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ABSTRACT Quanvolutional neural networks (QNNs) have been successful in image classification, ex-
ploiting inherent quantum capabilities to improve performance of traditional convolution. Unfortunately,
the qubit’s reliability can be a significant issue for QNNSs inference, since its logical state can be altered by
both intrinsic noise and by the interaction with natural radiation. In this article, we aim at investigating the
propagation of logical-shift errors (i.e., the unexpected modification of the qubit state) in QNNs. We propose
a bottom—up evaluation reporting data from 13 322 547 200 logical-shift injections. We characterize the error
propagation in the quantum circuit implementing a single convolution and then in various designs of the
same QNN, varying the dataset and the network depth. We track the logical-shift error propagation through
the qubits, channels, and subgrids, identifying the faults that are more likely to cause misclassifications.
We found that up to 10% of the injections in the quanvolutional layer cause misclassification and even
logical-shifts of small magnitude can be sufficient to disturb the network functionality. Our detailed analysis
shows that corruptions in the qubits’ state that alter their probability amplitude are more critical than the ones
altering their phase, that some object classes are more likely than others to be corrupted, that the criticality
of subgrids depends on the dataset, and that the control qubits, once corrupted, are more likely to modify the
QNN output than the target qubits.

INDEX TERMS Fault injection, fault tolerance, quantum computing (QC), quantum machine learning

(QML), reliability evaluation.

I. INTRODUCTION

In recent years, quantum computing (QC) has undergone tan-
talizing improvements that could broaden the classical con-
cept of computation as a whole. With the current widespread
access to simulators and quantum devices over the cloud,
researchers have been able to quickly expand QC’s reach to
fields such as finance [1], chemistry [2], biomechanics [3],
machine learning [4], [5], and many others. Quantum algo-
rithms are implemented by encoding the input data in quan-
tum bits (qubits) and executing quantum circuits, which are
sequences of operations on one or more qubits. The guan-
tum advantage is achieved by exploiting the quantum prop-
erties of qubits, namely, superposition and entanglement.

Lately, the potentiality of QC has been successfully applied
to reduce the inefficiencies associated with the execution of
convolution in traditional computing systems. Hybrid
quantum—classical machine learning models, called quan-
volutional neural networks (QNNs) [6], deliver promising
speedups in terms of convergence and inference times over
the classical convolutional neural networks (CNNs) while
maintaining a very similar classification accuracy [7].

The most challenging obstacle preventing quantum tech-
nology from thriving is reliability. Superconducting qubits,
which are the most widely used quantum devices (adopted
by IBM and Google, among others), ideally need to be op-
erated at a temperature close to absolute zero and shielded
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from all external interference, which is unfortunately un-
achievable. As a consequence, retention and relaxation errors
shorten significantly the computationally useful lifetime of
a qubit, inducing a logical-shift error in the qubit state. On
top of this, it has been proven, through both experiments and
simulations, that quantum devices are extremely sensitive to
natural ionizing radiation [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Rather than flipping a bit, as would happen in com-
plimentary metal-oxide semiconductor (CMOS) technol-
ogy [17], intrinsic noise and external radiation both trigger
the qubit(s), modifying the resulting qubit logic state. Since
the logic state of the qubit is not binary, the fault induces a
rotation in the qubit(s) state(s), i.e., a logical-shift error.

While quantum error correction (QEC) strategies
have been developed for mitigating single-qubit noise
effects, their overhead 1is unacceptable for current
noisy intermediate-scale quantum (NISQ) machines. In
addition, the transient, correlated, and stochastic nature
of radiation-induced faults would in any case make QEC
ineffective since multiple qubits would be affected by the
charge deposited by the particle. Thus, the current and
foreseeable quantum technology will still need to deal
with logical-shift errors. The goal of our evaluation is to
understand if and how these faults impact the execution of
QNN:Ss. Despite the fact that extensive research to understand
and improve the reliability of traditional neural networks has
been triggered already [18], [19], [20], studies about fault
propagation in QNN are still lacking.

To fill this research gap, in this article, we propose a
detailed investigation of the behavior of the QNN model
based on the hardware efficient ansatz for implementing the
quantum convolution. The quantum circuit we target is the
starting point of a large number of current (and future) QNN
models [7], [21], [22], [23], [24], [25]. Then, we show-
case a methodology to track fault propagation in QNNs by
considering three different implementations of the very first
such model ever designed [6]. To the best of the authors’
knowledge, this is the first work addressing the reliability
of QNN to logical-level faults. Although QNN are rapidly
evolving and not yet employed in the field, it is by no means
premature—but rather absolutely urgent—to consider their
reliability. By promptly addressing the issue imposed by both
intrinsic and extrinsic radiation-induced faults, we can im-
mediately start to develop new reliability solutions, rather
than patching it up only after its impact will become evident
in the field. In this article, we inject more than 13 billion
logical-shift faults in the quantum layer, adapting to QNNs an
open-source fault-injector for quantum circuits (QuFI) [16].
We aim at filling the gap in the reliability evaluation of QNNs
by investigating and understanding how faults in the quantum
layer propagate in the network during inference and why they
cause misclassifications. We aim at advancing the knowledge
of QNN reliability by the following:

1) detailing a methodology to evaluate, through fault in-
jection, the reliability of QNNs to logical-shift faults;
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2) studying the reliability profile of the qLayer, identi-
fying the more critical qubit(s) and how logical-shift
faults modify the layer output;

3) measuring the probability for a logical-shift fault to
cause a misclassification in QNNs;

4) understanding the fault-impact dependence on the in-
put image, the dataset, and the QNN design;

5) assessing how the corruption of different subgrids
or portions of the feature maps impacts the QNN
accuracy.

The rest of this article is organized as follows. Section II
provides background and related works in the field of QC
and QNNS, Section III outlines the design space exploration
of our evaluation, Section IV describes the adopted experi-
mental setup, and Section V presents and discusses the exper-
imental results and their implications. Section VI highlights
the impact of the proposed methodology. Finally, Section VII
concludes this article.

Il. BACKGROUND AND RELATED WORK

This section covers the fundamentals of QC, QNNs, quantum
noise, and radiation-induced faults. We aim at providing the
necessary information to describe the context in which the
proposed work has been carried out.

