance compensation technique will be later de-
noted as ST-HLL+. Notice that in ST-HLL+ all the counters are updated as usual when
a new packet arrives, whereas the compensation is applied only at query time during
the final average computation. We will show in Sec. 2.4 that this simple approach to
variance compensation works well in practice.

Analogy with a triangular low-pass filter

Note our ST-HLL algorithm mimics a “triangular” sliding window of depth W, and
not a “rectangular” window. This can be easily understood from the fact that it com-
bines low-index registers, which use window depths lower than W, with high-index
registers which instead measure items on a time period which may span up to twice
the size of the nominal window W.

More formally, being A(¢) the instantaneous arrival rate, a classical sliding window
would produce a smoothed measured rate r() = [, A(x)/ Wdx. Instead, when the
number of HLL registers is large, our smoothed measured rate would converge to:

¢ t—x
r(t) —ft A(x)(l—ﬁ)dx.

-2W

i.e., the convolution of A(¢) with a triangle gate function. Hence, even assuming an
ideal operation, our results are in principle expected to (slightly, if W is relatively small
with respect to the traffic dynamics) differ from those obtained by a pure sliding win-
dow. We will show in Sec. 2.4 that this approach works well in practice, and outline
the effects of this approximation.

2.3 TS-PCSA sketch

In the previous section we have proposed a timestamp-free version of the HLL
sketch, which approximates a triangular-shaped low-pass filter by running a peri-
odic staggered reset of HLL registers. As a different line of work, we now focus on
timestamp-augmented approaches, and specifically we consider PCSA [68]. We show,
as a second contribution, how to extend it to support sliding windows operations and
discuss several optimizations to reduce the overhead of storing high-resolution times-
tamps. Our technique allows using few-bit low-resolution timestamps and takes ad-
vantage of stochastic averaging to smooth the timestamp quantization error.

In the next section (Sec. 2.3) we present our algorithm TS-PCSA and discuss its
time and space complexity, while in Sec. 2.3.2 we propose TS-PCSA+, an optimization
of the baseline algorithm to reduce the memory footprint required for storing times-
tamps.
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1: procedure QUERY (z,W)

2 a=0 > Init the accumulator for the average
3 fori —0— (m—1)do > For each counter
4 ;= - i— I > Compute the temporal offset

m-—1 2

5: fork—0— (K-1)do > For each bit starting from LS bit
6: if T;[k]+6; < t— W then > Check timestamp
7 break > Leave the search loop if outside the window
8 a=a+k > Accumulate k for the average
9 n=mx2m > Compute the average and the final count

10: return n/0.775/W > Output the final rate with bias compensation

Figure 2.9: Querying at time ¢ a TS-PCSA sketch (e code) or a TS-PCSA+ sketch (e e
code), tracking a sliding window W.

2.3.1 Our approach at a glance

We denote our solution TS-PCSA, which stands for TimeStamp-augmented PCSA.
We assume to have m arrays (also denoted as “registers” with abuse of language), each
of them storing K timestamps. Notice that, as in HLL (Sec. 2.2.2), each register counts
n; = n/m, where n is the total number of flows within an observation window. We
select m being a power of 2. Since registers now store timestamps instead of bitmaps,
in the following let us denote them as Ty, ..., T);—1, and the timestamp stored in the
(k + 1)th LS bit of the ith register as T;[k]. This structure mimics the standard PCSA
with m registers and K bits for each register (Sec. 2.1), but each bit of the PCSA register
is instead storing a b-bit timestamp. Our algorithm does not restrict the capabilities
of a standard PCSA, and it supports the same operations. First, we describe the ADD()
and QUERY() operations in TS-PCSA and discussing their complexity.

Adding a flow is substantially equivalent to a standard PCSA. The ADD() operation
exploits the log, m LS bits to choose a register (i.e., select the substream), while the
remaining bits are used to compute the rank of the flow. Differently from PCSA, TS-
PCSA updates the register in the position identified by the rank with the flow arrival
time, instead of with a single bit.

Querying the flow cardinality in the last W observation window at time ¢ is sup-
ported through the QUERY() operation, whose pseudocode is reported in Fig. 2.9. We
temporarily ignore the code sections referring to TS-PCSA+, that will be clarified later
in Sec. 2.3.2. Let’s denote as valid all the timestamps that fall within the observation
window. The main idea is to find across all the registers the average position at which
the timestamp becomes invalid, starting from the rightmost position. The main loop
(In. 3-8) finds for each register such position (equal to k in In. 8) and computes the
average a/m, from which the cardinality is derived o< 24 (In. 9). Finally, an estimate
of the flow arrival rate is computed by applying the same bias correction of PCSA and
dividing by the length of the observation window.

Example. Fig. 2.10 shows a toy example of a TS-PCSA with 2 registers, each stor-
ing 7 timestamps. The traffic is constituted by a sequence of 64 flow arrivals, with
flow x; arriving at time ;. For ease of explanation, we assume flows consisting of a
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To
flow z; at time t; —— h(x;) = [1101010 1] T, 0
> TO t2
flow x5 at time to —— h(zs) = [0001111 0] T ;
1 1
TO 5
flow x3 at time t3 —— h(x3) =[1000110 1] - ;
1 3
. Tp ty| |t2
flow x4 at time t4 —— h(z4) = [1110100 0} T t

Figure 2.10: TS-PCSA example when inserting the first 4 flows.

|:| valid |:| invalid

TO t5 t29 t18t25 t61 t57t63 —_ ]{j = 3

T [ta1|tg [taeltss|tealleoltez] — k = 5

Figure 2.11: The TS-PCSA sketch after inserting all 64 flows.

single packet. By applying the hash function h(x;), the last bit is used to select the
register, whereas the first 1 in the remaining binary string, starting from the LS bit, i.e.
rank, identifies the position in the register where the timestamp is updated. The figure
shows the step-by-step state when the first 4 flows are added with ranks (2,1,2,3). The
final state at time fg4, after having inserted all flows, is shown in Fig. 2.11, where we
highlight that most of the initial timestamps have been overwritten by the most recent
ones, especially in low-rank positions which are more likely to be updated. Assume at
this time to query the sketch using an observation window of length W = tg4 — 3. For
register Ty, the first invalid timestamp is found at the 4-th register entry (k = 3), since
fr5 < tga — W, while for register T; in the 6-th entry (k = 5), since #g < g4 — W. Thus, the
average number of continuous blocks of valid timestamps is n = (3+5)/2 =4, that is
used to estimate the total number of flows as 2 x 24 = 32 (by chance, corresponding to
the exact value of flows observed in W). For simplicity, in this example, we have not
considered the bias correction factor.

Algorithm overhead and complexity

We now discuss the memory overhead related to the timestamp representation
and the computational complexity of the ADD() and QUERY() operations.
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Memory consumption. The memory footprint of a TS-PCSA sketch using m arrays of
b-bits timestamp and capable of counting up to 2X = n; unique flows per register, is
mxlog(--) x b bits. This is larger by a factor b of the memory occupancy of a standard
PCSA sketch, and (asymptotically) by a factor blog, () of the memory occupancy of
the ST-HLL sketch (Table 2.1). Choosing the size of b for a binary representation of
the timestamp is not trivial. Notably, representing time with infinite precision would
require an infinite number of bits. Thus, itis necessary to set a time resolution, defined
as 7. Now the observation window W can be seen as divided into W/t time slots, for
which at least [log, (W /7)] bits® are required. The timestamps will be wrapped to the
maximum integer representation chosen for the timestamp, and we need to be sure to
properly compute differences between time slots. Assuming to prune all the invalid
timestamps periodically once every aW time (i.e., all timestamps before t — W are
reset), with a > 0, we need to cover an interval of time (1 + @) W with distinct time
slots to properly compute the difference of time. We need also an additional bit to tag
a timestamp as invalid. Thus, the total number of bitsis b =1+ [log, (1 + &) W/7)].

Time complexity. As regards the ADD() operation, TS-PCSA preserves the same O(1)
average time complexity of PCSA. The QUERY() operation is a bit more involved. TS-
PCSA requires finding the first invalid timestamp in all registers to average their po-
sitions. Thus, querying the TS-PCSA sketch with m registers of K bits has complexity
O(mK) due to a linear search in each register. We observe that in PCSA the linear
search can be avoided with simple workarounds, like keeping a pointer to the first in-
valid position within each register. This is practicable because blocks of contiguous
1s cannot fragment once they have built up. In our algorithm the timestamps may
become invalid after W time units have elapsed since when they were stored. Thus, a
block of contiguous valid timestamps will likely fragment, hindering the use of such a
simple technique. This substantial difference represents a limitation of our approach.

2.3.2 Practical optimizations

The previous discussion about TS-PCSA’s space and time complexity, has just high-
lighted that the former is strongly dependent on the timestamp resolution 7. Reducing
the resolution can be a memory-saving measure; however, it comes with the downside
of introducing rounding errors in time representation. These inaccuracies can impact
the precision of determining whether a register entry falls within the observation win-
dow(line 5 of the pseudocode in Figure 2.9). Thus, the following question naturally
arises: can we leverage the stochastic nature of the PCSA sketch to smooth the error
introduced by adopting a low timestamp resolution? In this section, we aim at answer-
ing this quest. First, we characterize the impact of the rounding error on estimation
accuracy. Then we propose TS-PCSA+, an optimized version of TS-PCSA that allows

5We denoted by [ ] the operation of ceil integer rounding
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Method Memory cost [bits] Query type
HyperLoglLog [79] mlog,log,(n/m) Stati
atic

Probabilistic Counting with Stochastic Averaging [68] mlog,(n/m)
Sliding HLL [85] (b+log,(n/m))mIn(n/m)

Sliding
Staggered HyperLogLog [71] mlog,log,(n/m)+b window
TimeStamp-augmented PCSA (TS-PCSA) [72] bmlog,(n/m)

Table 2.1: Comparative analysis of the memory requirements of sliding window solu-
tions versus the corresponding baseline methods, which operate on a static observa-
tion window. The asymptotic memory cost is expressed in bits, n are the number of
observed flows and m the number of register, whereas b is the number of bits used to
represent the timestamp.

Figure 2.12: Effect of rounding the arrival time on the cardinality estimation: (a) over-
estimation case, (b) underestimation case.

to reduce the timestamp resolution without affecting the accuracy of the cardinality
estimation. Finally, we discuss the possibility of further reducing the memory foot-
print — which we leave as a future research avenue — by studying the refresh time of
the register entries.

Timestamp rounding errors

When flow x; arrives, it is associated with an integer timestamp ¢;, which is a mul-
tiple of 7. Different ways can be used to round the actual arrival time to the slotted
time. We will see later that rounding it to the closest time slot is the strategy that mini-
mizes the counting error, as could be expected intuitively. Nevertheless, the cardinal-
ity estimation TS-PCSA still suffers from some temporal rounding errors, highlighted
in Fig. 2.12. Indeed, when a flow arrives after the middle of the time slot, as in the case
of x;, the cardinality in W is over-estimated for < 7/2 units of time. On the contrary,
when it arrives before the middle of the time slot, as in the case of x,, the cardinality
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Figure 2.13: Distribution of the timestamp refresh time for three different positions
within a register.

in W is under-estimated for < 7/2 units of time. The overall effect, as shown later in
our experimental analysis, is that the cardinality estimation appears as a saw tooth
function around the average.

Register offsetting enables time quantization with few bits

To compensate for the systematic estimation errors due to the timestamp round-
ing, we propose an enhanced version of the algorithm, denoted as TS-PCSA+. It can be
implemented by adding a single line of code to basic TS-PCSA (Fig. 2.9). As reported
in the pseudocode, TS-PCSA+ introduces an offset §; for each register T;, computed
such that 69 = —7/2 and 6,,-; = 7/2. Remember that in the PCSA family, individual
registers can be seen as independent estimators, each giving contribution 2%/ to the
final count (see In. 9). From the discussion in Sec. 2.3.2, it’s easy to see that all estima-
tors 2K/ follow a saw tooth pattern over time. Now, the rationale is that by anticipat-
ing in time half of the estimators and delaying the remaining half — with the average
phase offset being null — the phases of the periodic saw tooth estimations combine
destructively, averaging out the rounding error. This approach allows to significantly
reduce the timestamp size, while preserving accuracy. We will prove its effectiveness
in Sec. 2.4.3

Extra optimizations

The amount of bits for each timestamp has been assumed to be constant across
all the positions within each register. We wish now to highlight that this is a subopti-
mal design choice since it is possible to reduce the number of bits, depending on the
position within the register.
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Scenario Trace ID Avg. bitrate Linkrate Num. packets Num. flows
CAIDA-2018 equinix-nyc-2018 | 4.26 Gbps 10 Gbps 37.8M 1.8M
CAIDA-2019 equinix-nyc-2019 | 4.49 Gbps 10 Gbps 36.7M 1.2M

Table 2.2: Main features of the considered CAIDA traffic traces.

Indeed, consider a toy scenario, with periodic flow arrivals at rate R = 10° flows/s,
and TS-PCSA+ to update m = 64 registers. Fig. 2.13 shows the CDF of the refresh time
for each position of a register. It can be easily shown that, on average, the timestamp
in position k will be refreshed every (1/R) x 2k x m, which is coherent with the median
value observed in the figure. As an extreme case, looking at the graph the first position
(i.e., k =1) is almost surely updated within 0.01 s, suggesting that, by considering any
window W larger than this value, storing the timestamp is useless. This suggests that
it is possible to reduce the memory footage by never storing the timestamps in such a
position. In general, by observing the CDF it is clear that some lower positions within
the register can be omitted. At the same time, consider that TS-PCSA+, by construc-
tion, does not consider the timestamps within a register above an invalid timestamp
(e.g., consider fg and t in Fig. 2.11), thus suggesting that also keeping the full bit
representation for such position is useless. In summary, only the timestamp within
a “reasonable” central range of positions should be stored to minimize the memory
footprint of TS-PCSA+. Furthermore, different time resolutions could be considered
depending on the position within the register. The exploration of these optimizations
is out of the scope of this chapter, and we defer it to future investigations.

2.4 Numerical evaluation

In this section we evaluate via numerical simulation the proposed algorithms.
We show the effectiveness of low-counter variance compensation (Sec. 2.2.4) and of
timestamp optimizations (Sec. 2.3.2) on ST-HLL and TS-PCSA, respectively. Then we
compare our solutions against existing methods using Internet traffic traces.

