
Doctoral Dissertation

Doctoral Program in Computer Engineering (35thcycle)

Enhancing Robustness and
Interpretability in Computer Vision

AI

By

Fabio Garcea
******

Supervisor:
Prof. Fabrizio Lamberti, Supervisor

Doctoral Examination Committee:
Prof. Maria Gloria Bueno Garcia, Referee, Universidad de Castilla – La Mancha
Prof. Paolo Garza, Politecnico di Torino
Dott. Claudio Gennaro, Referee, Istituto di Scienza e Tecnologie dell’Informazione
Prof. Marina Paolanti, Università degli Studi di Macerata
Prof. Antonio Santangelo, Università di Torino

Politecnico di Torino

2023



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Fabio Garcea
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



I would like to dedicate this thesis to Elisa, who never lost faith in me even when I
doubted myself. Her unwavering support and encouragement kept me going through

the most challenging moments of my academic journey.

To my loving parents, who always believed in me and provided me with the resources
and opportunities to pursue my dreams. Their unwavering support and sacrifices

have made this achievement possible.

To my friends, who were always there to listen, offer words of encouragement, and
share their expertise. Their support and camaraderie made the ups and downs of

this academic journey much more bearable.

Thank you.



Acknowledgements

I would like to acknowledge my tutor, Prof. Fabrizio Lamberti, for his guidance,
feedback, and expertise throughout my research. I would also like to express my
gratitude to Prof. Lia Morra for her input and insights. Their dedication to my
academic success has been instrumental in shaping this thesis.

I would also like to extend my gratitude to my colleagues and those who I have had
the privilege of working with. Their collaboration, support, and encouragement have
been an essential source of motivation and inspiration for me.

Finally, I am grateful to the academic institution of Politecnico di Torino, where I
have studied for almost 10 years, for supporting my research providing me with the
necessary resources and opportunities to pursue my academic goals.



Abstract

Artificial intelligence (AI) and deep learning (DL) have significantly advanced in
computer vision (CV), particularly in image classification and object recognition.
However, ensuring the trustworthiness of AI systems, especially in safety-critical
applications remains a major challenge. Enhancing model robustness and inter-
pretability is crucial for making AI systems reliable and explainable, which in turn
improves user trust and facilitates widespread adoption. In this context, the primary
goal of the research during the Ph.D. program was to address the challenges of
improving the robustness and interpretability of AI systems. Specifically, innovative
techniques were leveraged to ensure data-quality and provide new insights into the
opaque and complex nature of DL models.

On one hand, the recent discipline of data-centric AI emphasized the importance
of high-quality data for building effective AI systems, moving the focus towards
improving data treatment steps such as data augmentation and monitoring after de-
ployment to ensure fairness and robustness. On the other hand, continuous advances
are being made in the field of Explainable AI (XAI), where techniques such as
attention mechanisms and saliency maps were developed to provide insights into
the decision-making process of these models. Expanding upon these domains, my
research endeavors to address several unresolved challenges pertaining to the areas
of robustness and interpretability. These include the exigency of studying novel
systematic approaches to data preprocessing in data-centric AI, which arises from
the need to structure datasets in a way that avoids or reduces biases in data, leading
to more reliable and trustworthy AI systems. The lack of publicly available visual
collections of XAI methods is another challenge that hinders a widespread adoption
of interpretability in AI. Additionally, the need for more research in efficient unsuper-
vised drift detection and for a systematic approach to create challenging real-world
benchmark datasets for OOD detection arises due to the complexity and diversity of
real-world data. Addressing these challenges is crucial for the development of more



vi

reliable and robust data-centric AI models that can be trusted to make decisions in
real-world scenarios.

The research described in this thesis aims to provide innovative solutions to the
challenges mentioned earlier. By delving into each topic, the ultimate goal of this
document is to propose solutions to address some of the most pressing issues in
trustworthy AI development and provide directions for future research in related
domains.



Contents

List of Figures x

List of Tables xiii

Glossary xv

1 Introduction 1

2 Understanding the Data Domain 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Causal Modeling in DL: Understanding Complex Data Relationships 7

2.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Road Condition Estimation with CNNs and LSTMs . . . . . . . . . 19

2.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 44



viii Contents

3 Interpreting DL Models 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques . . . . . . . 50

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 iNNvestigate-GUI . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Usability Results . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Rela-
tionships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . 69

3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.6 Limitations and Future Directions . . . . . . . . . . . . . . 85

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Monitoring Data Changes 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Drift Detection: Ensuring Model Robustness and Performance . . . 92

4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 Simulating Data Drift in Scanned Document Segmentation . 96

4.2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 OOD Detection in DL . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents ix

4.3.2 OOD Detection: Problem Definition . . . . . . . . . . . . . 107

4.3.3 Proposed Benchmark . . . . . . . . . . . . . . . . . . . . . 112

4.3.4 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . 117

4.3.5 Experimental Settings . . . . . . . . . . . . . . . . . . . . 127

4.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Conclusions 138

References 142



List of Figures

2.1 Illustrations of causal models for a causal and anticausal tasks. . . . 12

2.2 Causal model template for medical imaging dataset analysis. . . . . 15

2.3 Causal model representation for classifying prostate cancer. . . . . . 17

2.4 Causal model representation for predicting wet road conditions. . . 18

2.5 Geographical positions of the road-cameras involved in the analysis. 23

2.6 Sequence generation process. . . . . . . . . . . . . . . . . . . . . . 28

2.7 Sequences generated by accounting for temporally coherent spatial
augmentation and for a realistic simulation of outdoor brightness
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Self-supervised pre-training and the Semi-supervised fine-tuning
methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Unrolles representation of the Temporal (ConvLSTM) model. . . . . 33

2.10 ROC curves comparing the performance of the baseline model with
self-supervised initialization (Self-sup) to models fine-tuned through
SSL on the large Training-300K dataset. . . . . . . . . . . . . . . . 37

2.11 ROC curves of the ConvLSTM model (a) and 2D CNN (b) trained
on the complete Training-300K dataset. . . . . . . . . . . . . . . . 38

2.12 Per-event recall vs. average number of FP events. . . . . . . . . . . 40

2.13 An explanation generated by LIME for a transition frame, as pre-
dicted by both models. . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Figures xi

2.14 Comparison of the transition profile for a severe event, where the
ConvLSTM model shows better detection of the two events during
morning hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Explanation generated by LIME is shown for a transition frame, as
predicted by both models. . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Comparison of different model predictions for one of the images
included in T1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Suggestion panel of iNNvestigate-GUI. . . . . . . . . . . . . . . . 58

3.3 Visual comparison of the predictions made by the three models in T1. 61

3.4 HOLMES pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 HOLMES Explanation example for the horse class – PASCAL-Part
and sorrel class – ImageNet. . . . . . . . . . . . . . . . . . . . . . 70

3.6 Distribution (violin plot) of the average per-part calibrated F1-score. 75

3.7 Average per-part calibrated score as a function of the number of parts
per holonym class. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Violin plots of the average score drop and maximum score drop per
image on the PASCAL-Part and ImageNet validation sets. . . . . . . 77

3.9 Top-5 meronyms distribution. . . . . . . . . . . . . . . . . . . . . . 77

3.10 HOLMES Global Explanation. . . . . . . . . . . . . . . . . . . . . 79

3.11 Insertion/Deletion Ratio distribution for the PASCAL-Part and Ima-
geNet datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.12 HOLMES explanations example. . . . . . . . . . . . . . . . . . . . 81

3.13 HOLMES explanations example. . . . . . . . . . . . . . . . . . . . 82

3.14 Examples of end-user explanations comprising 1 meronym. . . . . 82

3.15 Examples of end-user explanations comprising 2 meronyms. . . . . 82

3.16 Examples of end-user explanations comprising 3 or more meronyms. 83

4.1 Structure of the DL model utilized for document segmentation. . . . 95

4.2 The structure of the artificial document generator. . . . . . . . . . . 97



xii List of Figures

4.3 Correlation plots for IoU and Hellinger distance. . . . . . . . . . . 99

4.4 ROC curves for drift types. . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Average semantic similarity between the ground truth category and
the predicted ID labels. . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Average semantic similarity between the and the predicted ID labels,
and the OOD ground truth classes. . . . . . . . . . . . . . . . . . . 121

4.7 Pruned version of the original graph. . . . . . . . . . . . . . . . . . 123

4.8 Examples of isolated clusters consisting of few nodes. . . . . . . . . 124

4.9 Examples of strong edges between classes representing the same
concepts with slightly different names. . . . . . . . . . . . . . . . . 124

4.10 Examples of strong edges between different concepts, linked by
meronym-holonym and similar relationships. . . . . . . . . . . . . 125

4.11 Examples of network biases that affect classification results. . . . . 125

4.12 T-SNE visualization of the features extracted from the Baseline
dataset at different network layers. . . . . . . . . . . . . . . . . . . 126

4.13 T-SNE visualization of the features extracted from the Inter-Dataset
OOD Detection dataset at different network layers. . . . . . . . . . 127

4.14 T-SNE visualization of the features extracted from the FACETS
OOD Detection T1 dataset at different network layers. . . . . . . . 128

4.15 ODIN validation procedure. . . . . . . . . . . . . . . . . . . . . . 129

4.16 OODL validation AUROC for each candidate layer. . . . . . . . . . 131



List of Tables

2.1 Period of acquisition for each road-camera involved in the analysis. 22

2.2 Distribution of the training, validation and testing sets. . . . . . . . 27

2.3 Definition of similarity between samples. . . . . . . . . . . . . . . 31

2.4 AUCs on validation and test sets. . . . . . . . . . . . . . . . . . . . 36

2.5 AUC values and their 95% CI for the validation and test sets. . . . . 39

2.6 Comparison between best performing CNN and ConvLSTM models. 40

2.7 Performance (AUC) for the ConvLSTM model with respect to the
time of the day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Summary of the main DL visualization tools and comparison with
the proposed tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Summary of the available libraries of visualization algorithms. . . . 53

3.3 Per-pixel AUC results. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Deletion/Insertion/Preservation AUCs for HOLMES and Grad-CAM. 79

4.1 Usage statistics for the 10 most popular data sources used as both
ID and OOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Composition of the Baseline dataset. . . . . . . . . . . . . . . . . . 114

4.3 Composition of the splits used for the Inter-Dataset OOD Detection. 114

4.4 Composition of the WordNet ImageNet datasets . . . . . . . . . . . 116

4.5 Composition of the FACETS OOD detection dataset . . . . . . . . . 118



xiv List of Tables

4.6 OODL Validation results . . . . . . . . . . . . . . . . . . . . . . . 131

4.7 OOD detection results for each dataset. . . . . . . . . . . . . . . . 132

4.8 Misclassification detection results on Places365-Standard (val) . . . 133

4.9 Comparison of AUROC scores for ODIN and OCSVM applied to
the Places vs ImageNet task. . . . . . . . . . . . . . . . . . . . . . 134



Glossary

Acronyms / Abbreviations

AI Artificial Intelligence

AUC Area Under the Curve

AV Activation Vector

CDT Change-Detector Test

CI Confidence Intervals

CNN Convolutional Neural Network

ConvLST M Convolutional Long Short-Term Memory

CV Computer Vision

DAG Directed Acyclic Graph

DL Deep Learning

DNN Deep Neural Network

FACET S Face Aesthetics in Contemporary E-Technological Societies

FC Fully Connected

FRESCO Face Representations in E-Societies through Computational Observation

FROC Free-Response Operating Curve

GAN Generative Adversarial Network



xvi Glossary

GUI Graphical User Interface

HOLMES Holonym-Meronym Based Semantic Inspection

IoU Intersection over Union

KB Knowledge Base

LST M Long Short-Term Memory

MAV MEAN Activation Vector

ML Machine Learning

MLOps Machine Learning Operations

MLV Maximum Logit Value

MMD Maximum Mean Discrepancy

MOS Minimum Others Score

MSP Max Softmax Probability

OCR Optical Character Recognition

OOD Out-Of-Distribution

PCA Principal Component Analysis

ROC Receiver Operating Curve

SSL Self-Supervised Learning

SUS System Usability Scale

SV M Support Vector Machine

T S Temperature Scaling

XAI Explainable Artificial Intelligence



Chapter 1

Introduction

Deep Learning (DL) is a subfield of Machine Learning (ML) that involves training
neural networks to learn increasingly complex representations of data [1]. In recent
years, DL has emerged as a powerful tool in computer vision (CV), which is the field
concerned with enabling computers to interpret and understand visual information
from the world around us [2]. This approach has led to breakthroughs in a range of
applications, such as image and video recognition, object detection, face verification,
etc. [3]. For instance, DL algorithms have been used to improve doctors’ diagnoses
by analyzing medical images [4], to let autonomous vehicles navigate complex
environments by recognizing objects and obstacles [5], and to enhance security by
identifying individuals from facial images [6].

DL and CV have a rich history. The origins of CV can be traced back to the
1960s, when researchers first began developing algorithms to analyze and interpret
images [7]. However, it wasn’t until the 1980s and 1990s that neural networks began
to emerge as a powerful tool for image recognition and CV [8]. These early neural
networks were relatively shallow and could only recognize simple patterns, but they
paved the way for the development of more sophisticated DL models in the 2000s
and 2010s [9].

The applications of DL and CV extend far beyond those already mentioned.
One area where DL has made significant contributions is that of gaming, where it
has been used to create sophisticated agents powered by artificial intelligence (AI)
capable of beating human champions in games such as Go and Chess [10]). Another
area of application that of cybersecurity, where DL algorithms can be used to detect



2 Introduction

and prevent cyberattacks by analyzing network traffic [11]. Additionally, DL has
been used in the entertainment industry to create realistic visual effects, such as
computer-generated characters and environments in movies and video games [12].
The potential applications of DL and CV are vast, with potential to transform
fields such as transportation, finance, and even agriculture. In addition to these
applications, DL could have a significant impact in environmental monitoring and
conservation. For example, DL algorithms could be used to analyze satellite imagery
to detect deforestation, monitor wildlife populations, and track changes in the Earth’s
climate [13]. Other potential applications are in the field of robotics, where DL could
be used to improve the perception and decision-making capabilities of autonomous
systems [14]. For instance, DL algorithms could enable robots to recognize and
respond to human gestures, navigate complex environments, and perform tasks such
as object manipulation and assembly [15]. Additionally, DL has shown promising
results in fields such as finance, where it can be used to analyze large datasets and
detect fraud or predict market trends [16].

However, despite its remarkable achievements, the growing usage of DL algo-
rithms in critical domains like healthcare and finance highlights the pressing need
for ensuring trustworthy AI systems. Trustworthiness refers to the ability of AI to
perform its intended function reliably, safely, and ethically. Trustworthiness can be
achieved by ensuring the transparency and accountability of AI systems, guarantee-
ing their fairness and inclusivity, as well as their safety and security. By ensuring that
AI systems are developed in a way that is transparent and accountable, stakeholders
can have greater confidence in the fairness and reliability of these systems [17]. The
guidelines for building trustworthy AI provided by bodies like, e.g., the European
Commission, are intended to guide the development and deployment of AI systems.
Guidelines stress the importance of a human-centric approach, with AI systems that
need to be designed to respect human rights, cultural diversity, and the principles
of the rule of law. Technical robustness and safety are critical considerations, thus
AI systems must be auditable, interpretable, and reliable. Privacy and data gov-
ernance are also important, with AI systems that shall be designed to ensure data
protection and individual control over their data. Interpretability is emphasized,
with AI systems that are requested to be open about their capabilities and decisions.
Diversity, non-discrimination, and fairness are critical considerations, with AI sys-
tems that need to avoid bias and discrimination, and ensure that their use is fair
and non-discriminatory. Societal and environmental well-being are also important,



3

with AI systems that shall be designed to enhance human well-being and sustainable
development. Accountability is a fundamental principle, with AI systems that must
be subject to human oversight, and their developers and operators be responsible
for their actions. By following these guidelines, AI systems can be developed and
deployed in a responsible and ethical manner. The present thesis will delve into the
issues of robustness and interpretability in DL, to provide specific solutions that can
help establish trust in AI systems.

Data is a significant factor in determining model robustness, and problems related
to data quality can have a significant impact on the overall performance of the model.
The lack of diversity in training data for DL models has been widely acknowledged
as a challenge for the development of robust and fair models. Research has shown
that biases in the training data can lead to biased models that perform poorly on
certain groups of people. For instance, facial recognition systems have been found
to be less accurate in identifying people with darker skin tones, which can result
in discriminatory outcomes [18]. To mitigate this issue, researchers have proposed
various approaches, including data augmentation and bias correction techniques.
Data augmentation involves generating new data samples from existing data, which
can help increase diversity in the training data [19]. Bias correction techniques aim to
reduce bias in the training data by modifying the data or the learning algorithm [20].
Moreover, topics such as concept drift and anomaly detection become crucial in
monitoring the performance of the model in real-world scenarios. Concept drift refers
to the phenomenon where the statistical properties of the data distribution change
over time, causing the model performance to degrade [21]. Anomaly detection, on
the other hand, helps to identify instances where the model is making unexpected or
erroneous predictions [22]. To ensure model robustness and reliability, it is important
to continuously monitor the data being fed into the model and adapt the model
accordingly [23]. This requires ongoing data collection, analysis, and maintenance,
as well as the use of techniques such as transfer learning and active learning to adapt
to changing data distributions [24]. Effective data preprocessing, maintenance and
monitoring are also key aspects in the field of Machine Learning Operations (MLOps).
MLOps is a promising field of ML engineering that offers many benefits for the
efficient deployment and management of ML models in production environments.
One of the major challenges related to the MLOps paradigm is the need for effective
data management, including data storage and data labeling. Another challenge is
the need for continuous model training and updating to keep up with changing data



4 Introduction

and user needs, which requires effective model versioning and management [25, 26].
Additionally, ensuring the security and privacy of sensitive data used in ML models
is another critical challenge that requires robust approaches. Solving these challenges
requires approaches that can help automate and optimize the MLOps workflow by
improving data processing and analysis.

Recent advances towards the resolution of these challenges eventually led to the
birth of a new discipline named data-centric AI. According to Andrew Ng [27], Data-
centric AI is the discipline of systematically engineering the data used to build an AI
system. In this regard, Ng suggests that focusing on high-quality, consistently labeled
data will unlock the full potential of AI in sectors such as health care, government
technology, and manufacturing. However, to achieve this, organizations will need to
treat data more systematically and frequently include the data preparation process
more domain experts, who can provide input on how data should be labeled and
what features are most relevant for AI systems in specific fields. By following these
principles, data-centric AI can enable organizations to build custom AI systems that
are trained on their data, rather than relying on multipurpose AI systems that are
not tailored to specific industries. More in specific, the pioneers of this discipline
focus their attention on improving data-treatment steps such as data-augmentation
and data-monitoring after deployment. They highlight how crucial these steps are
in guaranteeing both fairness in real-world scenarios characterized by imperfect
datasets as well as on robustness in deployment scenarios where the quality of the
data plays a fundamental role both in terms of performance and overall cost. In
fact, according to the authors, 70% of the complexity of an AI based system is
tied to data processing, handling, and monitoring. In this context, factors such as
data preprocessing, dataset drift, and anomaly detection must be tackled to advance
towards data-centric and trustworthy AI.

Building on the aforementioned introduction to open challenges, the aim of
this thesis is to disseminate the key studies conducted during the three-year Ph.D.
path that focus on understanding domains, monitoring data, and interpreting models
within the field of CV research. Specifically, the thesis will address the issues of
model robustness, reliability, domain understanding, and model interpretability in
separate chapters. Various data-centric approaches will be presented as potential
methods for addressing model robustness issues. One study, for instance, will explore
the use of causal models in data preprocessing and management, demonstrating their
effectiveness in avoiding or reducing biases in data and in the selection of an optimal



5

learning approach for real-world datasets. The thesis will also discuss multiple
studies on data treatment and maintenance, including a novel and efficient technique
for detecting and monitoring concept drift in CV datasets, as well as an analysis
of out-of-distribution (OOD) detection techniques for large-scale and challenging
real-world datasets. These studies will introduce innovative methodologies and
avenues towards developing robust data-centric AI models, which may prove to
be useful tools in addressing MLOps challenges. Finally, the thesis will report
on various studies related to interpretability in AI, including a novel Graphical
User Interface (GUI) enabling an easier usage of XAI techniques and an innovative
methodology capable of providing part-based explanations for Convolutional Neural
Networks (CNNs). Research in this area will undoubtedly contribute to the demand
for interpretability in neural networks and overall AI trustworthiness.

The thesis has been organized according to the following structure. Chapter 2
explores the use of causal models for modelling the data domains in DL and ML.
The potential benefits of causal analysis are demonstrated through a dedicated
study. In Chapter 3, a novel XAI methodology for CNNs interpretation is presented,
accompanied by an easy-to-use GUI that provides a comprehensive range of XAI
techniques. Lastly, Chapter 4 delves into the complexities of data understanding,
by illustrating a cutting-edge unsupervised methodology for detecting concept drift
that was extensively investigated and successfully tested in a real-world context;
additionally, a thorough analysis that was conducted on OOD detection and resulted
in the creation of a challenging benchmark is reported.



Chapter 2

Understanding the Data Domain

Work described in this chapter was originally presented in [28, 29].

2.1 Introduction

DL has become an increasingly popular field of study in recent years, particularly in
the area of CV [1]. The vast amounts of data that are now available have facilitated the
development of powerful algorithms that are capable of recognizing and interpreting
images, videos, and other types of visual data [2]. However, the effective use of
DL techniques in CV tasks requires more than just access to large datasets; it also
requires a deep understanding of the data domain.

The first section of this chapter will provide a brief introduction to causal model-
ing and its relevance to DL. As, previously highlighted, the diverse and imperfect
nature of data in real-world scenarios have led to the urge for systematic approaches
to data-treatments and data-maintenance. Causal modeling is a powerful tool for
structuring complex datasets, and it has been used extensively in fields such as
economics, epidemiology, and social science [30]. By explicitly modeling the causal
relationships between variables, researchers can gain a deeper understanding of the
underlying processes that generate the data. In the context of DL, causal models
represent an effective tool to move towards more data-centric AI. They can help
to identify which features are relevant for a given task and how they should be
represented. To illustrate the use of causal models in DL, it will also be presented
a real-world use case from industry. Specifically, a study will be discussed where



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 7

causal models were used to structure a dataset of camera surveillance videos. The
goal of this study was to detect wet/dry roads from the videos, a task that is essential
for ensuring road safety in adverse weather conditions [31]. It will be described how
causal models were used to identify the relevant features in the videos and how the
dataset was structured to facilitate the training of a DL model. The second section
of this chapter will focus on the application of DL techniques in the wet/dry road
detection task. The DL architecture that was used will be described, together with
the preprocessing steps that were necessary to prepare the data for training. The
challenges that were faced in this task will be also illustrated, including issues related
to data quality and bias. Finally, the results of the experiments will be described, and
the implications of the findings discussed.

Throughout this chapter, it will be emphasized the importance of taking a data-
centric approach to DL. Rather than relying solely on the power of DL algorithms,
it is argued that it is essential to have a deep understanding of the data domain,
possibly gathering information directly from domain experts. By leveraging the
insights gained from causal modeling and other techniques, researchers can develop
more effective DL models and contribute to the continued advancement of the field.

2.2 Causal Modeling in DL: Understanding Complex
Data Relationships

ML and DL have become the high performance solutions for a large number of
classification tasks, from autonomous driving [32] to natural sciences [33] to disease
diagnosis in the medical domain [34]. It is well-established that the quality of a
trained ML model is closely tied to the underlying dataset, as famously stated by
the adage "Garbage In, Garbage Out". While much research in the field of ML and
DL focuses on improving models through novel training strategies or diagnosing
models post-training, only recently has the research community begun to take a more
data-centric approach [35].

Dataset bias can greatly impact the performance and the robustness of a ML
model during its operational life, causing the model to exploit spurious correlations
and preventing generalization to unseen data [36–40]. Furthermore, there is mounting
evidence that biased ML models may perpetuate social and racial biases, exacerbating



8 Understanding the Data Domain

discrimination and resulting in unfair outcomes [40, 41], or even have serious
implications in domains where robustness and safety are critical [42, 43].

Deep Neural Networks (DNNs), due to their high nonlinearity and black-box
nature, are particularly prone to dataset biases. DNNs tend to learn and rely on
shortcuts to solve a specific task, a behavior which has been traced to several
properties of DNNs [44]. A simple example of this is when a model that recognizes
cats and dogs is exclusively trained on images of cats with an overlayed text, it
may learn an association between the cat class and the presence of text, and even
rely solely on the latter. This is not a far-fetched example, but it has occurred in
real-world medical problems where hospital archival systems often superimpose
textual information on X-ray scans [44].

Another important phenomenon to consider is concept drift, as it will be discussed
in details in Chapter 4. It occurs when the statistical properties of the training data
and deployment data diverge over time. For example, if new species of cats and dogs
that were not originally included in the training data appear over time, would the
cats vs dogs classifier still be able to generalize?

Given these considerations, it is clear that a more systematic and robust approach
is needed when collecting, structuring, and characterizing the development datasets
used to train a DL model. One of the most promising approaches is the use of causal
models. Causal models provide a way to understand the underlying mechanisms
that generate the data, by explicitly modeling the causal relationships between
variables. This can aid in identifying and mitigating sources of bias, as well as better
understanding the robustness and generalizability of the models trained on the data.

Causal inference methods, such as do-calculus and instrumental variables, allow
to infer causality from observational data, which is often the only feasible option
in practice. Additionally, recent developments in counterfactual thinking allow to
infer the effect of interventions on a system, which is especially useful for decision
making and understanding how ML models work.

With a data-centric approach that utilizes causal models, practitioners can select
more effective training, collection, annotation, and data augmentation strategies,
detect biases and other limitations in the current dataset, and possibly resolve or
at least anticipate any issues in the resulting ML models. This approach would
ultimately lead to models that are less prone to biases, have improved robustness,



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 9

and enhance their overall performance, especially when dealing with the challenge
of concept drift.

Moreover, adopting a causal modeling approach would allow all stakeholders to
be aware of the characteristics and potential pitfalls of a dataset, as well as document
the underlying assumptions in the data collection and generation process in a clear
and transparent fashion that can be easily validated or integrated by domain experts.
It would also allow to better understand the nature of the problem, identify important
variables and interactions among them, and estimate the effect of interventions, even
in the presence of measurement errors and unobserved confounders.

This analysis aims to showcase how causal models provide a way to better
understand the underlying mechanisms that generate the data and make informed
decisions on how to collect, structure, and analyze the data to mitigate bias, improve
robustness, and enhance performance. The remaining of the section will be organized
according to the following structure. In Section 2.2.1 the related work on causal
modeling in ML and DL is presented. Sections 2.2.2 and 2.2.3 respectively define
the main principles of causal modeling and the methodology that can be followed
to build a causal model for a specific dataset. In Section 2.2.4 two case studies
involving the usage of causal modeling are presented, one from the medical literature
domain and the other from an industrial real-world scenario tackled during the Ph.D.
path.

2.2.1 Related Work

Several recent works have aimed to increase the reliability and reproducibility of
the data collection and annotation phases in ML, as well as to raise awareness of
the risks and perils of dataset biases. Initiatives such as Dataset Datasheets [38]
and Data Nutrition Labels [45] have been developed to standardize the way datasets
are collected and reported. A Dataset Datasheet includes discursive descriptions
such as the motivation behind the creation of the dataset, its composition, and other
methodological information such as any applied preprocessing and the recommended
usage. The Data Nutrition Labels provide similar information but in a more concise
format inspired by food nutritional labelling. Both initiatives enhance the trans-
parency of the data collection process, and have had a mitigating effect on undesired
or undetected dataset biases.



10 Understanding the Data Domain

On the other hand, causal diagrams represent a formal tool that can be used
during and after the creation of a dataset to reason about the relationships between
different variables. A few authors have worked on quantifying biases in ML datasets
by employing statistical techniques [37, 46, 47]. For example, Beretta et al. studied
the intrinsic discriminatory risk by assessing the degree of dependency between
a protected attribute (e.g., race or gender) and the target variable [46]. However,
the majority of these techniques work on structured datasets and are not directly
applicable to typical DL models for unstructured data, such as images or text.

Causal and counterfactual reasoning have also been increasingly used to quantify
and/or mitigate biases in trained ML models [48, 49, 40]. Nevertheless, most existing
causality-based algorithms require knowledge of the underlying causal graph. The
examples presented in this paper show how causal diagrams can connect these
two lines of research by linking unstructured data (e.g., images) to latent factors,
whose distribution can be modelled and analyzed by either statistical methods or
counterfactual reasoning.

An open question is how to evaluate the validity of the causal model when used
in this fashion. First, the correctness and completeness of the causal model cannot
be checked against the ground truth, as the latter is unknown. Recent work has
tackled the problem of verifying causal models learned from observational data, but
the method is not readily applicable to unstructured data [50]. Second, the benefit
of integrating causal models into dataset construction, while strongly supported by
intuition, has not been experimentally linked to an increase in performance and
generalization of the trained ML models.

The nature, type, and presence of biases in CV datasets have also been extensively
studied, starting from the seminal work by Torralba and colleagues. This is most
commonly done by studying the cross-dataset generalization performance of trained
DNNs [44, 36, 51, 39]. Torralba et al. suggested general strategies to avoid common
biases such as selection bias, capture bias, and negative set bias [36]. Biases due
to gender and ethnicity have been addressed by collecting larger, more diverse
datasets [49]. These strategies are complementary to causal diagrams, which however
are more easily applied to specialized datasets in which the domain is well defined
(e.g., industry) and the data generation process can be precisely and accurately
modelled.



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 11

In summary, recent works have focused on increasing the reliability and repro-
ducibility of data collection and annotation in ML by standardizing the way datasets
are collected and reported through initiatives such as Dataset Datasheets and Data
Nutrition Labels. Statistical techniques and causal and counterfactual reasoning have
also been used to quantify and mitigate biases in ML datasets and models. However,
there are still open questions and challenges in evaluating the validity of causal
models, and linking the integration of causal models into dataset construction to an
increase in performance and generalization of trained ML models. Furthermore, the
nature, type, and presence of biases in CV datasets have been extensively studied,
and strategies such as collecting larger and more diverse datasets have been proposed
to address them.