A. QUANTUM COMPUTING

In the classical computation domain, the smallest unit of
information is a binary digit, which can either encode a 1
or a 0. Instead, the quantum computation paradigm uses a
two-state quantum mechanical system, called qubit, which
can exploit quantum properties, such as superposition and
entanglement. The former allows a qubit to exist in multiple
different states at once, while the latter is capable of linking
multiple qubits into a higher level object, which displays
correlation patterns among all its elements. A superposition
state is represented by the linear combination of the basis
states |1) and |0) according to a pair of complex probability
amplitudes

V) = «|0) + B1). )]

Such a general formulation for |W) can be visualized on the
Bloch sphere, as seen in Fig. 1 (upper), mapping the quantum
state onto a vector in spherical coordinates, thus controlled
by the polar (¢) and azimuthal () angles.

Quantum algorithms are executed by means of quantum
circuits, described as a temporal sequence of possibly si-
multaneous operations (quantum gates) applied to specific
qubits. Gates can operate on single qubits, or on multiple
qubits. The latter are usually composed of one or more con-
trol qubits that condition the execution of a certain operation
on one or more target qubits.

Since QC is probabilistic by nature, the circuit execution is
repeated multiple times. Instead of having a single output, the
circuit provides a probability distribution of qubit collapses
from multiple runs. At the time of writing, quantum devices
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FIG. 1. Comparison of the effect of (a) noise and (b) particle impact at
the physical and logical level of the qubit. The single logical qubit is
implemented with several physical qubits (five in the picture) correlated
by a QEC mechanism. Noise affecting one physical qubit, being well
characterized, can be compensated for without affecting the logical qubit
state. The charge deposited by the particle instead spreads across the
whole physical substrate, jeopardizing QEC efficacy by generating a
rotation of stochastic amplitude in the logical qubit’s state, i.e., an error
syndrome that cannot be corrected.

still belong to the NISQ era. These devices are capable of suc-
cessfully executing only small algorithms, since technology
development, in terms of control and insulation, has not yet
reached the standards for fault tolerance. This also implies
that some qubits can experience intrinsic noise that changes
their state. Moreover, as detailed in Section II-B, despite the
transient nature of radiation-induced faults, their persistence
is orders of magnitude longer than the overall quantum cir-
cuit runtime [8]. Unfortunately, then, the repeated executions
do not mitigate all possible sources of error.

Quantum circuits are defined at a logical, high abstraction
level, only to be later franspiled into sequences of basic
operations, the ones that can be directly carried out by ar-
chitecture of each specific quantum device. The transpilation
process involves mapping the quantum circuit onto a system
of imperfect components, taking into account optimizations,
noise reduction metrics, and heuristics [26].

B. QUANTUM NOISE AND RADIATION-INDUCED FAULTS
Logical qubits are exceptionally complex to implement and
control on physical devices. Among the available technolo-
gies, we focus on the superconducting transmon qubit, since
it is, by far, one of the most promising and widely adopted
technologies.

To prevent the qubit’s information from being corrupted, it
must be completely isolated from the external environment,
a task hardly achievable. Real qubits are characterized by
two decoherence times, 7’1 and 72. The former, called spin-
lattice coherence time, refers to the natural energy decay time
of an excited qubit in state |1) to the ground state |0). The
latter, or spin-relaxation time, is the minimum interval before
a qubit’s state gets affected by external interference or by
neighboring qubits. Fig. 1(a) shows a simplified visualization
of how noise gradually modifies the qubit logic state.

Error handling techniques are continuously improved to
increase 7'1 and 72, in order to preserve quantum properties
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for a longer time. QEC mechanisms, as depicted in Fig. 1,
exploit hardware redundancy to ensure an accurate computa-
tion output even if the state of a qubit has degraded during the
circuit execution. The quantum state of a single logical qubit
is encoded into multiple physical qubits (as an example, five
physical qubits in Fig. 1). Algorithms have to be adapted to
act across multiple qubits and to apply the QEC. Currently,
the most promising solution is the use of surface codes [27],
which require at least 2¢ physical qubits for each logical
qubit, where d represents the distance, i.e., the number of
errors that can be corrected. Unfortunately, the high cost of
QEC makes it impractical for current NISQ machines. At the
time of writing, most quantum device providers map logical
qubits directly to physical ones, thus logical-shifts in qubits,
as the one we inject, can be retraced one-to-one to the state
of the device at the hardware level.

Lately, it has been demonstrated that transmon qubits are
incredibly susceptible to natural radiation, that, by depositing
charge in the substrate, breaks Cooper pairs and releases
quasiparticles. These quasiparticles can tunnel the Josephson
junction, exciting the qubit(s), and thus suddenly shifting
their state(s) [14], as shown in Fig. 1(b—upper). Numerous
recent studies on the interaction of ionizing radiation with
transmon-based devices have all highlighted a significant re-
duction in the correctness and interpretability of quantum cir-
cuit output [9], [10], [11], [12], [13], [14], [15], [28]. Recent
experiments by Google Quantum Al, furthermore, demon-
strate that the charge deposited by external radiation spreads
across the quantum chip, suddenly modifying the state of
multiple correlated physical qubits at once [8], as depicted
in Fig. 1(b—lower). In an even more recent study revolving
around surface codes, the same Google Quantum Al team
was forced to statistically outrule a high-energy event [29].

The rapid spread of charge across the qubits and the fault
incidence rate have proven to be extremely significant, lead-
ing to a transient fault duration that has been measured to be
of several milliseconds, which, as already mentioned, is or-
ders of magnitude longer than a single-circuit multiple-shot
execution. Google’s experiment measured that a radiation-
induced corruption event happens every tens of seconds on
an array of just 25 physical qubits. To put this error rate in
perspective, hours are needed to observe a radiation-induced
event in a tens of thousands nodes traditional supercom-
puter [30].

Observation 1. The radiation-induced fault rate of qubits
is orders of magnitude higher than the one of traditional
transistors.

Unfortunately, the known QEC approaches, such as sur-
face codes [27] or the Shor error correcting code [31], be-
come ineffective when multiple physical qubits are affected
by radiation [29]. If multiple logical qubits are mapped on
the physical qubits of a single chip (as in most cases), we
can expect one impinging particle to modify the state of mul-
tiple logical qubits. Stochastic and unpredictable radiation-
induced faults; then, add over the intrinsic noise and suddenly
modify the logical qubit state. As a result, even if QEC was
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implemented, we would still expect logical-shift faults in
quantum circuit executions making our evaluation valid also
for future quantum machines.