2.4.1 Experimental setup

Implementation . We developed ST-HLL and TS-PCSA in Python and publicly re-
leased the source code at [102] to make our results reproducible. A crucial point not
to bias the experiments is to minimize the number of hash collisions among different
flows to the same hash value. If too many collisions happen, it’s easy to verify that the
effectiveness of HLL and PCSA counting is neutralized, as different flows would con-
tribute to the same bitmap entry. In our implementations, we adopted the SHA1 hash
function and used the first 32 bits of the SHA1 digest, which are sufficient to practi-
cally avoid hash collisions for all the configurations of workload and window sizes we
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tested and also provides good insertion speed.

Workloads . We use two kinds of network traffic workloads.

1. Synthetic. In this workload, we create ad-hoc traffic to evaluate ST-HLL and TS-
PCSA sketches under controlled conditions. Our simulator generates synthetic
traffic workloads, where each flow consists of a single packet. Therefore, the
traffic stream is composed only of packets belonging to distinct flows, and thus
each packet is accounted as a new item by the sketches. Such packets are gener-
ated according to a non-stationary Poisson process, whose instantaneous rate
is modulated by an arbitrary function A(#). We generated, depending on the
scenario, constant, sinusoidal and squared (“clock” wave) arrival rates.

2. CAIDA traces. We further validated the performance of all algorithms under re-
alistic network traffic traces, collected from equinix-nyc Internet routers and
whose main features are summarized in Table 2.2. The traces refer to about 1
minute of traffic and contains about 36 million packets. Without loss of gener-
ality, we use the 2-tuple of source IP address and destination IP address as flow
key, which results in about 2 million flows.

We tested the algorithms for realistic values of the observation window, e.g., 100 ms —
1s.

Hardware setup . We run all experiments on Linux machines in the HPC’ cluster
within our institution. Each machine is equipped with two 2.10 GHz Intel Xeon Scal-
able Processor Gold 6130 CPUs with 16 cores and 384 GB DDR4ECC RAM.

Comparison algorithms. As a term of comparison, in the following we confront our
algorithms against Sliding HLL (denoted as “W-HLL’ in the following), which is the
state-of-the-art solution proposed in [85] and discussed in Sec. 3.4. We implemented
W-HLL according to the guidelines provided in the original paper [85], and applied no
optimizations to the timestamp representation which stored as float32 variables.

2.4.2 Staggered HyperLoglLog performance

We have assessed the performance of ST-HLL using both (i) synthetic traffic traces
suitably crafted so as to test how our scheme responds to significant traffic fluctua-
tions (see Sec. 2.4.2), and (ii) real world traffic traces, which we used to quantify the
effectiveness of our approach also compared with the sliding-window HLL solution
proposed in [85] (see Sec. 2.4.2).

“Academic Computing Center at Politecnico di Torino - http://hpc.polito.it
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Figure 2.14: Synthetic traffic scenarios with different depths W of sliding window.

Synthetic traffic streams

In order to assess the effectiveness of ST-HLL in tracking variations in the flow
arrival rate, initially we used ad-hoc traffic scenarios where we vary the speed of rate
variation. We tested the following two scenarios:

* Squared wave traffic (SQU, Fig. 2.14a), in which A(#) varies between 50,000 and
100,000 flows/s with a period of 5 seconds and a duty cycle equal to 70%. Here,
we have used a relatively short window W = 0.1 s to specifically assess the ability
of ST-HLL to promptly follow abrupt traffic fluctuations.

e Sine wave traffic (SIN, Fig. 2.14b), in which A(t) varies according to a sinusoidal
function between 0 and 10,000 flows/s, with a period equal to 10 s - we here used
alonger window W =1s.

The plots shown in the figure are obtained by periodically reading the content of the
ST-HLL counter (hence by performing the query procedure which computes the esti-
mated rate sample), with a sampling time multiple of the register’s reset time slot 7.
We removed the transient phase from our numerical results.

In both figures, we compare the results obtained by two ST-HLL settings (m = 128
and m = 512) with the true value obtained by filtering the nominal arrival rate with
a moving average window of duration W - in essence, by comparing with an ideal
sliding window counter of depth W. Note that this comparison is somewhat unfair for
us, as our ST-HLL filter does not implement a “rectangular” sliding window of depth
W, but mimics a “triangular” window, as discussed in Sec. 2.2.4.

From both figures, we remark that ST-HLL remains very close to the true cardinal-
ity count. Its gap with the true count remains most of the time within 1.04//m, which
is in line with the theoretical error bounds derived for HLL. For m = 512 this value is
4.59. The estimate remains close to the true value even when the rate A(#) gets close to
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Figure 2.15: Cancelling the over-counting effect of ST-HLL when duplicated items are
present. CAIDA 2019, W =1, m =2048.

zero. Notice that in this region most of the registers of ST-HLL are empty, so as in [79]

we resort to linear counting, for which the accuracy guarantees might not be the same
of HLL.

Real Internet traces

To provide more realistic results, we analyze the algorithm’s performance over real
Internet traces [103], [104]. We considered two traces, CAIDA-2018 and CAIDA-2019,
collected in a backbone router link at Equinix-New York and whose main features are
reported in Table 2.2.

A major motivation behind such experiments consists in assessing whether our
proposed estimation is robust also in the case of real traces. Indeed, unlike the syn-
thetic traffic used in the previous section, real world traces may not anymore closely
follow our baseline modeling assumption stated in Sec. 2.2.2, i.e., that the number of
new items recorded by each register is proportional to the size of its measurement pe-
riod. In practice, in real world traffic, each flow may in fact appear more than once
inside the sliding window, thus leading to the presence of duplicate items, and the
frequency and burstiness of such duplicate items largely varies across different flows.

It is intuitive to see that duplicate elements have a much greater impact on short
measurement windows than on long ones. For an extreme example, a single persis-
tently recurring flow would always be accounted as “+1” on any measurement window
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size. Hence, its impact on the rate estimation would be significantly greater for a short
window rather than for a long one®.

Indeed, the above intuition was confirmed by our experiments on the CAIDA traces.
Fig. 2.15 in fact shows a 6-7% bias in the rate estimation obtained by a 1024 register ST-
HLL. However, the above discussion also suggests that the very simple heuristic intro-
duced in Sec. 2.2.4 for a different purpose, namely reduce the impact of the more noisy
low-index registers, can also effectively mitigate the impact of duplicate flows. We re-
call that such heuristic trivially consists in discarding a relatively small fraction (1/8 in
our experiments) of low-indexed counters when computing the rate estimation. And
since low-index registers are those which more severely affect the rate estimation, we
expect a significant improvement in the estimation itself. This is experimentally con-
firmed in Fig. 2.15 by the dramatic increase in the accuracy of the ST-HLL+ plot with
respect to the baseline ST-HLL counter.

To gather further quantitative insights on the performance of ST-HLL and of the
ST-HLL+ heuristic, we ran an extensive set of results for both CAIDA traces and for a
variety of different ST-HLL parameter settings and sliding windows duration. Results
are shown in Fig. 2.16, where we confront ST-HLL(/+) against W-HLL. For a fair com-
parison, results are shown as a function of a fixed overall memory budget. Remem-
ber that W-HLL is less memory-efficient than ST-HLL, by a factor (b +log,(n/m)) x
(log,log,(n/m))~! (Table 2.1), which depends on the number of registers. In prac-
tice, we implemented HLL (and so ST-HLL) with a number of registers which is power
of two, as per [79] and aligned the register sizes to 1 byte. Therefore, as a “rule of
thumb” approximation, Figure 2.16 should be read as follows. Let’s make the conser-
vative assumption that for W-HLL b = 0, i.e., ignore the cost of storing timestamps
in the LPFMs. Then, the above defined ratio is always above 8 for n/m bigger than
40°. Thus, the memory demands of W-HLL is (at least) 8x larger than ST-HLL(/+) and,
for a fixed memory budget (x-axis), we can compare the two sketches by scaling the
number of registers by a factor 8 — e.g., with 4096 bytes available ST-HLL uses 4096
registers and W-HLL 512 registers. Notice that the actual gain in memory efficiency of
ST-HLL vs W-HLL is even higher, since storing timestamps in fact occupies memory.

Overall, as shown in Figure 2.16, with less than 1 KB of memory available, both ST-
HLL and ST-HLL+ outperform W-HLL in terms of accuracy. Moreover, in all consid-
ered traffic scenarios, W-HLL needs at least 4x more memory compared to ST-HLL+

8This is a direct consequence of our definition for the local rate estimator (2.4): if we add such extra

persistent flow to the remaining n; measured by the i-th register, i.e., we alter the original estimation
A; as:

A= (n; +1).m2 YN mz‘

2Wi 2Wi

then its relative impact would be significantly greater for small values of i.

9

’

in our experiments there are around n = 75k flows in the largest observation window of 1 s (Fig-
ure 2.15), leading to n/m = 18 when using 4096 registers, and n/m < 18 otherwise.
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Figure 2.16: Comparative evaluation of ST-HLL with state-of-the-art over Internet traf-
fic traces. Figs. (a)-(b) refer to CAIDA-2018 traffic scenario, whereas Figs. (c)-(d) to
CAIDA-2019.

to provide relative estimation error guarantees as low as 5%.

2.4.3 Effectiveness of TS-PCSA optimizations

We conducted a set of experiments on synthetic and real-world traffic workloads
to evaluate TS-PCSA. In this section, we (1) demonstrate the effectiveness of our tech-
nique in compensating the overestimation and underestimation errors introduced by
low-resolution timestamps, and (2) empirically quantify the memory-accuracy trade-
off under real workloads.

First, we provide evidence about how our technique based on register offsets av-
erages out overestimation and underestimation errors introduced by time quantiza-
tion. We generate packet (i.e., equivalently flows as per Sec. 4.8.1) arrivals according
to a deterministic generation process with constant rate A(t) = A’. This simple traffic
is helpful to clearly highlight the effect on estimation accuracy of quantizing packet
arrival times to coarse-grained bins.
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Figure 2.17: Rounding effect in TS-PCSA with b = 5 bits to represent the timestamp.
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Figure 2.18: TS-PCSA+ algorithm smooths the saw tooth behavior.

In the first experiment, we run on this synthetic workload the baseline version of
our algorithm, without the optimizations and register offsetting. Also, we compare
round-up, round-down, and round-closest rounding strategies, where packet arrival
times are set to the past, next, and closest represented timestamp, respectively. In this
experiment, we configured the sketch with 256 registers, the time resolution 7 was set
to 0.0625 s. Figure 2.17 shows the results. In all scenarios, we observe a saw tooth
pattern in the flow cardinality estimate, with 16 peaks in a 1 s interval (the initial tran-
sient has been removed), coherently with what was discussed in Sec. 2.3.2. Adopting
the round-up strategy, we only suffer overestimation errors. In fact, the minima cor-
respond almost exactly to the true value. The contrary holds for round-up.

Next, we introduce the optimizations presented in Sec. 2.3.2. Figure 2.18 shows
what happens when the same workload undergoes TS-PCSA+. We notice the effec-
tiveness of our approach, as a relative time offset between registers of about 7/m =

49



Continuous-Time Sketches for Flow Cardinality Estimation

0.6
+ —+— TS-PCSA (m=32)
0.5 —m— TS-PCSA (m=512)
X} -#- TS-PCSA+ (m=32)
0.4 - \ TS-PCSA+ (m=512)

Relative Error
o
w
1

\

0.2-
e
0.1 =%
.\M‘_r ]
0.0 T T T T T kT‘
3 4 5 6 7

Timestamp size [bit]

Figure 2.19: Trade-off between accuracy and number of bits used for time quantiza-
tion for TS-PCSA and TS-PCSA+.

0.24 ms significantly reduces the peaks in the estimation. This is because the over-
estimation and underestimation errors introduced by quantization are averaged out
when combining registers with different time offsets.

How many bits can TS-PCSA+ save?

The next step is to analyze how our algorithm behaves under the realistic traffic
workload described in Sec. 2.4.1. As a performance metric, we measure the average
estimation error, relative to the true value of the cardinality. We first try to understand
how much we can gain in practical scenarios comparing TS-PCSA with its optimized
version TS-PCSA+. We want to quantify the gain in terms of how many bits per times-
tamp we can save, without sacrificing accuracy. Fig. 2.19 shows that for all configura-
tions in the number of registers, TS-PCSA+ requires as much as 38% less memory with
respect to TS-PCSA to achieve a relative error below 10%. Performance stabilize at 5
bits/timestamp. We verified that even if timestamps were represented using python’s
float32, the relative error converges close to the same value. This means that our sim-
ple yet powerful offset technique closely approaches a system with “ideal“ timestamp
resolution.

2.4.4 Comparison between the two sketches

We compare TS-PCSA to related continuous-time probabilistic counting solutions,
such as W-HLL and ST-HLL that were introduced in Sec. 2.1.2 and Sec. 2.2.4, respec-
tively. Since all these sketches share the same structure based on registers, we com-
pare them as a function of the number of registers. Figure 2.20 reports the results of
our experiments on the CAIDA traces with an observation window W of 100 ms.
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Figure 2.20: Comparison between timestamp-augmented and timestamp-free algo-
rithms over Internet traffic traces Table 2.2.

In respect to timestamp-augmented solutions, TS-PCSA+ outperforms W-HLL by
reducing the relative error up to 25%, especially when few registers are available. The
reason is that W-HLL bases its estimations solely on the most recent maximum rank,
whereas TS-PCSA+ considers an entire block of contiguous ranks not older than W
time units. Notably, TS-PCSA+ and W-HLL can be deployed at approximately the
same memory cost. The memory cost of TS-PCSA+ is b x mlog,(n/m), which can
be compared with the cost of W-HLL (in Table 2.1) rewritten as (b In(2) + In(n/m)) x
mlog,(n/m). Since n in the range between 10-20k and 50-80k for W =1sand W =
0.1 s, respectively, In(n/m) < b in practice. Moreover, thanks to the proposed opti-
mizations, TS-PCSA+ gives good results with few bits, e.g., b = 5 bits/timestamp con-
figuration, whereas W-HLL works with b = 32 as per Sec. 2.4.1 and no other times-
tamp compression techniques have been investigated for it. Overall, this shows that
our algorithm improves accuracy upon existing timestamp-augmented methods for
the same memory cost.