2.2.2 Problem Definition

In this section, a brief overview of the key concepts of causality theory is presented,
adhering to the terminology of previous seminal works (e.g., [52–55]).

A causal model can be represented by a Directed Acyclic Graph (DAG) consist-
ing of nodes (representing variables or factors) and arrows, also known as edges
(representing causal relationships between variables). The notation A→ B repre-
sents a direct causal relationship between A and B, meaning that an experimental
manipulation of A would change the probability of B, assuming all other factors
remain constant. One important principle in causal inference is that the probability
distribution of a cause, P(A), should not affect the conditional probability distribution
P(B|A), which is known as the independence of cause and mechanism [55]. An
intervention, defined as any forced change to the value or probability distribution of
a node, regardless of its direct cause, results in a modified DAG in which that node
is disconnected from its parents. This can be achieved through techniques such as
randomization, stratification and controlling for a variable when building a statistical
model.

Causality theory also introduces three main canonical relationships between three
(or more) variables: confounders, mediators, and colliders. In large graphs, it is
necessary to reason in terms of paths [53]. A mediator B is a variable that connects
an indirect cause A to the final effect C (A→ B→C). Controlling for B, such as
by conditioning a statistical model on the value of B, eliminates the link between A



12 Understanding the Data Domain

A X Y

B C S

X W1 Y

W2 S

Fig. 2.1 Illustrations of causal models for a causal (left) and anticausal (right) task
are shown. X and Y denote the input and output variables, respectively, while the
selection variable is denoted by a double line circle. Empty circles indicate hidden
(latent) variables.

and B, thereby completely blocking the effect of A. A confounder C is a common
cause of two variables A and B (A←C→ B). A variable A that is simultaneously
an effect of multiple independent causes B and C is referred to as a collider of B
and C (B→ A←C). Another concept in causality is the idea of “adjustment” for
confounding in observational study, which involves controlling for the effect of a
confounder by including it as a covariate in the statistical model or by matching on
it.

2.2.3 Methodology

When modeling a ML task, which is defined as a mapping function f : X 7→ Y
between an input space X and an output space Y , a key question that must be
answered is whether the task is causal or anticausal. A task is considered causal
when the goal is to estimate P(Y | X) when X → Y , meaning that Table are trying to
estimate the conditional distribution of an output Y which is an effect of the input X .
Conversely, a task is defined as anticausal if the goal is to estimate P(Y | X) when
Y → X . Anticausal problems are common in ML/DL. A specific case of anticausal
task occurs when there is no direct relationship between X and Y , but both have a
common unobserved common cause (confounded). The distinction between causal
and anticausal tasks may not be straightforward, depending also on the level of
information available about the data collection process. Examples of causal and
anticausal tasks are shown in Fig. 2.1. Some practical examples will be provided in
Section 2.2.4.



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 13

Causal diagrams allow practitioners to link the characteristics of their problem to
properties established by ML and statistical theory, and to select the most appropriate
training and statistical methods accordingly. For instance, Self-Supervised Learning
(SSL) techniques should give little benefits for causal tasks, meaning that other
training strategies should be prioritized. This is because, in SSL, it is only possible
to access unlabelled data, hence to the distribution P(X), which for the principle
of independence of cause and mechanism should be uninformative with respect to
P(Y |X) if X → Y . On the other hand, SSL could work for anticausal tasks.

A causal model should not be limited to the input and target variables, but
should also include all factors (either observed or hidden) that may influence their
distribution. With causal diagrams it is possible to define and assess the role of
confounders and colliders in a robust way. Confounding influence can introduce
what is often called a “spurious” correlation, i.e., when the considered variables
are statistically correlated through another variable but have no causal relationship
between each other. Controlling for a confounder blocks the corresponding path,
effectively removing the spurious correlation. This may be achieved in several ways,
e.g., by introducing the confounder as an additional variable to the ML model, or by
stratified sampling. On the other hand, controlling for a collider (or its descendants)
introduces an association between the two otherwise independent causes, and hence
should be avoided. A vast body of literature in the epidemiological sciences exploits
causal models for determining which variables should be controlled for.

Colliders play a fundamental role in the appearance of dataset bias. for instance,
it is possible to consider the case of a dataset of patients and their medical records.
The medical records include information about whether a patient has a disease,
whether they have taken a certain medication, and whether they have a certain
genetic variant. In this case, the genetic variant and the medication are colliders
because their presence depends on the presence of the disease. Training a model on
this dataset, the model may develop a bias towards the medication as a cause of the
disease, even though it is actually a result of the disease. This is because the collider
bias causes the model to overestimate the association between the medication and the
disease, leading to inaccurate conclusions about causality. Therefore, it is important
to be aware of colliders and take steps to control for them when modeling the data.

Another important aspect of causal modeling is the consideration of the data
generation and selection processes. This includes understanding how the data was



14 Understanding the Data Domain

collected and what factors may have influenced the selection of the data points. For
example, if a dataset is collected through a self-selection process, such as a survey,
the data may be biased towards certain groups of individuals who are more likely
to respond to the survey. Similarly, if a dataset is collected through a convenience
sampling process, the data may be biased towards certain groups of individuals who
are more easily accessible. These biases can lead to inaccurate conclusions about the
underlying population and must be taken into account when analyzing the data.

In conclusion, understanding the causal structure of a task and the data generation
and selection processes is crucial for accurate modeling and interpreting the results
of ML tasks. The use of causal diagrams and the consideration of confounders
and colliders can help practitioners to link the characteristics of their problem to
properties established by ML and statistical theory, and to select the most appropriate
training and statistical methods accordingly. Additionally, understanding the data
generation and selection processes can help to identify and control for sources of
bias in the data.

In order to thoroughly represent the data generation, collection, and annota-
tion process, a comprehensive causal model can be created using the methodology
reported in the following (adapted from [53]).

• Collect information about the data collection, annotation, and selection pro-
cesses to build a complete model, including relevant mediators, confounders,
and colliders.

• Determine if the task is causal or anticausal.

• Identify potential discrepancies between the training and testing sets and imple-
ment strategies such as data augmentation, domain adaptation, or resampling
to address them, depending on the nature of the domain shift.

• Evaluate if the data collection was biased with respect to the input X , the target
Y or any other variable.

• Draw the causal model and include all factors, paying attention to the emer-
gence of collider biases.

• Decide if and how further selection (randomization or stratification) should be
conducted to control for confounders.



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 15

2.2.4 Case Studies

In this Section, two case studies are presented, one from the medical domain and one
from an industrial CV application, to demonstrate the practical application of causal
diagrams in characterizing the data collection, annotation, and selection processes
for ML tasks.

During the Ph.D. path, the use of causal models in the medical imaging field
has been explored, as proposed by Castro et al. in their seminal work [53]. Medical
imaging analysis tasks often share a common workflow and involve a limited number
of factors. The role of these factors in the construction, sampling, and annotation of
datasets has been extensively studied in literature [42, 56].

Building on this research, Castro and colleagues propose a general causal
model 2.2 structure that can be applied to the majority of medical imaging ML
tasks. The model includes selection and domain variables, which allow for the
modeling of different types of dataset biases and domain shifts. The introduction of
a selection variable D is particularly noteworthy, as it models factors that may differ
between the training and testing population. The resulting causal model and the type
of task (anticausal vs. causal) determine the appropriate countermeasures to address
domain shifts [53].

Fig. 2.2 A causal model template for medical imaging dataset analysis is presented.
Measured values are denoted by filled circles, hidden variables by empty circles, and
selection variables by double-line empty circles. Adapted from [53].



16 Understanding the Data Domain

To illustrate the application of this model, a sample medical task is considered
herewith: the diagnosis of cancer (e.g., prostate cancer) from an image (e.g., a
magnetic resonance image). The goal is to predict the probability of the presence
or absence of cancer (Y ) from the input image X . Training sets for this model are
typically based on datasets collected from one or multiple institutions.

The image X is the result of various causes, including the presence of the disease,
patient anatomy, and acquisition conditions. Patient anatomy is an internal hidden
variable that accounts for inter-patient variability, whereas acquisition conditions
represent all factors (type of scanner, acquisition protocol, etc.) that may affect
image appearance.

To determine whether the task is causal or anticausal, it is essential to understand
how the reference standard is established. Whenever possible, the presence or
absence of the disease should be defined by means of biopsy and/or follow-up for a
suitable period of time [42]. In this case, the presence or absence of the disease is
known, and manipulating or changing the image would not alter the label. This task
would be anticausal, as is the case with many computer-aided diagnosis tasks.

In contrast, if labels are established solely on the radiologist report, then the task
is considered causal (Fig. 2.3). The true disease status W2 is considered a hidden
variable, and the image X is a mediator between the disease W2 and the output label
Y . In this case, manipulating the image could alter the radiologist perception, and
hence the resulting labels. However, practical situations can be more nuanced. For
example, biopsy is typically performed only for cases that the radiologist deems
suspicious. This factor can be represented by adding a selection variable biopsy
which is an effect of the label Y .

Finally, the input image depends on the acquisition conditions, which may pro-
duce diverse sets of images, and the model should be robust to these variations. The
general causal model structure proposed by Castro et al. is a useful tool for under-
standing and addressing these factors, ensuring robust and accurate performance in
medical imaging tasks.

For the use case in the industrial field, it will be discussed the causal diagram for
the task of estimating road conditions using surveillance Full-HD cameras. The goal
is to identify the presence of wet road conditions from video frames captured by the
cameras. The frames have been collected from areas with varying characteristics
such as illumination, road morphology, and point of view. The causal diagram,



2.2 Causal Modeling in DL: Understanding Complex Data Relationships 17

Patient
Characteristics

Patient
Anatomy
(W1)

Acquisition
Conditions

Prostate
Cancer
(W2)

Image
(X)

Selection
(S)

Label
(Y)

Fig. 2.3 A representation of a causal model is given for classifying prostate cancer.
Hidden factors of interest are illustrated using empty circles.

as shown in Fig. 2.4, helps to understand the role of different factors in the data
collection, sampling, and annotation process.

The main variables of interest are the image (X) and the manually determined
label (Y ), which is a binary value indicating whether the road appears to be dry or wet.
The phenomenon of interest is the presence of water W , which is caused by weather
conditions such as rain or snow, or other factors like floods. These variables are
considered hidden because they are not directly measured in the adopted experimental
setup. In causality terminology, the input image X acts as a mediator between the
phenomenon of interest W and the label Y .

The camera site, time of day and month (or season) are also important factors
to consider. They are indirect causes of both W and X (highlighted in light blue in
Fig. 2.4). For example, the site variable embeds information such as geographical
location, road morphology, the type of asphalt, and the frequency of car passing.
Similar factors are crucial in determining the presence of water on the road [53].
Additionally, images taken at different sites have distinctive visual features due to the
different road morphology, illumination, etc. This results in a domain or acquisition
shift.

To address these issues, data resampling is a possible strategy to mitigate preva-
lence and population biases [53]. By considering the causal diagram and the factors
that influence the data, it is possible to improve generalization during training and
testing.

The task of classifying road conditions using surveillance Full-HD cameras can
be modeled as a causal task. The images are manually labeled, and the assumption



18 Understanding the Data Domain

Weather 
(Rain/Snow)

Time of
the Day 

Camera 
Orientation

Presence
of Water 

(W)

Image 
(X)

Selection
(S)

Label 
(Y)

Camera 
Site 

Season
or Month 

Other
Causes

Camera 
Model

Fig. 2.4 A causal model is presented for predicting wet road conditions, where hidden
variables are shown using empty circles. The selection method involves random
sampling.

is that the label Y is caused by the image X , and not vice versa. This is because the
labels are generated through manual annotation without explicit knowledge of the
hidden variable W , and any substantial modification of the image may change the
value of the assigned label. For example, if the presence of water is not visible due
to occlusions or poor visibility, any rater would give a negative label, regardless of
the actual road condition.

However, the distinction between causal or anticausal tasks is not entirely clear-
cut. If the image-derived labels determined by an expert are nearly identical to the
hidden variable, then the labels could serve as proxies for the ground truth, possibly
configuring an anticausal relationship. In this case, the annotators were aware of
the site, date and time of acquisition, and the weather could be inferred from the
input image. From this viewpoint, the task can be seen as confounded, and hence
anticausal. This perspective is supported by the observation that SSL was effective
to improve performance. Further investigations are needed to clarify the role of SSL
in ML tasks for which the causal or anticausal nature is not easily determined.

The domain D is determined by several variables such as the site, season, camera
orientation, and camera model. Camera orientation and camera model have a direct
influence on the image and are contributors to the domain or acquisition shift. From



2.3 Road Condition Estimation with CNNs and LSTMs 19

a causal perspective, the image X is a collider of many variables, including W and
camera parameters, thus care must be taken to prevent collider biases affecting the
training process. The distribution of all known factors was studied and corrected, if
needed, by sampling and data augmentation. For example, when data is acquired
continuously during the day and for the whole year, the distribution may be balanced
with respect to time of day and season, but it is unlikely to account for all possible
sites, which is the most critical factor for generalization. Camera orientation has a
profound impact on the presence of reflections, myrages, as well as under- and over-
exposure. Data augmentation strategies that simulate different camera orientations
and illumination conditions are useful in this case to prevent the appearance of
spurious correlations as a result of imperfect data selection or small dataset sizes.

In conclusion, a predictive model can be influenced by confounders (such as
the season) by incorporating them as additional inputs. This allows the model to
condition its prediction on the value of the confounder. However, this approach is
only feasible if the confounder is observed and measured during both training and
inference, and if the training set includes examples from all possible values of the
confounder distribution.

2.3 Road Condition Estimation with CNNs and LSTMs

In this Section, a real-world case study tackled with the usage of causal modeling
is presented in detail. The study highlights how the configuration of a data domain
through a data-centric approach eventually led to an unbiased and robust model
capable of generalizing to unseen data. In particular, as previously mentioned in
Section 2.2.4, the study was carried out in the context of road condition estimation
using DL models trained on surveillance camera footage captured from cameras
placed over the road.

The different methodologies in literature can be divided into categories based
on factors such as the source of data acquisition (camera mounted on the vehicle
or near the road), type of sensors, and methodology (analysis based on data or
based on physics measurements). In this section, Table focus on the latter category,
which relies on distributed fixed sensors for road infrastructure management [57–
59]. Historically, RWIS stations have been largely adopted to gather utilized to
collect measurements on atmospheric conditions, road status, and visual percep-



20 Understanding the Data Domain

tibility. RWIS can have various sensors such as cameras and thermometers, but
their installation and operational costs limit their availability and cause low spatial
resolution. Outdoor cameras provide an economical alternative with low installation
costs [57, 60, 61], but factors such as their distance from the road and varying illumi-
nation conditions can make the detection task challenging. Hence, semi-supervised
techniques have been proposed to reduce manual labeling costs [57].

Different methods have been used to detect road conditions based on physics or
data. Physics-based methods are intended for detecting weather conditions like fog,
snow, or rain [62–65]. An example of a proposed method is a camera-based rain
gauge by Allamano et al. [62], which measures rain intensity using a single camera.
These methods offer more interpretability and stability compared to data-driven
methods, but they cannot handle complex phenomena like water buildup on roads and
are dependent on camera parameters [62]. On the other hand, DL-based techniques
such as CNNs have been widely used in related applications [57, 66, 67, 59]. They
can be trained to manage various illumination and acquisition conditions without
the need for calibrated cameras, unlike physics-based methods. Frame-by-frame
classification through fine-tuning of state-of-the-art CNNs is the approach taken
by most existing works, without consideration of the temporal correlation between
frames [67, 58, 59, 57, 66, 68].

In [57], the authors studied a system for real-time road condition detection in
a similar configuration. They more than 1 million frames captured by cameras
placed on highways and streets, and applied a semi-supervised strategy to label the
large dataset before fine-tuning CNN models. However, their work has limitations
compared to the study reported herewith. Their dataset was collected over a period
of three months while the dataset developed for the work reported herewith spans
two years and includes continuous sampling over several months. Additionally, this
study demonstrates that a temporal model like a Convolutional Long Short-Term
Memory (ConvLSTM) outperforms a frame-by-frame approach by reducing false
alarms and capturing the temporal evolution of the phenomenon more effectively.
The proposed pipeline involves self-supervised and semi-supervised training of
the temporal model with spatially and temporally consistent data augmentation for
improved generalization.

The utilization of self-supervised pre-training is employed to take advantage of
the availability of unlabeled frames. Such methods learn feature representations that



2.3 Road Condition Estimation with CNNs and LSTMs 21

are semantically meaningful through pretext tasks, which don’t require semantic
annotations but do require a higher-level semantic understanding to solve [69]. These
representations can later be fine-tuned to the target downstream task with the help
of a labeled subset of data. Self-supervised pre-training and pseudo-labelling has
been previously shown to outperform pseudo-labelling alone in a semi-supervised
setting [70]. The proposed methodology draws inspiration from contrastive SSL
techniques [71, 72], which have proven effective in transferring to fine-grained
image classification [69]. Contrastive self-supervised methods, which treat each
image as a unique instance, utilize aggressive data augmentation to generate multiple
views [71, 69, 73]. Meanwhile, spatiotemporal extensions for video sequences
rely on the assumption that each sequence represents a different scene [74]. Both
approaches are unsuitable for the proposed dataset, which contains a small number
of scenes acquired by fixed cameras, but a large number of consecutive frames.
SSL has also been applied to remote sensing [75, 76]. However, the proposed
dataset, which contains multiple images of the same area acquired at regular intervals,
is sampled sparsely along the spatial dimension and at high resolution along the
temporal dimension, whereas satellite imagery is sampled continuously in the spatial
dimension but sparsely in the temporal dimension.

Thus, drawing inspiration from SSL in the medical domain [72] - in which
similarity between two images is based on discrete variables such as lesion type,
location, and size - here an SSL approach is adopted relying on the discrete features
of the dataset and using a ConvLSTM. The technique is validated on a real-life
dataset containing continuous video streams spanning multiple months, providing a
realistic picture of performance under varying illumination and weather conditions.
The contributions are:

• The introduction of a semi-supervised training approach that leverages unla-
beled data through self-supervised pre-training and established semi-supervised
techniques, specifically, contrastive self-supervised pre-training for road-side
and surveillance camera video streams;

• The design and training of a ConvLSTM for road condition classification, in-
cluding temporally consistent data augmentation techniques to mimic outdoor
illumination changes;



22 Understanding the Data Domain

Camera site A1 A2 A3 A4 A5 A6
Acquisition period 02/2020 - 05/2020 02/2020 - 05/2020 07/2018 - 07/2019 10/2018 - 07/2019 10/2018 - 05/2020 10/2018 - 07/2019

Camera site A7 A8 A9 A10 B1 - B15
Acquisition period 07/2018 - 09/2018 10/2019 - 11/2019 08/2018 - 07/2019 02/2020 - 05/2020 12/2020 - 01/2021

Table 2.1 Period of acquisition for each road-camera involved in the analysis.

• The evaluation of by-frame (CNN) and temporal (ConvLSTM) models on a
well-balanced dataset covering a wide range of acquisition, illumination, and
weather conditions, using appropriate per-event metrics to measure the ability
to precisely identify the start and end time of wet road events.

The remaining of the chapter is structured as follows. Section 2.3.1 provides an
overview of the dataset used for training and testing. The training strategies adopted
for the task are described in Section 2.3.2. In Section 2.3.3, the settings used to carry
out the experiments are reported in detail, whereas in Section 2.3.4

2.3.1 Dataset

This study makes use of a real-life dataset collected from 25 roadside Full HD
cameras positioned primarily in Europe and primarily in the Northern hemisphere.
The cameras were primarily located in extra-urban areas along crucial segments of the
road network, exposing them to a wide range of weather and traffic conditions [77].
The dataset consists of images captured from a combination of bullet and PTZ
cameras, installed at an approximate height of 5m and angled towards the road at
10°-20° [77]. The camera locations are presented in Fig. 2.5 and their acquisition
periods in Table 2.1. The original frame rate of 12 frames per minute was reduced
to 1.3 frames per minute to lower computational costs. Only frames captured
between sunset and sunrise were used, with light sensors utilized in some cameras
to distinguish between day and night. In other cases, sunset and sunrise hours
were calculated using ephemeris equations [78] and geographical information. This
section will delve into the data acquisition and selection process through causal
analysis (Section 2.3.1), annotation process (Section 2.3.1), and the properties and
training/validation split of the dataset (Section 2.3.1).

Causality Analysis A range of factors impact road conditions, and therefore must
be taken into account when constructing a training and validation set from collected



2.3 Road Condition Estimation with CNNs and LSTMs 23

Fig. 2.5 Geographical positions of the road-cameras involved in the analysis.

data [28, 79, 80]. The aim of this analysis was to provide a solid foundation for the
data to be split into a training and validation set and to characterize the properties of
the domain for the classifier.

The causality diagram for the task of detecting the presence of water in video
frames captured on a specific road stretch was described in details in Section 2.2.4.
The resulting model is shown in Fig. 2.4, and here it is described in short to help the
reader. The goal is to predict the likelihood Y of water being present on the road,
given a frame or sequence of frames X , where Y can also represent different weather
conditions such as wet, dry, or snowy. The actual presence of water is depicted by
the latent variable W , as direct observation of the phenomenon was not possible,
such as through on-field sensors.

There are several reasons for water buildup on the road. Weather conditions play
a significant role, but the interplay between weather and the road’s drainage system
is also crucial. For example, light rain may not result in water buildup, while heavy
rainfall could cause persistent water buildup. Weather conditions were treated as
a latent variable in the presented analysis as it was not possible to access weather
reports, but they can largely be inferred from the images. Variables such as camera
site, time of day, and season act as confounders as they affect both illumination and
water buildup frequency. The camera site variable encompasses multiple elements
such as geographical location, road morphology, type of asphalt, road drainage, etc.
All of these factors impact the frequency and characteristics of wet road events. The
image X acts as a collider between the true phenomenon W and other independent



24 Understanding the Data Domain

variables such as camera orientation and model. Hence, care must be taken as
colliders can lead to biased datasets [81, 56].

Based on the diagram, the task is considered causal, as the label is directly
inferred from the input frame, which acts as a mediator with respect to the underlying
phenomenon [54]. On the other hand, the annotators were aware of the season, time
of day, and weather, which were either available or could be easily inferred from
the image, as indicated by the dashed arrows in the diagram. Although annotators
were instructed not to rely on these variables for classification, it is possible that this
information was useful for human annotators to perform the task. Hence, from this
perspective, the task can also be considered confounded and anticausal, which is in
line with theoretical conjecture that SSL should not improve performance on causal
tasks [54].

Annotation Procedure To validate and test the performance of SSL strategies, a
subset of the data was manually annotated to obtain a set of clean labels. Furthermore,
this annotated subset was used to transfer the learned representation to the target
task. In particular, all of sites B1-B15 were annotated due to their short acquisition
period and challenging illumination conditions, which were not well represented in
sites A1-A10. For sites A1-A10, a random number of days per site was selected and
annotated.

The annotation process involved five annotators: two experts and three juniors.
The expert annotators established the criteria for labeling and provided initial training,
while consensus meetings were used to review the initial annotations and resolve
ambiguous cases. A frame was labeled as wet if the water build-up or water pools
were deemed significant enough to reduce vehicle traction and increase the risk of
accidents. All other frames were labeled as dry, even if the road was moist or drying
up. This choice, which is more challenging than previous works that defined the wet
class as "a spectrum of conditions from moist roads to puddles to soaking wet" [57],
was made to avoid an unacceptable false positive rate in real-world applications.

Initially, the problem was framed as a binary classification problem, but auxiliary
classes were defined to account for cases in which labeling was not possible:

• Poor visibility: This class represents frames in which visibility is reduced by
fog or other weather conditions to the point that labeling is not possible.



2.3 Road Condition Estimation with CNNs and LSTMs 25

• Dark: This class represents frames in which the road is severely under-
illuminated or under-exposed, typically at the start or end of the day.

• Offline: This class represents the static feed when the camera is offline due to
network errors.

• Over-exposed: This class represents frames in which the image is too over-
exposed to clearly assess the state of the road, typically around mid-day,
depending on camera orientation.

To reduce the annotation time, only a small portion of the dataset (approximately
3,000 frames) was completely annotated by hand. For the remaining frames, a
classifier was trained to produce tentative labels, which were then manually refined
following the procedure outlined by Ramanna et al. [57]. Features were extracted
by fine-tuning a ResNet50 CNN pre-trained on ImageNet and applying a k-Nearest
Neighbor classifier (k = 50). The tentative labels were grouped by camera and
denoised using a majority filter to exploit temporal consistency. Finally, all labels
were manually refined and confirmed using the Microsoft CVAT tool [82] by loading
each day of acquisition as a separate video. Critical or borderline cases were
discussed in consensus meetings. Hence, this process is considered equivalent to
manual annotation and reasonably noise-free.

Frames labeled as poor visibility, dark, offline, or over-exposed were removed
from the final dataset. These special classes were used only during manual labeling,
but were not included as additional classes due to their low prevalence, as discussed
in Section 2.3.2. The only exception was over-exposed frames, which were auto-
matically discarded by applying a threshold on the average intensity. This simple
approach was found to be equivalent to manual labeling on the annotated subset.

Dataset Division and Training/Validation Split Strategy The overall dataset
encompasses around 400,000 frames collected from 24 cameras. The annotated
portion of the dataset was separated into a training set and a validation set, while the
rest was kept for further training purposes.

The dataset was sampled with each day being treated as a separate entity. As
night frames were disregarded in the analysis, each day represented a disjoint and
non-overlapping set of frames. The frames captured by a single camera in a day are
referred to as a camera day throughout the analysis. Thus, each camera day was



26 Understanding the Data Domain

either allotted to the training set or the validation set, and was either annotated or not.
This strategy ensures that the frames in the validation and testing sets are statistically
uncorrelated and helps to evaluate the performance on an event-wise basis, instead
of a frame-wise basis. Additionally, all the illumination conditions that occur during
the day are equally represented, thereby eliminating biases.

The training/validation/testing split was done at the camera day level, taking into
account the major confounding factors discussed in Section 2.3.1, specifically the
camera location and season.

As depicted in Table 2.1, the number of camera days available varied across
the different sites. Sites with more than 50 camera days (6) were randomly divided
into a training and validation-test set to guarantee that all seasons were equally
represented. The validation-test set was further split into a validation set (50%) and
a test set (50%), stratifying by camera orientation. Sites with fewer than 10 camera
days (15) were either assigned to the training or validation set, as it was not feasible
to reserve part of the data for external testing in these cases. Sites were manually
assigned to ensure that sites with similar characteristics and morphologies (e.g., the
presence of elevated roads, bridges, or tunnels) were evenly divided between the two
datasets. This strategy guarantees that the training set and the validation set include
similar acquisition conditions, while also avoiding network memorization of each
acquisition site. Furthermore, sites located outside of the Northern hemisphere were
included in the training set, as the amount of data available would not be adequate to
test the performance of the model in these climatic conditions.

The distribution of the training and validation sets is detailed in Table 2.2, in
which "Training-50K" refers to the annotated portion of the training set, while
"Training-300K" refers to the complete set, including both annotated and non-
annotated frames.

Finally, to account for temporal continuity, an event is defined as a sequence of
consecutive frames labelled as "wet". This definition will be further discussed in
Section 2.3.3 in the context of performance assessment. As shown in Table 2.4, very
short events (less than 15 minutes) and very long events (more than 6 hours) are rare,
and many wet events start in the morning, prior to 9 am.



2.3 Road Condition Estimation with CNNs and LSTMs 27

Table 2.2 Distribution of the training, validation and testing sets.

Training-300K Training-50K Validation Set Test Set
Total Frames 307,034 50,152 47,613 42,164
Dry Frames 245,087 43,038 41,837 38,786
Wet Frames 61,947 7,114 5,776 3,378
Camera Sites 14 14 16 9
Camera Days 1,458 263 239 208
Wet Events / 172 118 78
Wet Events Longer Than 120 Frames (360 minutes) / 12 13 12
Wet Events Shorter Than 5 Frames (15 minutes) / 23 14 8
Wet Events Starting In The Morning (Before 9AM) / 58 52 34

2.3.2 Methodology

This section outlines the method for wet road detection. Data preprocessing and aug-
mentation techniques are presented in Section 2.3.2. The proposed approach trains
models of increasing complexity, starting with a self-supervised and SSL trained
CNN (Section 2.3.2) and followed by the integration of the feature extractor into a
temporal ConvLSTM model that is fine-tuned on video sequences (Section 2.3.2).

Data Preprocessing and Augmentation The first step in the process involves the
preprocessing of the data to remove any text overlays present in the surveillance
camera feeds. This is achieved through simple thresholding and morphological
operators as the text is typically black or white in color.

For the CNN model, a set of random transformations were applied independently
to each frame to augment the data, including shear (in the range –45 to +45 degrees),
horizontal flipping (20%), cropping (in the range –0.05% to 0.10%), perspective
transformation (0.1 ratio), random rotation (in the range –45 to +45 degrees), additive
Gaussian noise, coarse dropout (3–15% of the pixels), and brightness variation (in
the range –30 to +30).

For the temporal ConvLSTM model, the data augmentation should generate
spatially and temporally consistent sequences to capture subtle changes in the appear-
ance of the road. The temporally consistent method from Qian et al.[74] was adopted
for the spatial and geometric transformations, where a set of random transformations
(shear, flipping, cropping, perspective, rotation, additive noise, and dropout) is sam-
pled for each sequence and applied consistently to all frames. The same settings
were used as in the CNN model.



28 Understanding the Data Domain

TextText

5 previous frames

current frame

Fig. 2.6 Sequence generation process. Sequences generated for each frame included
the S−1 previous frames.

A novel brightness transformation was introduced for the temporal ConvLSTM
model to simulate changes in illumination conditions in outdoor scenes. This trans-
formation multiplies the intensity of each frame by a factor Asin(k(i+b)), where
A, k, and b are randomly selected parameters. The parameters were set to have a
maximum brightness increase of 2 and a maximum decrease of 0.5 to simulate a
wide range of different illumination and climatic conditions. Examples of augmented
video sequences are shown in Fig. 2.7.