These evidences highlight that stochastic particle strikes
could possibly hinder large-scale use of QCs. More than ever
it is now time for experts in the reliability domain to tackle
the threat posed by such faults.

Observation 2. Logical-shift errors can occur in current
NISQ machines, as radiation-induced faults suddenly change
the qubit(s) quantum state and are not corrected by QEC
approaches, since the deposited charge induces correlated
faults in multiple physical qubits.

Regrettably, efficient and effective techniques to preserve
the circuit output in case of logical-shift faults are still lack-
ing. A possible approach to reduce the impact of radiation
could be to shield quantum devices in deep underground
caves [10], as recently announced by Oak Ridge National
Lab and Fermi National Lab of the US Department of En-
ergy [32]. Another option would be to replicate quantum
chips, but the redundant chips, to maintain quantum prop-
erties, should share a quantum network and should be able to
entangle qubits among different chips [33]. Both approaches
are extremely resource intensive and expensive, and thus will
hardly be the solution.

C. QUANTUM MACHINE LEARNING

Quantum machine learning (QML) explores how to devise
and implement efficient quantum circuits that offer advan-
tages over classical machine learning algorithms [34], [35].
The classical machine learning neuron operation is encoded
in a binary fashion as active or resting, which could intu-
itively be translated to the basis states |0) and |1) of a qubit.
This theoretically allows learning models to exploit quantum
features, such as superposition and entanglement, possibly
providing speedups or new processing approaches [6], [21],
[36].

Lietal. [37] presented an exciting and long-awaited appli-
cation of quantum multiplicative weight primal—dual ideas in
supervised machine learning, achieving a quadratic improve-
ment over classical counterparts. In addition, Kerenidis and
Luongo [38] proposed quantum classification via slow fea-
ture analysis, while Havlicek et al. [39] developed and tested
fully quantum neural networks, such as quantum support
vector machines, on real quantum hardware, showing how
an ever-increasing number of approaches are being adapted
and tested with success in the QC field. Recently, also CNNs
have been mapped on quantum circuits. The quantum con-
volutional layer (quanvolutional layer or qLayer for short)
encodes a convolution kernel and a max pooling operation
in the structure of a bounded-error quantum polynomial time
circuit, called hardware efficient ansatz, and applies it to local
subsections of an input, producing an output of higher level
features. The substitution of a classical convolutional layer
with a qLayer maintains the accuracy unaltered (since the
two layers perform a comparable operation), but the network
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with the qLayer still presents a lower loss and a faster conver-
gence [6], [7], [21], [36], [40]. The models proposed in these
papers still use the concept of the hardware efficient ansatz
circuit, that we extensively analyze in this article, to derive
the quantum layer. The detailed reliability evaluation of the
quantum layer together with the fault effect characterization
we propose can be directly applied to most of the available
QNN models. To showcase how our results and observations
can be used to evaluate the quantum fault propagation in
QNN models, we target its original implementation [6] as a
specific case study. We perform an exhaustive fine-grain fault
injection campaign considering three incrementally complex
versions of the original design, so as to let the reader compare
the results with traditional convolution fault propagation. A
generic hybrid architecture example is depicted in Fig. 2. The
input image is divided into subgrids and both convolution
and pooling on the image are performed through a four-qubit
quantum circuit. The combination of all subgrids is the out-
put feature map that is propagated to the downstream layer.
As our results demonstrate, logical-shift faults as the one
caused by intrinsic noise or natural radiation, can potentially
corrupt the output prediction, therefore justifying the reason
for studying faults’ impact in QNNs.

1il. EXPLORATION OF DESIGN SPACE

To have a thoughtful understanding of logic-shift error prop-
agation, we propose a bottom—up approach, starting from a
per-qubit reliability characterization of the qLayer circuit, to
later consider the fault propagation in the QNN and its impact
on the final classification. We study three network designs
with incremental depths and two datasets. The hereby pro-
posed methodology can be adapted and easily applied to test
fault propagation in any other QML model, although such
extensive analysis exceeds the scope of this article. We high-
light several aspects that can impact the fault effect on the
QNN operation, from the dependence of error propagation
with the input image to the vulnerability of different qubits
and different subgrids (position of the corrupted quanvolu-
tion in the feature map). We consider only faults affecting the
quantum part of the QNN, thus no fault has been introduced
in the classical layers.

A. QUANVOLUTIONAL LAYER

The first evaluation we propose is the characterization of the
reliability profile of the ansatz four-qubit quantum circuit im-
plementing the gLayer, shown in Fig. 3. The objective of this
first exclusively quantum analysis is that of understanding the
inner workings of fault propagation in this quantum circuit.
The gLayer is composed of three main sections: encoding,
the actual random circuit, and measurement. The sequence of
these elements produces an output tensor of size comparable
with a classical convolution and pooling operator on 2 x 2
subgrids with a stride of 2. The qLayer is not a direct quantum
translation of the convolution operation for CNNs, but rather
it is the standard quantum dual of a convolution kernel for
QNNS, as per the works of the authors in [22], [23], [24],
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FIG. 2. Generic architecture of a hybrid QNN, with details of the qLayer. The input image is divided into 2 x 2 subgrids. A four-qubit quantum circuit
performs both a 2 x 2 convolution and pooling operation on each subgrid. The output of the qlLayer is a tensor of four channels representing the

extracted feature map.
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FIG. 3. Ansatz circuit implementing quanvolution. The values that
parameterize the gates are randomly generated and kept constant during
the experiments. The values fixed for the experiments are as follows:

« =2.353,  =4.599, y =3.761, and § = 5.974.

[25], [41], [42], and [43]. Each of the four qubits calculates
one of the four channels of the feature map. Larger qLayers
are possible, but in all the available QNN implementations
the size of the subgrids is kept to 2 x 2, which provides
the best tradeoff between accuracy, circuit complexity, and
performance [6], [21]. Thus, for this article, we keep constant
the gLayer size at 2 x 2. The proposed methodology and the
following insights can be applied to any current and future
qLayer sizes.