When compared to timestamp-free sketches, TS-PCSA+ also gives better accuracy
than ST-HLL, for the same number of registers. In this case, however, ST-HLL is at least
8x more lightweight in terms of required memory in respect to TS-PCSA and W-HLL,
as commented for Figure 2.16.

2.5 Related work

Other streaming algorithms designed for a sliding window model have been re-
cently proposed. Similarly to Sliding HLL, SWAMP [83], WCSS [82], Memento [105]
and Sequential zeroing [106] are all based on the removal of outdated information
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from their data structures, so that only the most recent items contribute to the es-
timation. However, these works only support event-based windows, usually defined
in terms of number of packets, and not time-interval queries. SWAMP can answer
set-membership, frequency, cardinality and entropy queries with a single data struc-
ture, which is a circular buffer to track fingerprints of recent items, plus an auxiliary
counting hash table to store their frequencies. Being designed with generality in mind,
SWAMP is memory demanding. Moreover, the use of a TinyTable [107] makes complex
its implementation on programmable switches. Ivkin et al. [87] devised an elegant
sketch-based framework that allows to specify the time frame of interest as a query pa-
rameter. Similar to [86], it offers an integrated solution for various measurement types
in a single structure, however it needs at least 56 MB of memory to accurately detect
a DDoS attack. Our approach limits its scope only to a single task (cardinality estima-
tion), but with much smaller memory footprint. A different class of algorithms [108],
[109] down weights the relative importance of aged items with respect to recent ones.
AdaSketches [108] is a time-aware sketch that emphasizes newly inserted items with
a function that monotonically increases with the timestamp of arrival, so providing
higher query accuracy to recent events. A customization of AdaSketches tailored to
commodity switches can be found in [110], but, aiming at frequency estimation, it is
orthogonal to our work.

2.6 Discussion

In this chapter, we have addressed the problem of estimating, in near-continuous
time, flow arrival rates for real-time traffic streams. We have focused on two sketch-
based data structures, HLL and PCSA, and extended their applicability beyond the
traditional time binning approach.

As a first contribution, we have proposed Staggered HyperLoglLog (ST-HLL), a re-
gister-based probabilistic data structure which does not introduce any memory over-
head with respect to vanilla HLL. Thanks to a proper periodic resets of the registers
and an equalization of the rate estimators of each register, we showed that ST-HLL
supports continuous-time queries over arbitrary observation windows, and quickly
captures rate variations. To the best of our knowledge, ST-HLL is the first timestamp-
free sketch data structure for cardinality estimation, and can be implemented with the
same complexity of HLL using timeout mechanisms available in commercial switches.

Subsequently, we proposed a novel timestamp-augmented sketch based on the
PCSA probabilistic data structure and tested it over real-world Internet traffic. Thanks
to the simple yet effective strategy to associate a constant temporal offset to the sketch
registers, our algorithm remains as lightweight as previous techniques based on times-
tamp, however, it is up to 25% more accurate.

For both techniques, we validated the proposed approach throughout extensive
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simulations, using both synthetic and real traffic traces, and showed that our solu-
tions achieves a better accuracy with respect to other state-of-the-art solutions, given
the same memory footprint. For instance, ST-HLL dramatically reduces the relative
estimation error by more than 50% with respect to the state-of-the-art W-HLL, with
only 128B of memory footprint.

Open issues and future research avenues

We conclude by outlining a set of issues that we left open and that we believe are
worth investigating as part of future lines of work.

1) Generalization of register staggering. Extending a vanilla HLL to estimate rates has
been achieved thanks to staggering with respect to time its internal structure based
on registers. We can see this mechanism as a general solution, which in princi-
ple could be applied to other sketches that share the same register-based struc-
ture [80], [111], paving the way to the design of a new set of streaming data struc-
tures tailored for real-time traffic monitoring.

2) Adaptive register size. We highlighted the opportunity for further compressing the
TS-PCSA structure, by leveraging the observations that different positions in the
TS-PCSA registers are updated with different frequencies (Sec. 2.3.2). This sug-
gests to privilege “important” timestamps over the others as a possible extra opti-
mization. Since some timestamps might never be updated, their entry size in the
register could be reduced, thus adapting the register size depending on the recent
frequencies of position updates. For example, different time resolutions could be
considered depending on the position within the register.
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Chapter 3

Collaborative Flow Size Estimation with
Sketch Disaggregation

Part of the work presented in this chapter has been published in:

e A. Cornacchia, G. Sviridov, P. Giaccone, and A. Bianco, “A Traffic-Aware Perspec-
tive on Network Disaggregated Sketches”, in 2021 19th Mediterranean Commu-
nication and Computer Networking Conference (MedComNet), 2021.

Modern telecommunications networks are characterized by a high degree of dy-
namicity in traffic patterns. A continuous rolling out of new network-based applica-
tions and sudden changes to existing ones have been shown to have a catastrophic im-
pact on the performance of seemingly unrelated services, and on the whole network
infrastructure [113]. Due to this unforeseeable behavior, network monitoring has be-
come one of the most important aspects of modern network management. Complex
network monitoring mechanisms have been developed to try to predict and coun-
teract those unexpected behaviors. Among those mechanisms, sophisticated central-
ized network monitoring schemes enabled by breakthrough technologies such as SDN
have found large popularity and applicability. Yet, centralized solutions lack in scala-
bility, as continuously conveying monitoring information from all switches becomes
unbearable for large networks.

As a consequence, traffic monitoring distributed across the switches has become
the dominant best practice for network monitoring.

Still, measurements are challenging to implement due to the huge number of con-
current flows and the ever-increasing link rates, which force network devices to com-
plete per-packet operations at nanosecond time scales. This implies resorting to ex-
pensive SRAM as the only viable solution to store measurement data. Due to the
scarce amount of such dedicated memory, it is prohibitively expensive to keep ex-
act per-flow information locally at each switch. Sampling-based techniques such as
NetFlow [18] were traditionally employed to limit resource overhead. However, they
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are not capable of providing sufficient accuracy and flow coverage, if not adopting
extremely high sampling rates [37], [114], [115].

Due to the aforementioned constraints, sketch-based algorithms have found vast
applicability in the field of network monitoring. They permit to condense the target
flow metrics in compact probabilistic data structures stored inside the switch. This in-
formation is then periodically fetched by a central entity and aggregated into a unique,
network-wide approximate result. The accuracy of measurements is proportional to
the amount of dedicated memory and inversely proportional to the amount of traffic
that traverses the switches. While in modern networks the volume of concurrent flows
per second keeps growing, the amount of SRAM inside single switches remains con-
stant, and it has to be shared among concurrent measurement services and network
functions. Under such a scenario, to increase the monitoring accuracy it is necessary
to reduce the number of flows stored inside single sketches. A natural option in this
case is to increase the sketch fetching frequency, in order to have fewer flows being
condensed in a single sketch within each measurement interval. Yet such an approach
has its own limits which are dictated by the resulting communication overhead and,
most importantly, by the underlying hardware capabilities of single switches [116],
[117].

Recently, in [118] the authors have proposed DISCO, a system of disaggregated
sketches able to address the aforementioned issues. At its heart, DISCO employs mul-
tiple sketch fragments scattered around the network which are updated by the flows
that traverse them. This enables the possibility of reducing the sketch fetching fre-
quency of each switch without loosing accuracy — or to provide higher accuracy with
the same amount of memory — with respect to traditional approaches. Yet DISCO
does not consider aspects related to traffic distribution and locality that are critical
for improving the overall system performance.

Given the previous discussion, in this chapter we analyze the impact of traffic
distribution on the performance of disaggregated sketches. In Sec. 3.1.1 we provide
the background related to probabilistic data structures for network monitoring. In
Sec. 3.2 we discuss disaggregated network-wide sketches and motivate our contribu-
tion, which is numerically evaluated in Sec. 3.3. We show that, even in simple scenar-
ios, blindly updating all the fragments crossed by a flow on its path leads to measure-
ment performance degradation. Moreover, we show that, by just selecting a subset of
fragments to update it is possible to improve the aggregate monitoring accuracy, and
we provide hints on the existence of such an optimal subset.

The interested reader can find in Sec. 3.4 the relevant related work. Finally, in
Sec. 3.5, we discuss the main findings and outline future research directions for disag-
gregated sketches, part of the which have been already followed-up by a recent work
in[11].
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3.1 Preliminaries

We review the basic concepts of sketch-based algorithms for network monitoring
and introduce the concept of disaggregated sketches.

3.1.1 Atomic sketches

Sketches are probabilistic data structures for stream processing, able to estimate
flow statistics using a fixed and small number of entries, relatively to the number
of processed flows. To distinguish them from the recently proposed disaggregated
sketches [118], we refer to them as atomic sketches, since not distributed across the
network. While a myriad of sketch-based algorithms has been proposed, they all are
based on primary components: one or more array of counters, a procedure for their
update upon new packet arrival and a method to read counters and answer queries.

3.1.2 Sketch dimensioning

We take the popular Count-Min Sketch (CMS) as an example [111]. When mea-
suring the network traffic, its counters keep track of flows’ occurrences in a packet
stream. The available memory budget is organized into d rows of w counters each.
The update procedure consists on computing d pairwise independent hash functions
over the flow identifier (e.g., 5-tuple) in order to associate a flow to one counter per
row. Then, the selected counters are incremented by one, so as to add the contribu-
tion of the new measured packet to the current flow size. Since multiple flows may
collide onto the same counter, the guery operation returns the minimum among d
values as its estimate. Generally, sketch-based algorithms come with provable theo-
retical guarantees and allow us to tune the parameters to trade between estimation
accuracy and memory consumption. Indeed, in a CMS it is possible to derive the re-
quired number of rows d and of counters w as function of the error magnitude € and
the error probability 6. If w = [e/e] and d = [-1ogd], the estimated size X of any flow
size x is proven [111] to be within the bound:

X<x+e|x]|; (3.1

with probability greater than 1 — 6. Here, x is the true value of the counter, while x|/,
is the ¢;-norm of the flow size vector, and it amounts to the total number of packets
counted in the whole sketch. A higher number of independent hash functions d are
needed in order to reduce the error probability and statistically corresponds to relying
upon more estimators, whereas increasing w reduces the error magnitude.

Network monitoring with sketches and their limits

Atomic sketch algorithms have been widely used to cope with memory scarcity
while employing switch-local traffic monitoring. Traditionally, sketches are deployed
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Figure 3.1: Disaggregated sketch architecture for a Count-Min Sketch (CMS).

on multiple distributed monitors, orchestrated by some controller. Individual mon-
itors inside the network periodically convey their local information to the controller.
The controller, aggregates telemetry data from multiple switches and derives the fi-
nal measurements network-wide [35], [37], [115], [119]. A noteworthy application of
sketches is the so-called heavy hitters detection, which consists into the detection of
the network flows that utilize a large amount of bandwidth. However, gathering fine-
grained per-flow statistics is highly impractical, if not possible at all. Consequently,
CMS has found applicability for this kind of tasks, as it permits discriminating mice
and elephant flows up to a given error, while still utilizing small amount of resources.

Yet, as the amount of fast SRAM memory in commodity switches remains con-
stant, the ever-growing number of concurrent flows pushes this kind of approach to
its limits, thus making it difficult to maintain an acceptable level of accuracy. In ad-
dition, multiple measurement tasks usually execute concurrently and share the avail-
able memory. For example, operators may run a heavy-hitter detection task to make
intelligent routing decisions and, at the same time, also run some anomaly detection
tasks to discover the presence of port-scanners or DDoS attacks. These tasks run in
parallel and need a dedicated sketch instance [115], [116]. While increasing the re-
porting frequency may counteract the previously discussed limitations, it has its own
drawbacks as it is constrained by the underlying hardware and the generated network
overhead.

3.1.3 Disaggregated sketches

A radically different approach was recently proposed in DISCO [118]. The authors
suggested disaggregating a large sketch into multiple smaller sketch fragments (i.e., a
subset of rows and columns) and distribute them across monitor points in the net-
work, as shown in Figure 3.1. Then, a single sketch is logically rebuilt by assembling
fragments encountered along network paths. Hence, different paths correspond to
different logical sketches. For the case of CMS this approach leads to a very simple im-
plementation by which the current minimum across the fragments is piggybacked in
the packet headers and the final estimate is obtained by analyzing the packet header
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at the last-hop. This approach leads to an efficient, yet accurate, heavy-hitter detec-
tion scheme while keeping the approach realistic enough to be implemented in real
scenarios.

Disaggregated sketches support the computation of switch-local heavy hitters, as
well as global heavy hitters, which indicate a flow that is heavy hitter after summing
the contributions from many paths. For the former, the last hop switch is responsi-
ble for the flow size estimation, and only when a heavy hitter is detected the switch
informs the remote monitoring plane. For the latter, the remote monitoring plane
needs to aggregate the estimation from all last-hop switches for the flow and derive
the global flow size, and eventually can identify heavy hitters.

3.2 Traffic-aware disaggregated sketches

While DISCO is capable of outperforming atomic sketches, it still adopts a static
fragment update policy, meaning that flows are always counted at all fragments along
their path.

We argue that, for a given flow, updating all available fragments is often unnec-
essary and, in some cases, even harmful. Indeed, DISCO update policy has the side
effect of generating, otherwise avoidable, collisions (which we will refer to as counter
pollution) inside single fragments, ultimately degrading heavy-hitter detection accu-
racy. On the other hand, counting each flow only in one fragment would obviously
reduce collisions, but would also impair the accuracy whenever a collision occurs. We
show that there exists a trade-off on the number of fragment updates, which balance
tolerance to collisions with pollution on sketch counters.

The effects of our observations are exacerbated by non-uniform traffic patterns
in the network. In the specific scenario of data center networks, the traffic work-
load typically presents a non-homogeneous distribution across different network de-
vices [120], with the majority of flows being rack-local. This implies that different
switches observe a different load in terms of packets and flows per second. Now
blindly updating all the fragments of a sketch may lead to “overload” fragments (e.g.,
in top-of-rack switches) and “underutilized” fragments (e.g., in spine switches) and
this fact degrades the accuracy of the overall network-wide sketch scheme.