CNN Model and Training Procedure The baseline model employed in this study
is a Resnet50 network that has been pre-trained on ImageNet [83]. Given that
incidents of wet roads are relatively infrequent and class imbalance could potentially
hinder the convergence speed and overall generalization performance of the model
on the test set [22], the focal loss function was selected for all experiments. While
oversampling by repetition is a common technique to address data imbalance, it was
discovered to be susceptible to overfitting.

To mitigate the effects of class imbalance, the multi-class formulation proposed
by Cui et al. [84] was employed. This approach considers each sample along with
a small neighboring region, rather than a single point. The effective number of
samples Eny is calculated as (1−β ny)/(1−β ), where ny is the number of samples
for class y and β ∈ [0,1] is a hyper-parameter that regulates the rate of growth. This
re-weighting strategy can be applied to any loss function L (p,y), resulting in a
class-balanced loss CB(p,y) expressed as:



2.3 Road Condition Estimation with CNNs and LSTMs 29

Fig. 2.7 Sequences generated by accounting for temporally coherent spatial augmen-
tation and for a realistic simulation of outdoor brightness conditions.

CB(p,y) = αiL (p,y) =
1

Eny

L (p,y) =
1−β

1−β ny
L (p,y) (2.1)

where y ∈ 1,2, ...,C is the label and p = [p1, p2, ..., pC] is the class probability
vector estimated by the model. The class weight αi ∝

1
Eny

is proportional to the
inverse of the effective number of samples for class i. Setting β = 0 corresponds to
no re-weighting, while choosing β = 1 leads to re-weighting by the inverse of class
frequency.

Finally, the class-balanced focal loss is obtained by combining the focal loss with
the above weighting scheme:

CB f ocal(p,y) =−
1−β

1−β ny

C

∑
i=1

(
1− pt

i
)γ log

(
pt

i
)

(2.2)

where pt
i = sigmoid(zt

i) is the model estimated probability for class i and

zt
i =

(zi) if i = y

(−zi) otherwise.
(2.3)

Parameter γ smoothly adjusts the rate at which easy examples are downweighted.

Self-Supervised Pre-training The neural network undergoes pre-training through
a self-supervised contrastive method that leverages the inherent similarities present
in the dataset, followed by fine-tuning to the target classification task, as depicted



30 Understanding the Data Domain

Non-annotated
Data

ResNet50

Pre-Training

Annotated 
Data

ResNet50

Weight
Initialization

Model Finetuning

Wet

Dry

Data as
annotated by

the Self-
Supervised pre-
trained model

N Semi-Supervised
training iterations

Manually
annotated 

Data
ResNet50 Ensemble

New set of
labels for

automatically
annotated data

All Data

ResNet50

Model Finetuning

Dry

Wet

Fig. 2.8 Self-supervised pre-training (left) and the Semi-supervised fine-tuning (right)
methodologies.

in Fig. 2.8. The network is pre-trained with the objective of learning to distinguish
fine variations in spatiotemporal features by comparing frames taken at varying
times and locations. In this work, time is treated as a continuous variable and the
camera location is considered as a discrete variable. These variables are combined
to generate sequences that contain samples of gradually increasing differences, as
inspired by previous studies [72].

Starting from an anchor sample (A), sequences of five samples, A, B, C, D, and
E were generated from positive samples with varying levels of similarity, and one
negative sample, as shown in Table 2.3. The degree of similarity was determined
based on three factors: the camera location, date, and time of day. Two images were
considered similar if they were collected from the same camera location, within the
same month (30 calendar days, excluding the year), or acquired less than two hours
apart. This approach discretizes the concept of seasonality (month) and varying
illumination conditions (time of day), and combines them with the camera location.

A five-stream Siamese network with a ResNet50 backbone was used for pre-
training. The feature vectors were normalized to unit norm before computing the
Euclidean distance, and a contrastive loss based on margins was defined as in Yan et
al. [72]:



2.3 Road Condition Estimation with CNNs and LSTMs 31

Table 2.3 The similarity between the anchor sample and other samples in the
sequence is established by considering the camera site, date, and time of day in that
order. A ✓ indicates similarity between the samples with respect to the considered
factor, while an ✗ indicates difference.

A B C D E
Camera site Anchor ✓ ✓ ✓ ✗

Date of the year Anchor ✓ ✓ ✗ Don’t care
Time of the day Anchor ✓ ✗ Don’t care Don’t care

L sequence = max(0,d2AB−d2
AC +m1)+

max(0,d2
AC−d2

AD +m2)+

max(0,d2
AD−d2

AE +m3)

(2.4)

where d2
i j is the squared Euclidean distance in the feature space between frames i

and j, and mi represents the margin distance applied to each sample feature represen-
tation, subject to the condition m3 > m2 > m1 > 0. The loss encourages sample B to
be close to anchor A in the feature space, while pushing samples C, D, and E further
away, in that order. Given that each batch comprises S sequences, the final loss is
calculated as L = 1

2S ∑
S
s=1 Ls. The self-supervised pre-trained backbone is then

used to initialize the baseline instead of the standard ImageNet pre-training [85].

Semi-supervised Method The proposed approach is based on the widely-used
semi-supervised learning technique referred to as pseudo-labeling [86]. The method
involves generating pseudo-labels for unlabeled data utilizing an initial version of
the classifier, which is then refined iteratively. To mitigate the effect of noisy pseudo-
labels, an ensemble of three ResNet50 networks is employed, initialized through
self-supervised pre-training or previous SSL iterations. Binarized predictions are
obtained by selecting a threshold with a 10% false positive rate, and then combined
using majority voting. Further refinement is done by applying majority voting along
the temporal axis for temporal consistency.

The weight of pseudo-labeled samples is controlled by a hyper-parameter ε ,
which starts with a low value and gradually increases with the improvement of the
classifier’s performance. This allows for a trade-off between labeled and unlabeled
data and is crucial in reducing the impact of noisy labels in early iterations [87, 88].



32 Understanding the Data Domain

Temporal (ConvLSTM) Model and Training The proposed temporal model
classifies each ith frame by considering the preceding N−1 frames. The model is
built using a ConvLSTM architecture, which comprises a ResNet50 backbone as
a visual encoder, and a stack of three LSTM cells and two Fully Connected (FC)
layers, as shown in Fig. 2.9.

Different variations of the LSTM model were experimented with. The first
variation is the DenseLSTM [89], where the three LSTMs receive the visual features
concatenated with the outputs from all previous cells, similar to the DenseNet
architecture. The second variant substitutes the LSTM with a 1D CNN layer with
kernel size equal to 2 and stride 1. The output from the 1D CNN is flattened and fed
to the two FC layers. Dropout is applied after the first FC layer to reduce overfitting.

Temporal sequences were extracted from the continuous data stream by em-
ploying a sliding window approach, defined by the parameters: sequence length N,
sampling rate s, and stride K. In the experiments, the length of the sequence was
set to N = 6, with a sampling rate of s = 1.3 (1 frame every 3 minutes), resulting
in a time window of 18 minutes. This time window was chosen based on domain
knowledge and preliminary experiments and was deemed sufficient to capture the
evolution of the phenomenon of interest. The stride K was set equal to the sampling
rate for simplicity.

To reduce computational effort during training, the temporal model was initialized
from the by-frame model through a two-step transfer learning approach. During the
first phase, referred to as warm-up, only the LSTM was trained, with the feature
extractor frozen. In the second phase, both the backbone and the LSTM were
fine-tuned using the class-balanced focal loss defined in Section 2.3.2.

2.3.3 Experimental Settings

CNN model All experiments were carried out by resizing Full HD frames to
480×270 pixels, which slightly affects the classification accuracy but considerably
accelerates training and testing processes. The hyper-parameters for the focal loss
were set as β = 0.9999 and γ = 2 unless otherwise specified. Only the frames
labeled as wet and dry were used, while others such as over-exposed, dark, offline,
and poor visibility were removed as described in Section 2.3.1. The learning rate
was determined on the training set via the learning rate finder methodology [90]



2.3 Road Condition Estimation with CNNs and LSTMs 33

Fig. 2.9 Unrolles representation of the Temporal (ConvLSTM) model.

and set to 10−6. The Adam optimizer was applied with a batch size of 16 for all
experiments.

The baseline was trained using SSL on 308,523 sequences for 20 epochs. The
original training set was used to generate the sequence dataset where each sample
acted as anchor A. Samples B, C, D and E were randomly selected to meet the
requirements for each anchor. The generated sequences were split into 2,982 for
validation and 305,541 for training. The hyper-parameters of the loss function were
set to m1 = 0.2, m2 = 0.3 and m3 = 0.4 (refer to Section 2.3.2 for more details on the
loss function) with a batch size of S = 3. After the pre-training stage, the backbone
was fine-tuned to the classification task. The learning rate was determined through
the learning rate finder methodology [90] and set to 5×10−6.

For SSL iterations, the pseudo-labels were downweighted by a factor ε , which
started at 0.2 for the first iteration and increased to 0.9 for the fourth and final SSL
iteration.

It should be noted that only the data from sites A1-A10 was used for the self-
supervised pre-training and the first four SSL rounds as these sites have a broader
temporal range than sites B1-B15. However, the latter sites include more diverse
scenes and challenging illumination conditions, making them a suitable choice for
the temporal model training and evaluation.



34 Understanding the Data Domain

ConvLSTM model The training process for the temporal ConvLSTM model
baseline followed a two-phase procedure. The optimizer utilized was the Adam
optimizer and the loss function used was the focal loss with hyperparameters β =

0.9999 and γ = 2. During the warm-up phase, the network was trained for 4 epochs
with a batch size of 64 and a learning rate of 9× 10−5. In the second phase, the
network was fine-tuned for a further 6 epochs with a lower learning rate of 9×10−6

and a batch size of 16. In both SSL rounds, the value of ε was set to 0.9. The
optimal learning rates, as determined using the learning rate finder algorithm, were
9× 10−5 and 9× 10−6 for the first and second SSL rounds, respectively. The
frames were resized to 480×270 pixels, as was the case with the CNN model. The
ConvLSTM model was trained on 256,882 sequences of S = 6 frames extracted from
the Training-50K dataset through the methodology outlined in Section 2.3.2.

Experiments All the experiments were performed on a system equipped with a
Intel® Core™ i9-9940X CPU with 32 GB RAM and a NVIDIA Titan RTX GPU (24
GB). The models were implemented in Keras v2.3 and Tensorflow v2 frameworks.

Evaluation of Model Performance In order to assess the performance of the
devised models, two classes of performance metrics were used, at both the frame
and event levels. The first set of metrics aimed to evaluate the ability of the models
to classify each frame independently as either dry or wet. For this, the Receiver
Operating Curve (ROC) was used, with the Area under the ROC curve (AUC) as the
summary performance measure. The 95% confidence intervals (CI) for the AUCs
were computed using bootstrap sampling with 1000 repetitions and replacement [91].
The p values were calculated using the paired non-parametric DeLong method for
comparing correlated ROC curves [92], with correction for multiple tests using
the Bonferroni method. The differences between the final two models, as well as
between each semi-supervised iteration and the baseline model, were tested.

The second set of metrics evaluated the accuracy with which the models detected
wet road events, the number of false alarms generated, and their distribution through-
out the day or across different sites. An event was defined as a series of consecutive
frames with the same label, and predictions were binarized to generate the predicted
events. A threshold was selected at a fixed false positive rate of 10% to balance
specificity and sensitivity and to make fair comparisons between models.



2.3 Road Condition Estimation with CNNs and LSTMs 35

The ground truth and predicted events were matched along the temporal axis
using the Temporal Intersection over Union (IoU) metric [93]. An event was con-
sidered to be detected if the IoU exceeded a threshold of 0.2. Any predicted event
that was not associated with a ground truth event was considered a false positive or
false alarm. However, if a predicted event was completely included in a ground truth
event but did not reach the IoU threshold, it was not counted as either a false positive
or true positive detection.

Finally, per-event performance was estimated through a variant of the ROC curve,
known as the Free-Response ROC curve (FROC). The FROC plots the recall versus
the average false positive rate, which was computed by dividing the total number
of false positives by the number of camera days and corresponds to the average
number of false positives generated daily at each site. False positives with a duration
of one frame were discarded. Each detected event was assigned a score equal to
the maximum score assigned by the model to the frames included in the event. By
construction, each event had a score equal to or higher than the threshold used for
binarizing predictions.

2.3.4 Results

CNN Model: Self-Supervised and Semi-Supervised Pre-Training To evaluate
the CNN model’s ability to distinguish between dry and wet frames, a set of experi-
ments that excluded sites B1-B15 due to the unavailability of unlabeled data and a
relatively short acquisition period was conducted. The validation set consisted of 208
camera days from eight different sites, with four of them never seen during training.
The CNN model was trained in consecutive steps as described in Section 2.3.2. The
Self-sup baseline refers to the model that was pre-trained using the self-supervised
methodology and then fine-tuned on the labeled portion of the dataset, while the
Semi-sup X model refers to the X th SSL round on the complete Training-300K
dataset.

As shown in Fig. 2.10(a), the baseline AUC was 0.855(0.850−0.860), which
increased to 0.910(0.906−0.913) in the 4th round (p < 0.0001). However, only the
first three iterations showed improvement over the previous one in ROC space, as
evidenced by the intersecting curves in Fig. 2.10(a). The differences between each
Semi-sup X model and the Self-sup baseline were highly significant (p < 0.0001)



36 Understanding the Data Domain

Table 2.4 The validation and test set AUCs along with their corresponding 95% CI
are presented. Statistical significance of differences between each SSL round and
the Self_sup baseline were tested and indicated by asterisks (*) for p value < 0.001.

Model Validation set (A1-A10) Test set
Self_Sup 0.857 (0.852 - 0.861) 0.890 (0.885 - 0.895)*
Semi_Sup round 1 0.874 (0.869 - 0.879)* 0.912 (0.908 - 0.917)*
Semi_Sup round 2 0.878 (0.872 - 0.883)* 0.914 (0.909 - 0.918)*
Semi_Sup round 3 0.904 (0.889 - 0.908)* 0.923 (0.919 - 0.928)*
Semi_Sup round 4 0.911 (0.907 - 0.914)* 0.920 (0.915 - 0.923)*

on both the validation and test sets. The AUC values with 95% CI are presented in
Table 2.4.

The performance varied greatly by site, for both the Self-sup baseline (per-
site AUC: median 0.86, IQR 0.09, range [0.58,0.97]) and the final Semi-sup 4
model (median 0.895, IQR 0.06, range [0.81,0.98]). The final performance for
sites seen/unseen during training was 0.91 (range [0.81,0.98]) and 0.875 (range
[0.84,0.96]), respectively, indicating that the model did not overfit to the specific
sites in the training set. Performance was lower for sites with challenging weather or
acquisition conditions, such as low prevalence of wet events or cameras located far
from the road.

An ablation study was performed to compare the impact of self-supervised pre-
training to the standard ImageNet pre-training. The Baseline-ImageNet refers to
the model pre-trained on ImageNet and fine-tuned on the Training-50K dataset
excluding sites B1-B15. The Semi-sup-ImageNet model refers to the 1st SSL round
on the complete Training-300K dataset, starting from the Baseline-ImageNet. The
results of the ablation study are illustrated in Fig. 2.10(b) and the AUCs with 95%
CI are compared in the same figure. The results showed that the Self-sup baseline
outperformed the ImageNet baseline by a large margin (p< 0.0001) with AUC of
0.855 (0.850 - 0.860) compared to 0.819 (0.810 - 0.826). Despite a reduction in the
performance gap, the Self-sup baseline still outperformed the Semi-sup-ImageNet
model (p< 0.0001) with AUC 0.874 (0.869 - 0.879) compared to 0.859 (0.854 -
0.864).

Evaluation of ConvLSTM Next, the performance of the ConvLSTM models,
which were introduced in Section 2.3.2 and fine-tuned from the final model described



2.3 Road Condition Estimation with CNNs and LSTMs 37

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Self_Sup (AUC = 0.86)
Semi_Sup round 1 (AUC = 0.87)
Semi_Sup round 2 (AUC = 0.88)
Semi_Sup round 3 (AUC = 0.90)
Semi_Sup round 4 (AUC = 0.91)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Baseline_ImageNet (AUC = 0.82)
Self_Sup (AUC = 0.86)
Semi_Sup_ImageNet round 1 (AUC = 0.86)
Semi_Sup round 1 (AUC = 0.87)

(b)

Fig. 2.10 ROC curves comparing the performance of the baseline model with self-
supervised initialization (Self-sup) to models fine-tuned through SSL on the large
Training-300K dataset. (a) Four rounds of SSL performance comparison. (b) Com-
parison of the baseline model with (continuous line) and without (dashed line)
Self-sup initialization. Models initialized with self-supervised methods achieve supe-
rior performance, with or without fine-tuning via SSL.

in Section 2.3.4 was evaluated. To begin with, the performance of the LSTM was
compared with those of DenseLSTM and 1D CNN models on a subset of the Training-
50K dataset, excluding the B1-B15 sites. The LSTM model achieved the highest
AUC, which was equal to 0.87, followed by the DenseLSTM with 0.88, and the 1D
CNN with 0.85. Therefore, the LSTM model was selected, as it offered the best
balance between accuracy and computational complexity.



38 Understanding the Data Domain

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Temp_Baseline (AUC = 0.88)
Temp_Semi_Sup round 1 (AUC = 0.92)
Temp_Semi_Sup round 2 (AUC = 0.92)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Semi_Sup round 5 (AUC = 0.91)
Semi_Sup round 6 (AUC = 0.90)
Semi_Sup round 7 (AUC = 0.89)

(b)

Fig. 2.11 ROC curves of the ConvLSTM model (a) and 2D CNN (b) trained on the
complete Training-300K dataset. Both models were fine-tuned from the Semi-sup 4
model shown in Fig. 2.10(a). Three rounds of SSL were performed for both models.

All further experiments were performed on the complete dataset, including sites
B1-B15. The models were initially trained on the labelled Training-50K dataset
(Temp-Baseline) and fine-tuned for two more semi-supervised iterations (Temp-Semi-
Sup X). To ensure a fair comparison between the ConvLSTM and CNN models, the
CNN was also fine-tuned for three additional rounds on the complete dataset.

As shown in Fig. 2.11, the Temp-Baseline model obtained an initial AUC of
0.879(0.875− 0.883), which is higher than the Self-sup baseline but lower than
the best Semi-sup X model (p< 0.0001). With two SSL rounds, the performance
increased to 0.923(0.920− 0.926) (p< 0.0001), with each iteration outperform-



2.3 Road Condition Estimation with CNNs and LSTMs 39

Table 2.5 The AUC values and their 95% CI for the validation and test sets are
provided. Significant differences between each SSL round and the Temp_baseline
were tested and are denoted with asterisks (*) for p value < 0.001.

Model Validation set Test set
Temp_Baseline 0.879 (0.875 - 0.883)* 0.890 (0.885 - 0.895)*
Temp_Semi_Sup round 1 0.923 (0.921 - 0.926)* 0.907 (0.902 - 0.912)*
Temp_Semi_Sup round 2 0.924 (0.921 - 0.927)* 0.923 (0.919 - 0.928)*
Semi_Sup round 5 0.914 (0.911 - 0.917)* 0.914 (0.909 - 0.918)*
Semi_Sup round 6 0.899 (0.895 - 0.902)* 0.883 (0.876 - 0.889)*
Semi_Sup round 7 0.892 (0.888 - 0.896)* 0.886 (0.880 - 0.892)*

ing the previous one. The performance of the CNN model reached a peak of
0.914(0.920− 0.917) before reducing to 0.891 (0.887 - 0.895). The AUC values
with 95% CI are reported in Table 2.5. The difference between each Temp-Semi-sup
X model and the Temp-Baseline was highly significant (p< 0.0001) on both the
validation and test sets.

It’s worth mentioning that the ConvLSTM and CNN models have different
behaviours at the event level, even though they achieved similar AUC values. For the
ConvLSTM model, sensitivity increased from 50% (60/118) to 60% (71/118), while
the FP rate dropped from 0.689 (181/263) to 0.37 (99/263), as shown in Table 2.6.
Of the 47 false negatives, 33 were not detected at all, while the rest failed to meet
the IoU threshold. Many of the false positive events occurred when the road was
damp, but not wet. About 25% of the false positive events occurred in the tail of a
wet event (13 within a 1-hour window and 10 within a 3-hour window), and another
25% occurred between 4 am and 9 am in the early morning. The 2D CNN model
also exhibited a similar behaviour. The superior performance of the ConvLSTM
model is further illustrated by the FROC curves in Fig. 2.12.

The average inference time, as determined through validation on a system
equipped with an Intel® Core™ i9-9940X CPU with 32 GB of RAM and a NVIDIA
Titan RTX GPU (24 GB VRAM), was found to be 0.024 seconds/frame for the
CNN model and 0.034 seconds/frame for the ConvLSTM model. The ConvLSTM
model’s inference time is greater, as it requires processing of six frames via its
convolutional backbone. However, the ConvLSTM model’s time efficiency can be
improved through optimization when applied to a continuous video stream, as most
of the computations from adjacent sequences can be cached. It should be noted that



40 Understanding the Data Domain

Table 2.6 Comparison between best performing CNN and ConvLSTM models.

Recall FP Events FN Events TP Events 10% FP Rate Threshold
Best CNN 0.50 181 58 60 0.90

Best ConvLSTM 0.60 99 47 71 0.96

Fig. 2.12 Per-event recall vs. average number of FP events.

the inferred time does not account for the latency involved in transferring images to a
cloud server with similar hardware capabilities. Further optimization or compression
is necessary for the proposed models to be executed at the edge, for example by a
smart camera.

Impact of Performance Several factors were observed to have an impact on
the ConvLSTM model’s performance. To start with, the performance is still site-
dependent (median 0.915, IQR 0.11, range [0.80,0.99]), similar to the previous Semi-
sup 4 model (median 0.895, IQR 0.06, range [0.81,0.98]). The final performance for
sites encountered or unseen during training was 0.91 (range [0.80,0.96]) and 0.915
(range [0.80,0.99]), respectively, indicating the model’s ability to generalize to new
sites.

Additionally, frames were divided based on the time of acquisition and AUCs
were calculated for each hour of the day (Table 2.7). To account for variations in
sunrise and sunset across seasons and sites, frames before 8am and after 5pm were
grouped together. The performance decreases during early morning, when roads
are often wet, and in late afternoon/evening, mostly due to challenging lighting
conditions.



2.3 Road Condition Estimation with CNNs and LSTMs 41

Table 2.7 Performance (AUC) for the ConvLSTM model with respect to the time of
the day.

Time range ROC-AUC
03:00 - 08:00 0.897
08:00 - 09:00 0.900
09:00 - 10:00 0.923
10:00 - 11:00 0.933
11:00 - 12:00 0.952
12:00 - 13:00 0.949
13:00 - 14:00 0.952
14:00 - 15:00 0.929
15:00 - 16:00 0.893
16:00 - 17:00 0.894
17:00 - 23:00 0.952

Fig. 2.13 An explanation generated by LIME is shown for a transition frame, as
predicted by both models. The blue areas highlight features that are indicative of the
wet class, while the red areas highlight features that are indicative of the dry class.
Please refer to the color version for best viewing.

Transition plots and explainability A comparison of the effectiveness of the top
CNN and ConvLSTM models was performed by utilizing transition plots. These plots
display how the model’s score assigned to each frame evolves during a rainy scenario,
providing insight into the model’s prediction confidence and consistency. Ground
truth values and the trigger threshold for a wet frame prediction are also displayed



42 Understanding the Data Domain

Fig. 2.14 Comparison of the transition profile for a severe event, where the ConvL-
STM model shows better detection of the two events during morning hours. The
model highlights blue areas indicating wet conditions and red areas indicating dry
conditions. For better visualization, please refer to the colored image.

Fig. 2.15 An explanation generated by LIME is shown for a transition frame, as
predicted by both models. The blue areas highlight features that are indicative of the
wet class, while the red areas highlight features that are indicative of the dry class.
Please refer to the color version for best viewing.

on the plots. Additionally, LIME [94] is employed on a selected frame (indicated by
a black line) to demonstrate how different regions impact the predictions.



2.3 Road Condition Estimation with CNNs and LSTMs 43

Fig. 2.13, Fig. 2.14 and Fig. 2.15 present transition plots for three extreme
weather events at sites with varying topography. Although both models detect the
event, the ConvLSTM predictions more accurately depict the underlying event. The
LIME plots demonstrate that the ConvLSTM model is better equipped to identify
which sections of the road are wet. In fact, the parts highlighted by the ConvLSTM
model were found to align more closely with the manual annotations made by
the raters. Both models consider contextual information, such as the presence of
humidity and fog between trees in Fig. 2.13. It is worth noting that the model’s
performance decreased significantly when it was trained solely on segmented road
portions (results omitted for brevity).

Discussion The results of this study indicate that the use of self-supervised semi-
supervised learning can effectively enhance the performance of road condition
estimation using partially labeled datasets, which aligns with previous findings in
weather analysis [57] and CV [70]. However, a direct comparison with other studies
is not feasible due to the absence of a public benchmark [57–59].

This study adopted a more stringent definition of "wet" road compared to previous
literature [57], with the goal of reducing false alarms and accurately identifying road
conditions that pose a risk to road safety. This definition affected both the training
and evaluation processes, as many false positives came from instances where the
road was damp but not truly "wet".

A visual inspection of the ground truth, demostrated how hand-crafted labels may
have some degree of subjectivity, even if potentially mitigated through consensus
meetings. However, accurately determining the start and end time of each event still
remains a challenge, as the transition between "dry" and "wet" is often gradual. In
future work, this uncertainty will be addressed through the use of temporal label
smoothing [95].

This study is the first to consider intra-frame correlation in both the training
and test phases, and to report performance at both the frame and event levels for
road condition estimation and weather analysis. This study proposed novel strate-
gies for self-supervised pre-training and temporally-aware data augmentation, and
the ConvLSTM model achieved better results than CNNs, as confirmed by LIME
explanations. However, the convolutional backbone was pre-trained using semi-
and self-supervised techniques on individual frames, as the training time for the



44 Understanding the Data Domain

ConvLSTM model was significantly higher and curriculum learning was found to
stabilize the LSTM training process [89]. Future work may include exploring the
impact of self-supervised pre-training on performance, possibly by extending the
self-supervised technique to handle temporal sequences, or by comparing against
other self-supervised pre-training methods like clustering-based ones [69].

It should be noted that the absolute performance of the models could be improved
by increasing the temporal and spatial resolution of the data. To test this hypothesis,
the final ConvLSTM model was fine-tuned for six additional epochs after doubling
the image size from 480× 270 to 960× 560. The overall AUC increased from
0.92 to 0.93, with some sites showing an increase in AUC (average increase of
0.046) and others showing a decrease (average decrease of 0.017), depending on the
camera-to-road distance. The models were trained on grayscale images due to the
limited availability of RGB videos, which may have affected performance, but the
conclusions of this study should not be impacted as the focus was on the relative
performance of different models using the same data.

2.4 Concluding Remarks

Incorporating causality is a fundamental challenge in ML research. In the first part of
the chapter, causal analysis was investigated as a highly effective technique to char-
acterize the properties of ML datasets. Previous works have proven its effectiveness
in the medical domain [53, 56], and here the methodology was extended to a real-life
example from an industrial research project to prove its feasibility and potential
benefits. In future works, a more in-depth evaluation of the impact of modelling
the dataset based on causal diagrams on the performance and generalization ability
of the trained models will be performed. Nonetheless, this work should encourage
practitioners adopting this systematic approach to the analysis of data collections in
other domains, as this may help to manage dataset biases and concept drift in the
training and deployment of neural networks.

Nonetheless, this chapter offers compelling encouragement for practitioners
across domains to adopt this systematic approach when analyzing data collections.
Such an approach holds promise in managing dataset biases and deftly navigating
the challenges associated with concept drift during the training and deployment of
neural networks.



2.4 Concluding Remarks 45

Beyond its conceptual significance, causal modeling profoundly shapes the
modeling process, particularly in scenarios involving novel feature relationships or
alterations to existing features. As new feature relationships come to the fore, causal
modeling provides a structured framework for comprehending the interplay between
these new elements and their established counterparts. Through the utilization of
causal diagrams, the nature of these features as causes, effects, or confounders in
relation to the existing ones can be discerned. This critical understanding not only
guides the seamless integration of these features into the model but also informs
strategies to effectively address their potential impacts.

Moreover, causal modeling enriches the understanding of underlying data re-
lationships, thereby enhancing the model’s robustness. When new features are
introduced or changes are implemented, evaluating the model’s resilience involves
assessing the alignment of these modifications with the causal relationships identified
within the model. By gauging the consistency between alterations and established
causal relationships, vulnerabilities can be unearthed, facilitating adjustments that
ensure the model’s performance remains coherent and aligned with anticipated
behavior.

In instances where causal features transition into hard variables—indicating
a shift from inferred relationships to directly measured quantities (e.g., when a
mediator or confounder is directly observed)—adaptations to the model’s structure
might be warranted. Causal models provide valuable insights into the consequences
of such feature transformations on the overarching causal fabric of the data. This
knowledge guides decisions surrounding the refinement of the model’s architecture,
encompassing potential structural amendments or the incorporation of supplementary
variables to effectively manage confounding factors.

It is imperative to acknowledge that while causal modeling offers substantial
advantages, it does not confer immunity against modeling challenges. Its efficacy
hinges on factors such as data quality, accuracy of presumed causal relationships, and
the intricacies of underlying mechanisms. In cases of data scarcity, causal modeling
can still yield informative glimpses into potential relationships, although outcomes
might be more susceptible to noise and uncertainties. Similarly, within data of subpar
quality, the accuracy of inferred causal relationships might be compromised.

Moreover, the complexity introduced by non-linear relationships between vari-
ables and scenarios involving a multitude of interacting variables adds an additional



46 Understanding the Data Domain

layer of challenge to causal modeling. When confronted with such intricacies, tra-
ditional causal modeling approaches might struggle to capture the intricate web
of causality accurately. These complexities can lead to misinterpretations or over-
simplifications, potentially undermining the reliability of causal insights. In these
situations, advanced techniques that can handle non-linear relationships and complex
interactions become essential to ensure the fidelity of the causal model.