The circuit contains two controlled-NOT (CNOT) gates,
each controlled by qubits 2 and 3, respectively, targeting
qubits 1 and 0. The cNoT gate, a multiqubit gate, will per-
form an X-gate (the equivalent of the NOT gate in classical
computing) on the target qubit if the state of the control qubit
is |1). Given the entanglement caused by these two gates, we
test also the propagation of faults from control qubits to target
ones. At the end of the circuit, the expectation of each qubit is
extracted, by running the circuit on a minimum of 1024 shots.

To have a fine-grain evaluation of the reliability of
the quanvolution operation, in the analysis carried out in
Section V-A, we have considered a fixed input subgrid and
injected a fault in each of the four qubits (one qubit corrupted
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at a time). The aim of the per-qubit evaluation is to under-
stand which channel (qubit) is less reliable and if there is a
difference between control and target qubits. As detailed in
Section V-A, we found that faults in control qubits have a
more significant impact on the QNN output, since they get
propagated to the target qubit, and that the injection on one
qubit affects only the channel associated with the corrupted
qubit, with negligible effects on the other channels.

B. QNN AND INPUT DATASET

To understand how faults occurring in the qLayer propagate
in the QNN, we make use of the knowledge gained from
the previous in-depth analysis results on the gLayer, testing
three hybrid models, so as to let the reader make a direct
comparison with the well-studied fault propagation mech-
anisms of convolution layers in classical CNNs. We inject
logic shifts only at inference time, not during training, which
is a common practice also in traditional CNN reliability eval-
uation [18], [19]. In fact, while errors during training can
potentially reduce the performance or increase the conver-
gence time, these effects are easily detectable and solved
with additional training steps. On the contrary, silent errors
during inference can lead to potentially harmful real-time
mispredictions and should be strictly avoided.

Recent experiments showed that the charge deposited by
radiation migrates in the Silicon substrate, eventually affect-
ing physically close qubits [8], [44]. Since the four qubits
implementing the qLayer must be connected and close to
each other, we expect the single-particle interaction to cor-
rupt all of them. As such, in the QNN reliability evaluation,
we will simultaneously corrupt all four qubits during subgrid
computation.

3100914
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FIG. 4. Combined view of the three hybrid quantum neural networks studied. ModelA is composed of only a qlLayer, directly connected to the Flatten
layer. ModelB integrates a traditional convolution layer between the qLayer and the Flatten layer. ModelC is composed of all the elements in the figure
above, i.e., a qLayer followed by two convolutional layers. Proportions for the output tensor dimensions have been preserved.

As a baseline, we consider the QNN design available
in [6], a hybrid classical-quantum adaptation of the Le-Net
model [45] for image classification, which is one of the first
(classical and quantum) models to be designed. The inputs
we used are taken from the MNIST handwritten digits and
fashion datasets [46], both consisting of 70 000 28 x 28 pix-
els grayscale images representing either handwritten digits
or clothing apparel.

We chose the MNIST datasets (handwritten digits and
fashion items) since they are widely regarded as a corner-
stone of classical machine learning (ML) research. In addi-
tion, the current scale of quantum devices does not yet al-
low for the usage of state-of-the-art, high-resolution datasets.
Nevertheless, the results and insights provided by our anal-
ysis are still fundamental for characterizing the analyzed
quantum design.

The QNN receives, as input, grayscale images with val-
ues ranging between 0 and 255. For each 2 x 2 subgrid
in the input image, each pixel is encoded using amplitude
embedding through a parameterized rotation Ry around the
Y-axis, mapping each value linearly to the range [0, ]. In the
gLayer, the quanvolution circuit is executed for each subgrid
and the resulting tensor is propagated to the downstream
layers.

We trace the fault propagation during the QNN inference
and measure its impact on the output correctness. We dis-
tinguish between masked faults (the output is unaffected),
tolerable silent data corruptions (the output is altered, but the
correct class is selected), and misclassifications.

To have an overview of possible logical-shift errors prop-
agation, we perform an exhaustive fault injection (more than
273 646 592 faults per image) in at least 30 random images
from each dataset. In other words, once we have selected
the injection site (qubit, channel, grid, etc.), we perform a
complete fault injection, considering all the possible param-
eterized rotations, for each input image. Then, to understand
the impact of error propagation from the input frame, we
perform further experiments on 100 images. We have not
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observed a significant dependence of fault propagation with
the input image class.

C. QNN MODELS

The error propagation in classical CNNs is known to be
dependent on the network depth (i.e., the number of layers
the fault needs to traverse to reach the output) [18], [19].
In particular, convolution tends to spread the faults happen-
ing in upstream (traditional) layers. With the aim of under-
standing the dependence of logical-shift error propagation on
the network depth, we consider three designs of increased
complexity of the same QNN (based on [6]), hereby called
ModelA, ModelB, and ModelC.

ModelA, whose structure is represented in Fig. 4, is the
quintessential QNN, composed of the minimum number of
layers. The qLayer takes as input a (28,28,1) tensor and out-
puts a (14,14.,4) tensor. The latter is flattened and redirected
into a Softmax dense layer.

From the barebone ModelA, we derive ModelB and Mod-
elC, which are obtained by adding, respectively, one and
two cascaded Conv2D operators between the glLayers and
Flatten layers. The concatenation of a qLayer with classical
convolutional layers has been done following state-of-the-art
approaches in literature [6], choosing suitable filter sizes for
the classical layers in the networks: each additional Conv2D
layer doubles the number of filters used in the preceding
operator and uses a filter size of 2 x 2, with a stride of 2.
It is worth noting that we do not consider multiple cascaded
qLayer applications, following the approach in [6].

Each of the derived designs has been retrained to adapt
the weights to the network depth. The accuracy on both the
training and validation datasets obtained after the training of
the three QNN designs is similar (at most 3% of difference)
and comparable with the performance of the corresponding
fully classical implementation.

Interestingly, as we detail in Section V-D, increasing the
depth of the QNN by adding cascaded traditional convolu-
tional layers reduces the quantum transient fault impact on
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the output, masking some faults and reducing the probability
to have misclassifications.

D. SINGLE AND MULTIPLE SUBGRID INJECTIONS

Finally, we also compare the reliability of QNNs when multi-
ple subgrids are corrupted. In fact, the near-future prospect of
highly integrated quantum chips prevented us from consid-
ering unrealistic the possible corruption of multiple subgrids
at inference time, as detailed in Section V-E. For this rea-
son, we also conducted experiments injecting on two distinct
subgrids. As we show, when multiple subgrids are corrupted,
the impact on the QNN’s output is higher, increasing the
probability of having misclassifications.