To formalize the considered monitoring scenario, we assume to have a set F of
active flows and a network-wide sketch denoted by a set S of fragments distributed in
the network. For simplicity, coherently with DISCO, we assume one sketch row (i.e.,
one hash function) in each switch, but our results can be qualitatively extended to
multiple rows per switches. Consider now a flow f; € F that traverses a subset S; = S
fragments along its path. Let kfp ’ be the optimal number of fragments to update
for f;, which maximizes the average monitoring accuracy for all flows in F. We will
show that it may hold that kfp f < |S;| for some f; € F, i.e., the flow should be not
counted in all the fragments. Our goal is to highlight the presence of this phenomenon
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and to quantify to which extent it may affect the network measurement performance.
Indeed, devising a policy capable of selecting the optimal amount of fragments to
update and their location across individual flows’ path is still to be investigated.

3.3 Numerical evaluation

In this section, we discuss preliminary results obtained through numerical simu-
lations on the testbed topology of Fig. 3.2. Our goal is to show that the accuracy of
disaggregated sketches under different workloads depends on the fragment update
strategy and traffic patterns.

3.3.1 Simulation scenario

For our analysis, we employ a discrete-event packet-based simulator built on top
of OMNeT++ [121]. For the sake of clarity, we employ a simple bus topology depicted
in Fig. 3.2. This choice allows us to effortlessly create a scenario highlighting the pre-
viously discussed phenomenon of traffic interference. We assume a set of traffic flows
equalto F = UZ:OF ,(C") ufr® e, comprising eight sets of “vertical” flows and one set of
“horizontal” flows, as shown in Fig. 3.2. The horizontal flows in F (n, depicted in blue,
updates all or a subset of all the fragments S = {sy, .., s7} available in the topology. All
vertical flows in F ](CV) , depicted in red, can exploit only one single monitoring point s
(i.e., the only switch traversed by them). For all flows in F, we use a heavy-tailed Pareto

Figure 3.2: Bus topology employed for the simulations.

flow length distribution with shape parameter @ = 1.2 and mean value 10 packets, to
approximate a realistic data center workload [122]. Horizontal and vertical flows are
generated according to Poisson processes with 1;, = 100 x 1,, respectively. Note that
the results are completely invariant with respect to the absolute value of A, and on the
link capacity and propagation delay, which are assumed homogeneous in the whole
network. All switches are equipped with sketch fragments consisting of a single row
(i.e., d =1) and w = 2000 counters.

As in prior work [35], [123], we evaluate the performances on the basis of the Aver-
age Relative Error (ARE) metric, which is defined as the relative error of the estimated
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flow size X(f;) with respect to the real flow size x(f;), averaged over all measured flows:

Fl %(£) = x(f:
ARE= Ly XU —x(f) (3.2)
IFlim x(f)

Note that in the Count-Min sketch, by construction, X(f;) = x(f;). The relative errors
are always computed at flow termination. The choice of ARE with respect to more
application-specific metrics, (e.g., false positive rate for heavy-hitter detection), is due
to its versatility. Indeed, ARE is agnostic to the definition of an elephant flow and
general enough to be amenable for several applications.

3.3.2 Simulation results

To highlight the impact of interfering traffic on the monitoring performance of
sketch fragments we consider varying the number of fragments to update K® for the
horizontal flow. This implies that, out of 8 fragments present along the path, only K/?
will be chosen randomly for each f; € F”. For vertical flows instead, we fix K’ = 1 as
those flows traverse only one fragment.

Fig. 3.3 show the ARE in terms of minimum, maximum, 25/50/75-th percentiles,
and summarizes the main findings of our simulations. The bars depicted in Fig. 3.3a
represent the overall ARE of aggregate flows, measured for varying K, while Fig. 3.3b
presents a more detailed breakdown to distinguish between horizontal and vertical
flows. While transitioning from K™ =1 to KUY = 2, the monitoring accuracy signif-
icantly improves, further increasing K™ to 4 only leads to a slight reduction in the
ARE for horizontal flows. Interestingly enough, setting K = 8 increases the error for
both groups of flows. Thus, in contrast with intuition, the behavior of ARE in func-
tion of K" does not appear to be monotonic, suggesting us that there exists an op-
timal value for K in function of the topology and traffic patterns, as discussed in
Sec. 3.2. Indeed, this behavior is due to the fact that, for K/? = 8, all horizontal flows
are counted on all fragments present in the topology, thus increasing the pollution
on all fragments, ultimately leading to reduced accuracy. On the contrary, the mon-
itoring performance of vertical flows drops considerably while increasing K, with
their ARE increasing by a factor of 4.85 when moving from K™ =1 to K™ = 8. Yet,
when taking into account the overall monitoring accuracy that includes both vertical
and horizontal flows, it can be seen that employing K = 2 leads to better aggregate
monitoring accuracy across all flows.

3.4 Related work

Sketch algorithms have been employed for various measurement tasks, such as
top-k flow identification, traffic entropy, flow size distribution and cardinality estima-
tion, as well as heavy-changer and heavy-hitter detection [117]. The diversity among
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Figure 3.3: Average Relative Error evaluated for different number of fragment updates.

these tasks required generic data structures to support them concurrently at low com-
plexity, together with efficient communication with the central controller. OpensS-
ketch [115] proposed a software-defined measurement architecture, where a single
unified hardware pipeline can be programmed to support a wide range of measure-
ment tasks based on sketches. SCREAM [116] improves the accuracy of distributed
sketch-based monitoring, by optimizing resource allocation across multiple switches
and tasks, based on user requirements. ElasticSketch [35] combines a hash table with
a CMS to separate elephant from mice flows and mitigate their collisions, thereby
adapting to skewed flow size distributions. Additionally, they first propose a sketch
compression technique to reduce communication overhead with the central aggre-
gator. FCMSketch [124] is an elegant tree-like multi-stage counter scheme, which
enables the implementation of sketches that support generic measurement tasks di-
rectly on PISA switches.

3.5 Discussion

In this chapter, we highlighted the effect of traffic patterns on the performance
of disaggregated sketches. In particular, we show that blind fragment update policies
which force a flow to update all the fragments along its path may not necessary lead to
the best overall monitoring performance. Through numerical simulation and under a
simplistic testbed scenario, we show that there should exist an optimal fragment up-
date policy that is capable of selecting a subset of fragments to update among those
available on the path of individual flows. Such policy must operate on the network
traffic pattern and take into account the total traffic traversing individual fragments.
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3.5 - Discussion

Further investigation of this behavior, alongside more complex experimental scenar-
ios, is left as future work.
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Chapter 4

Sketching Microservices Observability
in Programmable NICs

Part of the work presented in this chapter has been published in:

¢ A. Cornacchia, T. A. Benson, M. Bilal, and M. Canini, “MicroView: Cloud-Native
Observability with Temporal Precision”, in Proceedings of the CONEXT Student
Workshop, ACM, 2023.

Cloud-native applications consist of thousands of single-concern, loosely-coupled
microservices running on containerized platforms with many companies such as Uber,
Netflix, and Twitter adopting this approach [126]-[131]. While this major shift from
monolithic to distributed design introduces many benefits (e.g., flexibility, simplified
maintenance, and efficient resource allocation), this shift also introduces new system
challenges (e.g., resource orchestration and application debugging).

The sheer number of distributed components and the increased pace at which
microservices are upgraded/rolled out complicates debugging in several ways. First,
while the churn of code [132], [133] and increased number of components increa-
ses [134], [135] the likelihood of failures and performance changes, accurately and
quickly debugging them requires collecting significantly more data [136]-[138], thus
introducing a scalability challenge for monitoring. Second, the increased diversity in
the type of unique microservices and the increase in layers introduced by the con-
tainer ecosystem (e.g., service mesh, sidecars) results in a significant explosion in
the number of unique types of failures. This naturally increases the range of data
and analysis required for debugging, thus introducing an analysis challenge. Con-
sequently, managing the health of distributed services in an automated fashion rep-
resents an everyday hurdle for service operators.

To address the scaling challenges, several [66] have proposed scaling out the moni-
toring infrastructure or adopting ad-hoc CPU bonding or scheduling strategies for the
monitor processes, but these solutions require dedicating additional compute on the
server for observability which would consequently increase long-term CapEx costs
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and reduce the energy efficiency of the data center. Orthogonally, in practice opera-
tors [139], [140] configure aggressive sampling strategies, which sacrifice the quality
of the monitoring data and detection accuracy. For example, metrics monitors [141],
may adopt coarse-grained polling intervals (e.g., 30s), which degrade monitoring QoS
KPI, such as accuracy and timeliness, for system (CPU, I/O, memory, power mea-
surements, etc.) and application metrics (e-commerce, financial transactions, cloud-
gaming, etc.) that have rapid variations in the order of milliseconds.

To address the analysis challenges, prior work on supervised [67], [142]-[144] tech-
niques have been proposed. However, these require specialized labels which is im-
practical at the speed with which the microservices evolve. On the other hand, re-
cently proposed unsupervised techniques [65], [145], [146] do not address the scaling
challenges. More generally, these techniques (supervised and unsupervised) fail to
dynamically adjust to significant workload changes which in turn change a microser-
vice’s performance envelope.

To close this gap, is this chapter we describe pView, a system that we design to
enable better observability by preserving monitoring accuracy and timeliness, with-
out sacrificing scalability or increasing overhead. The goal of uView is to provide a
lightweight but general mechanism to locally analyze each service’s metrics (e.g., ap-
plication or system) at a fine temporal granularity, and generate useful signals about
service performance. Figure 4.1 contrasts traditional observability architectures (us-
ing the work in [66] as an example) with our proposed system architecture. Our design
builds on three unique insights:

First, a service’s performance issues can be detected using locally available data.
Note that while previous work highlights the need for global knowledge to attribute
a problem to a specific service within a microservice, the detection is often based
on locally available metrics [147]. For example, Hindsight [147] showed how local
data can be used to assist distributed tracing to capture relevant requests. Second,
while a service’s local metrics are often generated at a fine-granularity, they are often
analyzed at a coarse granularity because they are exported to a centralized observ-
ability data store (discussed in Sec. 4.1.1). Yet, analysis of this fine-granularity data
can yield richer (faster, higher accuracy) insights. Third, the recent rise and adoption
of IPUs [148], [149], provide a unique opportunity to process and analyze this richer
fine-granularity data without imposing CPU overheads, interference, or bloat on the
services. [PUs (alternately, DPUs) are a class of programmable NIC devices equipped
with onboard processing units that can be programmed to execute offloaded tasks in
data centers, decoupling data center infrastructure from business applications. These
[PUs are becoming commodity hardware in data centers [148]—[151].

The central challenges to realizing pView are: (1) The design of general but light-
weight and unsupervised metrics analysis techniques to efficiently perform local anal-
ysis on the IPU. This is particularly challenging because the diversity of metrics and
performance problems is significantly large due to the highly distributed nature of the
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Figure 4.1: State-of-the-art observability architecture (depicted on the left) vs our pro-
posed architecture (depicted on the right).

microservices paradigm and the increased number of layers in the container manage-
ment frameworks. (2) The high code velocity of the microservices ecosystem implies
that analysis techniques must evolve quickly in real-time. To address this challenge,
1View leverages a lightweight streaming-based sketch algorithm that operates over
multidimensional vectors of metrics in single-pass without requiring local storage
of historical data. Our choice of sketch provides continual-learning for embedding
new samples in its model, thus automatically adapting to new trends of metric val-
ues and relieving the operators from the need to handcraft cumbersome thresholds.
(3) While processing on the IPU eliminates CPU processing overheads, as others have
shown [66] data transfer if not addressed can impose significant CPU overheads. To
address this last component, uView builds on the fact that IPUs support RDMA and
introduces a protocol and mechanism designed for efficiently transferring data be-
tween the services and the IPU via RDMA.

Contributions. In summary, we contribute the following:

* FD-Sketch: we leverage an unsupervised, lightweight sketch technique that dynam-
ically determines for each microservice the critical metrics and uses them to detect
anomalies. We show that this technique can dynamically adjust to changes in work-
loads in an online fashion allowing it to reduce false positives and false negatives
(Sec. 4.4).

* RDMA mechanism: we propose an efficient RDMA-based framework and accom-
panying system-design choices for coordinating the server-to-IPU exchange of met-
rics generated across various layers of a microservice deployment stack for localized
processing (Sec. 4.2 and Sec. 4.5).
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* Prototype/Implementation: we present a prototype implementation of yView (in
Sec. 4.6) with several use cases (Sec. 4.7) and evaluate it on a production quality mi-
croservice in a testbed using failures injected via a production quality fault injector
(Sec. 4.8). We showed that uView increases coverage by 5x while substantially saving
costs by 50% over state-of-the-art approaches.

4.1 The observability data bloat

The observability of cloud-native applications across multi-cloud architectures
poses a significant challenge due to the substantial volume of generated data. Typ-
ical microservices-based applications export several thousands of metrics from all
layers of their components. Recent work has reported Netflix collecting about 2M
metrics [60]. Whereas, Uber aggregates 500M metrics/s and stores the resulting 20M
metrics/s globally [69]. Using AWS-managed Prometheus [70], ingesting 500M met-
rics/s would cost $21M/month, and storage costs with 150-day retention would be
$210k/month. Even for smaller organizations, coping with the escalating observabil-
ity data represents an increasing financial strain.

At the same time, exporting such a data volume negatively impacts the tail latency
of user requests. A large-scale study on a production data center [66] observed that
in traditional monitoring systems during data collection cycles, customer traffic suf-
fers from jitter and high tail latency (up to 2x). Moreover, because even small im-
provements in CPU efficiency can save millions of dollars [152], data center operators
typically try to maintain CPU utilization high [153]-[155], which results in low CPU
headroom to accommodate both collection cycles and user requests.

Driven by the common-sense rationale that larger data volumes maximize the
chance of having data that will be useful in the future, many organizations just col-
lect and store all metrics. However, oftentimes this produces the unintended effect
of creating noisy clutter in the environment and hampers the ability to search and
gain insights across a plethora of data [156], [157]. This emphasizes the need for more
cost-effective approaches and the need to narrow the focus of metrics data collection
to informative and insightful data.