Thus, while causal modeling remains a potent tool, its outputs necessitate judi-
cious interpretation and validation against real-world outcomes whenever feasible.
Embracing the complexity inherent in non-linear relationships and intricate variable
interactions is essential to unlock the full potential of causal modeling in these
challenging scenarios.

In the second part of the chapter, the complete case study - configured with causal
modeling - is reported in details, along with a newly proposed technique for road
condition assessment (in particular, the detection of wet road events in untrimmed
video sequences). While prior works in the field typically use standard CNNs
for frame-by-frame categorization, this study incorporates the temporal correlation
among successive frames by applying a ConvLSTM model. The utilized training
method integrates novel self-supervised pre-training procedures with a simple pseudo-
labelling approach to make use of a vast pool of unlabeled data.

Experimental outcomes demonstrate the superiority of the ConvLSTM model
over a standard CNN, not only in detecting more events with lower false positive rates,
but also producing predictions that are more congruent with human observation. The
temporal model appears to generalize effectively to unseen sites, and the differences
seem to stem from the inherent difficulties, such as unique lighting or weather
conditions related to a given location.

Future studies will aim to refine experimental results, for instance, by extending
the self-supervised pre-training to handle sequences instead of individual frames. Fur-
ther obstacles to be addressed include differentiating between borderline conditions
and potential labeling noise due to inter-rater variability, as well as misclassification
in the pseudo-labeling steps. To minimize the labeling expenses, more robust and
systematic SSL methods could aid in separating challenging samples from noisy
ones, and eliminate the need to adjust the extra hyperparameter ε . Improved results
could also be obtained by evaluating alternative designs for the temporal model,
including those based on 3D convolutions [96].



2.4 Concluding Remarks 47

Finally, although the classification problem is binary, issues related to long-tailed
distributions arise as certain weather and road conditions are intrinsically rare and
only occur in limited locations. In such cases, fine-tuning the model to specific sites
may enhance performance, although accumulating larger datasets could resolve this
challenge in the future.



Chapter 3

Interpreting DL Models

Part of the work described in this chapter was originally presented in [97, 98].

3.1 Introduction

With the ability to recognize patterns in data, DL models can learn from large
datasets and make accurate predictions. However, one of the primary challenges
with these models is their opacity. The models’ decision-making processes are
often black-boxes, making it difficult to understand how the models arrived at their
conclusions [94]. This lack of transparency creates a trust gap between the model
and its users, which is why there is a growing demand for explainability techniques
for these models.

Drawing from the most recent literature on the topic, explainability can be
defined as the ability to provide insights to a targeted audience to fulfill a need [99].
According to this definition, XAI techniques can, for instance, help researchers
and practitioners (the audience) get a better understanding of model behaviors (the
insight) to perform a validation before deployment in safety-critical applications
(the need). In other words, the field of XAI focuses on developing methods and
techniques to explain the decision-making processes of complex AI models. XAI
aims to bridge the gap between the user and the model by providing a transparent
view of the model’s decision-making process. Explainability is crucial in various
fields where decisions made by AI systems can have significant consequences, like
healthcare and finance, as it can help ensure that models are fair, transparent, and free



3.1 Introduction 49

from bias [100]. In the medical field, explainability can help physicians understand
why a model recommends a particular diagnosis or treatment, leading to better
patient care [101].

In the case of CV tasks and CNN models, most XAI approaches rely on saliency
and produce heatmaps [102] as a form of explanation, quantifying explanations in
the form of this image depicts a cat because of the highlighted region. Although
this approach can be useful for identifying wrong correlations, a reasonably placed
heatmap is not enough for a human user to fully trust the algorithmic decision, nor
for a developer to sufficiently debug a model to assess its learning progress. These
approaches provide context-less label-level heatmaps, which pair deep models with
shallow explanations. In contrast, when asked to justify an image classification task,
humans typically produce part-based explanations, e.g. this image depicts a cat
because of the pointy ears up there and a tail there, etc.

Given the need for an open-source easy-to-use GUI-based collection of XAI
techniques, in the first part of the chapter a novel GUI is presented, which pro-
vides an intuitive toolset of XAI state-of-the-art methods for CNNs from literature.
Accordingly, it is demonstrated how the GUI allows users to efficiently visualize
the decision-making process of CNNs and explore how changes in the input data
affect the model’s output. Dwelling on the need for a richer XAI technique, a
novel methodology is additionally proposed to explain CNNs predictions in terms of
meronym-holonyms. Meronym-holonyms are linguistic concepts that describe the
part-whole relationships between objects. The methodology uses these relationships
to explain the decision-making process of CNNs. As such, in the second part of the
chapter, a detailed explanation of the methodology, its implementation, and valida-
tion is provided. It is demonstrated how the methodology can be used to provide
meaningful explanations of CNN predictions in various domains.

The rest of this chapter is organized as follows. In Section 3.2, the study that
led to the design of a GUI-based collection of XAI techniques is described. In
Section 3.3, a semantically-rich novel XAI methodology is described. Finally, in
Section 3.4, conclusions are reported on both the studies along with future directions
for their respective future directions.



50 Interpreting DL Models

3.2 iNNvestigate-GUI: a Scalable GUI for XAI Tech-
niques

Researchers and, more in general, DL practitioners, require vital insights into the
models they have trained. For example, vital insights may be needed to debug models
that do not converge or perform poorly on target labels, or to identify samples that the
model cannot correctly classify for the specified task. Visual interpretation techniques
are particularly effective, particularly for DNNs that target image interpretation [103].
However, there is a lack of tools that can easily integrate such techniques into the
development cycle. One of the most comprehensive GUIs available for this purpose
is Activis [104], but it is not publicly available.

Arguably similar open-source and publicly available interfaces are essential
to support the integration of XAI techniques in the development of DL models.
In this section, iNNvestigate-GUI1 is introduced as an open-source, user-friendly,
visual analytics tool for DNNs, specifically designed for CV. It is based on the
open-source iNNvestigate library [105], which provides a reference implementation
of several visualization algorithms. The goal is to provide a GUI that simplifies
model interpretation by providing easy, code-free access to a comprehensive set of
visualization methods.

Creating such software has its challenges. First and foremost, visual comparison
of multiple DNNs will be computationally expensive. Since the target users are
diverse, with varying levels of ML knowledge and needs, visual interpretability
is crucial. The tool must be easily integrated into the research and development
workflow. Finally, as a critical step towards XAI, when comparing DNNs, the
rationale behind the outputs must be considered, in addition to the final performance.

3.2.1 Related Work

In this section, the current state-of-the-art GUI-based tools and libraries for per-
forming visual analysis in DL applications will be discussed. Previous research has
classified the available tools based on their license, availability, and target audience,
as shown in Table 3.1. Open-source tools for advanced users. The majority of

1code is available at https://gitlab.com/grains2/innvestigate-gui/

https://gitlab.com/grains2/innvestigate-gui/


3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques 51

visual analytic tools in the literature fall into this category and include most of
the popular applications used in DL. For instance, the TensorFlow Graph Visual-
izer [106], which is part of a widely adopted TensorFlow framework, is a well-known
tool that allows a neural network to be visualized as a directed graph and important
information, such as hyperparameters, to be embedded in a single scalable view.
The Embedding Projector [107], another visualization tool developed by Google
and included in the TensorFlow framework, enables the plotting of tensors in space
through different dimensionality reduction techniques. A dynamic real-time visual
system to monitor the 2D representation of the filters learned by different layers
and an interactive approach to steer the model configuration during the training
process were proposed by Chung et al. [108]. The Deep Visualization Toolbox [109]
provides a matrix-like grid-view representation of the activations of the neurons in a
given layer for a specific input image or video. Summit [110], a tool developed to let
practitioners and experts visualize neuron activations, adopts a similar approach, thus
enhancing the interpretability of the models. Several visualization tools targeting
neural networks focus on the training and optimization phase. For instance, during
the training phase, DeepEyes [111] supports the interpretation of the features learned
by a CNN model. As shown in Table 3.1, most of these tools allow visualization of
gradients and activations and are more suited for effectively monitoring the training
process than for XAI.

Other recent visualization tools, such as LSTMvis [112] and GANviz [113], are
focused on specific types of networks, such as LSTMs or Generative Adversarial
Networks (GANs). On the other hand, in this work, a more general-purpose tool is
aimed to be developed.

Proprietary tools for advanced users. ActiVis [104] is an example of a pro-
prietary web application developed by Facebook that provides a comprehensive
alternative to the TensorFlow Graph Visualizer. It enables the visualization of a
neural network through a node-graph representation and allows behavioral analysis
at different levels, from a subset of samples to a single instance and down to the
activation of a single neuron. However, it is only available for internal researchers
and practitioners, as it is deployed on FBLearner Flow, Facebook’s ML platform.
In [114], Shixia Liu et al. proposed a tool named CNNVis, which allows the visu-
alization of a clustered representation of the features learned by neurons and the
connections between neurons at different layers, with a minimal representation aimed
at reducing the visual clutter caused by a high number of links between nodes. How-



52 Interpreting DL Models

ever, this tool has no public implementation, and only an online demo is currently
available.

Visualization tools for Neural Network Education. Some visualization tools
are specifically designed to aid in educating students on how neural networks func-
tion, and to serve educational purposes. For example, TensorFlow Playground is an
online application that allows interactive manipulation of a simple neural network
model, including its architecture, hyper-parameters, and data points. Through this
tool, a better understanding can be gained on the impact of changes made on the
decision boundaries learned by the network. However, these types of tools may
not be sufficient for visualizing more complex networks and datasets commonly
encountered in real-world projects, even for inexperienced researchers. [115, 116].

Table 3.1 Summary of the main DL visualization tools and comparison with the
proposed tool.

TF Graph Embedding
Visualizer Projector ActiVis DeepVis CNNVis ReVACNN DeepEyes Summit iNNvestigate-GUI

Visualization
Node-Link Graph ✓ ✓
Embeddings ✓ ✓ ✓ ✓ ✓
Activations ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gradients ✓ ✓ ✓ ✓
Hyperparameters ✓ ✓ ✓
Attributions ✓ ✓
Training History ✓

Framework
TensorFlow ✓ ✓ ✓
Keras ✓ ✓ ✓
FBlearner Flow ✓
ConvNetJS ✓
Caffe ✓ ✓

User Interface
GUI (web-app) ✓ ✓ ✓ ✓ ✓ ✓
GUI ✓ ✓
Command Line

Availability
Open Source ✓ ✓ ✓ ✓ ✓ ✓ ✓
Proprietary ✓

Visualization Algorithm Collections The lack of interpretability of DNNs has
led to the development of various visualization algorithms, providing insights into
the behavior of neural networks [103]. These algorithms allow for the visualization
of learned features, neuron activations, and gradients flowing through the layers.
Perturbation-based techniques are also used to observe the effect of changes in the
input on the model’s output. These techniques employ visual paradigms ranging



3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques 53

Table 3.2 Summary of the available libraries of visualization algorithms.

Keras Explain DeepExplain iNNvestigate
Visualization Technique
Gradient/Saliency maps ✓ ✓ ✓
SmoothGrad ✓
DeconvNet ✓
Guided Backpropagation ✓ ✓
PatternNet
Grad-CAM ✓
Guided Grad-CAM ✓ ✓
Input * Gradient ✓ ✓
LRP ✓ ✓ ✓
Integrated Gradients ✓ ✓ ✓
DeepTaylor ✓
DeepLIFT ✓ ✓
Pattern Attribution
Prediction Difference ✓
Grey-box Occlusion ✓ ✓
LIME ✓
Shapley Value Sampling ✓

from pixel display grids to heatmaps. With the growing interest in XAI, many
visualization techniques have been proposed, and a variety of surveys have been
published [103, 117].

However, the lack of reference implementations limits the practicality of these
techniques [105]. To address this issue, several libraries have been developed, in-
cluding Keras Explain [118], DeepExplain [119], and iNNvestigate [105]. As shown
in Table 3.2, these libraries offer a wide range of visualization techniques, includ-
ing gradient-based methods such as DeepLIFT [120], model-independent methods
such as LIME [94], and perturbation-based techniques. However, integrating these
libraries into the model development process can be complex, and GUIs may help
address some of the challenges, as discussed in Section 3.2.2.

3.2.2 Design Challenges

To design an XAI visual paradigm that meets the needs of both expert and non-
expert users, several critical design challenges need to be addressed. A set of design
challenges (C1-C5) have been identified through joint design sessions involving
researchers and practitioners with different levels of expertise. These design chal-
lenges are focused on open-source solutions and take into account the analysis of
existing tools, which is discussed in Section 3.2.1.



54 Interpreting DL Models

C1. Limited computation time for visualization. Generating visualizations for
DNNs is computationally intensive, especially when working with images.
Given the need to limit computation time to enhance user acceptability, a
variety of computing setups should be provided to allow access to the proposed
visualization techniques.

C2. User diversity. Designing a tool that is easy to use and accommodates both
expert and non-expert users is challenging. The tool should follow a clear and
simple workflow structure with different views that are self-explanatory. The
visualizations designed should provide clarity and produce useful insights in
non-trivial projects.

C3. Analysis on instance and dataset levels. Several XAI techniques explain pre-
dictions on a specific instance, but DNNs are trained and tested on large datasets,
making it impractical to manually analyze the entire dataset. A suggestion
system is required to identify data instances that are worth inspection.

C4. Easy integration in R&D. The lack of a readily available implementation and
the need to design specific code for XAI techniques often hinder their practical
adoption. A graphical tool should produce expected results significantly faster
than coding from scratch and generate the required visualization through a
limited number of clicks.

C5. Model complexity and variety. XAI tools should be able to evaluate multiple
models that have different architectures, and not just focus on model perfor-
mance but also take into account the quality of the prediction and the presence
of systematic biases. [102]

Addressing these design challenges will be critical in the development of an
effective XAI tool that can provide interpretable and actionable insights to a broad
range of users.

3.2.3 iNNvestigate-GUI

This section provides a comprehensive overview of the functionalities available in
the iNNvestigate-GUI visualization tool. It begins by describing the primary design
objectives (G1 - G4) and the rationale behind them. It then outlines the methods



3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques 55

used to achieve these goals, including a simple workflow for visualizing DNNs and
an effective method for identifying poorly classified and borderline data instances
within a large dataset.

Design Objectives The iNNvestigate-GUI visualization tool aims to fulfill the
following design objectives:

G1. Provide a code-free tool that enables efficient interpretation of models
by researchers and practitioners. Current visualization libraries attempt to
establish a universal reference implementation for models’ explainability and in-
terpretability [105]. However, using them requires working with an Application
Programming Interface (API), which entails studying the documentation and
writing custom code. A visual analytics tool offers a convenient, ready-to-use
GUI that can support multiple visualization methods. It needs to enable in-depth
examinations at various levels, from the entire model to individual layers and
units.

G2. Enable graphical comparison of models quickly. During DL projects, numer-
ous models are trained and evaluated with different architectures, hyperparame-
ters, and configurations. Given that no consensus exists on which visualization
techniques are the most effective [105], the visualization tool must provide an
intuitive interface to compare various XAI techniques across multiple models.

G3. Allow navigation of extensive datasets and identification of misclassified
and borderline instances. DL models are typically trained and validated on
extensive datasets, whereas most visualization methods (excluding embeddings)
operate on the instance level. Selecting relevant input instances for analysis is
difficult. Random sampling can be time-consuming and may overlook errors.
The proposed tool should provide an intuitive and efficient way to select samples
for further analysis, such as instances that DNNs cannot classify correctly. This
method could save the time required to conduct ad hoc analysis of the samples
and highlight critical instances that may be overlooked, thus increasing the tool’s
ability to provide insights into the model’s behavior.

G4. Implement a web-based solution to handle computationally demanding
tasks. While visualization is less computationally intensive than training, some



56 Interpreting DL Models

visualization techniques require a dedicated training phase, and a large number
of samples may need processing. To support users with varying computational
resources and memory, disk space, and computational power requirements, the
tool was developed as a web application. This approach allows computationally
demanding tasks to be offloaded to a back-end, which may be equipped with
GPUs, while providing users with a lightweight front-end that can be accessed
from any location via a web browser. This framework is already employed by
several popular tools (e.g., TensorBoard, Embedding Projector), accommodating
both users with high-end workstations and those leveraging cloud computing
services (e.g., Amazon Web Services).

In the following paragraphs, the methods used to achieve these design objectives
will be described, including a workflow for easy visualization of DNNs and a method
for navigating large datasets to select critical samples.

Explaining Custom Models Through Visualization Methods Following the
analysis performed in Section 3.2.1, iNNvestigate [105] was chosen as the refer-
ence implementation for visualizations. However, the iNNvestigate package was
extended to include Grad-CAM and Guided Grad-CAM [102] methods that are par-
ticularly suitable for novice and non-expert users due to their intuitive visualizations.
Additionally, the ability to visualize the output activations of a specific neuron is
provided.

The iNNvestigate-GUI workflow starts by uploading the dataset and pre-trained
model(s) for analysis. Options are provided to analyze both user-trained models and
the ImageNet-trained models available in the Keras library. To improve usability, all
the visualization options and parameters are available as scroll-down lists. A single
layer or neuron for activation visualization can also be specified by the user.

Once the configuration phase is complete, the chosen visualizations are generated
and displayed to analyze the behavior of the DNNs. The visualization panel is
divided into multiple boxes, one for each model loaded in the configuration phase.
The visualization method is applied to the output of the selected layer (default being
the last convolutional layer) or neuron for each data instance. An interactive panel
allows the user to inspect the produced visualizations in a synchronized manner,
enabling quick and intuitive comparisons between the behavior of multiple networks.



3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques 57

Fig. 3.1 Comparison of different model predictions for one of the images included in
T1. The two models exploit different visual features to make the classification. The
overlapping heatmaps have been produced using the Grad-CAM technique.

Additionally, the top predictions and their scores for each data sample and DNN are
displayed next to the visualization output, as shown in Fig. 3.1.

Suggesting Useful Data Samples for Analysis The iNNvestigate GUI enables
users to easily identify relevant data samples for analysis, leveraging the Suggestion
panel (see Fig. 3.2). The approach assumes that it is beneficial to examine predictions
across a range of data instances with diverse properties. For example, erroneous
classifications offer insight into potential sources of error. To this end, the Suggestion
panel categorizes available samples and enables the selection of a mix of samples
with varying properties for inspection. Two operational modes are identified based
on (i) whether one or multiple models are compared and (ii) whether ground truth
labels are available.

In the Multiple Model scenario, the Suggestion panel displays a scatter plot of
input samples according to the agreement and confidence levels of different models,
as depicted in Fig. 3.2. The mean prediction score across all models is plotted on the
x-axis, while the number of predicted classes is shown on the y-axis. By hovering



58 Interpreting DL Models

Fig. 3.2 Suggestion panel of iNNvestigate-GUI. A scatter plot represents the input
dataset processed by multiple neural networks and guides the user towards selecting
meaningful samples for further analysis. The average prediction score (x axis) is
plotted against the number of different classes (y axis) predicted by the models.
This visualization allows to identify data samples with high/low agreement among
different models, as well as those predicted with high/low confidence.

the cursor over a data point, it is possible to preview examples visually. The scatter
plot enables the distinction of different types of data instances.

Samples located in the bottom-right corner correspond to images classified in the
same category by all evaluated models, with high prediction scores. These instances
belong to a class that is predicted with high confidence across all models, and are
likely to be correctly classified. However, it may still be worthwhile to inspect them,
as this can help identify systematic biases in the dataset.

Data samples located in the upper-left corner of the scatter plot (low agree-
ment/low confidence) likely represent borderline cases, or instances that are correctly
classified by only a subset of the DNNs. Conversely, data samples located in the
upper-right corner are predicted to belong to different categories (low agreement),
but with high prediction scores. Such samples may include out-of-distribution data
on which DNNs may misbehave, data samples that can easily fool one or more of
the models (including adversarial data samples), or data samples that are correctly



3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques 59

classified only by a selection of the models. In this manner, users can concentrate on
analyzing the upper-left and upper-right quadrants.

In the Single Model scenario, the Suggestion panel displays a simpler histogram
plot. Users can opt to visualize the distribution of activations for a predefined layer,
for instance, to select images that mostly excite a specific layer. Alternatively, for
labeled data, users can plot the distribution of the difference between the prediction
and the correct label (typically 1.0 for classification models) to identify data samples
that are correctly or incorrectly classified.

3.2.4 Usability Results

To assess the usability of the tool, a group of 9 individuals with prior knowledge
in DL were given two tasks to complete at Politecnico di Torino. The tasks were
accompanied by a set of questions to guide the users, and after completion of the
tasks, a questionnaire following the SUS (System Usability Scale) approach was
provided to the users.

The two tasks given to the individuals are as follows:

T1. Compare the visual features used by different models to predict a subset
of input images. This task was designed to emulate the comparison of various
trained models. A subset of 100 images from the ImageNet ILSVRC2012
dataset was selected for this task.

T2. Evaluate whether multiple models correctly use visual features to classify
a subset of inputs belonging to the same class. This task was designed to
emulate the search for visual biases. For instance, a network may learn to predict
an object based on co-occurring background features. For this task, a subset
of 15 images from the golden_retriever class was randomly selected from the
ImageNet ILSVRC2012 dataset.

The individuals were asked to compare three popular Keras models (VGG16,
ResNet50, and Xception) with varying levels of complexity. To reduce the time
required to complete the task, only a limited set of visualization algorithms were
made available, including Gradient/Saliency, Guided Backpropagation, Grad-CAM,
and LRP-z.



60 Interpreting DL Models

Task T1 was completed successfully by all participants, who were able to use
the Suggestion panel to identify image agreement/disagreement and prediction
confidence. The right-lower quadrant (high agreement/high confidence) and left-top
quadrant (low agreement/low confidence) were the areas of focus for the users, with
Grad-CAM being the preferred interpretation method for 66.7% and 55.6% of the
users respectively (6 out of 9 and 5 out of 9).

For task T2, correctly classified samples by all models and samples with incon-
sistent behavior had to be identified by the users. The histogram chart was the main
tool for 77.8% (7/9) of the participants to identify both, while 22.2% (2/9) also relied
on the scatter plot. Guided Backpropagation was the most intuitive algorithm for
analyzing visual features of correctly classified images by most models (55.6% of
the votes, i.e. 5/9). Grad-CAM was again the most popular choice for analyzing
incorrectly classified images (66.7% of users, i.e. 6/9).

In task T2, the visual explanations were rated by the users on a scale from 1
(completely agreeing) to 5 (completely disagreeing). For VGG16 and ResNet50
models, 55.6% (5/9) of the participants were completely satisfied with the visual
explanations (meaning they found the proposed attributions appropriate for the label),
whereas only 44.4% (4/9) were satisfied with the Xception network.

According to the SUS, the mean usability score was 73.34%, which is above
average (any value above 68% is considered above average). Additionally, 77.8%
(7/9) of the participants declared that the tasks could not have been completed without
iNNvestigate-GUI, while only 22.2% (2/9) stated that the same tasks could be solved
by writing ad hoc code.

3.3 HOLMES: Exaplaining CNNs Through HOLonym-
MEronym Relationships

There is evidence that CNNs can learn human-interpretable concepts that are use-
ful for detecting classes for which labels are provided, even though they are not
explicitly labelled in the training set. For example, scene classification networks
can learn to detect objects present in scenes, and individual units may even emerge
as objects or texture detectors [121]. However, CNNs may take shortcuts, relying
on contextual or unwanted features for their final classification [44]. Other studies



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships61

Fig. 3.3 Visual comparison of the predictions made by the three models in T1. The
overlapping heatmap has been produced by the Grad-CAM algorithm. This is image
was selected by the majority of the participants from the Suggestion view as an
example of high confidence and high agreement classification. All the models are
focusing on similar visual features to classify the frame. Best seen in RGB; consider
brighter areas of the frames in case of gray scale visualization.

have found that CNNs are over-reliant on texture rather than shape for their final
classification [122]. This chapter investigates how post-hoc explanations can be
linked to underlying, human-interpretable concepts implicitly learned by a network
with minimal annotation and supervision.

Therefore, the research question is as follows: can a given label be broke down
into a set of related concepts and a component-level explanation be provided for a
DL model for image classification?

The HOLonym-MEronym based Semantic inspection technique (HOLMES)
dissects labels into a group of interconnected concepts and provides detailed ex-
planations at the component-level for image classification models. Specifically,
HOLMES uses ontologies, web scraping, and transfer learning to automatically
generate part-based detectors for a given class. It then generates meronym-level
heatmaps and highlights the significance of each part on the classification output
by probing the holonym CNN with occluded images. Compared to state-of-the-art
saliency methods, HOLMES goes a step further and provides information about
both what and where the holonym CNN is focusing on. It accomplishes this without
relying on extensively annotated datasets and without requiring concepts to be linked
to single computational units.



62 Interpreting DL Models

3.3.1 Related Work

Feature Extraction and Transfer Learning In recent years, Deep CNNs have
become the go-to models for CV applications [123]. These networks consist of
multiple convolutional layers that extract features, followed by dense layers used
for classification. However, the large number of parameters in these models makes
training from scratch computationally intensive and data-hungry [124]. To address
this challenge, transfer learning has emerged as a popular technique [125], in which
a pre-trained model for a particular task is reused as the starting point for a new
model. For CV tasks, this often involves selecting a CNN that was pre-trained on the
widely-used Imagenet dataset [85], and then fine-tuning the last dense layers on the
new task. The underlying intuition is that the convolutional layers of the pre-trained
model have already learned a hierarchical representation of features that is useful for
other tasks [125].

Interpretable and Explainable ML The field of XAI aims to make modern
ML models more interpretable to humans. There are two main paradigms in XAI:
interpretability and post-hoc explainability [126, 127]. Interpretable models are
designed and trained to be transparent to some extent, meaning that they provide
understandable information about their inner workings without the need for additional
algorithms. In contrast, post-hoc explainability is performed after the model has been
trained and possibly deployed. External algorithms are applied to the trained model
to extract human-understandable information about the decision-making process.

Explainability methods can be categorized based on two binary attributes: lo-
cal/global and model-agnostic/aware. Local methods provide explanations for indi-
vidual data points, while global methods aim to explain the behavior of the model as
a whole. Model-agnostic methods can explain any black-box model, regardless of
its architecture, whereas model-aware methods require access to internal details of
specific types of models. For example, model-aware methods may use gradients to
explain the decision-making process of a particular model [126, 127].

XAI for CV Two of the most widely recognized XAI techniques are LIME [94]
and SHAP [128], which are both local and model-agnostic. However, for the task of
CV, most approaches are model-aware and based on saliency. In explaining image
classification models, saliency techniques calculate relevance scores at the pixel level



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships63

for the model’s final output. These scores can be visualized as heat-maps overlaid on
classified images for human inspection.

One model-aware, local, post-hoc XAI approach for CV is Grad-CAM [102].
Grad-CAM uses the gradient information flowing into the last convolutional layer of
the CNN to assign importance values to each neuron for a specific decision of interest,
such as a target concept like dog. For a given input image and class, Grad-CAM
calculates the gradient of the soft scores for that class with respect to the feature map
activations of the last convolutional layer. A global heatmap is then computed as a
weighted sum of the feature maps, where each map is weighted by an alpha value
obtained by global average-pooling the corresponding gradients. ReLU is applied to
emphasize only the features that have a positive influence on the class of interest.

While saliency maps methods such as Grad-CAM ask where a network looks
when making a decision, the network dissection approach goes further and asks what
a network is looking for. In [121], the authors discovered that a trained network
contains units that correspond to high-level visual concepts that were not explicitly
labeled in the training data. For instance, when trained to classify or generate
natural scene images, both types of networks learn individual units that match the
visual concept of a tree, even though the network was never taught the tree concept
during training. The authors explored this phenomenon by first identifying which
individual components strongly correlate with given concepts (taken from a labeled
segmentation dataset), and then turning off each component to measure its impact on
the overall classification task. The approach described in this chapter differs from the
network dissection literature in several ways: (i) it allows for sparse representations
of concepts, capturing concepts without forcing them to be represented by a single
computational unit; (ii) it does not need additional, domain-specific ground truth
sources and does rely instead on web scraping and general-purpose ontologies;
and (iii) it focuses on the part-of relationships of labels in the more general image
classification task, rather than the specific scene recognition task.

Ontologies and Image Recognition Ontologies and structured representation
of knowledge, in general, are often disregarded in most DL for image processing
papers [123]. Nonetheless, notable exceptions exist where efforts have been made to
combine sub-symbolic ML models with ontologies.



64 Interpreting DL Models

In [129], the authors take advantage of the fact that ImageNet labels are WordNet
nodes to introduce quantitative and ontology-based techniques and metrics to enrich
and compare different explanations and XAI algorithms. For example, the concept
of semantic distance between actual and predicted labels for an image classification
task allows differentiation between a labrador VS husky misclassification as milder
with respect to a labrador VS airplane case.

In [130], the authors present a hybrid learning system designed to learn both
symbolic and deep representations, along with an explainability metric to assess the
alignment level of machine and human expert explanations. The ultimate objective
is to combine DL representations with expert domain knowledge during the learning
process to provide a sound basis for explainability.

TREPAN [131] is a global approach for XAI that can generate decision trees
from a trained neural network. The authors propose to use an ontology to map the
feature space, using the ontological depth of features as a heuristic to guide the
construction of the decision tree. This approach prefers to split over more general
concepts, ensuring that the decision tree is more aligned with the ontology.

3.3.2 Methodology

HOLMES, a novel approach for explaining CNN image classification, leverages
holonyms and meronyms to provide a model-dependent semantic inspection. HOLMES
retrieves the parts of the image based on its predicted class and explains the classifi-
cation outcome in terms of these parts. The proposed method is specifically designed
for CNNs and takes the predicted image class as input.