IV. EXPERIMENTAL SETUP

In this section, we describe the setup of the conducted exper-
iments, providing details on the framework used to model the
transient fault’s effect.

A. LOGICAL-SHIFT ERROR MODEL

Fault injection in quantum circuits is more complex than in
classical CMOS devices. In fact, the classical bit has only
two states (0 and 1) and, thus, a bit-flip fault model is suf-
ficient to study the reliability of CMOS devices. As seen
in Observation 2, for qubits in a superposition, the interac-
tion of ionizing particles can modify the quantum state by
inducing a parameterized rotation (changing the ¢ and/or 6
angle in the Bloch sphere, refer to Fig. 1). The magnitude
of such parameterized rotations depends on the deposited
charge, as shown with simulations [15] and experimentally
validated [10], which can range from meV to GeV [47]. Thus,
in contrast to classical computing, the quantum fault model
has to take into account many more possible state changes
than a “simple” bit flip (i.e., the X-Pauli gate), as a particle
impact can induce any given parameterized rotation.

Since the energy of the impinging particle is continuous
in a wide range (meV to GeV) [48], the fault’s rotation range
will also be continuous. As such, we consider all parameter-
ized rotation magnitudes in our fault injection. This makes
for a systematic analysis, which is as general as possible,
without being tied to a specific particle energy range. The
fault model and the results hereby presented can be easily
weighted or normalized once more information on the cor-
relation between exact impinging particle energy and fault
amplitude will be known.

B. LOGICAL-SHIFT INJECTION AND SIMULATION

In this article, we only consider faults affecting the quantum
part of the QNN. The effect of faults in the classical parts of
CNNss has already been investigated deeply [18], [19], [20].
The simulations have been carried out without considering
a device-level noise profile, as it is a well-separated event
with respect to particle impacts, and its effects would add
up to those of transient faults. In addition to this, we recall
that noise has close to no impact on the ansatz circuit, as
previously stated in Section III.
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To inject logical-shift errors into the quantum convolution
circuit during the QNN inference (we do not inject during
training), we apply a tuned stimulus to modify the qubit state.
To model the injected fault that, as discussed in Section II-B,
can have parameterized rotations of different magnitudes,
we use the QuFI fault injector, which inserts an extra U3
gate to model the fault [16]. The U3 gate can modify the ¢
and/or 6 angles used to define the qubit’s actual state (refer to
Fig. 1). The ¢ angle modifies the phase of a qubit, and the 6
angle changes the |0) — |1) probability. The possible range
for each angle without state duplication are ¢ = [0, 2],
and 6 = [0, w]. We also make a discretization of the angles
range using a 7 /12 step size, which results in 325 possible
configurations (i.e., distinct fault magnitudes to be injected).

To track fault propagation in QNNs, we broaden the appli-
cability spectrum of the open source QuFI by porting it to the
Pennylane [49] framework. We also achieve the possibility
of running quantum circuits on devices provided by differ-
ent vendors implementing different technologies, not to be
limited to IBM machines, and a more direct QML-oriented
development, since Pennylane inherently supports multiple
libraries dedicated to the task.

The updated version of QuFlI is part of our contribution
and will be released as open source to stimulate further
research in QNNs reliability.

C. FAULT EFFECT EVALUATION

As previously stated, the quantum circuit output is proba-
bilistic, with each possible state having a certain probabil-
ity to be selected. For instance, a two-qubit circuit has four
possible states: |00), |01), |10), and |11). Ideally, the correct
state will have the highest probability so it can be selected as
the output. We use the quantum vulnerability factor (QVF)
[50] metric to measure the impact of a transient fault in the
output probability distribution. The QVF, corresponding to
the architecture vulnerability factor [51] and the program
vulnerability factor [52] in traditional computing systems,
ranges from [0,1], and indicates the probability of a fault
to propagate affecting the output. In other words, the QVF
indicates how likely the fault is, given the probabilistic out-
put, to induce the selection of a corrupt state. A QVF close
to zero indicates a high probability of selecting the correct
state. Values close to one indicate that an incorrect state is
likely to be selected. QVF values around 0.5 mean that the
correct state and at least one incorrect state have similar
probabilities, which makes the identification of correct states
dubious.

To evaluate the effect of the propagation of logical-shifts
in the qLayer to the downstream layers we measure also the
misclassification rate of the tested QNNs. We inject faults
into the qLayer during inference and let the corrupted output
feed the downstream operations. Then, we check if the clas-
sification of the faulty execution is different than the classi-
fication of the fault-free one. We do not compare the faulty
classification with the ground truth since we want to measure
the impact of faults in the execution of a QNN. The (unlikely)
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event of a fault improving accuracy is purely stochastic and
not scientifically relevant, as we cannot rely on radiation to
improve the QNN’s accuracy. Moreover, we never observed
such an event.

V. CHARACTERIZATION RESULTS

In this section, we detail the experimental results obtained
from 13 322 547 200 logical-shift fault injection simulations
(267 233 quantum circuit injections per input image, per con-
figuration). This extensive evaluation provides a very accu-
rate evaluation, with the statistical error being lower than
1% [53]. Our bottom—up evaluation starts from the charac-
terization of the reliability of the quanvolution circuit, then
understanding the fault effect on the QNN’s output, and iden-
tifying how many faults induce misclassification. Then, we
consider the QNN’s reliability dependence on the dataset,
the input image, and the subgrid. Finally, we evaluate how
faults propagate in three different QNN designs of increasing
complexity (ModelA, ModelB, ModelC) and we also discuss
the impact of double faults. Our complete set of results is
available in a public repository [54].

A. QLAYER RELIABILITY

As a first reliability evaluation, we detail the propagation
of logical-shift faults in the quantum computation core of
QNN:gs, that is, the qLayer implemented with the ansatz cir-
cuit depicted in Fig. 3. For this evaluation, we consider the
gLayer as a standalone quantum circuit, i.e., without the in-
tegration with the upstream and downstream portions of the
QNN. To have a fine grain understanding, we inject in each
qubit separately.