To effectively assist developers in localizing failures and SLO violations, the mon-
itoring system should meet QoS demands for coverage and latency. However, tradi-
tional monitoring systems fail to satisfy both of these requirements for the following
reasons. In terms of coverage, metrics collection systems such as Prometheus [141] are
configured with coarse-grained polling intervals (e.g. 10-30s), which are not adequate
for capturing variations that happen on the timescale of milliseconds, like network
traffic fluctuations, spurious I/0 faults, power spikes, etc. Similarly, distributed trac-
ers like Dapper [61], Zipkin [63], or Jaeger [62] typically employ a relaxed sampling rate
(e.g., below 1%), which results in low coverage as it is likely that a faulty trace might not
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Intervals configuration = CPU Usage

Generation Ingestion

1s 1s 12-13%
1s 30s 3-4%
30s 30s 2%

Table 4.1: Average CPU consumption on a computing node in a k8s cluster, when col-
lecting metrics at a (remote) Prometheus server with different configurations. Gen-
eration interval determines the frequency at which metrics are updated, controlled
via housekeeping interval in cAdvisor. Ingestion interval is the frequency used by
Prometheus to scrape metrics from cAdvisor (Prometheus’s scraping _interval).

be collected. Besides, trace collection does not take any advantage of metrics collec-
tion, because the sampling decision is independent of the state of the monitored ser-
vice metrics. From the point of view of latency, the monitored data encounter several
layers on their data-path before being available for queries, including filters/proces-
sors [158], network stacks, and storage devices. As a result, monitoring architectures
introduce a non-negligible delay before the control plane gets the metrics.

4.1.1 The opportunity for in-situ monitoring

A microservice’s metrics are generated independently by each layer of the mi-
croservice’s stack: application, service mesh, and system (i.e., OS). Unfortunately,
the metrics at each layer are generated using distinct methods. For example, while
system-level metrics are often generated periodically at a fixed frequency, most appli-
cation-level metrics are only generated when requests are processed. These differ-
ences imply that for certain metrics, tuning generation granularity is easy and gran-
ularity can be tuned to an arbitrary level. Whereas for others the finest granularity is
bounded by the RPC processing rate.

Regardless of the method of generation, ingesting or uploading the metrics into an
observability data store incurs significant performance overheads and costs. To quan-
tify the performance overheads, in Table 4.1, we analyze the generation and ingestion
overheads for the online boutique microservice [159] deployed with an Istio service
mesh [58] on a testbed (details deferred to Sec. 4.8.1). From the table, we observe that
most of the overheads are due to ingestion interval and not specifically generation.
Thus, while today’s observability frameworks can generate metrics at a finer granular-
ity, they use coarse-grained metrics because of ingestion overheads.

Takeaway: This implies that observability frameworks can leverage fine-grained
metrics, with marginal costs, for generating richer insights if they can avoid the inges-
tion overheads — for example, by performing processing locally on the node.
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4.1.2 Potential use cases

Metrics reveal the internal state of applications and report the usage of system
resources allocated to them. Unexpected variations of these signals likely indicate
deviation from an application’s common behaviors. Next, we describe a set of use
cases that can be enabled by local processing of fine-grained metrics.

Accurate spike detection

Engineers spend significant effort to triage and resolve tail latency; however, such
diagnosis usually requires correlating information across different sources, both spa-
tially and temporally. Unfortunately, the coarse-grained interval at which system and
application metrics are observed makes posterior time-correlation methods inaccu-
rate and error-prone. In particular, coarse-grained intervals are unable to distinguish
between a smooth increase or a sharp jump, which usually offers a crucial mean to
pinpoint interesting points in time. Note that this is true both for counters and gauges,
which are the two metric types available in Prometheus [141]. Thus, observability sys-
tems are often unable to detect, react, or cross-analyze the required data for these
kinds of issues.

Coordinated cross container tracing

Even when metrics do indicate an uncommon application state, service operators
would benefit from coordinating traces sampled across the different microservices
processing the request. However, head-based sampling methods (which is common
practice in production systems) blindly sample user requests and thus rely on luck
to capture traces associated with this uncommon state, especially if the anomalous
conditions last for just a short interval. Locally observing metrics at a timescale close
to the rate of user requests in principle provides sufficient granularity to anticipate
the realization of representative traces and timely trigger their collection. Triggering
trace-based tail sampling using metrics (i.e., integrating yView into Hindsight [147]),
allows tail sampling to begin when anomalies occur at the service before they may
cascade into being reflected at the RPC request level.

Dynamic frequency sampling

Current monitoring systems adopt a fixed sampling interval to collect metrics.
This relatively rigid configuration can make the collection process inefficient or in-
accurate. First, different metrics potentially exhibit very different behaviors. For ex-
ample, CPU usage typically fluctuates more than CPU limits, which changes only in
response to reconfiguration. For slow varying metrics, an efficient solution would re-
port new samples only when the metric changes. Second, for all metrics, it is desir-
able to obtain more frequent samples when an anomalous behavior is detected. The
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rationale here is similar to Hindsight’s argument for tracing: it is more desirable to
have all edge-case traces with low overhead as opposed to sampling at low sampling
percentages. Since monitoring tools from cloud providers (e.g., Amazon-managed
Prometheus) charge users for the ingestion and storage of observability data, there is
also a cost-benefit that comes with dynamic frequency sampling.

4.2 uView overview

Our design differs from prior approaches in that it adds a local stage for metrics
processing at each node. Our architecture opens up the ability to locally monitor
anomalous behaviors and deploy data hygiene algorithms before data ingestion and
storage. With local metrics processing service operators can deploy strategies to fil-
ter out irrelevant data and gain online insights about relevant information, without
cluttering storage with huge data volumes.

At a high level, we can decompose the architecture into a data plane and a control
plane. We overview each in turn. Figure 4.2 shows a diagram of this architecture and
the components that comprise it.

Data plane

The data plane implements local metrics processing at each node. It consists of
an array of per-service Local Metrics Analysis Pipelines (LMAPs). Each LMAP is as-
sociated with a single microservice.! A LMAP receives as input a vector of metrics,
referring to the corresponding microservice, and produces an output signal indicat-
ing whether the metrics vector contains anomalies.

For generality, uView does not dictate how metrics are to be monitored and LMAPs
are oblivious to their sources. Metrics can be generated by several sources, including
the application, the OS kernel or a service mesh component, like Istio [58]. Regardless
of the source, all metrics processed by a specific LMAP must refer to a single microser-
vice. As detailed later, the uView control plane handles the task of connecting the
components that monitor and export metrics with the LMAP that consumes them. In
line with existing practice, the set of per-service metrics is configured by service op-
erators (e.g., DevOps engineers); we consider this as an initialization parameter for
uView.

A LMAP consists of a set of preprocessing transformations and a sketch-based
classifier. The preprocessing step converts the input metrics to feature vectors. The
sketch-based classifier performs anomaly detection based on these features. Metrics

'We use the terminology service and microservice interchangeably, to indicate a self-contained ap-
plication module, instantiated as one or more pod replicas in the cluster. Functionally, it is equivalent
to the concept of service object in k8s.
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Figure 4.2: The architecture of puView.

produced by different replicas of the same service on the same node are typically ag-
gregated into a single feature vector. Sec. 4.4 describes the metrics processing pipeline
in detail. Finally, the outputs from each LMAP are used by the control plane, which
can trigger actions in response.

The frequency at which metrics are ingested by the LMAPs is called local scraping
interval. Service operators configure this parameter.

Control plane

The control plane orchestrates the interaction between the sources that generate
metrics (e.g., application, OS kernel, etc.) and the data plane. At a glance, a control
plane component executes on each compute node; this component (1) manages the
lifecycle of the LMAPs, (2) handles how the data plane can access memory locations
where metrics reside, and (3) starting from LMAP outputs, produces actionable in-
sights for observability. For generality, uView does not dictate how insights are used
directly. Our approach is general in that various observability hooks can be config-
ured and pView merely invokes the hooks when appropriate. This allows integration
of uVview with existing observability tools, such as distributed tracers, loggers, and
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Figure 4.3: Offline configuration workflow.

metrics collectors. We listed several use case scenarios in Sec. 4.1.2; Sec. 4.7.1 illus-
trates a dynamic sampler hook that pushes metrics to a remote Prometheus collector
based on data plane insights.

To adopt uView, microservices need to interface with the control plane via an APIL.
We detail the uView APl in Sec. 4.2.2. When the per-service metrics are specified ahead
of time (i.e., they are stated in the service initialization configuration), we can generate
automatic instrumentation to invoke the API for well-known metrics.? In other cases,
the microservice application needs to be modified to insert an API invocation for each
metric that it intends to export to uView.

IPU offloading

pView’s design naturally lends itself to offloading data plane processing from the
host CPU to emerging programmable IPUs [148], [151], which is beneficial to free up
precious compute resources for the actual application logic. Namely, the IPU fetches
metrics from memory locations registered by the control plane. The IPU also executes
LMAPs and returns their outputs to the control plane. We elaborate on the advantages
of this design choice in Sec. 4.5.

4.2.1 Offline configuration workflow

Before we proceed to a detailed discussion of uView’s components, it is worth
providing an overview of the offline configuration workflow for using our approach,
which is illustrated in Figure 4.3. Following best practices [160], [161], we expect
that service operators run automated tests to validate deployments before service in-
stances enter production. We leverage this phase to train the LMAPs and tune their

2The instrumentation would override access for well-known metrics at service initialization time via
alLD PRELOAD mechanism.

73



Sketching Microservices Observability in Programmable NICs

Description | API Call

Manage LMAPID newLMAP(Config, ServicelD)

LMAP void configLMAP(LMAPID, Dict<ServicelD, List<MetricConfig>)
void deleteLMAP(LMAPID)

Configure MetricID addMetric(LMAPID, Metric, Type, AggType, Frequency)
Metrics void deleteMetric(LMAPID, MetricID)

Add Hooks | HookID registerHook(List<LMAPID>, HookFn*)

Interface | Declaration
HookFn* | void hook(Feature, Output, AScore)

Table 4.2: yView API and hook interface.

hyperparameters. In particular, we use this phase to decide the rank k of the sketch-
based classifier (explained in Sec. 4.4) and the anomaly score threshold y. This is done
for each LMAP, which corresponds to the number of microservices.

We start by collecting a dataset of metrics, which we assume to be free of anoma-
lies. We complement this dataset with a set of metrics collected while synthetic faults
are injected. We split the dataset into a training set (70%) and a testing set (30%).

The hyperparameters are chosen by grid-searching possible values while oper-
ating the following process. To pick the threshold, we consider the distribution of
anomaly scores over the training dataset and set y to a sufficiently large percentile
(e.g., 90-99'"). We compute the F1-score over the testing set. We repeat this process
for each value of k and pick the one that maximizes the F1-score. We elaborate more
details in Sec. 4.8.2.

As explained in Sec. 4.4, uView’s sketch-based approach is adaptive to changes
in the workload. Thus, we do not expect to retrain the LMAPs unless the workload
changes drastically. In practice, we expect to retrain the LMAPs only when the appli-
cation code is updated.

4.2.2 The uView API

1View exposes a management API and a hook interface. To facilitate LMAP metrics
collection and management, pView exposes a configuration API (Table 4.2) which al-
lows operators to register metrics of interest and metadata about the metrics required
for the processing pipeline as well as initial configuration for the LMAP based on the
offline training phase (including the sketch parameters). This interface also allows the
operator to manage LMAPSs.

To enable a general set of hooks that can take arbitrary actions based on the in-
sights generated by an LMAP. uView presents a simple interface (Table 4.2) that all
hooks must implement. In brief, all hooks are event-driven and must implement an
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interface that implicitly registers them as callbacks when insights are generated by an
LMAP.

4.3 Control plane functions

The control plane is responsible for the following functions.
LMAP management. The control plane registers with the cluster manager (e.g., k8s)
to be notified about new pods and their status. Whenever the first replica of a new
service is scheduled on a node, the control plane allocates the corresponding LMAP.

Multiple replicas of the same service on the same node share the same LMAP.
When the last replica of a service is removed from a node, the control plane deallo-
cates the corresponding LMAP.
Memory management. The control plane allocates memory regions for storing met-
rics exported by microservices. This is done to provide an efficient way for LMAPs to
access metrics. Additionally, when the data plane is offloaded to an IPU (Sec. 4.5),
the control plane optimizes memory allocation by grouping metrics into contiguous
memory addresses. This allows LMAPs to batch multiple metrics into fewer memory
accesses over RDMA, as also done in [66].

4.4 Local metrics analysis pipeline (LMAP)

In this section, we describe the challenges underlying the design of an LMAP and
the components to address them. Recall, thanks to its proximity to the monitored
services, the uView data-plane supports small local scraping intervals that can follow
short-term variations of monitored metrics. In brief, an LMAP must quickly perform
anomaly detection in real time while being sufficiently flexible and efficient to sup-
port an arbitrary set of operator-defined metrics streaming at arbitrarily configured
frequency. To flexibly and efficiently support real-time processing, the LMAP requires
a metrics processing pipeline to sanitize the data (Sec. 4.4.2) and a general technique
to analyze/extract anomalies/insights from arbitrary metrics (Sec. 4.4.1).

4.4.1 Sketch-based metric classification

The high volume of continuously collected metrics imposes limitations on pro-
cessing time, memory, and storage availability for the metrics classifier modules when
they are co-located on servers running application containers.

Design goals. The metrics classifiers have to satisfy the following requirements.

1) Low overhead. The metrics classifiers should be fast and consume few CPU cycles,
which are precious to the application’s business logic. When deployed as a user-
space module, it should not waste CPU cycles devoted to the application workload.
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2) Adaptive. The anomaly detection module should be able to continuously learn and
adapt to concept drifts in the underlying metrics data. This is particularly impor-
tant in cloud-native environments, where services can be scaled horizontally, and
metrics trends are highly dynamic and can change over time.

3) Explainable. The classifier should provide explainable outputs, which means that
ideally we expect it to indicate which features triggered a detected anomaly.

Anomaly detection with subspace analysis

To satisfy all design goals simultaneously, we refer to a class of unsupervised ano-
maly detection techniques known as subspace-based anomaly detection [162]-[165],
which have been shown to work well for anomaly detection in network traffic. Infor-
mally, subspace-based anomaly detection leverages subspace analysis (SA) [166] to
generate a low-rank matrix approximation (e.g., PCA, SVD, etc.) of a dataset of non-
anomalous data points. To decide whether or not a previously unseen data point is
anomalous or not, it checks that the new data point has a “good” representation based
on this low-rank matrix. Because these algorithms use compact matrix representa-
tion, they are fast and space-efficient.

More formally, assume we have a low-rank matrix U which can be used to well rep-
resent any data point in dataset M on a linear subspace. For a new input data point x
(i.e., a featurevector), one can projectx onto the low-rank matrix U and check whether
the resulting embedding Ux is close to the embeddings of the non-anomalous data
points. Equivalently, since the input data point is known, one can check the recon-
struction error ||x— UU™x|. If the reconstruction error is large (i.e., above a certain
threshold y), then the data point is likely anomalous. The intuition behind this ap-
proach is that the low-rank matrix U captures the principal information of the dataset
M in a compact form, and thus it can be used to detect anomalies in new data points
whenever the information contained in U is not sufficient to represent them.