Problem Formulation Consider the image classifier H as a function H : x ∈
Rh×w×ch 7→ c ∈ C , where x represents an image with dimensions h×w× ch, and C

is the set of image classes. Let f H
F denote a feature extractor that maps x to a feature

vector f, and f H
C be a feedforward classifier that maps f to c. Given a holonym-

meronym relationship mapping HolMe : c ∈ C 7→ p1, ..., pn, where Pc = p1, ..., pn

denotes the meronyms of class c, a novel method to explain the image classification in
terms of its parts is proposed. HOLMES outputs a function ξ : x 7→ (x(pi),si), pi ∈ Pc,
where x(pi) is a saliency map that highlights the meronym pi in the original image x,
and si is an explanation score associated to x(pi).



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships65

sorrel

fur head legs

𝑓𝐶
𝐻

Holonym model 𝐻

Meronym model 𝑀𝑠𝑜𝑟𝑟𝑒𝑙(a) (b) (c)

Sorrel

Tabby

Truck
Microwave

Fur

Head

Legs

𝑃𝑠𝑜𝑟𝑟𝑒𝑙 𝑋𝑠𝑜𝑟𝑟𝑒𝑙

Fur

Head

Legs
𝑓𝐶
𝑀

Legs
F1-score = 0.74
sM = -94%

Fur
F1-score = 0.92
s1 = -98%

𝑓𝐶
𝑀

Meronym model 𝑀𝑠𝑜𝑟𝑟𝑒𝑙

c = Sorrel Horse

Head
F1-score = 0.83
s2 = -57%

𝑥

𝑥 𝑝1

(d)

𝑥 𝑝2

𝑥 𝑝𝑀

Fig. 3.4 HOLMES pipeline. Given an input image of class c, its parts (meronyms)
are extracted from a Knowledge Base (KB) (a). Images depicting each part are either
extracted from a densely annotated dataset or collected through Web scraping (b),
and then used to train a meronym model by exploiting, through transfer learning,
the implicit knowledge embedded in the original holonym model (c). The meronym
model then produces part-based explanations, highlighting the most relevant parts
for the class prediction (d).

To achieve this, HOLMES trains a new meronym classifier M c : x 7→ pi ∈ Pc,
which is a combination of the same feature extractor f H

F and a new feedforward
classifier f M

Pc
that maps f to pi ∈ Pc. The meronym classifier identifies the presence

of the parts pi in the input image x, and generates saliency maps for each part. A
mask is created on x for each saliency map x(pi), which is then classified by H . The
drop in the classifier confidence for class c is used to determine the importance of
the selected parts.

The proposed HOLMES framework involves four main steps in the pipeline
(Fig 3.4):

1. Meronyms Extraction: given an image x and its predicted class c, the object
parts Pc are extracted.

2. Meronyms Image Data Collection: a dataset for each part in Pc is created.



66 Interpreting DL Models

3. Meronyms model Training: auxiliary meronyms models M c are trained to
recognize the parts Pc using knowledge from the original CNN H .

4. Explanations: part-based explanations are produced, highlighting the most
relevant parts for the class prediction.

Holonym-Meronym Relationship Extraction The first step in the process of
extracting meronyms is to create a mapping of holonym-meronym relationships.
This mapping, denoted as HolMe : c ∈ C 7→ Pc, involves retrieving visible parts Pc

associated with a holonym concept c.

To extract meronyms, an external KB that includes part-of relationships is used.
The KB contains class concepts, such as animals, and their respective lists of parts,
like legs and head, along with information on their visibility. To obtain the parts of a
holonym concept, a selected KB is queried for the desired holonym concept and its
associated visible meronyms are retrieved.

If a concept is not present in the chosen reference KB, it is mapped to the corre-
sponding WordNet[132] ontology concept. The hypernym/hyponym relationship is
then utilized by climbing the WordNet semantic hierarchy up to the first hypernym,
such as a broader class like birds for seagulls, that occurs in the reference KB. The
associated parts of the hypernym, which are more generic, are assigned to the initial
holonym concept.

After the meronyms are extracted, they are divided into two categories: hyper-
meronyms and hypo-meronyms. Given a list of meronyms P = p1, p2, . . . , pn, hypo-
meronyms are parts that are entirely within the visual space of any other part in P.
The other parts, whose visual space is not wholly contained in any other part in P,
are hyper-meronyms.

For example, for the holonym concept cat, the hyper-meronyms are head, legs,
feet, and tail, since none of them is visually contained in any other part. Hypo-
meronyms, such as mouth and whiskers, can only be contained in hyper-meronyms.

Only the hyper-meronyms are retained in the final list of meronyms, while
the hypo-meronyms are discarded. Therefore, the final list of parts is defined as
Pc = p1, p2, . . . , pn.



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships67

Meronyms Image Dataset Generation After obtaining the part set Pc for the tar-
get class c, the following step is to create an image dataset Xc = (x0,y0), ...,(xn,yn),
where x0, ...,xn are images corresponding to parts y0, ...,yn ∈ Pc. To generate such
dataset, HOLMES can either use a pre-existing labelled dataset or build one incre-
mentally by scraping web images for each meronym. In the latter case, HOLMES
searches different web search engines for each part by appending the corresponding
holonym (e.g. sorrel fur, sorrel head, etc.) and downloads the associated images.

However, search engine results are not always reliable (as discussed in Sec-
tion 3.3.3). Some obtained images could still be unrelated to the desired part concept.
Moreover, duplicates may exist in the scraped parts’ datasets. To address these issues,
HOLMES integrates two additional sub-steps:

• deduplication: using the pHash[133] hash-based deduplication method, du-
plicates are identified and removed from each meronym dataset.

• outlier removal: to identify outliers in the meronym datasets, meronyms
images are converted to feature vectors (e.g. using the output of the feature
extractor or the activations of one of the feedforward layers of the classifier).
The feature vectors are then used to detect outliers. The identified outliers are
removed from the meronym dataset.

Meronyms model Training The core of the HOLMES method lies in the training
phase. In this step, the visual understanding of concept parts is acquired to use them
as explanations later on. An auxiliary CNN model M c is trained and evaluated on
the collected dataset of meronyms Xc. The training and evaluation are conducted on
disjoint sets.

To clarify, the objective of HOLMES is to explain the output of the target
holonym CNN H (x) = ŷ, where x is an image of the holonym class c and ŷ is its
predicted class. It is worth noting that the CNN can be represented as a combination
of two functions, i.e., H (x) = f H

C ( f H
F (x)), where f H

F (·) is a feature extractor, and
f H
C (·) is a feedforward classifier.

Research has already shown that the last convolutional layers of a CNN tend
to represent objects and their parts [134, 121]. HOLMES leverages this fact to
train the model to identify the parts. Specifically, the meronym model is defined
as M c(x) = f M

Pc
( f H

F (x)), where the feature extraction f H
F (·) is shared between



68 Interpreting DL Models

the holonym H and meronym M c models. However, a new feedforward classifier
f M
Pc

(·) is trained for each class c and part list Pc.

The idea is to teach the parts concepts using the same features learned by the
original reference CNN model H . Thus, HOLMES relies on transfer learning [125]
for learning the objects’ parts. Assuming that the characteristic parts of an object
and their associated features are helpful in classifying the entire object, the same
units that activate in the presence of a part will activate in the presence of the object.
For instance, if a unit activates in the presence of a wheel, it is likely to activate in
the presence of a wheeled vehicle such as a car. Therefore, training the meronym
model M while keeping the feature extractor f H

F intact will help determine if the
knowledge of the parts was already present and embedded in the original model
H . The feature maps obtained in the presence of individual parts will be useful in
creating a visual explanation for the (holonym) predictions of the original model.

To evaluate the performance of the meronym model, a held-out test set is used
to calculate the per-part calibrated F1-score [135]. This score determines how well
each part was learned and distinguished from the others. The F1-score is calibrated
to be made invariant to the class prior, so that the performance of models trained on
different numbers of meronyms can be compared.

Explanations After completing the previous stage, a CNN model for meronyms,
denoted by M c, is trained. Given an input holonym image represented as x, this
model generates a set of prediction scores Yp = yp1, . . . ,ypn , where n is the number
of parts the model was trained on, and yp1, . . . ,ypn are the scores assigned to each
of the different parts. Consequently, when an input image of a holonym, such as an
image of a car, is passed to the network, a score is produced for each of its parts,
such as the wheels and the bumper. These scores reflect the degree to which each
part is present in the input holonym image. By leveraging the ability of the network
to recognize the part concepts in an input holonym image, it is possible to identify
the specific region of the input image where each part is located.

In particular, the visualization of each part in the holonym image is generated
by using the state-of-the-art saliency method Grad-CAM [102]. After generating a
saliency map x(pi) for each part recognized by the network, each saliency map x(pi) is
converted to a binary segmentation mask m(pi) ≡ (x(pi) ≥ T (pi)), where T (pi) is set to
the qth percentile of the corresponding saliency map pixel distribution. Subsequently,



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships69

the same input holonym image is fed into the original CNN model and an assessment
is made on the importance of each part for the original network prediction by ablating
one part at a time based on the meronyms masks m(pi). By observing the percentage
drop in the original predicted holonym class label, it is possible to determine the
degree to which the removed meronym was important for predicting that class label.
A more consistent drop implies a greater visual presence of the part in the image and,
therefore, greater significance for the original model.

At this point, the input image x is linked to a set of saliency maps x(pi) for
each part pi ∈ Pc, and each saliency map is associated with a score drop si ∈ S =

s1,s2, ...,sn.

Additionally, the per-part calibrated F1-score, which measures the accuracy of
the part identification, is used to assess the reliability of the part identification. The
most promising hypothesis is that a meronyms model that had difficulty learning and
distinguishing a part would have obtained a low F1-score for that part. Consequently,
the parts whose holonym score drop si exceeds a threshold Ts and whose meronyms
model has an F1-score above a threshold TF1 are provided as part-based explanations
for the original model prediction, as this would imply that those parts are correctly
detected by the meronyms model and considered relevant for the classification of the
holonym.

3.3.3 Experimental Settings

HOLMES provides part-based explanations for any classification model that consists
of a feature extractor and a feed forward classifier. To demonstrate the effectiveness
of HOLMES, it was applied to explain the outputs of a pre-trained VGG16 [124]
image classifier on the ImageNet [85] dataset. In this section, two experimental
settings are presented where HOLMES was applied to explain the predictions of the
VGG16 model.

For the first experiment, the chose dataset was PASCAL-Part, which provides
annotated bounding boxes for objects and their parts, to generate explanations
and evaluate their validity. In the second experiment, a part-based mapping was
created for several classes in the ImageNet dataset, a dataset for training meronyms
models was constructed through web scraping, and part-based explanations were
generated using HOLMES. The quality of the explanations was evaluated using



70 Interpreting DL Models

insertion, deletion, and preservation curves. Examples of the part-based explanations
generated using HOLMES for both experiments are shown in Fig. 3.5.

(a) PASCAL-Part

Sorrel headfeet
feet F1-score: 0.8

sorrel drop: -0.00%

fur
fur F1-score: 0.92

sorrel drop: -0.00%

head
head F1-score: 0.83

sorrel drop: -77.35%

hooves
hooves F1-score: 0.84

sorrel drop: -0.00%

legs
legs F1-score: 0.74
sorrel drop: -0.00%

tail
tail F1-score: 0.95

sorrel drop: -0.00%

(b) ImageNet

Fig. 3.5 HOLMES Explanation example for the horse class – PASCAL-Part (a)
and sorrel class – ImageNet (b). For each part, the corresponding ablation mask
(grey), the per-part calibrated F1-score and the holonym score drop are shown. For
PASCAL-Part, the ablation masks are compared against the ground truth bounding
boxes (green). The final heatmap(s) show the part-based explanations. Two and one
part are included in the explanations for examples (a) and (b), respectively, as they
exceed both the holonym score drop threshold Ts (0.1) and the calibrated F1-score
threshold TF1 (0.7).

PASCAL-Part dataset The PASCAL-Part dataset [136] includes bounding box
annotations for objects and their parts, which can be used to create holonym-
meronym relationship mappings (HolMe). For the experiments, a set of 50 images
per holonym and their corresponding cropped meronym images were held out to eval-
uate HOLMES’s explainability and part localization performance. The remaining
images were used to train the meronym models M c.

Meronyms Extraction: The Pascal VOC 2010 dataset includes 20 classes, which
were divided into four macro-classes: (1) people, (2) animals (birds, cats, cows, dogs,
horses, sheep), (3) vehicles (aeroplanes, bicycles, boats, buses, cars, motorbikes,
trains), and (4) indoor objects (bottles, chairs, dining tables, potted plants, sofas,
TV monitors). Two classes (people and potted plants) were excluded because they
have no corresponding class in the ImageNet 1000 classes. Additionally, five classes



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships71

without part-based annotations were excluded (boats, chairs, dining tables, sofas,
and TV monitors).

The meronyms Pc for each of the remaining 13 classes were extracted from the
PASCAL-Part parts list. Hyper-meronym selection was performed for the six animal
classes, as in [137]. For the remaining classes, hyper-meronyms were selected by
majority voting. The final HolMe mapping is as follows:

• Pbird = Pcat = Pdog = Phorse =head, torso, leg, tail

• Pcow = head, torso, leg, horn

• Psheep = head, torso, leg

• Paeroplane = stern, wheel, artifact wing, body, engine

• Pbicycle =saddle, wheel, handlebar

• Pmotorbike =saddle, wheel, handlebar, headlight

• Pcar = Pbus = window, wheel, headlight, mirror, door, bodywork, license plate

• Ptrain = coach, locomotive, headlight

• Pbottle = body, cap

Meronyms image extraction settings: Given the HolMe relationship mapping,
the training of meronym models requires the extraction of image crops for each part
associated with a holonym. The bounding box coordinates for each part in Pc for a
given holonym image were obtained and used to crop the respective part images.

To ensure compatibility with the VGG16 model input format, each cropped part
image was extended in the x or y direction to produce a square crop that preserved the
aspect ratio and shape of the original part. The avoidance of overlapping bounding
boxes in the same image was ensured, and padding was applied to the final square
crop if the aspect ratio was not 1:1.

To address the high class imbalance resulting from a variable number of crops
extracted for each meronym, data augmentation techniques were applied to balance
the number of samples in each class. Specifically, each cropped image was randomly
rotated and sheared, and one of the following transformations was applied: gaussian
blur, emboss, or gaussian noise.



72 Interpreting DL Models

The extracted meronym samples for each holonym class were split into three
folds for training, validation, and testing, respectively. The ratio of samples in each
fold was 0.81/0.09/0.1.

Training and Explanations settings: To build a meronym model for each
holonym, a feed forward classifier f M

Pc
(·) with the same structure as the original

VGG16 classifier was trained, using common data augmentation techniques such as
horizontal flipping, rotation, cropping, color jittering, and random grayscale. Each
meronym model was trained for 100 epochs, with a batch size of 64 and learning rate
of 0.001, determined experimentally. To avoid overfitting, an early stopping policy
with a patience of 5 was employed.

For generating the Grad-CAM meronym heatmaps, the activations of the last
convolutional layer of VGG16 were used. These heatmaps were binarized using
a threshold T (pi), which was found to be the 83rd percentile by performing a grid
search on the [75,90] percentile values. This threshold was chosen to strike the best
trade-off between different causal metrics performance on the whole PASCAL-Part
training set, which comprises all training holonym image samples. To retain natural
image statistics, the masked pixels were ablated by replacing them with the gray
RGB value (as the ImageNet mean pixel is gray). Finally, the Ts and TF1 thresholds
were set to 10 and 0.7, respectively.

Evaluation settings: Each selected class underwent testing using the entire
HOLMES pipeline on validation image samples. The localization performance of
meronyms was evaluated by computing the per-pixel AUC score of the HOLMES
meronym heatmap versus the meronym ground truth. True positive pixels correspond
to those belonging to the actual part within the bounding box, while false positives
refer to the remaining pixels. To establish the baseline, the per-pixel AUC score of
the Grad-CAM holonym heatmap was compared to HOLMES. The faithfulness of
HOLMES explanations was evaluated using common causal metrics based on the
deletion/insertion/preservation curves [138, 139].

HOLMES produces a set of saliency maps X(Pc) = x(pi), pi ∈ Pc associated
with a specific part pi. However, a global quality assessment of these part-based
explanations requires merging all saliency maps into a unique heatmap for all parts.
The HOLMES global heatmap is generated through a weighted linear combination of
the part-based saliency maps using normalized score drops Z = z1, ...,zn, which are
calculated by dividing each score drop by the L1-Norm of S = s1,s2, ...,sn associated



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships73

with the ablation of each part. The global heatmap is then obtained by summing each
weighted heatmap element-wise: G = ∑i∈nx(pi)zi

. This weighting scheme emphasizes
the parts whose ablation causes a significant holonym class score drop.

Using the global heatmap G, it is possible to assess the overall quality of the
part-based explanations by computing causal metrics such as the areas under the
insertion [138], deletion [138], and preservation curves [139]. These metrics were
calculated for all held-out PASCAL-Part validation images.

ImageNet In certain scenarios, HOLMES can be applied even if the datasets with
part-level annotations are not available. In these cases, ontologies and image scraping
are used to construct the required meronym datasets. To this end, the relationship
between Imagenet[85] labels and WordNet[132] nodes is utilized to obtain a list of
parts of the object-label, based on the holonym-meronym (whole-part) relationship.

Meronyms extraction settings: Out of the 1000 class concepts in ImageNet,
81 were selected as holonym classes for this process. The chosen holonym classes
belong to two major categories:

1. Medium- or large-sized animals

2. Medium- or large-sized man-made objects

The size constraint was implemented to obtain suitable training sets. Retrieving
distinct images of parts by querying web search engines becomes increasingly diffi-
cult for smaller holonyms (e.g., bugs in the animals category), as the engines tend to
return images of the whole holonym concept instead of specific parts (e.g., the whole
butterfly instead of a butterfly head). This results in highly similar meronyms datasets
with a significant visual overlap, which can considerably impede the performance of
the associated meronym model.

Therefore, for each of the 81 classes, their respective meronyms were extracted
from the VISA[140] dataset. Hyper-meronyms were manually filtered to obtain
a set of meronyms: meronyms extracted from the ontology were classified man-
ually into hyper-meronyms and their respective hypo-meronyms were filtered au-
tomatically. Consequently, for every instance of a hyper-meronym, the associated
hypo-meronyms were eliminated.



74 Interpreting DL Models

Meronyms image scraping settings: Two search engines, Google and Bing,
were utilized for image scraping to generate the necessary meronym datasets. To
avoid downloading irrelevant images, the number of downloads per part across all
search engines was restricted, with a general guideline of limiting downloads to the
first 100 items [141, 142]. Download limits of 40 and 60 images were set for Google
and Bing, respectively, as Bing has been found to provide more relevant images
for part concepts. In order to expand the dataset size for each part, the “Visually
Similar Images” feature of Google was utilized to locate and download similar
images for each downloaded image. To remove duplicates and near-duplicates [143],
a hash-based deduplication method called pHash [133] was used. Additionally,
outlier removal was performed using the PCA outlier detection algorithm[144].
Meronym images were transformed into a feature vector utilizing the activations
of the penultimate FC layer of VGG16[124]. The outlier contamination rate hyper-
parameter was set to 0.15. The meronym datasets were split into training, validation,
and test sets with proportions of 0.81, 0.09, and 0.1, respectively.

Training and Explanations settings: The training and explanation procedures
are performed using the identical configurations outlined for the PASCAL-Part
dataset.

Evaluation settings: The overall heatmap is assessed using the same insertion,
deletion, and preservation curves as described for the PASCAL-Part dataset.

3.3.4 Results

This study evaluates the HOLMES pipeline in all its steps to determine its effec-
tiveness in identifying and locating meronyms, attributing classification scores to
individual meronyms, and generating explanations

RQ1: How well can HOLMES classify and locate meronyms?

To answer this research question, the PASCAL-Part dataset was used, which
includes 13 classes with an average of approximately four visible parts per class. A
total of around 750 samples per meronym were collected, and approximately 1400
samples were obtained after data augmentation, resulting in a total of 74,772 training
samples. For the ImageNet dataset, 81 classes were selected, with an average of
approximately seven visible parts per image. A web scraping process was carried out
to obtain a total of 559 meronyms, resulting in an average of around 450 images per



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships75

0.4

0.5

0.6

0.7

0.8

0.9

1.0
mean=0.9
std=0.05

mean=0.7
std=0.16

(a) PASCAL-Part (b) ImageNet

Fig. 3.6 Distribution (violin plot) of the average per-part calibrated F1-score.

part. After eliminating duplicates and outliers, the final average number of images
per part was approximately 320.

The distribution of the calibrated F1-scores of the M c models, which were
trained upon each training set Xc for each of the selected classes, is reported in
Fig. 3.6 for both PASCAL-Part and ImageNet dataset. The average F1-score was
good in both cases, but higher on PASCAL-Part (0.9 ± 0.05 vs. 0.7± 0.16). This
difference can be attributed, at least partially, to the higher precision of the PASCAL-
Part reference standard, which includes bounding boxes.

Table 3.3 Per-pixel AUC results.

Method horse cat bird cow dog sheep aeroplane bicycle bottle bus car motorbike train Avg

HOLMES 0.77 0.74 0.8 0.77 0.74 0.75 0.74 0.76 0.67 0.75 0.68 0.74 0.71 0.74
Grad-CAM 0.68 0.68 0.71 0.66 0.71 0.62 0.76 0.63 0.6 0.65 0.62 0.66 0.62 0.66

On the contrary, as shown in Fig. 3.7, the performance deteriorates in direct
proportion to the number of components in each category. This effect is particularly
evident for the ImageNet dataset, which has a richer ontology with more classes
and more components per class. In fact, as the number of components increases,
the probability that images belonging to different components are visually similar
increases, which can negatively impact the performance of the trained M c model.
Additionally, different categories tend to have a varying number of meronyms associ-
ated with them. For example, tools usually have between one and four components,
animals between three and eight, and vehicles more than eight. Thus, the category



76 Interpreting DL Models

2 4 6 8 10 12
Number of parts

0.0

0.2

0.4

0.6

0.8

1.0
ca

lib
ra

te
d 

F1
-s

co
re

broom

shovel
tabby

sorrel

bison

airliner
racer

Animals Tools Vehicles

Fig. 3.7 Average per-part calibrated score as a function of the number of parts per
holonym class (colored dots represent a holonym, blue line is the mean average
per-part F1-score).

may also influence the quality of the scraping or the differentiation of the meronyms
themselves.

To evaluate the localization performance of HOLMES meronyms, the per-pixel
AUC score of each HOLMES meronym heatmap against their PASCAL-Part ground
truth bounding boxes was computed. As a baseline, two cases were considered: the
first case randomly assigns the meronym to any region of the image (AUC=0.5),
while the second case focuses on the actual holonym extracted by the Grad-CAM
algorithm and assumes that the meronym is inside the region of the Grad-CAM
holonym heatmap. While the second scenario presents a more challenging baseline to
surpass, the experiments in Table 3.3 consistently showcase that HOLMES meronyms
offer improved and more precise localization of parts in comparison to Grad-CAM
heatmaps, which solely localize the entire object. Notably, in an extreme case, it can
be observed that even with the minimum number of parts present (2 in the instance
of the bottle class), HOLMES outperforms Grad-CAM.

RQ2: To what extent the classification score can be attributed to individual
meronyms?

After successfully classifying meronyms, the next step is to investigate their
influence on the holonym classifier H , as depicted in Fig. 3.5.

In Fig. 3.8, the distribution of the per-meronym score decrease is presented, which
measures the decline in score observed for the holonym when the corresponding



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships77

0

25

50

75

100

mean=49

mean=82

(a) PASCAL-Part

mean=42

mean=73

(higher is better)

(b) ImageNet

Average drop Maximum drop

Fig. 3.8 Distribution (violin plots) of the average score drop and maximum score drop
(in percentages) per image on the PASCAL-Part (a) and ImageNet (b) validation
sets. The score drop is calculated for each image and meronym by ablating the
corresponding mask; then, the average and maximum score drop are computed over
all meronyms appearing in an image.

Fig. 3.9 Top-5 meronyms distribution. For each class, the top-5 meronyms are
computed (i.e., the meronyms inducing on average the highest score drops). For
each meronym, the total number of associated holonyms (blue) is compared with
the frequency they appear in the Top-5 meronym list (red). Meronyms are listed in
decreasing order of frequency.

meronym is removed. On average, a single meronym ablation roughly cuts the
holonym model confidence in half, with an average score drop of 49% for PASCAL-
Part and 42% for ImageNet. For PASCAL-Part, considering only the most significant
part (i.e., the one with the highest score drop for each test image) yields an increase
in the score drop to 82%. In this dataset, individual meronyms strongly influence
the classifier output, with the majority of classifications being attributable to a single
meronym. Conversely, for ImageNet, the mean maximum drop is lower (73%). The



78 Interpreting DL Models

mean (± standard deviation) number of meronyms included in each explanation was
2.28±2.46.

However, at the holonym class level, the mean average drop and mean maximum
drop for PASCAL-Part were 50% and 80%, respectively, and 46% and 73% for
ImageNet. The score distribution in Fig. 3.8 characterizes HOLMES behavior at
the instance (image) level, whereas the mean values offer a glimpse into the general
characteristics of the holonym classes. On PASCAL-Part, the mean maximum score
drop presents a bimodal distribution, with animal classes experiencing a higher mean
maximum drop than vehicles and man-made objects (78.5% vs. 62.1%). As a result,
explanations for images belonging to animal classes are often highly focused, with
a single meronym nearly describing the entire holonym concept. Explanations for
other classes require the combination of two or more meronyms. On ImageNet,
little difference was found between animals (70%), tools (73%), and vehicles (74%).
However, there is a wider range of mean maximum drops between classes, with a
low of 23% (zebra) and a high of 95% (Persian cat).

Some holonym classes may share a common set of meronyms. This is particularly
evident for the richer ImageNet ontology. For example, most animal classes have a
head and a tail, although each class will have its own training dataset and classifier
Mc. Based on this observation, it was sought to determine if certain parts consistently
and significantly affected the holonym score drop (Fig. 3.9). In the case of animal
classes, the meronyms head, tail, and legs frequently cause a consistent score drop
when removed from the image. Similarly, for vehicles, the door, wheels, and window
meronyms have the most significant impact on the holonym class prediction.

RQ3: How good are the explanations generated by HOLMES?

In the final stage of the evaluation, the overall quality of the generated expla-
nations is assessed by comparing HOLMES with Grad-CAM, a method that does
not provide part-level explanations. In order to make a fair comparison, part-level
heatmaps are combined into a global heatmap using a linear combination approach,
as illustrated in Fig. 3.10. The AUCs for the insertion, deletion, and preservation
metrics are used to evaluate the performance, and the results are summarized in
Table 3.4.

On PASCAL-Part, the average HOLMES insertion AUC is 0.96 times the Grad-
CAM insertion AUC, while the average deletion AUC is 0.95 and the average
preservation AUC is 1.03 times the corresponding Grad-CAM score. Similarly, on



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships79

Fig. 3.10 HOLMES Global Explanation. Starting from an input image, the per-part
heatmaps and the respective holonym score drops are obtained. Then, by a linear
combination of the heatmaps, the global heatmap is obtained, and its quality is
measured by means of the insertion/deletion/preservation metrics.

Table 3.4 Deletion/Insertion/Preservation AUCs for HOLMES and Grad-CAM.

Dataset Method Deletion ↓ Insertion ↑ Preservation ↑
PASCAL HOLMES 0.050±0.053 0.487±0.269 0.392±0.255
Part Grad-

CAM
0.052±0.060 0.505±0.277 0.381±0.264

ImageNet HOLMES 0.112±0.113 0.660±0.252 0.538±0.257
Grad-
CAM

0.111±0.107 0.684±0.242 0.539±0.261

ImageNet, the average insertion, deletion, and preservation AUCs are 0.96, 1.01, and
0.99 times the corresponding Grad-CAM scores.

Furthermore, a random baseline is used as a comparison to account for object
scale, where images are divided into super-pixels and erased in random order. As
shown in Fig. 3.11, HOLMES significantly outperforms the random baseline, with
an average insertion AUC 0.58 lower and an average deletion AUC 1.77 higher than
the baseline. Additional examples of part-based explanations extracted by HOLMES
are reported in Fig. 3.12, 3.13, 3.14, 3.15 and 3.16.



80 Interpreting DL Models

0.01

0.1

1.0

10.0

mean=1.86

mean=0.39

(a) PASCAL-Part

mean=1.98

mean=0.64

(b) ImageNet

Random Baseline
Insertion Ratio (higher is better)
Deletion Ratio (lower is better)

Fig. 3.11 Insertion/Deletion Ratio distribution (violin plot) for the PASCAL-Part (a)
and ImageNet (b) datasets. The average insertion ratio (left) and the average deletion
ratio (right) are calculated with respect to the random baseline (dotted black line).

3.3.5 Discussion

In contrast to existing approaches [121], HOLMES does not rely on an extensively
annotated dataset with pixel-level annotations. Instead, it can be trained using weak
annotations, such as bounding boxes available in the PASCAL-Part dataset [136],
or web scraping, which drastically reduces the annotation effort and eliminates the
closed-world assumption intrinsic to traditional labeled datasets. Previous works
have established the efficacy of web scraping for object recognition [142, 145],
which HOLMES builds upon and expands through deduplication and outlier removal
to reduce noise and enhance variety in the training dataset.

However, obtaining high-quality images for meronyms, as opposed to holonyms,
presents additional challenges that may impact the quality of the dataset and, there-
fore, the meronym models. While the relevance of the retrieved images is generally
high, it may decrease depending on the popularity of the meronym as a search term.
Moreover, visual overlap poses a specific challenge since it is difficult to find images
that isolate a single meronym precisely.