To assess the resilience profile of the circuit, we use as
input a fixed 2 x 2 subgrid, with the top-right-hand side and
bottom-left-hand side pixels as white (value 255) and the
other two as black (value 0), i.e., a diagonal black and white
subgrid. This corresponds to encoding qubits 0 and 3 of Fig. 3
in state |0), while qubits 1 and 2 are encoded in state | 1), since
they are prepared by rotations around the Y-axis of 0 and
radians, respectively.

In Fig. 5 we plot, for each (6, ¢) logical-shift, the QVF for
the qLayer circuit, increasing the logical-shift in 6 (0 to )
and ¢ (0 to 2m). We inject in each qubit separately. A QVF
close to 1 (red) indicates a shift that entails an high proba-
bility of selecting the wrong output, while values close to 0
(green) indicate shifts that do not modify the output selection.

In Fig. 5, we can see that the QVF increases (worsens)
as we move to the right-hand side of the picture, while it is
almost unaltered as we move up in the picture. This means
that the gLayer circuit becomes highly affected by the az-
imuthal faults (6 logical-shift) for values greater than /2.
While this result might seem obvious and intuitive (a higher
modification leads to a higher impact on the output), it has
been shown that for quantum circuits logical-shifts of higher
magnitude do not necessarily have a higher probability to
modify the circuit output [16].
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FIG. 5. QVF (probability for a fault to modify the output correctness)
heatmap for single logical-shift fault injections in the circuit
implementing the qLayer. We inject 6 logical-shifts from 0 to = and ¢
logical-shifts from 0 to 2z in one qubit.

Interestingly, the qLayer shows a relatively low vulnera-
bility to the polar angle (¢), albeit a small QVF rise between
3w /4 and 57 /4. Analyzing the details of the single-qubit
QVF heatmaps (not reported here but included in the public
repository [54]), we found that qubits O (target) and 3 (con-
trol) are responsible for lowering the average resilience of the
circuitfor0 < 6 < % and 37” <¢ < ST” (white region). This
is because these two qubits undergo more quantum gates than
qubits 1 and 2.

The QVF heatmap suggests that the 0 shifts are critical,
whereas ¢ logical-shifts are not. We will further investigate
this property at the network level in the Section V-B.

Observation 3. Due to the usage of amplitude embedding,
¢ logical-shifts do not significantly modify the qLayer out-
put, whereas 6 shifts cause an effect on the output that is
proportional to the shift magnitude.

We have also observed that a single injected fault in a
qubit of the gLayer circuit modifies all its logically con-
nected qubits, and consequently the output bit string. This
means that the computation of the qLayer is likely to spread
the fault, corrupting the cascaded layers in the network’s
architecture.

Observation 4. A fault in a single qubit of the qLayer
spreads to all its logically connected qubits.

B. FAULT PROPAGATION IN QNNS
To understand how faults propagate in QNNs and identify
the faults that generate misclassifications, we perform an
extensive fault injection campaign injecting a logical-shift
fault in each of the four qubits executing one quanvolution
(i.e., calculating one subgrid). We consider all three network
models, with an increasing depth, on both input datasets and
over single and double subgrids injected. Faults that did not
corrupt the Softmax vector output of the neural network have
been labeled as masked. Faults that modified the output vec-
tor have been labeled as either folerable if they did not alter
the output predicted class, or misclassified otherwise.

We have observed that all of the 6 logical-shifts prop-
agate to ModelA’s output (not necessarily modifying the
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TABLE 1 Phase-Shift Fault-Induced Misclassification Probability 05 s
QNN design | dataset | Single grid  Double grid 04 = ;?gm |
ModelA digits 3.49% 6.05%
fashion | 1.23% 1.94% ,% 03
ModelB digits 5.52% 10.65% g 02
fashion 3.99% 6.58%
ModelC digits 1.69% 8.62% 01 ‘
fashion | 3.16% 6.33% , J e - ml
0 1 2 3 4 5 6 7 8 9

classification) whereas none of the injections of ¢ logical-
shift causes an observable effect on the network output. The
fact that the injections of ¢ logical-shift do not propagate
should not surprise. As discussed in Section IV, the qLayer
circuit uses amplitude embedding, i.e., maps the convolution
data in the @ angle of the qubit state, the |0) — |1) probability.
Thus, changes to the phase (¢ angle) of a qubit state are
expected to have a small impact on the qLayer output (as
confirmed in Observation 4) and, as our fault injection in the
QNN shows, ¢ polar shifts do not modify the inference. In
the following, we only report 0 shift injections.

Observation 5. In a simple QNN with just one qLayer,
no ¢ logical-shift modifies the output but all 6 logical-shifts
propagate to the output.

Table I gives the measured average probability among
all the logical-shift faults injected in the qLayer circuit to
induce a misclassification across all the possible configura-
tions of datasets, models, and the number of subgrids injected
at a time. Our analysis shows that the misclassification rate
can vary from 1.23% to up to 10.65%, depending on the
QNN design and dataset. This misclassification probability
is the result of the interaction of a plethora of factors: in the
next sections, we go into the details of the dependencies of
the misclassification rate from the logical-shift magnitude,
network design, and the number of simultaneously injected
subgrids.

The measured misclassification rates for QNNs, given in
Table 1, are comparable with the ones of classical CNNs, that
range from 1% (floating point) to 7% (with a specific fixed-
point data type) [18]. From Observation 1, we know that the
CMOS error rate is orders of magnitude lower than the one
of a superconducting transmon qubit. Thus, while CNNs and
QNNs have similar misclassification probability, the latter
are much more likely to experience a fault (see Section II-B)
and will experience a considerably higher misclassification
rate.

Observation 6. The probability for a fault to generate a
misclassification in a QNN or in a CNN is comparable. How-
ever, in QNN, the fault rate is orders of magnitude higher.