In pView, the matrix M corresponds to a dataset derived from a microservice’s
metrics. As mentioned (Sec. 4.2.1), the dataset M is collected offline and used to train
the initial low-rank matrix U. At runtime, the low-rank matrix U is updated incremen-
tally as new data points are collected. This enables yView to adapt to concept drifts in
the underlying metrics data.

Sketch-based classifier

A straw man is to recompute U from scratch as the SVD decomposition on each in-
cremental version of M, but this approach is very demanding in terms of storage and
computation. In fact, the dataset with ¢ data points, each with m features consists of
a matrix M € R, A second straw man is to rely on a separate server to compute the
matrix U. However, this would require synchronizing the collection frequency of the
metrics at the server with the local scraping interval, which imposes significant CPU
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overhead on the nodes (c.f. Table 4.1) on top of higher network bandwidth consump-
tion. Moreover, even accepting some degree of down-sampling, the SVD computation
is known to be resource-demanding for large matrices [166].

The challenge we face is how to efficiently update the low-rank matrix approxima-
tion in a streaming setup, i.e., at time ¢ obtain a matrix U, using only information from
time ¢ — 1.

Borrowing from [167], we use the Frequent Direction sketch algorithm (FD-Sketch).
The algorithm builds on the idea of replacing the large matrix M € R™* with a signif-
icantly smaller sketch matrix § € R™*!, with I < t, such that STx ~ MTx. That is, the
computations performed on § give results with minimal loss in precision compared
to those performed on M.

Therefore, an up-to-date low-rank approximation matrix U, € R can be ob-
tained at time ¢ from the SVD of S;. This only requires locally storing the sketch S;,
and updating it incrementally in a streaming setup, as originally proposed in [167].
For a formal analysis, the interested reader can refer to [168]. A survey on streaming
subspace analysis methods can be found in [166].

Anomaly score. For each new input data point x;, uView produces a reconstruction
error vector &; € R™, where each component a;; quantifies how “anomalous” the
metric x; ; is.

a[:xt—U(t_l)kU 4.1)

(-1t

In Eq. (4.1), U;-1y, is the low-rank approximation matrix computed at time £ —1
using the sketch algorithm. Moreover, the subscript k indicates that only the first k <
I < m columns of U;_1) € R"*™ are used to compute the reconstruction error. The
intuition behind this is that the first k columns of U contain most of the information
— this is by construction in SVD.

The vector «; is used to derive an anomaly score. Note that the larger the value
of a;,;, the more likely the metric x; ; is anomalous. Therefore, the anomaly score is
the norm of the reconstruction error vector, i.e., |a||?>. We say that there exists an
anomaly at time 7 if || & = Y.

FD-Sketch meets y/View design goals

We highlight the following aspects of the FD-Sketch algorithm that make it suitable
for the requirements of pyView.
One threshold to rule them all. pView relieves the service operator from the burden
of configuring per-metric thresholds. Thanks to the FD-Sketch mechanism, uView re-
lies on a single threshold y to detect anomalies. At the same time, service operators
can identify critical metrics by inspecting the top- j components by the absolute value
of the reconstruction error vector ;. In contrast to previous work [165], by consid-
ering the entire vector &; we open up to the possibility of turning a detector into a
classifier. Namely, depending on which top- j metrics have the largest reconstruction
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error, our approach can potentially identify different categories of failures. For exam-
ple, if the top-j metrics are mostly related to network I/0, then the anomaly is likely
due to a misbehaving network stack.

Thanks to the FD-Sketch algorithm, uView meets all the design goals simultane-
ously. First, FD-Sketch approximates a large SVD decomposition and only needs to
maintain a relatively small matrix S, therefore it is lightweight and keeps the compu-
tation overhead bounded. Second, since FD-Sketch updates an approximate dataset
matrix S; in a streaming setup, wherein the S; is recomputed based on new data points
since time ¢ — 1, it remains aligned with recent data and provides adaptability. Finally,
1View generates explainable outputs, as it provides a reconstruction error vector «;
which can be used to identify critical metrics that have the largest impact on the re-
construction error.

4.4.2 Metrics processing pipeline

As part of the processing pipeline, raw metrics undergo a set of pre-processing
transformations, before entering the sketch classification. The transformations are
simple and account for the following aspects: (1) metrics that are cumulative need to
be buffered and accumulated at each sample, (2) metrics may need to be aggregated
across replicas of the same service,® and (3) metrics need to be mean-centered and
rescaled to unit standard deviation.*

4.5 Offloading uView to an IPU

1View enables real-time processing of the metric stream from any microservice
through a corresponding LMAP, which resides on the same node as the monitored
microservice. However, uView’s high-resolution metrics processing creates compute
overheads. Additionally, metrics pre-processing described in Sec. 4.4.2 involves trans-
formations such as data whitening and accumulation.” Increasing the collection fre-
quency results in increased compute requirements for performing such operations.

Apart from CPU overhead, the uView data plane also needs to access memory
where it stores sketches, which may induce cache pressure on the host and deterio-
rate memory access performance of the running services. Note that the yView mem-
ory footprint is proportional to the number of services being monitored, the number

3uview supports standard aggregation functions including max, min, sum and mean; it can be ex-
tended with custom aggregators.

4This is needed to avoid SA to overweight components with large norm.

5This pre-processing transformation depends on the classification algorithm being used, however,
it is common to execute pre-processing steps of similar complexity for other inference algorithms.
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of metrics per service, and the rank of the sketch approximation. For example, mon-
itoring 1,000 metrics from 100 services with a sketch approximation k = 10 and using
a double-precision floating-point format would allocate 8 MB of memory.

To alleviates CPU contentions and cache pressure on the host, freeing up resources
for applications, we believe that offloading uView data plane to an IPU is highly ben-
eficial.

4.5.1 Off-path offloading as a natural fit

Modern IPUs may provide on-path or off-path or both types of offloading capabil-
ities. In the case of on-path capabilities, the offload functions run on the NIC cores,
resulting in high efficiency but poor flexibility due to the low-level programming in-
terfaces. In the case of off-path capabilities, a System-on-Chip (SoC) that is integrated
with but separate to the NIC cores, is available as a computing resource. The SoC can
host a full-fledged OS and run general-purpose code.

We regard the off-path SoC as an appealing offloading platform for the uView data
plane. Modern IPUs typically feature more than a dozen SoC processors, aligning well
with the task of metrics analysis, which naturally lends itself to embarrassingly paral-
lel computation. For example, the NVIDIA BlueField-3 and the Intel IPU E2000 both
boost 16 x ARM cores [151], [169]. Moreover, this type of compute complex allows
executing high-level code runtimes and libraries, avoiding additional development
complexity for the metrics analysis pipelines.

pnView leverages RDMA for host-IPU communication, achieving host CPU bypass.
In this way, pView supports high-frequency metric reading without incurring the over-
head of system calls and memory copies. We choose RDMA instead of DMA because
RDMA is a consolidated technology for high-performance networking in data centers,
and has been recently demonstrated to provide higher throughput (= 2x) than DMA
for communication between the host and a BlueField-2 IPU [170].

4.5.2 RDMA communication

In RDMA, applications interact asynchronously with a Queue Pair (QP), consisting
of a send queue and a receiving queue, which are managed by the RDMA NIC (RNIC).
The RDMA QPs act as an asynchronous interface between RDMA applications and
the RDMA stack to send and receive data. The RDMA application posts to the QP new
Work Requests (WR) that instruct the RNIC with the communication primitive to be
executed. RDMA supports one-sided and two-sided operations. In one-sided opera-
tions, e.g., READ/WRITE primitives®, the sender directly reads(writes) data from(to) the
receiver’s memory. In one-sided operations, the receiver application is not aware of

6In the InfiniBand terminology, they are referred to as verbs
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the communication. The receiver grants access to its memory by registering a mem-
ory region (MR) with the RNIC, and providing the sender with a remote key (rkey) be-
fore RDMA communication. Authorization to access memory based on the rkey is
verified by the RNIC, thus the receiver CPU is not involved during RDMA one-sided
communication.

In contrast, two-sided operations, i.e., SEND/RECV primitives, are similar to a typi-
cal socket-like communication, where the receiving application waits for data by post-
ing a RECV WR, and the sender a corresponding SEND WR to send new data. For both
one-sided and two-sided operations, the application polls a Completion Queue (CQ)
to receive notification events, once the WRs are handled by the RNIC. We focus on the
READ primitive to fetch metrics from the host to the IPU, as it allows us to avoid the
host CPU involvement.

4.6 Implementation highlights

Next, we discuss how pView integrates metrics collection based on RDMA with
LMAPs on a NVIDIA BlueField-2 IPU. uView leverages the parallelism offered by the
IPU SoC by distributing the LMAPs across the available cores. pView spawns one
agent per core, and each agent runs the LMAPs assigned to that core. Each agent
maintains a TCP connection with the control plane. The control plane instantiates a
new LMAP for each service and assigns it to an agent.

The agents execute a straightforward process: at every local scraping interval, they
fetch metrics for the LMAPs they manage, feed metrics to the LMAPs, send back the
outputs to the control plane, and wait for the next interval.

Reading metrics from the host to the IPU

The agents issue RDMA READs to fetch metrics from host memory, avoiding the
host’s CPU involvement. The uView agents on the IPU adopt unidirectional one-sided
RDMA communication, via READ s issued to the host. On the host-side, a new RDMA
QP is allocated for each agent, and the QP identifier information is exchanged on the
corresponding control channel with the IPU. Parallel QPs avoid head-of-line blocking
across READ requests from different IPU agents, which could happen if the host-side
allocated a single QP, because RDMA verbs are consumed in the same order they are
posted. On the IPU-side, agents establish one-to-one RDMA connections with the
host QPs, based on the received identifiers. As a design choice, every agent creates its
own QP and shares a single CQ for the send queue and the receive queue, since RDMA
communication is unidirectional and in pyView IPU only the send queue is used for
READ operations. On the BlueField2 SoC there are 8 ARM CPUs, while the upcoming
BlueField3 will feature 16 processors: this number is significantly lower than the num-
ber of connections that would drop RDMA throughput because of cache contentions
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and QP evictions [171].

The control plane manages the memory regions (MRs) where metrics reside. When
a service calls the addMetric API (c.f. Table 4.2), the control plane allocates memory
for the metric (its type determines the size) in a shared memory segment. This follows
the same principles of ZERO [66], avoiding metrics being scattered across process or
kernel space. The agents receive the configuration of metrics that each LMAP handles
from the control plane, which includes the RDMA rkey and the offset within the MR
for each monitored metric. Memory allocations(de-) and agent configuration happen
only once when a new service is deployed, therefore the overhead is limited. The more
dynamic serverless scenario is not considered in this work.

Tuning performance

To optimize memory access, the control plane groups metrics by service and allo-
cates them contiguously in memory. This allows the agents to batch multiple metrics
into fewer memory accesses (e.g., fewer RDMA READs). Moreover, we also can batch
multiple RDMA WRs in a single system call, supported via the ibv_post_send prim-
itive. To further optimize performance, we request a completion event only for the
last READ of every scraping interval. Since READ requests are consumed in the order
they arrive, the last completion event works as cumulative completion event for all
the preceding requests. Finally, the memory management module ensures that an
MR contains only metrics belonging to services that are allocated to the same agent
(same IPU core). Further, we align the size of the MRs to the page size, i.e., 4KB, on the
ARM architecture.

Since the IPU is meant to define a new trust boundary for infrastructure process-
ing [148], [149], [151], we consider that an agent can process metrics of different ser-
vices. A complete security analysis of uView is beyond the scope of this paper.

4.7 Observability hooks turn insights to actions

In this section we describe how uView can use the LMAP outputs to trigger actions
in response to detected anomalies. We focus on two use cases: (1) distributed tracing
and (2) metrics filtering.

4.7.1 Use case: distributed tracing

Metrics reveal the interval state of services and their containers at any point in
time. Their unexpected variation potentially indicates an anomalous state, which
negatively impacts user requests. As discussed in the Sec. 2.1 of the previous chap-
ter, the continuous-time online analysis of performance metrics is pivotal to achieve
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timeliness and accuracy. In yView we exploit the proximity of the LMAPs to the moni-
tored metrics, and we try to early-catch from the locally observed metrics any pream-
ble of future problematic executions. Building on this core idea, we describe how
p1View supports distributed tracing to sample informative requests.

At every local scraping interval, uView outputs a binary decision on whether the
tracer should sample user requests. Later, it informs the external distributed tracing
library that previously registered with the distributed tracing hook (Sec. 4.2.2) about
its decision. Logically the uView sampling policy is based on (1) aggregating the out-
put of all LMAPs of services involved in a user request, and (2) deciding to sample the
request if at least one of them has classified its metrics as anomalous. At this point,
this sampling decision is held until the subsequent classification cycle, when a new
decision will be taken based on a new metrics reading.

To achieve this in practice, pView requires coordination across all the tracing hooks
distributed across the cluster nodes. Specifically, the tracing hooks must agree on a
distributed decision on whether to sample the requests until the next local scraping
interval. This is because the microservices involved in a user request are distributed
on multiple nodes, therefore individual tracing hooks cannot make a decision inde-
pendently, as they only are aware of the output of local LMAPs. To minimize complex-
ity, we chose to elect to the role of leaders the tracing hooks on the nodes that host
at least one replica of the frontend service. The leader tracing hooks are responsible
for triggering the tracer to sample user requests. Because all user requests are routed
first through the frontend, leaders always sit at the beginning (head) of the execution
path. Therefore, they can implement the sampling decision as soon as the first ser-
vice in the execution path receives the user request. In this way, we don’t introduce
additional complexity with respect to a head-based sampling strategy. uView outputs
one decision for different operations invoked on the frontend service. In this way,
the anomalies that LMAPs detect on services not involved in the execution path of an
operation do not play a role in sampling the requests of such an operation.