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships81

Intermediate explanations End-user explanations

Fig. 3.12 HOLMES explanations example. The image portions associated to the
meronyms (feet, fur, head, legs and tail) of the predicted holonym class (jaguar) are
identified in the input image and ablated one at time. The feet and the legs calibrated
F1-scores are below the calibrated F1-score threshold (0.7) and so these meronyms
are immediately discarded: in fact, for such meronyms, the highlighted regions do
not precisely encircle the respective part, while also including extraneous regions like
background (vegetation) and other parts (the head and the tail are partially masked
in the legs case). Among the remaining meronyms (fur, head and tail), only the fur
and the tail score drops are above the holonym score drop threshold (10), hence
only for these meronyms (in red) the associated saliency maps are interpolated with
the input image and provided as end-user explanations. Notice as for this specific
‘jaguar’ input image the head is not recognized: its associated image portion is not
highlighted, hence a zero holonym score drop is recorded and consequently the part
in not included in the end-user explanations.

Despite the acknowledged limitations regarding repeatability, the results of the
data collection approach for various holonyms demonstrate a remarkably positive
outcome. This comprehensive analysis has successfully encompassed a substantial
number of images spanning a diverse array of classes, showcasing promising results
across the board. The incorporation of such a wide spectrum of visual content
underscores the methodology’s versatility and potential utility.

Furthermore, in addressing the challenge posed by varying image availability
and quality through web scraping, it is essential to recognize the dynamic nature of
online resources. This consideration underscores the importance of acknowledging
the evolving nature of data collection, which inherently introduces variations in



82 Interpreting DL Models

Meronyms ablation End-user explanations Meronyms ablation End-user explanations

Fig. 3.13 HOLMES explanations example. Two different correctly predicted input
images (broom on the left and hatchet on the right) get their respective parts identified
and ablated. Since for all their meronyms both the calibrated F1-score threshold and
the holonym score drop threshold is exceeded, all the parts (in red) are included in
the end-user explanations. Notice as in both cases all the meronyms calibrated F1-
scores are quite high (0.83 to 0.96), hence the image portions which are highlighted
effectively describe the meronyms.

Fig. 3.14 Examples of end-user explanations comprising 1 meronym.

Input 
image

tiger cat lynx leopard jaguar microwave broom hatchet barrow racer

Fig. 3.15 Examples of end-user explanations comprising 2 meronyms.

acquired datasets over time. Moving forward, it becomes crucial to address this
specific aspect in future research endeavors, thereby ensuring the sustained relevance
and robustness of the meronym models. By confronting these challenges directly, the
aim is to enhance the longevity and applicability of this approach within the context
of a continually evolving digital landscape.



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships83

Input 
image

cougar airliner sorrel sorrel ox ram airliner mobile home school bus

Fig. 3.16 Examples of end-user explanations comprising 3 or more meronyms.

Overall, quantitative evaluation on PASCAL-Part confirms that the meronym
models can identify object parts and determine their position within the image. This
is accomplished by exploiting the features learned by the holonym model without the
need for retraining or fine-tuning, further supporting the notion that DNNs implicitly
embed knowledge about object parts [146, 147, 121].

Due to the imperfect background, the ablated mask may not provide a perfect
segmentation of the part, as shown in Fig. 3.5. The ablated masks for different
parts may be very similar, especially for meronyms that are physically adjacent.
For instance, the meronyms legs and hooves for the holonym sorrel exhibit visual
overlap, as illustrated in Fig. 3.5. Less frequently, the ablated part may include a
portion of the background; for example, legs may include some terrain or grass. This
could affect the score drop observed when deleting the corresponding part and the
resulting metrics.

The F1-scores for most holonyms vary between 0.6 and 1.0 for ImageNet and
0.8 and 1.0 for PASCAL-Part, encompassing multiple object categories such as
animals, tools, and vehicles, and up to 14 visible parts per class. The quality of
the ground truth affects the F1-score, but the number of meronyms that constitute



84 Interpreting DL Models

each object also plays a role. Improving the quality of the scraping process, and
consequently the meronym model, could enable HOLMES to recognize and include
an even greater number of meronyms in its explanations. Furthermore, HOLMES
offers intrinsic safeguards against this type of noise by only incorporating meronyms
with satisfactory F1-scores into its explanations, and by allowing users to easily
inspect the heatmaps associated with each individual meronym.

The effectiveness of the part-based explanations provided by HOLMES in identi-
fying the most relevant parts for the final classification is confirmed by quantitative
causal metrics based on the deletion/insertion/preservation curves. These results are
comparable to those of the state-of-the-art Grad-CAM method, and substantially
better than chance level. Unlike Grad-CAM, HOLMES generates a set of articulate
heatmaps associated with human-interpretable concepts, and enables exploration of
the impact of individual meronyms on holonym classification at both the instance
and class levels.

HOLMES was evaluated on two separate datasets, PASCAL-Part and Ima-
geNet, both of which use the same classifier. Absolute differences in the inser-
tion/deletion/preservation curves are attributed to the datasets themselves, including
how the images were obtained, and possibly the domain shift between ImageNet
and PASCAL-Part, since the holonym classifier H was trained on ImageNet. How-
ever, despite substantial differences in the sourcing of the meronym datasets Xc, the
relative performance of HOLMES with respect to both baselines remains similar.
HOLMES performs slightly better on PASCAL-Part, particularly in terms of the
deletion and preservation curves. Additionally, explanations on PASCAL-Part tend
to focus on fewer parts on average than those on ImageNet. These differences
could be due to other factors besides the meronym datasets Xc. On the one hand,
PASCAL-Part contains fewer and more distinct classes than ImageNet, potentially
including images that are easier to classify. On the other hand, the KB derived from
PASCAL-Part annotations is simpler, with fewer meronyms (approximately 4 versus
approximately 7 parts per class) and less visual overlap. HOLMES is demonstrated
to be resilient to variations in experimental settings, and performs well even when
utilizing more cost-effective annotations obtained through general-purpose KBs and
web scraping.



3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships85

3.3.6 Limitations and Future Directions

While HOLMES demonstrates impressive performance within the context of a
feedforward CNN trained for classification, limiting the application of this approach
to a single type of neural network would hinder its broader potential. Therefore, in
this section, we discuss acknowledged limitations and propose directions for future
research to expand the applicability of HOLMES.

First and foremost, although the experiments in this chapter focus exclusively on
classification networks, HOLMES could be extended to encompass various networks
designed for different tasks. Regardless of a model’s primary function, the latent
representations acquired by its foundational layers can be utilized to train meronym
models, enabling part-based explanations using the HOLMES framework.

Secondly, an important question arises about the adaptability of the HOLMES
approach across different network architectures beyond CNNs. While this chap-
ter primarily addresses feedforward neural networks, exploring the integration of
HOLMES with other architectures like RNNs or transformers shows promise. This
adaptation would require a thorough analysis of the internal representations and
learning mechanisms inherent to these architectures. Such future investigation in-
volves understanding the hierarchical features learned by RNNs or transformers to
establish analogous holonym-meronym relationships.

Finally, a notable limitation of the current methodology relates to the analysis
of samples lacking inherent hierarchical correlations. This situation often arises in
fields like the medical domain, where samples could represent complex tissues or
fine-grained patches extracted from MRI scans. In such cases, dividing a holonym
into corresponding meronyms might not be feasible, making texture- or pattern-based
approaches more suitable for understanding model decision-making processes. To
address this, a potential modification to the HOLMES methodology could involve
training texture- or pattern-based models using a strategy similar to the one outlined
in this chapter. In this scenario, the training data for these auxiliary models could
consist of small patches representing prevalent patterns or textures crucial for specific
predictions. However, this approach would require the involvement of an expert
capable of labeling important features within the samples needing explanations. Fur-
thermore, since in feedforward models like VGG16, filters responsible for detecting



86 Interpreting DL Models

basic patterns are typically learned in the initial layers, utilizing features extracted
from these layers for training auxiliary models could be explored.

3.4 Concluding Remarks

The first section of this chapter introduces iNNvestigate-GUI, a comprehensive
approach to interpret the behavior of DNNs using visualization methods. The
tool provides an interactive panel to analyze and compare the behavior of multiple
networks. Additionally, the Suggestion panel categorizes available samples and
enables users to select a mix of samples with varying properties for inspection.
The iNNvestigate-GUI approach assumes that it is beneficial for users to examine
predictions across a range of data instances with diverse properties. To assess the
usability of the tool, a user study was conducted, which involved participants from
different backgrounds, including ML experts and novices. The results show that the
tool is user-friendly and intuitive, and it can be used by both expert and non-expert
users to analyze the behavior of DNNs. Moreover, the study demonstrates that
the tool’s visualization methods are effective in identifying model behaviors and
suggesting useful data samples for analysis. Overall, the iNNvestigate-GUI provides
a powerful, yet easy-to-use solution for interpreting DNNs. This tool holds significant
potential for diverse applications, such as model debugging, feature engineering, and
ensuring algorithmic fairness. In the context of fairness, upcoming experimental
configurations should showcase how the GUI recommends and manages samples
when confronted with model biases. Furthermore, it is important to note that the
capabilities of the proposed iNNvestigate-GUI extend beyond just plain CNNs.
While the initial implementation focuses on CNNs, the framework has been designed
to be adaptable and extensible, allowing for integration with a wider range of neural
network architectures. This adaptability paves the way for the future extension of
the tool to encompass more complex models like RNNs and Transformers, which
are extensively used in tasks like sequential data analysis and natural language
processing.

In the second section of the chapter, HOLMES is introduced, which is a novel
XAI approach capable of enhancing image classification tasks by providing detailed
part-level explanations. The method represents a significant advancement beyond the
traditional label-level heatmaps that have been the state-of-the-art in eXplainable AI



3.4 Concluding Remarks 87

for image classification. The approach offers several benefits, including the ability
to integrate image classification models into decision support systems, enabling
developers to debug classifiers before deployment and helping end-users to assess
the classifier’s reliability when working with previously unseen data.

Additionally, HOLMES offers valuable insights into how holonyms are learned
and stored within CNNs during and after the training phase. Other recent studies,
such as [121, 148], have proposed significant contributions in this area, but have
additional requirements, such as a focus on scene recognition or the need for a
segmented ground truth. Furthermore, this approach connects DL models with a
symbolic KB, such as an ontology, which is a unique feature. Moreover, the approach
opted to capture concepts without constraining them to a single computational unit,
an approach that more naturally captures the robust learning of DL models while
also providing greater expressive power on the symbolic side. As demonstrated
in [147], models with the same discriminative power can have varying degrees
of interpretability, depending on several factors, including the network structure,
regularization, and supervision/task.

Given the novelty of the approach, there is ample room for further research on
alternative components. First, a more refined scraping algorithm could be employed
to increase both the training sample size and the sample quality. This might involve
using more complex semantic expansion techniques, robust outlier detection algo-
rithms like Robust and Kernel PCA, or novel data purification techniques like those
described in [149]. Secondly, it may be worthwhile to investigate the effects of using
the activations of units from different convolutional layers, or even sets of layers, to
generate HOLMES explanations. Units belonging to different convolutional layers
may better match specific (part) concepts, and their activations could be used to
generate more accurate explanations for those concepts. Additionally, more model
architectures could be tested to see how this method performs with different mod-
els, such as shallower (e.g., VGG13) or deeper (e.g., VGG19) models, or different
types of networks (e.g., Deep Residual Networks). Thirdly, alternative perturba-
tion techniques could be explored for removing the relevant pixels of the parts. It
was observed that substituting pixels with constant values introduces contiguous
shapes in the image, which may bias the prediction towards certain types of objects
with similar shapes. Additionally, other types of semantic relationships could be
studied to retrieve the desired (visible) parts of a specific concept and map different



88 Interpreting DL Models

concepts between different KBs (in alternative to the proposed hypernym-hyponym
relationship).

Finally, it was demonstrated that the method performs better when a small
number of parts for an object are considered, preferably spaced enough to minimize
visual overlap. Therefore, a new strategy for selecting and filtering the meronyms
of an object can be explored. In conclusion, HOLMES is a promising approach for
enhancing image classification models with part-level explanations. There is still
much to explore in terms of alternative components, and it is arguably believed that
future research in this area will further improve the reliability and interpretability of
DL models.



Chapter 4

Monitoring Data Changes

Part of the work described in this chapter was originally presented in [150, 151].

4.1 Introduction

One of the basic assumptions in ML is that the data points at test time come from
the same distribution as the training set. However, this assumption is often violated
in most ML-based applications, as they operate on continuous data streams whose
nature is likely to change over time [23, 152, 153]. This phenomenon, known as
dataset drift or shift, causes the performance of an ML model to degrade compared
to that measured before deployment. Dataset drift has been investigated in a variety
of fields, including predictive maintenance, recommender systems, autonomous
driving, weather forecasting, etc. [23, 152, 154, 155]. Deviations from the training
data can take many forms, from changes in the distribution of the input data to the
emergence of entirely new concepts or classes. Hence, from this general problem
two fundamental issues can be identified.

On the one hand, the emerging field of MLOps aims to establish best practices
for effective, safe, and trustworthy maintenance of the models. A key aspect of
successful MLOps strategies is the ability to monitor models in the field and identify
when retraining is needed to maintain an adequate performance level [23]. However,
directly measuring model performance requires continuously collecting labeled data,
which can be costly and time-consuming. As a result, several techniques have been
proposed to detect drift in an unsupervised fashion, such as detecting changes in the



90 Monitoring Data Changes

input data distribution. However, most techniques have been proposed and tested for
tabular or sensor data, whereas here extension and discussion to DL is discussed.

On the other hand, it is possible to focus on individual samples in order to
determine whether they fall within the training distribution. This setting is related
to drift detection, but focuses on the individual rather than the population. An
observation that differs abnormally from other values in a population’s random
sample is known as an outlier in statistics [156]. Since every data population differs
from the others in some ways, there is sadly no agreed-upon definition of what is
"normal". [157] noted that it is not sufficient to determine whether a point should be
classified as an outlier or not based just on its distance from the distribution’s mean
and that not all outliers require the same handling. Although they are not always
used correctly and consistently, a variety of names have been used to refer to this
issue in the context of DL in its many features and situations. The following is a
typical classification ( [158], [159]):

• Detection of anomalies: During training, a dataset consisting of just one
class is employed, and during testing, the detector eliminates inputs that are
anomalous due to a covariate or semantic shift.

• Novelty detection: the detector recognizes inputs that belong to any other class
after being trained on a single-class or multi-class dataset. Samples aren’t
classified based on the semantic category to which they belong; instead, the
only output is a binary distinction between distribution points that are in and
distribution points that are out.

• Open set recognition: the model can properly identify samples from a specified
set of categories while rejecting those from unidentified classes.

• Outliers detection: The model eliminates entries that are "far" from the other
entries given a fixed set of data points. In contrast to the preceding settings,
there is no separation between training and testing in outliers identification.

Even though they were typically treated differently and separately in earlier
literature, these cases have characteristics that allow applying solutions to one to
the other fairly simple and efficient. For instance, a novelty detector can be trivially
converted into an open set recognition model by pairing it with a separate classifier
able to discriminate between in-distribution (ID) categories. Given these affinities, a



4.1 Introduction 91

broader term that includes all the various settings mentioned above may be defined:
OOD Detection, the act of telling apart points belonging to a given distribution from
the others. In this context, ID data refers to the set of examples used to train a model,
originating from the same data distribution that the model is meant to encounter
during testing or deployment. On the other hand, OOD data represents instances that
lie outside the scope of the training data distribution, exhibiting different patterns,
characteristics, or contexts.

Interest in OOD detection began to rise in the DL research community after
Amodei et al. [160] listed robustness to distributional changes among the main
problems concerning AI safety. ML agents should be able to precisely measure the
confidence in their predictions in to deal with undesirable inputs and prevent failures
of deployed models, which is a challenging task otherwise because to the general
lack of model explainability. The posterior probability that neural networks produce,
which may be understood as the distance of the point from the decision border,
is used by neural networks as a measurement of confidence. The effort needed
to accomplish their purpose is, however, minimized by ML models, as the learnt
decision boundaries can only distinguish between ID classes and cannot deal with
unknown distributions. Furthermore, networks have been shown to often be poorly
calibrated, i.e. to have large gaps between predicted confidence and actual error
probability [161], and to be able to output arbitrarily high confidence for observations
far away from the training data [162].

In both cases, benchmark datasets, in which known drifts occur, are needed
to design and evaluate drift/OOD detection algorithms. However, many current
benchmarks are not representative of typical industrial and business use cases. In this
chapter, the design of new techniques and benchmarks for drift detection and OOD
detection in CV will be discussed, with the goal of introducing more complex and
realistic benchmarks than toy problems commonly used in CV, such as CIFAR10,
CIFAR100 or MNIST and their variations. The rest of this Chapter is organized as
follows. Section 4.2 describes techniques for unsupervised concept drift detection.
The study on OOD detection is reported in the following Section 4.3. Finally, in
Section 4.4 conclusions as well as possible future directions are discussed.



92 Monitoring Data Changes

4.2 Drift Detection: Ensuring Model Robustness and
Performance

The trustworthy deployment of DL models is challenging due to their complex,
black-box nature and their ability to process raw high-dimensional data (e.g., images
or text). To achieve unsupervised drift detection, several issues need to be addressed,
such as how to measure changes in high-dimensional multivariate distributions and
how to effectively reduce input dimensionality [163].

In addition, benchmark datasets, in which known drifts occur, are needed to
design and evaluate drift detection algorithms. However, many datasets collected for
research purposes are not representative of typical industrial and business use cases.
One potential solution is the use of synthetic datasets, which are rapidly expanding as
they allow for the quick generation of large quantities of labeled training data [164].
In this chapter, the use of synthetic data for testing drift detection algorithms in
controlled but practical dataset drift scenarios is proposed. These scenarios are
specifically designed for document segmentation and analysis, a problem class with
numerous practical applications.

The present section reviews available methods for dataset drift detection, ana-
lyzing their benefits and drawbacks. Supervised and unsupervised drift detection
techniques are experimentally evaluated on a practical case study in the domain of
semi-structured document segmentation, simulating dataset drift using a customized
synthetic data generator. The remaining section is structured as follows. Section 4.2.1
provides a review of recent literature on the concept of drift. In Section 4.2.2, the
problem of detecting drift is defined mathematically. Sections 4.2.3 and 4.2.4 present
a simulated real-life scenario for detecting drift, as well as the methodology uti-
lized to detect it. Finally, Section 4.2.5 provides a summary and discussion of the
experiment results, along with potential directions for future research.

4.2.1 Related Work

Drift detection techniques can be classified into two categories: supervised and
unsupervised [23]. Supervised techniques aim to detect changes in the error rate,
but they rely on the assumption that labeled data is continuously available at test
time. Unsupervised techniques, on the other hand, aim to bypass this requirement



4.2 Drift Detection: Ensuring Model Robustness and Performance 93

by modeling the input data distribution, either directly or through auxiliary models
or algorithms. In this section, an overview of the most representative approaches
is provided, and the reader is directed to previous surveys and books [23, 165] for
additional information.

One class of supervised techniques is based on monitoring changes in the error
rate. Statistical learning theory suggests that a change in the data distribution will
lead to an increase in the error rate [21]. The simplest implementations set one or
more alarm thresholds for the raw error rate, while more sophisticated techniques
track the distance between errors computed at different times [21] or use statistical
change-detector tests (CDTs) [166].

Unsupervised techniques, on the other hand, attempt to detect changes in the
distribution of the input data over time. These techniques often divide streaming data
into time windows and compare the distribution in the current window to a reference
distribution, which may be obtained from the training set or from typical operating
conditions (e.g., immediately after deployment) [152, 167]. A challenge in these
techniques is how to effectively compare multi-variate data distributions, as most
modern ML/DL techniques operate on high-dimensional datasets. Once a measure of
diversity is computed, drift can be detected using a fixed or adaptive threshold [168].

One approach is to use statistical methods to test the null hypothesis that the
two distributions are the same, treating the test score as a "driftiness score" [163].
Both univariate tests on individual features (with corrections for multiple tests)
and multivariate tests such as the Maximum Mean Discrepancy (MMD) have been
employed. These techniques work best when the intrinsic dimensionality of the input
data is low [163, 168].

An alternative is to compute the distance between the two distributions using
a measure such as the Hellinger distance or Kullback-Leibler divergence [167].
Another strategy is to use XAI techniques to compute multiple model explanations
over time and observe how they change [169].

A second challenge in unsupervised drift detection is how to reduce the dimen-
sionality of the input data. Most drift detection techniques are designed for tabular
data or temporal series [152, 167], while DL models operate on raw data such as
images or text. Dimensionality reduction is necessary to make the problem numeri-
cally tractable and enable a semantically meaningful comparison between different
data points [163]. Rabanser et al. [163] compared different dimensionality reduction



94 Monitoring Data Changes

methods for image datasets, including Principal Component Analysis (PCA) and
deep auto-encoders, but their experimental results were based on toy datasets and
may not generalize to more realistic settings.

Unsupervised approaches offer several benefits, such as not requiring labeled
data during testing, being computationally efficient, and having readily available
open-source implementations [168]. However, it is important to note that a change
in the distribution of input data does not necessarily result in model degradation.

It is worth mentioning that recently proposed techniques have introduced an
auxiliary model to assess the consistency of an instance with the training set distribu-
tion [170]. These models can be trained on the available dataset, and do not require
prior knowledge of OOD samples. However, pre-trained models may not have access
to the training set due to privacy or commercial limitations, which necessitates the
collection of a dedicated dataset.

Finally certain types of dataset drifts can be addressed by drawing from the field
of open-set recognition, which assumes that new, previously unseen classes will
emerge during testing [171–173]. This issue has been extensively explored in the CV
domain, such as object classification/detection. Typically, these techniques do not
require labeled samples during testing, but rather necessitate modifying the model or
training procedures, incorporating additional losses, or relying on auxiliary models
to differentiate between ID and OOD samples.

4.2.2 Problem Definition

A model is trained on a source distribution S and tested on a target distribution T ,
represented by the joint distribution P(x,y) of the input data x and the label(s) y,
which can be further decomposed as:

P(x,y) = P(x)P(y|x). (4.1)

The dataset drift phenomenon can be defined as a change in the distribution of
the source and/or target data [23]. Dataset drift may degrade the performance of
models trained on historical data, and hence must be detected to trigger a model
update. In mathematical terms, it can be formalized as a change in the distribution,
P(xS,yS) ̸= P(xT ,yT ). Researchers distinguish between different types of drifts



4.2 Drift Detection: Ensuring Model Robustness and Performance 95

DilatedBlock

DilatedDown

DilatedDown

DilatedDown

Conv2D 
kernel=4,
stride=2

BatchNorm 
+ 

LeakyReLU

PixelShuffle* 

Conv2D 
kernel=1,
stride=1

FEATURES

Extract text with
OCR and generate 

a mask

Skip
connection

Skip
connection

Skip
connection

Encoder

Decoder

Pooling

Drift
Detector

UpLayer

PixelShuffle* 

UpLayer

PixelShuffle* 

UpLayer

PixelShuffle* 

* Scale x2

Fig. 4.1 The DL model utilized for document segmentation employs the following
structure. The encoder compresses the input image into a low-dimensional feature
space, which is subsequently upsampled in the final output space by the decoder.
The final classifier layer takes a binary mask indicating text presence, detected by
the OCR, as an additional input. The model is language-agnostic and does not rely
on the text or semantic embedding. The final output image is segregated into five
classes: logo, header, table, footer, and background. The approach used in this
work diverges from that of [174] in that convolution and pixel shuffle are employed
for downsampling (encoder) and upsampling (decoder), as opposed to pooling and
unpooling. Inference involves the acceptance of the encoder’s features, which are
further reduced in dimensionality through pooling, as input by the drift detector.

(covariate and concept drift) depending on which aspect of the data distribution
is most affected [165]. Covariate drift occurs when the distribution of the input
features changes, but without changing the relationship between the input and output
variables of the model:

P(xS) ̸= P(xT ) and P(yS|xS) = P(yT |xT ). (4.2)

On the other hand, concept drift refers to a change in the relationship between the
input and output variables:

P(xS) = P(xT ) and P(yS|xS) ̸= P(yT |xT ). (4.3)



96 Monitoring Data Changes

In some cases, both covariate drift and concept drift can occur simultaneously.

In this work, the focus is on unsupervised drift detection techniques that do not
necessitate access to labeled data from the target distribution. Unsupervised drift
detection can be accomplished by monitoring the performance of a model on the
target data or by detecting changes in the input data distribution.

Several methods have been proposed to detect changes in the input data distribu-
tion, including statistical tests, distance measures, and density estimators. Statistical
tests, such as the Kolmogorov-Smirnov test, compare the distribution of the input
data in the source and target domains, and can be used to detect both covariate
and concept drift. Distance measures, such as the Kullback-Leibler divergence,
compare the similarity between the distributions of the input data in the source and
target domains. Density estimators, such as kernel density estimates, estimate the
probability density function of the input data, and can be used to detect changes in
the distribution over time.

In addition to these unsupervised drift detection methods, there are also super-
vised drift detection techniques that rely on labeled data from the target distribution.
These methods can be more accurate, but are often impractical due to the cost and
difficulty of collecting labeled data in the target domain.

In particular, the performance of several unsupervised drift detection methods
is evaluated on a practical case study in the domain of semi-structured document
segmentation, utilizing a customized synthetic data generator to simulate dataset
drift. The results show that the performance of these methods is dependent on the
specific characteristics of the dataset drift, and that no single method is universally
superior.

4.2.3 Simulating Data Drift in Scanned Document Segmentation

The case study being discussed involves the task of segmenting scanned documents,
such as invoices, into their various components (logo, header, table, footer, back-
ground). The DL model used in this study (shown in Fig, 4.1) is based on previous
work in [174], with some modifications. It consists of an encoder and a decoder,
both of which are essential for the model to function. The encoder is responsible
for learning a feature representation of the input data, while the decoder takes this
learned representation and uses it to reconstruct the input and generate the output



4.2 Drift Detection: Ensuring Model Robustness and Performance 97

segmentation masks. The decoder also receives as input a binary mask generated by
running Optical Character Recognition (OCR) on the original document. It’s worth
noting that the model does not use the recognized words or their embeddings as
input, only the presence or absence of text.

For training the network, a separate dataset of 100,000 invoices (which is not
the dataset utilized in the experiments described here) was employed. As obtaining
pixel-level labels is expensive, a synthetic document generator (shown in Fig, 4.2)
was developed to produce the required data. The document structure is defined by
customizable templates, which are filled with fake data and rendered utilizing an
HTML rendering engine. Subsequently, the physical printing process is simulated by
applying data augmentation techniques such as rotation and adding Gaussian noise.

Fake Data 
Request

Data Generator

Fake Data 
Request

Document 
[HTML]

Not Valid

ValidValidity  
check

Document 
is discarded

Metadata

Document rendered
on a browser by

Selenium WebDriver
1

2

Template.py

Template.jinja

Personal information

Logo

Colors
Company information

Positions
Text

It contains all the
information used
for the creation of

the document.

Fig. 4.2 The structure of the artificial document generator allows for the creation
of various dataset shifts, such as the addition of new templates. All document
components are examined to confirm proper rendering, ensuring no significant
overlaps or deviations from printing margins. The generator automatically produces
the ground truth, which includes a separate mask for each class, in conjunction with
the input image.

To model data drift, two OOD datasets were created by introducing two novel
features not observed during training: a different background color or an additional
background image or logo. Additionally, a dataset with no drift was created. For
each scenario, 1000 documents (without replacement) were sampled from the ID
and one of the two OOD sets to create 11 time windows in which the percentage of



98 Monitoring Data Changes

OOD samples increased from 0% to 100% in increments of 10%. This process was
repeated 100 times to calculate confidence intervals.

4.2.4 Methodology

The performance of a supervised drift detection model was measured using the IoU
metric, which quantifies the overlap between predicted segmentations and ground
truth [174]. For each time window, the mean IoU was calculated over N documents.
Mathematically,

IoU =
Area o f Intersection

Area o f Union

Unsupervised drift detection was achieved by calculating the Hellinger dis-
tance [167] using the following formula:

H(p,q) =
1√
2

√
n

∑
i
(
√

pi−
√

qi)2 (4.4)

where p and q are the discrete distributions of the current and reference time windows,
respectively.

High-resolution images were first compressed into compact feature vectors using
the encoder of a DL model. The encoder reduces an image of size 512x365x3 to a
feature map of size 32x32x520 and further to a feature vector of size 520 using either
Global Max Pooling or Global Average Pooling. The latter was found to provide
slightly better results. The feature distribution (histogram) was then computed for
each time window of size N. The window’s "driftiness score" was calculated as the
Hellinger distance between the current and reference time windows (p = 0).

The correlation between the mean IoU and Hellinger distance was studied to
understand if a change in the feature distribution is indicative of model degradation.
Additionally, the classification performance of the unsupervised drift detection
algorithm was evaluated by comparing the results of applying a fixed threshold on
the Hellinger distance to the ground truth. The AUC provides a global measure of
the algorithm’s ability to distinguish between dataset drift and natural data variance.



4.2 Drift Detection: Ensuring Model Robustness and Performance 99

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

No drift
Background image
Background color

Violin Plot for Mean IoU

p

M
ea

n 
Io

U

(a)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.2

0.4

0.6

0.8
No drift
Background image
Background color

Violin Plot for Mean Hellinger Distance

p

M
ea

n 
H

el
lin

ge
r 

D
is

ta
nc

e

(b)

0.04 0.06 0.08 0.1 0.12 0.14

0.952

0.953

0.954

0.955

0.956

0.957

0.958

0.959

0.96

0.961

0 0.2 0.4 0.6 0.8
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
p

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Correlation plots

Mean Hellinger Distance Mean Hellinger Distance

M
ea

n 
Io

U

No drift Background color

(c)

Fig. 4.3 The metrics for supervised (a) and unsupervised (b) drift detection are
visualized via distribution violin plots. The mean IoU (a) assesses the quality of
output segmentations, while the Hellinger distance (b) quantifies the difference
between the current time window and a reference time window with no drift (p = 0).
To generate the distribution, Z = 100 time windows are sampled for each drift
scenario and fraction p of OOD samples. The correlation plots (c) depict the
correlation between the IoU and Hellinger distance for both no drift and background
color covariate drift scenarios.

The unsupervised drift detection algorithm’s classification performance was
evaluated by comparing the results obtained by applying a fixed threshold on the
Hellinger distance to the ground truth. The algorithm classified each time window
as either "drift detected" or "no drift" and the results were compared against the
known values of "drift present" (p > 0) or "no drift" (p = 0). For each configuration,
a sample of 100 time windows was taken, and true and false positive rates were



100 Monitoring Data Changes

determined based on the percentage of correctly and incorrectly classified time
windows.