In Figs. 6 and 7, we provide, respectively, an example
of the effects of a tolerable fault and of a misclassification
fault on the Softmax vector output. To better understand the
effect of fault propagation, in Fig. 6, we show an example
of a fault that does not induce misclassification while mod-
ifying significantly the classes’ probability distribution. The
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Class

FIG. 6. Example of a fault that does not induce misclassification. We plot
the Softmax layer outputs for the baseline fault-free (in the figure,
labeled as golden) execution (in green) and faulty execution (in red)
obtained by injecting a fault amplitude of 6 = Z in all qubits of the
qLayer processing a subgrid. Despite class 2 confidence increasing
significantly, class 0 is still correctly classified.
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FIG. 7. Example of a fault that induces misclassification. We plot the
Softmax layer outputs for the baseline fault-free (in the figure, labeled
as golden) execution (in green) and faulty execution (in red) obtained by
injecting a fault amplitude of 6 = 7 in all qubits of the qLayer processing
a subgrid. The fault increases the confidence of class 4, promoting it to
the selected output class, while class 6 (the correct classification) lags
behind as the third most probable output.

plotted data refer to a = 7 fault injected in all four qubits
of the qLayer applied to a single subgrid out of the 196
possible subgrids of the input image. In the baseline fault-
free execution, class 0 is selected with very high confidence
(0.48 versus 0.18 of the second class). The fault triplicates
the confidence for class 2 to be selected while reducing the
one for class 0. Nonetheless, despite a significant reduction
in the classification confidence (0.44 of class 0 versus 0.26 of
class 2), class 0 is still the one with the highest probability.

In Fig. 7, we show an example of a misclassification fault.
The baseline fault-free execution classifies the input as class
6, but with a low confidence (0.38), since both class 4 and
class 5 have a high probability at the QNN output. The § = 5
fault we inject in the qLayer reduces to 1/3 the probability of
class 6 and doubles class 4 probability, eventually leading to
misclassification.

C. MISCLASSIFICATION DEPENDENCE ON SUBGRID AND
INPUT

To understand possible QNN reliability dependencies from
the input frame and the corrupted subgrid, we have per-
formed an extensive fault injection on 100 images for each
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FIG. 8. Heatmaps showing the misclassification probability for faults
injecting in each subgrid (identified by the coordinates in the images).
Data have been obtained testing 100 images of (a) digits—handwritten
digits dataset and (b) fashion datasets.

dataset and injected a fault in every single subgrid of the input
image. Since each image has 196 subgrids, this campaign is
computationally demanding to execute, requiring a total of
more than seven billion injections for both datasets.

Fig. 8 shows the average misclassification probability for
each subgrid on the (a) digits and (b) fashion datasets. To ease
visualization, we plot the misclassification rate as a heatmap,
where the (row, column) are the coordinates of the subgrid
location. As can be seen by comparing Fig. 8(a) and (b), the
two datasets have a completely different reliability depen-
dence on the corrupted subgrids.

In the handwritten digits dataset, as shown in Fig. 8(a),
some subgrids are extremely likely to generate misclassifi-
cation while others, even if corrupted, have a low probability
to impact the network output. For instance, the subgrid in
(row: 4, column: 7) has a misclassification ratio of 10.3%
whereas a fault in the subgrid (row: 1, column: 5) has a 0.8%
probability to induce a misclassification. In the fashion data
set Fig. 8(b) the heatmap has a homogeneous distribution
of misclassification ratios, suggesting that the probability of
incorrectly labeling an image on this second dataset is not
significantly dependent on the corrupted subgrid. Finally, we
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FIG. 9. Misclassification ratio with respect to fault angle amplitude theta
on the barebone ModelA, considering a single failed subgrid, computed
on the digits dataset.

have not registered an input image class dependence on the
misclassification rate.

Observation 7. The misclassification probability depends
on the corrupted subgrid in the digits dataset, while there is
no dependence between misclassification and object class.

D. FAULT PROPAGATION DEPENDENCE ON QNN DESIGN
To understand if the QNN design impacts the fault propaga-
tion, we inject in a single random subgrid of the qLayer on
ModelA (one qLayer), ModelB (one qLayer and one Conv2D
layer), and ModelC (one gLayer and two Conv2D layers)
with dataset partitions of size 30, to test how much down-
stream classical layer(s) impact the quantum fault propaga-
tion. Details about the three QNN designs can be found in
Section III-C.

At first, we present the analysis of ModelA on the MNIST
handwritten dataset partition, and plot in Fig. 9 the percent-
age of misclassified, tolerable, and masked faults with re-
spect to the amplitude of the angle 6 in the parameterizable
U3 fault gate. There is an evident correlation between the
amplitude of # and the incidence of misclassifications in the
network’s output. Faults with an amplitude of just 6 = 5
produce a 3.18% misclassification ratio, which bumps up to
6.43% for a fault amplitude of 6 = 7. Moreover, given the
relatively shallow architecture of ModelA, the classical part
of the network cannot sufficiently compensate for the fault
and no masked event is ever registered. All of the injected
faults in fact produce a variation in the output Softmax vector.

In Fig. 10, once again computed on the handwritten digits
dataset, ModelB undergoes a fault at the qLayer level, which
gets propagated first through the Conv2D layer and later in
the Flatten and Softmax layers. On a fault gate amplitude of
6 = 7, the misclassification ratio is valued at 5.84%, rising
to 7.39% when considering the maximum fault amplitude.
Much like for ModelA, it is once again clear to see that there
is a correlation between the azimuthal angle of the U fault
gate 6 and a rise in the misclassification ratio. No masked
event has been observed. On average, as seen in Table I, the
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FIG. 10. Misclassification ratio with respect to fault angle amplitude

theta on ModelB, considering a single failed subgrid, computed on the
digits dataset.
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FIG. 11. Misclassification ratio with respect to fault angle amplitude
theta on ModelC, considering a single failed subgrid, computed on the
digits dataset.

misclassification ratio for ModelB is 5.52% on the handwrit-
ten digits dataset, while the same analysis on the fashion
dataset boasts a slightly lower average rate of 3.99%. The
average probability for ModelB to produce a wrong output
class prediction increases, w.rt. ModelA, by a significant
margin in both datasets.

ModelC’s reliability behavior is detailed in Fig. 11, once
again on the handwritten digits dataset. Unlike the other
experiments, we observe, on average, a stable distribution
of masked events with a probability of 26.67%: this can be
explained by the fact that the increasing number of filters
in the Conv2D operators eventually disperses the effect of
a portion of the faults introduced at the quantum layer and
eventually those get canceled out by undergoing a product
operation with weights or kernel parameters equal to zero.

Observation 8. Larger 0 logical-shifts increase the mis-
classification probability, in all the tested QNN designs.