4.7.2 Use case: dynamic metrics sampling

The dynamic metric sampling mechanism allows pView reporting informative met-
rics variation events timely, and save the data volume generated for their collection.
Our dynamic sampling mechanism builds on the core idea of using the anomaly score
value as a measure of the informativeness of the collected metrics. For every lo-
cal scraping interval, the sampler hook receives the per-service anomaly score ||a||?
from the LMAPs. Then the dynamic sampler hook takes a per-service decision about
whether the current metrics should be sent to a remote monitor system. The dynamic
sampler hook decides to send metrics when the anomaly score is above a threshold.
In this case, it notifies external libraries via the registered callback. Dynamic metric
sampling fundamentally implements a push-based mechanism for metric collection.
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However, we envision it can be integrated within a baseline periodic pull-based met-
rics collection, running at a lower frequency. In fact, there is increasing demand from
organizations for a more flexible monitoring infrastructure where co-existing pull-
based and push-based metrics collection can be configured [172].

4.8 Evaluation

In this section, we evaluate the performance of uView. We first describe the exper-
imental setup and motivate the spectrum of faults we injected. Then we present the
results of a set of microbenchmarks aimed at tuning the LMAPs for individual pods.
Finally, we present the benefits of uView observability hooks for the two use cases:
distributed tracing and dynamic sampling.

4.8.1 Experimental setup
System implementation

We validated our design by implementing a uView prototype. We have imple-
mented the LMAPs and observability hooks components in Python language, with
1278 LoC in total, The control-plane logic is written in 1180 LoC of C++ language, and
uses libibverb and 1ibrdmacm for RDMA communication. We deployed a k8s v1.25.5
(k8s) cluster with Istio v1.16.1 service mesh layer. The cluster runs on 4 nodes (3 work-
ers + k8s control-plane), each equipped with 8 Intel Xeon E3-1230v6 CPUs at 3.50GHz,
32 GB of RAM, and 100 Gbps network interfaces. We deployed Istio in its sidecar-based
default configuration, which includes a co-located proxy container for each pod (ser-
vice). However, we note that yView is agnostic to the Istio deployment strategy and is
also compatible with its sidecarless configuration.

Benchmark application

We evaluated pView using Online-Boutique [159], a real-world microservice ap-
plication which is maintained by Google. We chose Online-Boutique because it is a
widely adopted cloud-native benchmark for evaluating fault localization [145], [173],
metrics selection [174], resource allocation [175] and trace sampling [142], among
others. It implements a Web-based e-commerce platform with 10-tier stateless poly-
glot services and a Redis cache. All microservices communicate with each other via
gRPC calls. We set the minimum number of replicas to 1 for each microservice and
generate user requests to the frontend service using Locust [176], a multi-threaded
open-source load generator written in Python. Locust uses one thread per user and
allows us to customize user actions (i.e., request endpoint) and the time between dif-
ferent actions. We distributed user actions non-uniformly across microservices to
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Metric name Metric source | Description

request_bytes_sum Istio Number of bytes in RPC requests among services
request_duration_milliseconds_count Istio RPC duration between interacting services
request_messages_total Istio Number of application messages exchanged by interacting services
response_bytes_sum Istio Number of bytes in RPC responses among services
blkio_device_usage_total Resource Number of bytes transferred to/from block devices
cpu_system_seconds_total Resource CPU utilizations in kernel mode
cpu_user_seconds_total Resource CPU utilizations in user mode

container_processes Resource Number of processes in a service container
oom_events_total Resource Number of out-of-memory events in a service container
redis_commands_duration_seconds_count | Application Number of commands executed by Redis

redis_db_keys Application Number of keys stored in Redis
redis_commands_processed_total Application Number of call by command type HGET,HSET

Table 4.3: Examples of collected metrics.

emulate a realistic user interaction with an e-commerce website. Product browsing
represents the most common activity, while checkout is less frequent than cart view.

Observability datasets

For our evaluation, we collect the training and test datasets consisting of metrics
and traces by instrumenting the microservices with the OpenTelemetry SDK [158].
” For each microservice, we collected the following set of heterogeneous metrics.
For service-level metrics, we considered Istio metrics and application metrics. Istio
metrics are exported by the Envoy sidecar proxies and are related to requests and re-
sponses to services, such as istio_requests_total. Application metrics are gener-
ated by the user service running within a pod, and provide information about the state
of the service instance. For example, Redis is instrumented to generate a set of met-
rics relevant to its performance, such as the number of keys it stores, the number of
requests for each command (e.g., HGET, HSET), etc. Container-level metrics monitor
the utilization of system resources for individual containers, such as CPU, memory,
disk I/0, and network data transfers. We collect them from the k8s cAdvisor. Unless
otherwise specified, we collected metrics emulating a local scraping interval of 1 sec-
ond via Prometheus. ® Some exemplars of collected metrics are reported in Table 4.2.
We generated the training corpus in a controlled environment (Sec. 4.2.1), where we
allocated vCPUs and memory limits of each microservice such that utilization is no
larger than 10%, and verified that throttling did not occur. For all services except Re-
dis, the dataset comprises 71 Istio metrics and 70 cAdvisor metrics.

"We use a single OpenTelemetry collector in gateway-mode, where the collector instance runs as a
standalone service and acts as a proxy for metrics and traces between the services and Jaeger [62] (for
traces) and Prometheus [141] (for metrics). We configure trace sampling through the OpenTelemetry
collector.

8We also set the housekeeping_interval in cAdvisor consistently.
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Fault injection

For synthetic fault injection, we used ChaosMesh [177], the industry’s leading chaos

testing platform. ChaosMesh supports various fault types and offers streamlined in-
tegration with k8s clusters.
Resource contentions. In line with previous works [65], [178], we used ChaosMesh
to inject resource-related faults, such as CPU spikes or high memory usage, that often
arise in a production environment. Resource faults are common due to the presence
of application bugs e.g., memory leaks or inefficiencies such as excessive heap mem-
ory usage or JVM garbage collector overhead. In addition, they can result from (cyclic)
dependencies among co-located or interacting services [179].

4.8.2 Hyperparameter tuning

We perform a set of sensitivity analysis experiments to understand how the clas-
sification performance of the sketch changes in response to hyperparameter tuning.
For this, we deploy a single pod in isolation and run the service for 1 hour. We train
the sketch using roughly 1200 vectors of metrics generated during the first 20 minutes.
The result of the data (for the remaining 40 mins) is used for testing. During the col-
lection of test data, we inject short CPU stress anomalies at periodic intervals . Each
anomaly lasts about 30 seconds.

Choosing anomaly score y

The choice of the anomaly score is based on the probability distribution of the
anomaly score after the training phase. Since we assume the training data contain a
baseline of healthy metric samples (i.e., non-anomalous), a natural choice is to derive
a threshold around the tail of the distribution. The effectiveness of this approach de-
pends on the shape of the training score distribution. We first study how this changes
for different values of the sketch reconstruction rank k. Figure 4.4 shows the results
for different values of k. For small k, the sketch tends to underfit the training data,
as shown by the tail of the training score distribution approaching 1 and by the small
statistical distance between the training and test anomaly score distributions. Un-
der these circumstances, the definition of the threshold y is challenging. If y is set
to a high percentile the number of false negatives increases quickly, whereas smaller
Y would generate several false positives. On the other hand, for k = 20 the training
distribution is concentrated around 0, showing overfitting to the training data. In this
case, the classifier doesn’'t generalize well to different data.
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Figure 4.4: Anomaly score distribution for different number of columns k of the FD-
Sketch. The plots on the left-side show a configuration where the FD-Sketch tends
to underfit, whereas on the right-side the FD-Sketch overfits the training data. We
choose the anomaly score threshold y based on the training score distribution.

Detection performance

We vary the sketch reconstruction rank k, and the sketch size / and measure the
precision and recall of the classifier for different anomaly detection thresholds de-
rived from the g-percentile of the anomaly score distribution. We report the results in
Figure 4.5. We observe that increasing k gives better recall but lower precision. This
is because increasing k leads to skewed anomaly score distribution, which intuitively
corresponds to higher sensitivity of the sketch to metrics variations and ultimately
leads to overfitting. For example, for k = 20, a small noise in the metrics of the test
data produces large reconstruction errors, which increases the number of false pos-
itives and reduces precision. This effect is mitigated by choosing a higher anomaly
score threshold. On the other hand, we observe that the recall score benefits from
more skewed anomaly score distribution, but is generally less sensitive to the param-
eter k. Overall, we observe that both precision and recall do not significantly change
when increasing the sketch size from / = 25 to [ = 50. We conclude that the choice of
k and y should be made based on the desired trade-off between precision and recall.

4.8.3 Sketch detector performance

In this section, we study the performance of the sketch detector under highly dy-
namic workloads with a set of microbenchmark experiments that consider individ-
ual pods in isolation. In particular, we answer the following question: can the sketch
discriminate a transient overload from persistent overload? We define transient over-
load as a temporary overload condition due to an increase in traffic before the k8s
Horizontal Pod Autoscaler (HPA) deploys additional replicas of a service to match the
ingress workload. This is a challenging situation because the monitored metrics will
not remain stationary and will drift. Thus, these experiments allow us to demonstrate
the adaptability of the LMAPs. Theoretically, the sketch should be able to discrimi-
nate between a scenario where the cluster has spare resources to accommodate the
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Figure 4.5: Impact of varying sketch parameters on precision (blue color map) and
recall (orange color map) metrics. The anomaly detection threshold is set to the g-th
percentile of the anomaly score distribution, i.e., y = F(q).

incoming load and one where the overload is persistent because the cluster has insuf-
ficient resources, i.e., scaling stops either because of the max replicas setting in HPA
or the cluster is out of resources. In the former scenario, the sketch should not raise
any alarm whereas in the latter the sketch should detect an anomalous state and raise
alarms.

Since in the pView, every LMAP works independently, to answer this question
we run a microbenchmark experiment on a single service. We analyze the frontend
service and deploy its corresponding HPA that starts the deployment with a single
replica. To emulate the case where the cluster cannot schedule new pods, we con-
figure the kubelet’s parameter maxPods, which limits the number of pods that can be
scheduled on a node. We also make sure the HPA can saturate the node by ensur-
ing maxReplicas >maxPods. We train the classifier under stationary load conditions,
with a constant request arrival rate. The classifier parameters for this experiment were
=50, k=12, and @ =99.9 . While collecting the test dataset, we linearly increase the
load by adding a new user every 30 seconds, starting from 11:35 as shown in Fig. 4.6a.
The figure highlights the effect of a linearly increasing load on the CPU consumption.
We plot the maximum CPU consumption across all pod replicas (after proper normal-
ization and rescaling described in Sec. 4.4.2).

Takeaway-1: adaptation at runtime. The sketch can progressively incorporate un-
seen data as time evolves. During the first transient overload, i.e., before the first
time the HPA rescales the workload, around 11:45am, the anomaly score rises with
two spikes slightly below the threshold. After the HPA rescales the workload for the
first time, the load is uniformly split across the available replicas. Subsequently, the
anomaly score doesn’t drop to zero but remains significantly lower than before the
scaling, indicating that yView has adjusted its classifier to the new data distribution.

Takeaway-2: streamlined configuration effort. pView relieves platform engineers
from the burden of setting per-metric thresholds. Recall, with uView we only tune a
single anomaly score and not a per-metric configuration. Thanks to the sketch mech-
anism, pView relies on a single threshold to detect anomalies and raise alarms. For
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example, the red curve in Fig. 4.6a highlights that pView detects an anomaly when the
cluster is in a persistent overload state.

Takeaway-3: explainability of sketch outputs. We plot the top-3 metrics by mag-
nitude of &, in Fig. 4.6b (Sec. 4.4.1). We see that the initial spikes before the first
workload rescaling were due to metrics that directly relate to the number of open con-
nections, such as container_sockets. Instead, the detection of persistent overload
can be explained with the metric kube_pod_status_phase, since several pods failed
to start due to the node having saturated its scheduling capacity. This points out the
ability of the sketch to provide explainable outputs, which helps identify culprit met-
rics despite using a single threshold.

4.8.4 Case study #1: dynamic sampling

Next, we demonstrate how uView can reduce the data volume generated by metric
collection while preserving accuracy and thus reducing ingestion and storage costs.
For this experiment, we consider a single instance of a Redis microservice and we
collect its metrics every second for 40 minutes. We build the training dataset for the
sketch using the first 30 minutes and run the dynamic sampler on a test dataset M
built on the remaining 10 minutes. Borrowing notation from Sec. 4.4.1, the dataset
contains in row M; the time-series of metric i = 1,..,m. Then, we apply the sketch
dynamic sampler, as described in Sec. 4.7.2, and generate a filtered time-series M;
with reduced data volume, for every metric time-series M;. We evaluate the trade-off
between accuracy and data volume reduction. As a measure of accuracy, for every
metric M; we consider the Normalized Cross-Correlation (NCC) as defined as:

corr(M,-,M,-)

NCCi(t=0) =
corr(M;, M;)

This is because the cross-correlation at a time lag 7 = 0 measures the similarity be-
tween the two time-series. We normalize it by the auto-correlation of the original
time-series, so that the NCC gives a value between 0 and 1. The cross-correlation re-
quires the time-series to have the same length. However, when the dynamic sampler
hook drops samples the time-series M; will have some missing samples. We fill miss-
ing samples of M; by propagating the value of the last collected sample, until the next
useful sample. This emulates the behavior of a centralized collector that at any time
before the next available collection would only know the last sample. We compute the
amount of data volume reduction as the ratio between the number of samples in the
filtered metric M; and the number of samples in the unfiltered metric M;.

We optimize the sketch hyperparameters according to the guidelines discussed
in Sec. 4.8.2, resulting in k = 15 and [ = 25. Figure 4.7 reports the results for differ-
ent anomaly score thresholds. For dynamic sampling, the anomaly score threshold
controls the aggressiveness of the sampler. When the threshold is large, metrics are
reported only for significant variations. This results in poor similarity to the original
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Figure 4.6: Evaluation under non-stationary load. The sketch can discriminate be-
tween short-term overload, i.e., before the k8s HPA rescales the workload and critical
overload conditions.

series, but in a higher data volume reduction. Interestingly we observe that while the
data volume reduces linearly (along with the linear increase in cost saving), the accu-
racy plateaus before dropping. This suggests that by tuning its sensitivity, uView offers
a sweet spot that gives a good compromise between accuracy and cost overhead. At
threshold 0.5, the dynamic sampler can reduce the ingested data volume by 50% with
a less than 5% reduction in the accuracy.
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Figure 4.7: Effectiveness of the dynamic sampler hook with respect to different sensi-
tivities, configurable by the anomaly score threshold.