4.2.5 Results

A comparison of the distribution of supervised and unsupervised metrics in two types
of drift scenarios (background color and background image) is presented. Fig. 4.3 is
used to demonstrate this comparison, where both metrics are represented by violin
plots. The effect of these drift scenarios on the model performance is evaluated by
varying the proportion of OOD samples, represented by the variable p, from 0% to
100%. A set of documents from the ID set is sampled at each time point as a baseline
to control for fluctuations that can be attributed solely to the variance in data.

The results in Fig. 4.3 illustrate that different novel features can significantly
impact the performance of the DL model. It can be observed that the mean IoU drops
substantially (-0.14) in the background color scenario, while it remains relatively
stable (-0.02) in the case of background images. This is in line with previous
literature, which suggests that DL models can be fairly robust to certain sources of
covariate shifts, depending on the regularization and data augmentation techniques
applied during training.

It is also observed that the Hellinger distance increases proportionally as the
fraction of OOD samples increases. However, it is worth noting that the distance
grows faster in the background color scenario, where the model degradation is
stronger. Additionally, the correlation between the Hellinger distance and the mean
IoU is weak without drift (ρ = 2.51×10−1), but strong in the background image
(ρ =−0.904) and background color (ρ =−0.998) scenarios.

The accuracy of the drift detector was evaluated using ROC curves, as shown
in Fig. 4.4. The results indicate that the detector can effectively distinguish drift
caused by background color from random noise resulting from data sampling, with
almost perfect performance across all values of p. On the other hand, drift due to
background images can only be detected with acceptable performance (AUC> 0.85)
when p > 70%. When a threshold of 0.1 is set on the Hellinger distance, drift due to
background color can be detected with a true positive rate of 100%. However, drift
due to background images is only detected when p > 60%, and with low confidence
(true positive rate between 12% and 50%). The performance of the detector is



4.3 OOD Detection in DL 101

dependent on the size of the time window used in the experiments (N = 1000), and
it may vary with changes in the window size.

0 0.5 1

0

0.2

0.4

0.6

0.8

1 p
10%(AUC=0.97)
20-100%(AUC=1)

Background color vs No drift (ROC)

False Positive Rate

Tr
ue

 P
os

it
iv

e 
Ra

te

(a)

0 0.5 1

0

0.2

0.4

0.6

0.8

1 p
10% (AUC=0.50)
20% (AUC=0.54)
30% (AUC=0.61)
40% (AUC=0.65)
50% (AUC=0.76)
60% (AUC=0.83)
70% (AUC=0.86)
80% (AUC=0.91)
90% (AUC=0.96)
100% (AUC=0.96)

Background image vs No drift (ROC)

False Positive Rate

Tr
ue

 P
os

it
iv

e 
Ra

te
(b)

Fig. 4.4 The ROC curves for drift types are plotted against the percentage p of OOD
samples. In the case of background color vs. no drift classification (a), an AUC of
1.0 is attained for p≥ 0.2.

4.3 OOD Detection in DL

There is a strong interest in making CNN classifiers more robust by endowing them
with the capability to separate samples to a given distribution from the others [158–
160, 162].

Several methods were proposed in the literature for OOD detection [158]. How-
ever, the comparison of different methods is complicated by the broad definition of
OOD and the wide variety of settings under which they are tested: the best method
intrinsically depends on the experimental settings and its underlying assumptions.
For instance, distance-based methods were found to yield better performance than
those based on prediction scores depending on whether the OOD samples are far
away or close to the decision boundary between classes [175].

In real-world scenarios OOD samples can be both largely different or fairly
similar with respect to those considered as ID. [176] distinguishes among Far-
OOD and Near-OOD samples. In particular, Far-OOD samples are those that are
significantly different from the ID samples and are often from a completely different
distribution. For example, a model trained on natural images may encounter Far-



102 Monitoring Data Changes

OOD samples from medical images. On the other hand, Near-OOD samples are
those that are similar to the ID samples but have subtle differences. For example,
a model trained on natural images may encounter Near-OOD samples that are
heavily occluded or have been digitally altered. The ability to accurately detect
both types of OOD samples is important in real-world applications where the model
may encounter unexpected data. In general, performance on Far-OOD detection is
usually satisfactory, Near-OOD detection is still challenging for many state-of-the-art
methods [177]. Another recent study [175] shows how, even on handcrafted toy
datasets, no single state-of-the-art method can be identified as out-performing the
others. Additionally, the authors demonstrate a correlation between the size of the
dataset and the performance of OOD detection techniques, thus underlining how the
problem is strongly dataset-dependent. Other studies [178–180] demonstrate how a
large number of classes and real-world images can prove challenging for many well-
established OOD detection techniques. Finally others [181, 182], discuss the open
issue of the selection of a proper benchmark for OOD-Detection, demonstrating how
choosing two different datasets as ID and OOD (as performed by a large amount of
the literature) can result either in an overly simplified problem of Far-OOD detection
or in a large semantic overlap between the two distributions.

In this context, the current work aims to describe an innovative methodology
adopted during the construction of a novel large-scale and realistic OOD Detection
benchmark. Moreover, a performance comparison of several state-of-the-art tech-
niques for OOD detection on the proposed dataset is reported. In particular, the study
focuses on techniques that do not require the retraining of the target model to detect
OOD samples. As highlighted by recent research works [171], current solutions
for OOD detection encounter difficulties when applied to real-world image datasets
with numerous classes, making it important to evaluate the effectiveness of OOD
detection techniques on a challenging benchmark. As such, this study proposes a set
of datasets with increasing levels of semantic overlapping, spanning from Far-OOD
samples to Near-OOD samples, and evaluated state-of-the-art techniques for OOD
detection on these benchmarks. By conducting a comprehensive comparison of these
techniques on a realistic datasets, more insights into the strengths and limitations
of different approaches are provided, as well as a contribution towards improving
the state-of-the-art in OOD detection. Finally, the novel methodology to perform a
semantic mapping between concepts from different datasets is described in details.



4.3 OOD Detection in DL 103

The rest of the Chapter is organized as follows. Section 4.3.1 provides an
overview of the related work on OOD detection, including existing techniques and
benchmark datasets. In Section 4.3.2, the problem is defined and a brief explanation
of the OOD techniques compared in the experiments is provided. Section 4.3.3 details
the experimental settings and the process of creating several realistic benchmarks
for OOD detection. The results obtained from the experiments are presented and
discussed in Section 4.3.6.

4.3.1 Related Work

OOD Detection Techniques In light of recent attention given to the detection
of OOD samples, numerous approaches have been proposed to tackle the issue.
These solutions can be broadly categorized into two groups: classifier-based and
generative techniques. While the latter aims to explicitly model the target distribu-
tion to reject OOD samples, the former concentrates on strengthening the current
model’s robustness or combining it with an external classifier for OOD detection.
Classifier-based methods refer to a broad family of solutions that tend to prioritize
discriminative solutions to the problem of OOD detection, although in significantly
diverse ways. Confidence-based techniques aim to produce a numerical score that
can accurately evaluate the probability of a prediction being accurate. Common
choices for this metric include the softmax and the logit, with potential modifications
in their definition or network to increase OOD detection performance.

Despite considerable attention paid to related challenges during the 1990s,
Hendrycks and Gimpel [183] are widely recognized as the first to define OOD
detection, present assessment criteria, and propose a baseline solution. In their work,
the output of the softmax score relative to the predicted class (Max Softmax Proba-
bility, MSP) is selected as the OOD detection score. Liang et al. [171] proposed an
improved version of MSP called ODIN, which suggests scaling the softmax score
by a constant temperature parameter T. Additionally, the final score is computed
on a preprocessed version of the input image, via a constant magnitude shift in the
direction described by the gradient of the loss function, obtained through a prelim-
inary forward pass. These techniques help to expand the difference between the
ID and OOD samples’ softmax scores. The dependence on OOD data, which was
used in the original work to choose appropriate values for the temperature T and the
magnitude, is eliminated by generalized ODIN (Hsu et al. [184]). It achieves this



104 Monitoring Data Changes

Table 4.1 Usage statistics for the 10 most popular data sources used as both ID and
OOD distributions on papers performing experiments related to OOD detection.

CIFAR-10 CIFAR-100 SVHN MNIST TinyImageNet
Popularity 87% 57% 57% 56% 38%

ID 55 26 20 32 13
OOD 39 24 34 29 21

LSUN Fashion-MNIST Gaussian Noise Textures Places365
Popularity 37% 19% 22% 17% 17%

ID 0 9 1 0 1
OOD 23 9 14 11 11

by swapping temperature scaling for a function of the input and selecting the pertur-
bation magnitude value that maximizes the softmax for ID samples. Conventional
OOD identification algorithms encounter difficulties with large semantic spaces, as
evidenced by MOS (Minimum Others Score, Huang and Li [180]), which suggests
grouping related categories to address the issue. The classifier in charge of each
group benefits from a reduced complexity of the decision boundary between known
and unknown samples, resulting in better OOD detection abilities. To combat the
issue of the huge semantic space, Maximum Logit Value (MLV [179]) eliminates
the normalizing impact of the softmax function and utilizes raw logits as the OOD
detection score, preventing probability mass from spreading between similar classes.
Bendale and Boult [185] propose OpenMAX as a substitute for the softmax, be-
lieving it to be an unsatisfactory option for OOD detection. The intuition behind
their approach relies on the interdependence among the outputs of different classes,
grouped in an Activation Vector (AV). Each category is then represented by a Mean
Activation Vector (MAV), whose position to the AV of an input image is used for
OOD detection. Meinke and Hein [186] introduced CCU, a model able to provide
close-to-uniform prediction confidence for inputs that are sufficiently different from
the samples seen during training.

OOD Detection Datasets Previous studies have frequently employed a common
approach, which is to designate one dataset as the ID set and multiple other datasets
as OOD. The choice of datasets is often similar across research studies and driven
by convenience in retrieving or processing well-established research benchmarks.
This approach allows for easy comparison of results with other methods tested on
the same benchmark.



4.3 OOD Detection in DL 105

To retrieve common choices for ID and OOD datasets, a set of 63 papers pub-
lished on the topic of OOD detection in recent years (spanning from 2015 to 2021,
with a single outlier from 1999) were analyzed. Usage statistics for the 10 most
commonly selected datasets are reported in Table 4.1. For each dataset, the popular-
ity (measured as the percentage of papers in which the dataset is used) is reported
along with the number of papers using the dataset as an ID or OOD source of data.
Many popular datasets are toy datasets such as CIFAR-10, CIFAR-100, MNIST and
Fashion-MNIST, containing a small number of classes and low-resolution images,
allowing for quick and rapid experiments. CIFAR-10 [187] is the most commonly
used dataset, appearing in 87% of the analyzed papers. The dataset contains a large
number of small resolution images (60,000) from 10 classes, making it suitable for
evaluating the performance of DNNs on a variety of classification tasks. CIFAR-
100 [187] and SVHN [188] are the next most commonly used datasets, appearing in
57% of the papers. CIFAR-100 has 100 classes, and each class contains 600 images.
SVHN is a street view house number dataset, consisting of over 600,000 digit images.
MNIST [8] is a widely used dataset for digit recognition tasks, and is included in
many introductory ML courses. Despite its relatively small size (10,000 training
images and 60,000 test images), it is still used in 56% of the papers analyzed, due
in part to its simplicity, which allows researchers to quickly evaluate new methods
or architectures. Fashion-MNIST [189] is a relatively new alternative to MNIST
appearing in 19% of the papers analyzed. It contains 10 classes of clothing items,
and consists of 60,000 training low-resolution, grayscale images. It was created
to provide a more challenging toy problem than MNIST while retaining similar
characteristics in sample and dataset size.

TinyImageNet [190] and LSUN [191] are larger datasets, containing 200 and 10
classes, respectively. They are less commonly used, appearing in only 38% and 37%
of the papers, respectively, representing in general more complex dataset to work
with. TinyImageNet contains 100,000 images representing a subset of the complete
ImageNet dataset. On the other hand LSUN is made of a large number of images
from 10 scene classes.

Finally, Gaussian Noise and Textures [192] datasets are less commonly used,
appearing in only 22% and 17% of the papers, respectively. These datasets are often
used to evaluate the robustness of ML algorithms to noise or texture variations. The
Gaussian Noise dataset consists of images from the ID datasets with Gaussian noise
added at various levels of intensity, while the Textures dataset contains 5640 images,



106 Monitoring Data Changes

each depicting one of 47 different texture categories such as brick, grass, or sand.
Finally, Places365 [193] is a large-scale scene recognition dataset, consisting of over
1.8 million images in 365 categories. It is used less frequently than the other datasets,
appearing in only 17% of the papers analyzed.

Interestingly, several datasets were used more frequently as OOD sources than
ID sources. For example, Gaussian Noise datasets and Places365 were used as ID
sources in only one paper, but are common choices for OOD sources, appearing in 14
and 11 papers, respectively. Similarly, Gaussian Noise generated datasets and LSUN
were not used as ID sources in any of the papers analyzed, but were used as OOD
sources in 23 and 11 papers, respectively. The vast majority of works use different
datasets as sources of ID or OOD data. For example, Hendrycks and Gimpel [183]
used, CIFAR-10 and SVHN as ID data, while SUN and Gaussian Noise datasets
are used as OOD data. Similarly, in a paper by Liang et al. [171], CIFAR-10 and
CIFAR-100 were used as ID data, while SUN, LSUN and Gaussian Noise datasets
were used as OOD data.

Only a small amount of works attempt to mix classes from different datasets.
The work by Roady et al. [178] represents an attempt to provide a standardized set
of evaluation problems for testing the scalability of OOD detection methods. In
particular, the authors evaluate the ability of OOD detection methods to scale by
experimenting on two large-scale image classification datasets, namely ImageNet-1K
and Places-434. They create three separate OOD problems of varying difficulty using
these datasets. For the first problem, called Noise, they generate synthetic images
from a Gaussian distribution to match the normalization scheme of training and test
images. The second problem, called Inter-Dataset, is of intermediate difficulty and
involves testing each method’s ability to detect outlier samples drawn from another
large-scale dataset. For the third and most challenging problem, called Intra-Dataset
novel classes are made up of the remaining classes in each dataset. This is difficult
because the image features of a class are often very similar to the features of other
classes in the dataset. The authors keep the training set and models fixed across
the three paradigms, but the test sets vary across them. They construct the OOD
evaluation sets for each problem/dataset by randomly choosing 10,000 ID samples
evenly among the ID classes and 10,000 outlier samples evenly among the OOD
classes within each respective dataset validation set. Both Inter- and Intra-dataset
settings, however, have conceptual or practical drawbacks: inter-dataset comparison,
relying solely on the correspondence between the names of the categories between



4.3 OOD Detection in DL 107

the ID and OOD datasets, may ignore or under-estimate semantic overlap between
classes from both datasets. On the other hand, intra-dataset comparison affects the
training set and thus cannot be applied as is to existing pre-trained models.

4.3.2 OOD Detection: Problem Definition

In this section, the OOD detection problem is briefly introduced along with a descrip-
tion of the techniques included in the experiments. The OOD detection problem can
be defined as the task of identifying inputs that are different from the distribution
of training data. In other words, given a model trained on a specific dataset, OOD
detection aims to determine if a new sample comes from the same distribution as the
training data or not.

Definition of OOD Detection Let DI be the probability distribution of ID data,
including KI different classes, and DO = {D i

O}∞
i=1 the set of distributions of OOD

data. In the most general setting, at training time a dataset T = TI ∪TO is available,
where

TI = {(xi,yi,zi)}NI
i=1,

with xi ∼DI , yi ∈ {1, . . . ,KI}, zi = 0

is the set of ID training samples and

TO = {(xi,yi,zi)}NO
i=1,

with xi ∼D j
O ∈DO, yi ∈ {1, . . . ,K j

O}, zi > 0, j ∈ {1, . . . ,J}

is the set of OOD training points. In particular, each xi is a training image drawn
from a distribution, yi is the corresponding class index, K j

O is the number of classes
modeled by distribution D j

O, J the number of OOD distributions represented in TO,
and zi the ground truth label for OOD detection (henceforth referred to as OODness)
of the i-th sample, which is 0 if ID and higher otherwise.

The classifier is then defined as a vector function

f : Rd → RKI ,x 7→ l,



108 Monitoring Data Changes

where x is a d-dimensional input and l the vector of class scores, referred to as logits.
The model f is composed of L concatenated layers, whose output li is computed as

li = f i(x), i ∈ {1, . . . ,L},

having defined f i as the composition of layers 1, . . . , i. The whole classifier f then
coincides with f L, and the logits vector l with lL. Class scores l are converted to
class probabilities p via the application of the softmax function

pi = S(l)i =
eli

∑
KI
j=1 el j

≈ P[y = i|x = x], (4.5)

where l = f (x) and y is the true label for input x. The predicted class c is then chosen
to be the one for which the assigned probability is the highest: c = argmax(p). The
network is usually trained by minimizing the cross-entropy loss LCE between the
predicted probabilities and the one-hot-encoded vector y representing the ground
truth.

LCE(y,p) =−
KI

∑
i=1

yi log pi =− log py (4.6)

The ability to reject undesired inputs is provided by an additional function s, that
returns the OOD score o = s(x) for sample x. This score is then discretized by
picking a suitable threshold, in order to obtain the binary prediction between ID and
OOD.

O(x) =

OOD o < θ

ID o≥ θ

(4.7)

One of the main differences among research works lays in the choice of the scoring
function s, which can be obtained by extracting some internal network outputs, by
means of an additional classifier or by explicit density estimation. The threshold θ is
usually selected with the aim of optimizing a relevant metric for the specific task and
dataset.

Scoring Methods for OOD Detection Although methods that use OOD samples
during training have been successful, the infinite variety of possible unseen distribu-
tions poses a theoretical limitation on them. These methods tackle a classification
problem with a well-defined set of outlier distributions, and increasing their diversity



4.3 OOD Detection in DL 109

may not be helpful for dealing with future observations. This chapter focuses on
OOD detection methods that require minimal to no supervision, typically limited to
hyperparameter selection.

Post-hoc techniques are preferred to avoid expensive training operations and to
enable OOD detection on a large number of pre-existing models. These techniques
can be applied to existing networks without the need for retraining from scratch.
The most commonly used method as a baseline in the literature is MSP [183]. It
utilizes the output of the softmax function S (4.5) to obtain an OOD score for a given
prediction on sample x:

o = s(x) = max
i∈1...KI

S(x)i

This technique does not require any addition to the existing network, as the softmax
output is already computed to select the predicted class and is assumed to represent
the prediction confidence. No training phase is necessary, and a single forward pass
is sufficient for performance evaluation, as there are no hyperparameters to select.

A more recent improvement called Maximum Logit Value (MLV) uses raw
network outputs instead of the normalized ones used by MSP [179]. This has been
helpful in cases where applying the softmax function significantly changes the class
scores.

o = s(x) = max
i∈1...KI

li = max i ∈ 1 . . .KI f (x)i

MSP can leverage the confidence scores typically given as output by neural classi-
fiers, while MLV requires some slight changes to the code to save the logit value
corresponding to the predicted class. An entire dataset can be scored in a single pass
through the network.

ODIN [171] is a simple but effective method that enhances MSP by slightly
altering the model workflow. It proposes two different strategies, temperature scaling
and input preprocessing, that are combined, while the softmax is chosen as the
scoring function. Temperature scaling involves dividing the logits by a positive
integer constant T before applying the softmax, which increases the gap between in
and OOD points.

ST (x) = S( f (x)/T )

Input preprocessing, inspired by adversarial attacks, involves adding a small pertur-
bation to a sample x. Each sample is propagated through the network, and the sign
of the loss gradient with respect to x is computed and added to the original point,



110 Monitoring Data Changes

scaled by a positive constant ε . This trick should move input points closer to a peak
of the softmax, increasing the gap between those that were already nearby (ID) and
the remaining ones (OOD). The final score for sample x is given by:

o = s(x) = max
i∈1...KI

ST (x̃)i

Finally, OODL [194] avoids the expensive retraining of the original model f ,
but does not exploit its confidence scores in order to produce the OODness value.
Instead, it leverages an external one-class-classifier g to decide whether a point is
ID or not. Aiming to reuse as much as possible the existing model and keeping g
simple, the additional classifier does not act on raw samples, but on intermediate
outputs from the original network f . These network features z are extracted from
one of the L layers of the model f , called oodl, and later compressed to reduce their
dimensionality.

z = f oodl(x)

z ∈ Rcoodl ,hoodl ,woodl

ẑ =
hoodl

∑
i=1

woodl

∑
j=1

zci j

The resulting vector ẑ ∈ Rcoodl is then fed to the OOD detector g, which outputs the
final score o.

g : Rcoodl → R

ẑ 7→ o

Following the official OODL implementation [195] a One-Class SVM can be used
as an OOD Detector. The set of hyperparameters used for training includes among
the others the choice of a function for kernel approximation (RBF or Nystroem)
and the fraction of allowed training errors ν . Additional details on the training
procedure for the OOD Detector g is are illustrated in Algorithm 1. Finally, the
network layer from which features are extracted highly impacts the performance of
the resulting OOD Detector. Following the approach defined by [194], candidate
layers are chosen between the activation layers of a particular model. Algorithm 2
describes the process through which the optimal later is determined.



4.3 OOD Detection in DL 111

Algorithm 1 Training of the OOD Detector g
Require: training dataset features, Xt f , validation dataset features V f

ss← StandardScaler()
for data batch b ∈Xt f do

ss.partial_fit(b)
end for
γ ← 1/#features of Xt f
best_score← 0
for ν ∈ {0.5,0.1,0.01} do

for kernel ∈ {RBFSampler,Nystroem} do
for average ∈ {True,False} do

svm← SGDOneClassSV M(ν ,average)
ker← kernel(γ)
for data batch b ∈Xt f do

x← ss.trans f orm(b)
if ker not fit then

ker. f it(x)
end if
x← ker.trans f orm(x)
svm.partial_ f it(x)

end for
cl f ← make_pipeline(ker,svm)
auc← AUROC(ss,cl f ,V f )
if auc > best_score then

best_score← auc
best_cl f ← cl f

end if
end for

end for
end for
return make_pipeline(ss,best_cl f )



112 Monitoring Data Changes

Algorithm 2 OODL Training
Require: training dataset features, Xt f , validation dataset features V f

candidate_layers←{2, 5.0, 5.1, 10.0, 10.1, 15.0, 15.1, 22.0, 22.1, 27.0, 27.1,
34.0, 34.1, 39.0, 39.1, 46.0, 46.1}
oodl_score← 0
for l ∈ candidate_layers do

f t← extract_ f eatures_o f _layer(Xt f , l)
f v← extract_ f eatures_o f _layer(V f , l)
d← train_ood_detector( f t, f v) ▷ see Algorithm 1
auc← AUROC(d, f v)
if auc > oodl_score then

oodl_score← auc
oodl← l

end if
end for
return oodl,oodl_score

4.3.3 Proposed Benchmark

Several datasets with varying levels of complexity with respect to the task of OOD
detection. This section introduces the research assumption and methodology used to
create them.

Research Context and Motivating Example The selected benchmarks were de-
signed having in mind, as target application, the automatic tagging of images from
social media platforms such as Facebook or Instagram, with applications in social
sciences and digital humanities, was considered. Specifically, research activities
were carried out within the context of the FACETS1 (acronym for Face Aesthetics in
Contemporary E-Technological Societies) research project, carried out by a multi-
disciplinary team at Università degli studi di Torino with the goal of studying the
meaning of the human face in relation to the fast-changing and diverse contexts in
which people have been immersed since the beginning of the digital era. FRESCO
(Face Representations in E-Societies through Computational Observation), led by Po-
litecnico di Torino, is the quantitative branch of FACETS, with the goal of analysing
profile pictures from multiple social-networks and extracting human-interpretable
information. Data analytics tools and AI models can help in semiotics and social

1Website: http://www.facets-erc.eu/about/

http://www.facets-erc.eu/about/


4.3 OOD Detection in DL 113

studies, by uncovering hidden patterns in the data, driving the research activity on a
different path that would have been otherwise neglected. To this aim, researchers
may want to exploit readily available pre-trained models for automatic classification
and tagging, which however requires operating under the open-world assumption.
Hence, it is necessary to detect and, if necessary, exclude wrong predictions. Scene
classification was selected as target application, and thus Places365 was selected as
the ID dataset for the benchmark. In addition, as highlighted in Section 4.2.1, there
is the need to investigate more complex settings for OOD detection, moving beyond
toy problems.

Dataset Split Although the selected techniques do not require OOD samples to
be available at training time, a selection of ID and OOD samples is occasionally
required to perform hyperparameter selection. To avoid biases, a validation and
test set was defined for every configuration for hyperparameter selection and OOD
detection evaluation, respectively.

Baseline Dataset A Baseline dataset representing a basic level of complexity
was constructed by following the most popular choice in literature, which involved
choosing a different dataset as the source of OOD data. The validation split of
Places365-Standard was selected as the ID data, with a total of 100 labeled images
per each of the 365 categories. For OOD data, SVHN (in the multi-resolution
version) was selected as it is semantically different from Places365 and representing
one of the most popular choices in the literature for similar OOD experiments. To
match the cardinality of ID samples (36.5K), a subset of images was sampled from
SVHN test set, to integrate the 33.5K images of the training set. The stratification
of the split between test and validation is done per-source to maintain the same
proportions between the original datasets. On the other hand, SVHN labels were
neglected and the splitting operation follows the order in which images appear in the
original list. The composition of the dataset is reported in Table 4.2.

Inter-Dataset OOD Detection To further increase the complexity of the task, a
second dataset named Inter-Dataset OOD Detection is proposed, inspired by the
work of Roady et al. [178]. In this setting, a model is trained to distinguish between
two distinct datasets, but the OOD images are taken from an object detection dataset



114 Monitoring Data Changes

Baseline Dataset (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
SVHN (train) 0 1 0 16,701
SVHN (test) 0 1 0 1,549

Total 365 2 18,250 18,250
Table 4.2 Composition of the Baseline dataset. For SVHN samples, it is assumed to
have a single category, e.g. "number", instead of the usual 10 digits.

Inter-Dataset (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 0 968 0 18,108

Total 365 968 18,250 18,108
Table 4.3 Composition of the splits used for the Inter-Dataset OOD Detection. In this
setting the task consists of discriminating among the two datasets, therefore one of
them in considered entirely ID and the other as OOD. Common classes are removed
from ImageNet.

spanning a large number of diverse categories that are closer to the target distribution
if compared to those in the baseline dataset. In this setting, the OOD dataset is
ImageNet-1K, specifically the ImageNet Large Scale Visual Recognition Challenge
from 2012 [196], which includes 1.2 million training images from ImageNet and
50,000 validation samples collected from Flickr, spanning 1,000 categories. Common
classes between ImageNet-1K and Places365-Standard are identified and removed,
resulting in a 32 common categories removal. The validation split of Places-365 is
maintained as the ID set, while the OOD samples are collected from the training set
of ImageNet via stratified random sampling on all classes (except for those shared
with Places365), until the cardinality of OOD and ID examples are equal. Refer to
Table 4.3 for the details on the dataset composition.

WordNet ImageNet The Inter-dataset setting disregards the fact that categories
from ImageNet-1K and Places365, while technically different concepts, may be
highly correlated from a semantic point of view. In this case, a classifier trained on
Places365 may yield entirely reasonable predictions, and thus it would be advisable
to consider such samples as part of the ID distribution.



4.3 OOD Detection in DL 115

In addition, many categories can represent synonyms or subsets of ID concepts.
Scene classifiers often rely on detecting objects within an image that are typically
associated with a particular category. For example, an image of an empty room can
still be classified as a "bedroom" if the room layout, wall color, and other contextual
cues are consistent with a typical bedroom. However, the "bed" object will be present
inside a "bedroom" scene in the vast majority of cases. By extension, the same image
may be categorized as "bedroom" in Place365 and "bed" in ImageNet, and both
classification should be considered appropriate, whereas in the standard Inter-dataset
setting the "bed" class would be considered as OOD and "bedroom" as ID. Therefore,
some categories from the ImageNet dataset should not be considered entirely OOD
even if they are not included in the classes from Places365.

To select a suitable split, a reliable and objective method for measuring similar-
ities between classes is proposed. The WordNet lexicon [132] can be used to link
categories from different datasets by analyzing how these words are connected by
semantic relations. WordNet groups nouns, verbs, adjectives, and adverbs into cogni-
tive synonym sets (synsets), which express distinct concepts. Synsets are linked by
conceptual-semantic and lexical relationships, making it easy to identify synonyms.
Other types of relationships, such as hypernymy-hyponymy, where one synset is a
more specific version of another, and holonymy-meronymy, where the meronym is a
part of the holonym, are also considered in the proposed approach.

To compute similarity metrics between ImageNet-1K categories and Places365
classes, the concepts of Places365 were mapped onto WordNet synsets. While
most of the mapping was automated, manual intervention was required for some
scene labels that were not included in a WordNet synset. Since Places365 labels are
constituted of words and not synsets, a single ID class could be correctly associated
with more than one WordNet concept. To choose the best matching concepts between
multiple possibilities, a distance metric between semantic concepts was necessary.
Pedersen et al. [197] implemented six metrics for similarity measurement using
WordNet, including Path (a baseline metric equal to the inverse of the shortest path
between two concepts), Leacock-Chodorow [198], Wu-Palmer [199], Resnik [200],
Lin [201], and Jiang-Conrath [202]. The first three metrics mainly depend on the
shortest path among nodes of the concept tree, while the latter ones involve the
information content of the nodes. The information content is obtained empirically
by computing the frequency of a given word in a large collection of texts (a corpus)
and can be referenced by similarity formulas. For each class in ImageNet, distances



116 Monitoring Data Changes

WordNet ImageNet T40 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 56 944 2,800 21,332

Total 421 944 21,050 21,332
WordNet ImageNet T45 (val/test)

ID classes OOD classes ID samples OOD samples
Places365-Standard (val) 365 0 18,250 0

ImageNet (train) 90 910 4,500 22,750
Total 455 910 22,750 22,750

WordNet ImageNet T50 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
ImageNet (train) 140 860 7,000 25,560

Total 505 860 25,250 25,560
Table 4.4 Composition of the WordNet ImageNet datasets

from all previously identified synsets of Places365 were computed using the six
aforementioned metrics. The closest synset was selected by taking the maximum
value of the similarity score, separately for each metric, and min-max scaling it
between 0 and 1 afterwards. After evaluating the scores, path-based metrics were
found to perform better in identifying common categories and to adhere better to
expectations. To account for all of them with a single score, an average of the three
path-based metrics (Path, Leacock-Chodorow, and Wu-Palmer) was used as the final
metric of similarity. Three threshold values of 0.40, 0.45, and 0.50, determined
experimentally, were proposed for discretization between ID and OOD labels. The
resulting datasets are described in Table 4.4.