It is important to note that this event depends on the
gLayer, as it is not the direct quantum translation of a con-
volution and thus boasts a different behavior. Moreover, a
significant drop in the overall misclassification rate is ob-
served, with average values of 1.69% for the handwritten
digits dataset and a maximum registered at 3.17% at the high-
est fault gate amplitude of & = z. Similarly, on the fashion
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FIG. 12. Misclassification ratio with respect to fault angle amplitude
theta on the barebone QNN model, considering two failed subgrids,
computed on the digits dataset.

dataset, an average of 3.16% misclassifications is registered,
with a masked events ratio of 26.59%.

Observation 9. Downstream Conv2D layers can help in
masking some qLayer faults.

E. DOUBLE SUBGRIDS CORRUPTION

In a general quantum workload, we cannot rule out the
possibility to experience multiple radiation-induced corrup-
tions across the whole execution, especially in iterative ap-
proaches, such as QNN or in deep quantum circuits. CMOS
devices, in terrestrial applications, can be corrupted mostly
by neutrons and the probability for a CMOS-based chip (even
large GPUs) to be corrupted by an impinging neutron is very
low, in the order of 107°=1078 [17], [55]. Since the flux of
neutrons at sea level is about 13 n/cm?/h, the error rate of a
CMOS chip isin the order of 1073-102 errors per hour [17],
making it highly unlikely to observe two events in a single
computation. Unfortunately, this does not hold for qubits,
since they have an intrinsic coherent time in the order of ms
and a sensitivity to radiation that is much higher than CMOS
transistors (Observation 2) and, moreover, they can be af-
fected by various uncorrelated radiation sources (neutrons,
muons, etc.) [8], [10]. In addition, we expect quantum chips
to be highly integrated in the near future, possibly including
multiple qLayer circuits (Observation 1) on a smaller surface
area. As aresult, we can expect to have the single-particle de-
posited charge corrupting multiple logical qubits or possibly
even multiple qLayer circuits.

Therefore, as a final analysis, we have injected in two sepa-
rate random subgrids at the same time across all QNN models
and input datasets. The results presented in Fig. 12 refer to
ModelA on the handwritten digits dataset partition of size
30. Similarly to the case when a single subgrid is corrupted,
a correlation between the amplitude and the misclassification
ratio is evident, where a fault amplitude of = 7 is responsi-
ble for changing the output predicted class in 6.24% of cases,
almost doubled with respect to the previous experiment on
single-subgrid injections. The misclassification ratio tops out
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at 9.0% with the highest amplitude injection of 6 = w. We
did not observe any masked injections.

Additional experiments obtained by testing double sub-
grid injections on both ModelB and ModelC have been per-
formed, boasting a steady increase in the rate of misclassi-
fication events. Moreover, ModelC undergoes a reduction in
the number of masked events when the number of injected
subgrids is doubled. The average rates for these experiments
are reported in Table L.

Observation 10. The corruption of two subgrids signifi-
cantly increase the misclassification probability.

Complete access to the data regarding all these experi-
ments, which have not been further commented on here due
to lack of space, is available in [54].

VI. DISCUSSION AND PROJECTIONS

The QNN architecture we have characterized is the first
model of its kind ever proposed [6]. This design is the cor-
nerstone over which rapidly growing and vibrant research is
being carried out [22], [23], [24], [25], [41], [42], [43]. In
particular, the structure of the hardware efficient ansatz we
have deeply investigated is being used to implement quanvo-
lution in the vast majority of QNNs models. For this reason,
our tool and analysis results can be used to understand the
reliability behavior of current and future QNNs making use
of the same qLayer or other layers derived from it according
to their shared characteristics.

Thanks to the continuous advancements in QC technology,
the application landscape for QNN s keeps broadening. As we
have shown; however, the widespread adoption of QC could
be stifled by logical-shifts caused by either intrinsic noise
or cosmic rays, particularly on superconducting transmon
quantum devices [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Despite the fact that QNNs have a misclassification
ratio comparable with that of CNN:ss, their reliability is much
more significantly hindered with respect to their classical
counterparts, given that the radiation-induced fault rate for
quantum devices is orders of magnitude higher with respect
to CMOS. The usage of surface codes along scalability and
construction quality improvements may have a positive role
in improving the reliability of many QML models, at which
point the hereby presented systematic results may simply
be reweighted according to the way in which they impact
the output distribution. At the moment; however, there is no
guarantee that surface codes will not fail in the event of a
particle impact, and may as well worsen the results in this
circumstance.

Hardware/software co-design has been demonstrated to be
critical for quantum computers [26], [56], [57], [58], [59],
[60], [61]. Our analysis adds the logical-shift fault issue to
the reliability assessment of these devices and architectures.
This work’s results, alongside the methodology employed,
can direct algorithm design, innovative software/hardware
hardening solutions development, and more robust circuit
architecture implementation. For instance, quantum circuit
designers could leverage our framework to implement and
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test purposefully made QEC codes, adding redundancy in
the most critical part or duplicating only the most critical
quanvolutions, and thus largely reducing the misclassifica-
tion ratio. The information regarding subgrid criticality can
help, knowing the dataset used in the field, in designing a
future scheduler or optimizer for QML workloads to map
each subgrid execution onto more or less reliable quantum
hardware with respect to their impact in case of a fault. More-
over, we envision that transpilers may exploit our analysis
through an additional heuristic metric, aimed at reducing
the impact of radiation-induced faults, and adaptable to any
physical quantum device. Finally, our analysis highlights that
better training or a different QNN design might increase
the classification confidence and reduce radiation-induced
misclassifications, nonetheless this can hardly solve the
faults issue altogether.

VIl. CONCLUSION

In this article, we have proposed a methodology to deeply
investigate the propagation of logical-shift faults in QNNs.
By using a fault model derived from experiments and simu-
lations, we demonstrate that the corruption of the qLayer sig-
nificantly impacts QNNs’ operations and classification. Our
data show that 6 logical-shifts are very likely to propagate in
the QNN, and that up to 10% of injections induce misclas-
sification. As we have seen, the misclassification probability
depends on the logical-shift magnitude, on the corrupted sub-
grid, on the dataset, and on the number of classical layers that
follow the corrupted layer.

In the future, we intend to propose mitigation or hardening
solutions for QNNs. We aim at blocking the fault propaga-
tion in the qLayer and reducing its probability to cause a
misclassification.
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