4.8.5 Case study #2: distributed tracing

In this section, we evaluate the performance of the pyView distributed tracing sam-
pling policy (Sec. 4.7.1) in a cluster-wide deployment.

Methodology

We continuously generate user requests from 100 simultaneous users on the On-
lineBoutique frontend. We run the experiment for 1 hour, while we collect both met-
rics and trace datasets. The metrics dataset is used to optimize the sketch hyperpa-
rameters (Sec. 4.2.1). After tuning each service’s LMAP, we start using the uView dis-
tributed tracing sampling policy. on the trace dataset. We run the hyperparameter
tuning workflow over the first 35 minutes and evaluate the sampling policy for the
different failures over the remaining 25 minutes. Starting after 25 minutes, we inject
short failures lasting 30 seconds on a randomly selected service every 2 minutes. This
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is because from minute 25 to minute 35 we use the injected anomalies as a testing
set for hyperparameter tuning, as explained in Sec. 4.2.1. We evaluate performance in
terms of coverage, i.e., the percentage of collected symptomatic traces, and overhead,
measured as a percentage of false positives, i.e., the percentage of non-symptomatic
traces unnecessarily collected via the tracing hook policy. A trace is defined as symp-
tomatic when one of the RPCs within the trace contains HTTP/gRPC error codes or
when the trace latency exceeds a predefined value. Since different calls to different
frontend operations will generally correspond to traces executing on different critical
paths, the definition of this latency value has to depend on the frontend operation.
Therefore, to evaluate uView we group traces by frontend operation and derive inde-
pendent latency threshold values for each group. We use the 99" percentile of the
trace latency distribution within each group. Only the traces collected before intro-
ducing anomalies are considered for this computation.

(View anticipates symptomatic traces

We compare pView against head-based sampling[147], [180] and an offline oracle

that employs 100% sampling probability for the entire duration of the injected anoma-
lies. Figure 4.8 shows that tracing with pyView achieves nearly total coverage, 5x better
than sampling 20% of the request. For more than 70% performance boost, uView adds
5% overhead. This is because head sampling relies on luck to capture faulty traces,
while uView is guided by metric signals.
GitLab Redis cache failure [181]. For this experiment, we inject application-level
faults inspired by a real-world Redis incident (issue #1601 [181]). In #1601, GitLab ex-
perienced chronic latency issues with a Redis instance acting as an LRU cache. Every
few minutes, the cache suffered from spikes of very high tail latency (e.g., 1 second),
and simultaneously from bursts of key evictions. The problem had been occurring
intermittently over two years, necessitating multiple rounds of hypothesis testing and
verification before identifying the root cause. The diagnosis unveiled that when the
Redis cache is oversubscribed and the Redis instance is close to CPU saturation, the
system might enter the following feedback loop. Because of a shared memory pool
handling both key storage and I/0 buffers, Redis has to evict some keys to accom-
modate new requests whenever the memory usage reaches maxmemory threshold. Be-
cause of the single thread design of Redis, the key eviction routine pushes the CPU to
saturation, dropping the throughput and increasing the backlog of requests, which in
turn creates pressure on Redis memory.

We reproduced the symptom of this Redis issue by synthetically injecting eviction
bursts in the Redis cache. For this experiment, we modified the OnlineBoutique ap-
plication by adding a datastore service downstream to the Redis cache, reproducing
a query aside scenario. In our application, if the user cart is not found in the Redis
cache, the application has to access a (slower) downstream datastore to retrieve it. To
protect the downstream service from overload, the Envoy proxy in Istio service mesh
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Figure 4.8: Performance-overhead trade-off of uView in assisting distributed tracing
for different kind of injected anomalies.

had been configured to enforce local rate limiting between the Redis cache and the db
service. The motivation for this design is that the cart associated with an active user
session is reasonably assumed to hit the cache. This is because we renew the Redis ex-
piration time for keys associated with active users with a timeout of a few minutes, and
the Redis eviction policy is configured to expiring-LRU. However, during the cache
incident, a significant amount of user requests missed the cache and had to retrieve
their session data from the backend database, which in turn caused the rate limiter
to drop requests. uView contributed to our troubleshooting efforts in two ways. First,
because of its real-time metrics streaming capabilities, we could exactly pinpoint in
time when the eviction burst took place. Based on this input we could restrict trace
analysis to a specific time window. Second, over the selected time window, the Jaeger
monitoring tool was able to capture a high percentage of requests ended with HTTP
429 between the Redis cache and the database, which revealed the rate limiter as the
root cause of request drops.

4.9 Related work

Troubleshooting cloud applications. There is significant work on troubleshooting
microservices often focused on using sampled data (trace [61], [142], [147], [182]-
[184], logs [185]-[187], metrics [60], [145]), few have considered non-centralized pro-
cessing of data. Notably, Fay [188] and recently OpenTelemetry [189] proposed hier-
archical approaches to reduce data sent to the central data store; however, they focus
on providing simple aggregation and still impose CPU overheads on the servers. In-
stead, uView offloads processing to IPU freeing CPU cycles and provides a flexible and
general sketch for anomaly detection.
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Sketches for network monitoring. Sketches [29], [190]-[193] have long been ex-
plored as a fundamental primitive for network telemetry over sampling due to their
lightweight and approximate nature. Unfortunately, due to network flow characteris-
tics and hardware limitations, network telemetry focuses on counting sketches, e.g.,
count-min, whereas pView explores a distinctly different sketch optimized for online
anomaly detection and pView focuses on optimizing metrics transfer via RDMA which
network telemetry does not address.

Offloading to SmartNIC. Recent work has demonstrated the benefits of offloading
to SmartNICs for network packet processing [194]-[196], accelerating key-value sto-
res [197], distributed file systems and transactions [198]-[200], GPU-centric applica-
tions [201], and even microservices [202]. uView differs in its application of offload-
ing for observability and introduces RDMA mechanisms to reduce overheads of data-
sharing.

4.10 Discussion

In this chapter, we presented uView, a sketch-based system to improve observ-
ability that preserves monitoring accuracy while reducing cost and performance over-
heads. We analyzed the effectiveness of the system under dynamic conditions, demon-
strating its ability to distinguish between transient and persistent overload situations,
while also offering significant data volume reductions. pView reduces operational
burden through the use of a catch-all anomaly score threshold, improves explainabil-
ity by highlighting relevant metrics that contribute to anomalies, and enables sub-
stantial cost savings of up to 50% with negligible loss in measurement accuracy. uView
can increase the coverage of faulty requests by 5x compared to OpenTelemetry sam-
pling policies, while keeping the overhead low.
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Chapter 5

Conclusion

In this thesis we took a step towards the realization of data center monitoring so-
lutions with granular visibility and high accuracy, which is prominent in today’s era
of distributed systems and Anything-as-a-Service cloud model. DC operators need
monitoring for informed decision-making to plan the DC evolution, and, as network
provisioners, to timely respond to network incidents when they happen or witness
with confidence about the innocence of their network else wise. Similarly, tenants
strives for more and more monitoring intelligence, to better understand the perfor-
mance of their applications and services. Monitoring is conspicuously complicated
by the large scale disaggregated design of DC systems, which has brought to intensi-
fying the capillarity and the volume of telemetry to cope with the increased exposure
to failures and performance degradation. Unfortunately, this is hardly sustainable on
the long term due to the huge overheads.

Network programmability, started with the SDN process with the goal of intro-
ducing additional flexibility and vendor-independence for network protocols, has re-
sulted in the ubiquity of programmable data plane technologies both in the network
switches and at the hosts NICs. These technologies have soon extended beyond mere
packet processing, and nowadays serve as accelerators for diverse applications (e.g.,
distributed ML training [12]), thanks to its ability to support high-throughput com-
putations. Monitoring is one of the applications that can benefit from this trend, as
it requires processing data generated at high throughput and to continuously extract
statistics and features, all of which can be done on-the-fly in network devices while
data are transiting.

In our work, we have explored the potential of leveraging programmable data pla-
nes to address the DC monitoring challenges for two target categories: network traffic
anomaly detection and cloud-native applications observability. All the included con-
tributions are based on the rationale of moving monitoring functionalities close to
where telemetry data are generated. Chapters 2 and 3 have focused on aspects of net-
work traffic monitoring, and devised sketches to compute real-time traffic statistics
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in P4 switches, while Chapter 4 has focused on the monitoring of cloud-native ap-
plications, demonstrating for the first time a system which uses sketches placed on
a SmartNIC to reduce the observability data bloat. We believe that our work, which
embraced the trend of partitioning and offloading functionalities between the servers
CPUs and programmable network devices, is actually part of the broader inclination
of data centers towards platform accelerators (IPUs, TPUs, GPUs, FPGAs, etc.), which
today represents the key enabling factor to speedup performance.

In Chapter 2, we addressed the challenging task of cardinality estimation in traffic
streams, a.k.a. counting unique flows. The main focus of our investigation has been
extending state-of-the-art sketches to count flows in continuous-time and under a
sliding window model. The outcomes of our research are two new sketches to be used
in practical monitoring scenarios, where recent traffic statistics are what really matters
to network management.

ST-HLL is an extension of the HLL sketch, and embeds a structural mechanism
to forget outdated counted arrivals, which is based on the staggering of the internal
structure of the sketch. The main strength of this sketch is that it does not add any op-
erational complexity to vanilla HLL, while also keeping the same memory footprint.
Moreover, we believe that the staggering approach is general enough to be revisited
for other sketches sharing a similar architecture. In this chapter, we formulated an
extensive statistical analysis to characterize the behavior of a register estimator under
the staggering scheme, then we devised practical algorithmic solutions. We developed
ST-HLL with simplicity and practicality in mind: it is the first timestamp-free sketch
for cardinality estimation, which can be implemented just by using a single timeout
mechanism available in commercial switches. Nevertheless, performance-wise it im-
proves up to a factor 2x the estimation accuracy over alternative methods [85], for a
given memory budget under real-world Internet traffic traces.

The second sketch, TS-PCSA, is an extension of the PCSA sketch, and supports
sliding window counting through timestamp-tagged entries. The main novelty of this
contribution is the simple yet effective strategy to associate a constant temporal off-
set to the sketch registers, which allows to keep the sketch as lightweight as previous
techniques, while being up to 25% more accurate. We evaluated TS-PCSA under real-
istic settings, and we showed that it outperforms other solutions by 25%, given a fixed
memory budget.

We concluded that despite the vast body of research around sketches for network
traffic monitoring, when it comes to continuous-time operations only very few sket-
ches can make cardinality estimation practical. Our work has shown how this goal is
actually achievable, yet it has also emphasized that the amount of memory available
on a single switch plays a central role for the performance of the estimator: if we could
afford larger footprint TS-PCSA outperforming ST-HLL.
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Following the outcome of Chapter 2, we directed our efforts towards finding mech-
anisms to distribute sketches across multiple switches and use the entire memory re-
sources available network-wide. In Chapter 3, we looked into existing approaches to
realize such abstraction, and we found that the current state-of-the-art for the fre-
quency counting problem is not able to fully exploit the potential of distributed sket-
ches. We showed the suboptimality of the approach via numerical simulations, de-
monstrating that traffic unbalancing may negatively affect the performance. More-
over, we highlighted the convexity of the problem, which suggested that a global opti-
mization is possible and opened to new research avenues. Ultimately our findings
proved that a new approach is needed to fully exploit the potential of distributed
sketches, and it should account for the diverse traffic load condition expected on the
sketch fragments. A very recent work [11] has followed-up on this direction, and pro-
posed a new sketch that is able to cope with traffic-awareness, coherently with the
prospects of our work.

In Chapter 2 and Chapter 3 we have looked to monitoring from the perspective
of the DC, who is responsible for smooth network operations. The other side of the
coin is the monitoring of the applications running on the DC, which is instead rele-
vant to DC customers and the focus of Chapter 4. We have proposed a novel system,
1View, to reduce the observability data bloat in cloud-native applications. The system
is based on the use of sketches placed on an IPU (i.e., BlueField2 SmartNIC) to reduce
the communication and storage costs of observability.

We believe our work in this field is especially relevant as part of a broader trend in
data centers. Offloading the workloads from server’s CPUs to external specialized ac-
celerators, such as GPUs, IPUs, TPUs and FPGA is the current biggest hype in data
centers and actually represents, after the end of the Moore’s law, the key factor to
boost performance. A pivotal challenge is choosing which functionalities to offload
and where to place them, with the goal of optimizing for several indicators, such as la-
tency, throughput, and energy consumption. Our work has identified in observability
a good candidate to be offloaded, as it is largely comprised by routine tasks, including
data pre-processing and filtering, that can be performed by lightweight algorithms
and easily parallelized. At the same time, we have found SmartNICs as a natural fit
for offloading observability functionalities, as they are designed with core numerosity
in mind. Moreover, observability oftentimes only involve server-local measurements
which can be easily accessed at high frequency via RDMA.

We validated pView on a production-grade microservice application in a self-ma-
naged on-premises Kubernetes cluster. Our results showed that thanks to the sketch
mechanism acting as an intermediate filter, we can reduce the observability data bloat
caused by metrics, with negligible loss in monitoring accuracy. We have also shown
that puView can assist distributed tracing and increase the coverage of faulty requests
with respect to industrial standards such as OpenTelemetry and Jaeger.
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In conclusion, in this thesis we proposed a set of novel monitoring tools applica-
ble to numerous elements of modern DCN infrastructure. We showed that estimating
flow cardinality from high-speed traffic, while being able to answer to sliding win-
dow queries at arbitrarily points in time, can be achieved easily without introducing
complexity in the network node. We showed that even if multiple physical sketches
distributed across several nodes can contribute to a shared logical sketch and lead
to better accuracy, doing so without optimizing the division of labor for the specific
traffic patterns can be myopic and suboptimal in numerous scenarios. Finally, we
showed that sketch-based approaches combined with off-path IPUs can reduce the
observability data bloat in cloud-native applications, which is a major impairment,
other than a financial pain, for enterprises adopting cloud-native.
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Average Relative Error. 60, 61
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Count-Min Sketch. 57, 58
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continuous-time. 22
DC

Data Center. 1, 95, 97
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Data Center Network. 2, 98

DDoS
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List of Possible Future Maxima. 28, 47
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Protocol Independent Switch Architecture. iii, 3, 4, 62
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Remote Direct Memory Access. 5, 97
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Software Defined Networking. 2, 4, 7, 55, 95
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