FACETS OOD Detection T1 and T2 To better represent real-world data and
focus on semantic content the ImageNet and SUN397 datasets were manually an-
notated, starting from three different datasets, with the goal of assessing whether
each individual class can be considered ID or OOD w.r.t. the source distribution
of Places365. The validation split of Places365-Standard was maintained for ID
samples as it is considered the most reliable option due to its shared database with
the training set. On the other hand, SUN397 [203] was added to the composition
of the last two datasets for both ID and OOD data. This dataset is a subset of the



4.3 OOD Detection in DL 117

Scene UNderstanding (SUN) database and contains 108,754 images categorized
into 397 classes. The SUN397 dataset has a strong connection with Places365, with
294 classes being shared between the two datasets, and some others being similar.
Incorporating SUN397 into the composition of the datasets enabled the gathering
of more samples from a different data source for the categories belonging to the
ID distribution. This strengthened the evaluation capabilities of these datasets in
terms of generalization. However, not all of the non-shared categories can be clearly
considered OOD, and manual inspection is required to identify and match similar
classes. Labelling operations of this kind are risky and can potentially introduce
biases or adversely affect the performance of the detector. To mitigate this problem,
classes in SUN397 are not assigned a binary label but instead given an OODness
value ranging from 0 to 3 based on the following criteria:

• 0: classes from that appear in Places365 with the exact same label

• 1: classes that are semantically close to a class from Places365

• 2: classes which tend to include features typical of one or more ID classes

• 3: the remaining categories

The availability of fine-grained labelling enables experimentation with different
dataset configurations. Two main versions of the dataset were investigated: T1, in
which classes labelled as 0 or 1 are considered ID while 2 and 3 are considered OOD,
and T2, where 0, 1 and 2 classes are considered ID and categories labelled as 3 are
considered OOD.

In contrast, each category in ImageNet-1K is manually given a binary OODness
label of 0 or 1, with classes that appear in Places365 or represent objects typically
associated with a scene from the target dataset being assigned the label 0 (ID), 1
(OOD) otherwise. The choice of the threshold for the classes of SUN does not affect
the way ImageNet classes are considered. The statistical properties of datasets T1
and T2 are reported in Table 4.5.

4.3.4 Preliminary Analysis

In the considered research setting, the underlying motivating question is not necessar-
ily whether ImageNet-1K samples can be distinguished from Places365 images, but



118 Monitoring Data Changes

FACETS OOD Detection T1 (val/test)
ID classes OOD classes ID samples OOD samples

Places365-Standard (val) 365 0 18,250 0
SUN397 319 78 46,851 7,530

ImageNet (val) 356 644 8,900 16,100
ImageNet (train) 0 644 0 50,232

Total 1,040 1,366 74,001 73,862
FACETS OOD Detection T2 (val/test)

ID classes OOD classes ID samples OOD samples
vv heightPlaces365-Standard (val) 365 0 18,250 0

SUN397 351 46 49,827 4,554
ImageNet (val) 356 644 8,900 16,100

ImageNet (train) 0 644 0 56,606
Total 1,072 1,334 76,977 77,260

Table 4.5 Composition of the FACETS OOD detection dataset

rather whether incorrect or misleading outputs can be discriminated from plausible
predictions, irrespective of the specific set of labels used to annotate the dataset. As
a preliminary step to better characterize the behaviour of scene classifier (Resnet50
pre-trained on Places365), as well as the datasets introduced in Section 4.3.3, the
network predictions were analyzed to understand if specific or consistent patterns of
misclassification emerged. The analysis was conducted on the OOD Detection T1
dataset, including examples from both ImageNet and SUN.

Top-5 accuracy is the most common metric used on Places-365. However,
when dealing with potentially OOD samples, classification accuracy cannot be
applied because the target label sets are generally different from the predicted labels.
Therefore, to obtain a similar measurement for OOD detection datasets, a slightly
different approach must be followed. Specifically, the present analysis deals with
the question "how similar is the predicted class to the correct one?". To address this
question, a strategy similar to the one used to label the WordNet-ImageNet datasets
is adopted, which involves exploiting semantic similarity between class labels.

Similarly to the mapping procedure described in Section 4.3.3, a mapping was
performed for SVHN and SUN397 datasets to ensure methodological consistency.
Only one class is available for SVHN, and it was manually mapped to digit.n.01. For
SUN397, the associations were performed in a partially automated way, following
the same procedure used for Places365. This process was eased by the large number



4.3 OOD Detection in DL 119

of shared classes between the two datasets, allowing to re-use 294 out of the 397
required mappings, as these categories are shared with Places365. Algorithm 3
shows how the similarity score was calculated given the ground truth class and
the predicted class, using the average among Wu-Palmer and Path similarity as the
metric. Other similarity measures were discarded due to their unbounded nature,
which could make them prevail over those limited between 0 and 1.

Algorithm 3 Prediction similarity computation
Require: ground truth class gt_label, predicted class pred_label

gt_synsets← get_synsets_ f or_class(gt_label)
pred_synsets← get_synsets_ f or_class(pred_label)
max_sim← 0
for s1 ∈ gt_synsets do

for s2 ∈ pred_synsets do
sim← Wu_Palmer_similarity(s1,s2)+path_similarity(s1,s2)

2
if sim > max_sim then

max_sim← sim
end if

end for
end for
return max_sim

The newly defined scoring function was utilized to conduct multiple aggregated
measurements aimed at evaluating the behavior of the pre-trained model. The
average similarity between the ground truth labels of each OOD sample from the
original dataset and the predicted classes from the classifier trained on Places365 is
reported in Fig. 4.5. The plot is restricted to the 10 best/worst performing classes
for visualization purposes. Interestingly, no class from the Places365 validation set
appears among the top 10 best performing categories, underlining a strong semantic
similarity between SUN and Places365 categories. ImageNet classes are in general
the ones which perform the worst, as the semantic similarity between an object and
its background is usually low.

Likewise, the 10 best/worst ID classes (i.e., from the Places365 dataset) based
on the average similarity between the predicted ID label and the ground truth are
presented in Fig. 4.6. As an example, the conference_room class from Places365
shows a high similarity w.r.t. the ground truth labels of the samples that were
assigned such label, meaning that the model is assigning to OOD samples a category
that is semantically near to the ground truth. In general, it appears that indoor and



120 Monitoring Data Changes

Fig. 4.5 Average semantic similarity between the ground truth category and the
predicted ID labels, as computed on the validation split of the FACETS OOD
Detection T1. SUN ground truth labels (sun prefix) are generally semantically
similar to the predicted ID class if compared to ImageNet ground truth labels (in
prefix).

man-made environments are more likely to be assigned plausible labels whereas the
same is not true for natural scenes. There could be several explanations for such a
phenomenon: artificial settings may be less ambiguous in terms of labelling with
respect to landscapes, in which multiple categories could be represented (e.g. hill,
sky or forest).

An additional way of visualizing the current network behaviour without relying
on the described similarity metric is to model relationships as a directed graph. Each
class is therefore represented as an independent node, and an edge going from node a
to node b indicates that at least one image belonging to class a was predicted as class
b. The analysis of graphs can represent a powerful technique to spot macroscopic
tendencies in the classification. In order to incorporate the additional information of
frequency and relevance of every association, the weight of each edge in the graph
was assigned to represent the strength of the bond between the two nodes. Given a
set of predictions {(yi, ŷi,oi)}N

i=1, where a sample belonging to class yi is predicted



4.3 OOD Detection in DL 121

Fig. 4.6 Average semantic similarity between the and the predicted ID labels, and
the OOD ground truth classes, as computed on the validation split of the FACETS
OOD Detection T1. Man-made environments seems to be less ambiguous and are
most likely to be semantically similar to the OOD ground truth classes.

as class ŷi with an OOD score oi, the the weight of the edge from node a to node b
has been computed as:

wab =
∑

N
i=11[yi = a, ŷi = b]oi

∑
N
i=11[yi = a]

In particular, wab represents the sum of the prediction scores scaled by the number
of samples of the true class.

However, the raw graph for FACETS OOD Detection T1, obtained using MSP
as OOD detection score, is very large, including 1,760 nodes and 41,397 edges.
Several pruning operations were performed to remove uninformative information,
such as obvious links (correct classifications, obviously ID categories, etc.) and noise
(rare and low-scored associations), in order to allow for easier niche inspections
of the graph. This was achieved by filtering self-loops (correct classifications that
are not informative for OOD detection), as well as any other link among obviously-
ID samples. For this reason, edges whose source node belongs to Places365 (val)
were removed and the remaining ones always have source and destination class



122 Monitoring Data Changes

belonging to different datasets. Several other associations could easily be identified
as correct, such as links among classes that have the same name (e.g. sun:/f/fountain,
in:fountain and places:/f/fountain) and thus removed. Finally, edges with low weight
were filtered out, as they were likely not carrying any useful information while
significantly increasing the complexity of the graph. On top of these operations,
nodes whose updated degree is zero were removed. The resulting graph (reported
in Fig. 4.7), visualized using the open source software Gephi [204] is considerably
smaller, having 989 nodes and 1022 edges. In the pruned version of the graph,
several isolated clusters, representing independent semantic groups were identified
and are reported in Fig. 4.8.

Secondly, several edges with a large weight emerged from the inspection of the
graph. Many of them represent links that were somehow neglected by the simple
algorithm used for matching class names. For instance, an underscore instead of a
white space or a different word order are the sufficient conditions for two classes to
be considered different (see Fig. 4.9).

Several others groups model meronym-holonym or scene-object relationships,
which are not easily captured by the WordNet similarity metrics largely adopted in
this work. Some examples are observable in Fig. 4.10.

Additionally a large cluster, mainly composed of classes representing animals,
can be identified by inspecting the graph. The two nodes that tend to draw a
large portion of the arrows are veterinarian_office and underwater/ocean_deep,
respectively for terrestrial and aquatic species. Other categories that appear to be
frequently selected as output when classifying animals are: aquarium, field/wild,
watering_hole, lawn, kennel/outdoor, pet_shop, tundra and rainforest. While all of
the previous are acceptable scenes for an animal, and very often the species matches
the habitat, the strength of some relations suggests possible network biases. The
fact that most dogs and domestic species are associated with veterinarian_office or
kennel while their typical environment should be a house or a garden suggests that
the model is likely to classify most scenes where a pet is present without focusing
enough on the background, possibly due to the significantly larger presence of pets
in veterinarian_office with respect to the other classes in Places365.

Finally, undesirable behaviour emerge from clusters of unrelated concepts.
Fig. 4.11 represents two clusters which are very likely originated by visual rather



4.3 OOD Detection in DL 123

places:/g/greenhouse/indoor

places:/w/wet_bar

places:/c/clean_room

places:/g/golf_course

places:/c/canyon

places:/d/dining_room

places:/f/forest/broadleaf

places:/b/baseball_field

places:/b/bus_interior

places:/g/gymnasium/indoor

places:/s/storage_room

places:/f/florist_shop/indoor

places:/r/restaurant_kitchen

places:/r/recreation_room

places:/a/amusement_arcade

places:/o/ocean

places:/m/motel

places:/a/assembly_line

places:/c/campsite

places:/r/racecourse

places:/k/kennel/outdoor

places:/d/dressing_room

places:/b/beach

places:/t/tree_house

places:/c/coffee_shop

places:/s/street

places:/s/supermarket

places:/a/arena/hockey

places:/z/zen_garden

places:/l/library/indoor

places:/b/bedchamber

places:/b/botanical_garden

places:/g/galley

places:/a/army_base

places:/g/gas_station

places:/b/biology_laboratory

places:/p/pantry

places:/b/booth/indoor

places:/e/entrance_hall

places:/b/bakery/shop

places:/i/industrial_area

places:/o/operating_room

places:/m/mosque/outdoor

places:/c/cottage

places:/f/flea_market/indoor

places:/b/banquet_hall

places:/c/cockpit

places:/p/playground

places:/p/playroom

places:/f/fabric_store

places:/p/physics_laboratory

places:/i/ice_floe

places:/t/train_interior

places:/d/desert/sand

places:/b/burial_chamber

places:/c/church/indoor

places:/b/bus_station/indoor

places:/c/cliff

places:/l/laundromat

places:/w/wave

places:/l/legislative_chamber

places:/h/hayfield

places:/h/hospital_room

places:/s/swimming_hole

places:/t/temple/asia

places:/l/landfill

places:/g/greenhouse/outdoor

places:/b/beauty_salon

places:/i/islet

places:/r/railroad_track

places:/r/roof_garden

places:/c/chemistry_lab

places:/r/restaurant

places:/a/auditorium

places:/l/lagoon

places:/b/bar

places:/c/classroom

places:/c/creek

places:/s/swamp

places:/a/archive

places:/t/train_station/platform

places:/a/airplane_cabin

places:/d/drugstore

places:/p/pharmacy

places:/b/bathroom

places:/s/shoe_shop

places:/m/moat/water

places:/v/vegetable_garden

places:/h/hot_spring

places:/s/shower

places:/p/pizzeria

places:/v/volleyball_court/outdoor

places:/m/mountain_path

places:/o/orchestra_pit

places:/w/waterfall

places:/s/soccer_field

places:/l/loading_dock

places:/m/mountain_snowy

places:/p/porch

places:/c/computer_room

places:/a/athletic_field/outdoor

places:/i/ice_cream_parlor

places:/p/pier

places:/f/formal_garden

places:/m/manufactured_home

places:/i/ice_skating_rink/outdoor

places:/w/waiting_room

places:/m/music_studio

places:/t/tundra

places:/m/medina

places:/m/museum/outdoor

places:/b/balcony/interior

places:/p/pagoda

places:/c/car_interior

places:/p/pasture

places:/b/bedroom

places:/h/highway

places:/c/conference_center

places:/j/junkyard

places:/c/corral

places:/l/lock_chamber

places:/k/kindergarden_classroom

places:/k/kitchen

places:/l/lawn

places:/r/rainforest

places:/c/corn_field

places:/c/canal/urban

places:/h/home_theater

places:/m/marsh

places:/b/beer_hall

places:/r/raft

places:/b/butchers_shop

places:/p/promenade

places:/h/harbor

places:/o/orchard

places:/r/raceway

places:/w/water_park

places:/c/carrousel

places:/v/veterinarians_office

places:/r/rope_bridge

places:/s/server_room

places:/p/picnic_area

places:/c/cemetery

places:/e/elevator/door

places:/d/delicatessen

places:/i/iceberg

places:/t/topiary_garden

places:/r/ruin

places:/a/arena/performance

places:/a/arcade

places:/s/shed

places:/f/fishpond

places:/f/football_field

places:/n/nursery

places:/f/fire_station

places:/u/underwater/ocean_deep

places:/a/archaelogical_excavation

places:/m/museum/indoor

places:/t/tree_farm

places:/m/movie_theater/indoor

places:/a/airfield

places:/s/sandbox

places:/j/jewelry_shop

places:/b/berth

places:/r/runway

places:/b/basketball_court/indoor

places:/s/swimming_pool/indoor

places:/d/doorway/outdoor

places:/s/ski_resort

places:/t/toyshop

places:/l/landing_deck

places:/n/natural_history_museum

places:/f/field/wild

places:/a/art_studio

places:/b/boxing_ring

places:/s/snowfield

places:/c/candy_store

places:/c/closet

places:/j/jail_cell

places:/b/bridge

places:/t/television_room

places:/l/lighthouse

places:/o/office_cubicles

places:/w/watering_hole

places:/j/jacuzzi/indoor

places:/a/arena/rodeo

places:/s/stadium/baseball

places:/t/tower

places:/s/shopfront

places:/s/sky

places:/o/oilrig

places:/s/staircase

places:/b/boat_deck

places:/b/bow_window/indoor

places:/h/home_office

places:/s/subway_station/platform

places:/a/arch

places:/a/amphitheater

places:/c/childs_room

places:/a/aquarium

places:/a/artists_loft

places:/m/market/outdoor

places:/s/stage/indoor

places:/l/living_room

places:/t/throne_room

places:/u/utility_room

places:/f/field/cultivated

places:/b/bank_vault

places:/b/bookstore

places:/w/water_tower

places:/c/construction_site

places:/s/sushi_bar

places:/p/parking_lot

places:/p/phone_booth

places:/h/hangar/outdoor

places:/c/clothing_store

places:/c/church/outdoor

places:/a/airport_terminal

places:/s/ski_slope

places:/c/catacomb

places:/g/grotto

places:/s/stage/outdoor

places:/p/pet_shop

places:/b/ball_pit

places:/h/hardware_store

places:/w/wheat_field

places:/a/auto_showroom

sun:/a/alley

sun:/a/amusement_arcade

sun:/a/art_gallery

sun:/a/art_school

sun:/a/athletic_field/outdoor

sun:/b/balcony/interior

sun:/b/bar

sun:/b/bathroom

sun:/b/beach

sun:/b/bedroom

sun:/b/biology_laboratory

sun:/b/burial_chamber

sun:/c/chalet

sun:/c/childs_room

sun:/c/classroom

sun:/c/cliff

sun:/c/coast

sun:/d/drugstore

sun:/f/field/wild

sun:/g/greenhouse/indoor

sun:/h/hospital_room

sun:/h/hotel_room

sun:/i/ice_floe

sun:/i/ice_shelf

sun:/i/ice_skating_rink/indoor

sun:/k/kitchen

sun:/l/lecture_room

sun:/l/library/indoor

sun:/l/living_room

sun:/m/market/indoor

sun:/m/mountain

sun:/m/movie_theater/indoor

sun:/o/ocean

sun:/o/office

sun:/p/pharmacy

sun:/p/physics_laboratory

sun:/r/restaurant

sun:/s/ski_resort

sun:/s/ski_slope

sun:/s/stadium/football

sun:/s/stage/indoor

sun:/s/staircase

sun:/t/toyshop

sun:/t/train_station/platform

sun:/a/abbey

sun:/a/apse/indoor

sun:/a/arrival_gate/outdoor

sun:/b/basilica

sun:/b/bistro/indoor

sun:/c/car_interior/backseat

sun:/c/car_interior/frontseat

sun:/c/cathedral/indoor

sun:/c/cathedral/outdoor

sun:/c/cavern/indoor

sun:/c/cubicle/office

sun:/d/dinette/home

sun:/k/kitchenette

sun:/l/lift_bridge

sun:/s/sandbar

sun:/s/sea_cliff

sun:/s/subway_interior

sun:/t/tent/outdoor

sun:/t/track/outdoor

sun:/v/van_interior

sun:/v/veranda

sun:/w/waterfall/block

sun:/w/waterfall/fan

sun:/w/waterfall/plunge

sun:/b/badminton_court/indoor

sun:/b/baggage_claim

sun:/b/basketball_court/outdoor

sun:/b/batters_box

sun:/b/bayou

sun:/b/bow_window/outdoor

sun:/c/cottage_garden

sun:/d/dentists_office

sun:/d/dinette/vehicle

sun:/d/dining_car

sun:/d/driving_range/outdoor

sun:/e/elevator/interior

sun:/f/factory/indoor

sun:/f/fairway

sun:/f/forest/needleleaf

sun:/g/game_room

sun:/h/herb_garden

sun:/h/hot_tub/outdoor

sun:/k/kennel/indoor

sun:/m/monastery/outdoor

sun:/p/promenade_deck

sun:/p/pulpit

sun:/p/putting_green

sun:/s/ski_lodge

sun:/t/theater/indoor_procenium

sun:/t/theater/indoor_seats

sun:/t/thriftshop

sun:/t/train_railway

sun:/v/videostore

sun:/v/volleyball_court/indoor

sun:/w/warehouse/indoor

sun:/c/casino/indoor

sun:/c/cheese_factory

sun:/c/chicken_coop/indoor

sun:/c/chicken_coop/outdoor

sun:/c/cloister/indoor

sun:/c/control_room

sun:/c/control_tower/outdoor

sun:/c/courtroom

sun:/c/covered_bridge/exterior

sun:/d/dock

sun:/e/electrical_substation

sun:/g/garbage_dump

sun:/j/jail/indoor

sun:/l/labyrinth/outdoor

sun:/l/lido_deck/outdoor

sun:/l/limousine_interior

sun:/m/mosque/indoor

sun:/n/nuclear_power_plant/outdoor

sun:/o/oil_refinery/outdoor

sun:/o/outhouse/outdoor

sun:/p/parlor

sun:/p/pilothouse/indoor

sun:/p/planetarium/outdoor

sun:/p/podium/indoor

sun:/p/poolroom/establishment

sun:/p/poolroom/home

sun:/p/power_plant/outdoor

sun:/r/riding_arena

sun:/s/squash_court

sun:/s/synagogue/indoor

sun:/t/temple/east_asia

sun:/t/temple/south_asia

sun:/t/tennis_court/indoor

sun:/t/tennis_court/outdoor

sun:/t/toll_plaza

sun:/u/underwater/coral_reef

sun:/w/wine_cellar/barrel_storage

sun:/w/wrestling_ring/indoor

in:EntleBucher

in:kit fox

in:Border collie

in:lionfish

in:beaker

in:television

in:bathtub

in:red-backed sandpiper

in:wardrobe

in:brown bear

in:Lhasa

in:sea slug

in:jellyfish

in:Rhodesian ridgeback

in:space heater

in:pretzel

in:gondola

in:container ship

in:miniature poodle

in:beacon

in:brassiere

in:coral reef

in:quilt

in:African grey

in:Arabian camel

in:suit

in:box turtle

in:tiger shark

in:brass

in:acorn

in:bee eater

in:colobus

in:barber chair

in:great white shark

in:bannister

in:Polaroid camera

in:greenhouse

in:sulphur butterfly

in:alp

in:harvester

in:spider monkey

in:hamster

in:screen

in:custard apple

in:vending machine

in:safe

in:soft-coated wheaten terrier

in:African crocodile

in:ballplayer

in:tennis ball

in:guacamole

in:Saint Bernard

in:black-and-tan coonhound

in:dowitcher

in:capuchin

in:Dandie Dinmont

in:strawberry

in:bittern

in:Model T

in:baseball

in:pot
in:titi

in:cardigan

in:abaya

in:Lakeland terrier

in:loggerhead

in:plate

in:wood rabbit

in:flat-coated retriever

in:Irish terrier

in:barbell

in:Chihuahua

in:basset

in:espresso

in:barometer

in:printer

in:Eskimo dog

in:running shoe

in:dumbbell

in:parachute

in:teddy

in:Mexican hairless

in:accordion

in:tiger beetle

in:yawl

in:Bedlington terrier

in:Brittany spaniel

in:laptop

in:home theater

in:horned viper

in:airship

in:vault

in:clumber

in:bathing cap

in:coho

in:patio

in:scuba diver

in:English setter

in:monitor

in:radio

in:tow truck

in:goose

in:thatch

in:loudspeaker

in:eft

in:gyromitra

in:bull mastiff

in:Pekinese

in:silky terrier

in:Leonberg

in:altar

in:sea cucumber

in:Rottweiler

in:odometer

in:Norwegian elkhound

in:recreational vehicle

in:red-breasted merganser

in:microwave

in:Loafer

in:chickadee

in:breakwater

in:starfish

in:grand piano

in:go-kart

in:curly-coated retriever

in:Bernese mountain dog

in:ice lolly

in:cougar

in:kelpie

in:meerkat

in:American Staffordshire terrier

in:gorilla

in:keeshond

in:sidewinder

in:grocery store

in:jacamar

in:golden retriever
in:axolotl

in:lesser panda

in:streetcar

in:proboscis monkey

in:birdhouse

in:golf ball

in:crayfish

in:minibus

in:pickup

in:window shade

in:Airedale

in:admiral

in:refrigerator

in:Pembroke

in:bluetick

in:redbone

in:warthog

in:ox

in:clog

in:school bus

in:cuirass

in:hair slide

in:throne

in:wing

in:goldfish

in:tiger

in:Great Dane

in:theater curtain

in:eggnog

in:Indian elephant

in:common newt

in:lifeboat

in:borzoi

in:rock beauty

in:siamang

in:indigo bunting

in:chocolate sauce

in:tiger cat

in:trench coat

in:trilobite

in:passenger car

in:Madagascar cat

in:Walker hound

in:Norfolk terrier

in:suspension bridge

in:pizza

in:Old English sheepdog

in:stage

in:bloodhound

in:affenpinscher

in:beagle

in:Appenzeller

in:swing

in:canoe

in:hare

in:ski

in:Boston bull

in:entertainment center

in:seashore

in:combination lock

in:bassinet

in:bald eagle

in:car mirror

in:little blue heron

in:snorkel

in:water tower

in:briard

in:Siamese cat

in:junco

in:handkerchief

in:hammerhead

in:hip

in:hard disc

in:Cardigan

in:muzzle

in:triceratops

in:bib

in:stingray

in:indri

in:sea snake

in:killer whale

in:medicine chest

in:Pomeranian

in:consomme

in:reflex camera

in:hot pot

in:limpkin

in:butcher shop

in:washbasin

in:bell cote

in:frilled lizard

in:apron

in:carousel

in:maze

in:komondor

in:fiddler crab

in:croquet ball

in:slot

in:water buffalo

in:Blenheim spaniel

in:warplane

in:china cabinet

in:garter snake

in:American coot

in:chimpanzee

in:menu

in:guenon

in:electric fan

in:ptarmigan

in:Samoyed

in:dingo

in:bullet train

in:hay

in:hyena

in:disk brake

in:snow leopard

in:tusker

in:bath towel

in:bison

in:castle

in:dragonfly

in:sweatshirt

in:dishrag

in:toy terrier

in:potpie

in:cradle

in:leatherback turtle

in:cassette player

in:dock

in:prairie chicken

in:CD player

in:plane

in:balance beam

in:jaguar

in:Maltese dog

in:lipstick

in:scoreboard

in:coucal

in:Weimaraner

in:African hunting dog

in:standard poodle

in:desktop computer

in:computer keyboard

in:hand-held computer

in:otter

in:soup bowl

in:Great Pyrenees

in:gown

in:American egretin:vulture

in:yellow lady's slipper

in:goblet

in:platypus

in:head cabbage

in:marmoset

in:French bulldog

in:jeep

in:American lobster

in:hotdog

in:electric locomotive

in:tree frog

in:shoji

in:lawn mower

in:oscilloscope

in:sleeping bag

in:lycaenid

in:promontory

in:mushroom

in:stinkhorn

in:sorrel

in:valley

in:water snake

in:cab

in:rapeseed

in:grille

in:Doberman

in:groenendael

in:cello

in:boxer

in:Tibetan mastiff

in:chiton

in:hippopotamus

in:black-footed ferret

in:basketball

in:hen-of-the-woods

in:patas

in:dough

in:organ

in:carbonara

in:ice cream

in:ice bear

in:measuring cup in:toilet seat

in:cowboy boot

in:miniature pinscher

in:shoe shop

in:basenji

in:cairn

in:Chesapeake Bay retriever

in:bullfrog

in:ringlet

in:Yorkshire terrier

in:brain coral

in:slide rule

in:triumphal arch

in:bell pepper

in:burrito

in:Arctic fox

in:German short-haired pointer

in:Brabancon griffon

in:wire-haired fox terrier

in:comic book

in:macaque

in:dogsled

in:analog clock

in:obelisk

in:squirrel monkey

in:horse cart

in:Shih-Tzu

in:kuvasz

in:mashed potato

in:partridge

in:langur

in:tractor

in:English springer

in:black grouse

in:desk

in:car wheel

in:skunk

in:Welsh springer spaniel

in:Bouvier des Flandres

in:necklace

in:megalith

in:trimaran

in:pug

in:pirate

in:bulbul

in:cocktail shaker

in:confectionery

in:beer bottle

in:church

in:fig

in:assault rifle

in:banana

in:jersey

in:beach wagon

in:vine snake

in:pier

in:coil

in:library

in:meat loaf

in:green snake

in:collie

in:flatworm

in:orange

in:overskirt

in:giant panda

in:prison

in:trolleybus

in:steam locomotive

in:Sealyham terrier

in:gas pump

in:paddle

in:racer

in:chambered nautilus

in:French loaf

in:dalmatian

in:sandal

in:earthstar

in:whippet

in:bighorn

in:coffee mug

in:submarine

in:drilling platform

in:gar

in:sandbar

in:mosque

in:oxygen mask

in:bulletproof vest

in:balloon

in:manhole cover

in:Irish setter

in:Newfoundland

in:mailbag

in:corn

in:daisy

in:hair spray

in:Norwich terrier

in:Tibetan terrier

in:lab coat

in:vizsla

in:wok

in:Italian greyhound

in:green mamba

in:West Highland white terrier

in:tub

in:beer glass

in:cellular telephone

in:cauliflower

in:wig

in:bagel

in:lakeside

in:dugong

in:Egyptian cat

in:four-poster

in:European gallinule

in:king penguin

in:polecat

in:Labrador retriever

in:vase

in:sea lion

in:Staffordshire bullterrier

in:ear

in:crossword puzzle

in:damselfly

in:schipperke

in:espresso maker

in:studio couch

in:seat belt

in:lynx

in:yurt

in:Australian terrier

in:sturgeon

in:zebra

in:bustard

in:whiptail

in:koala

in:howler monkey

in:puffer

in:puck

in:Scottish deerhound

in:stone wall

in:cheeseburger

in:window screen

in:diaper

in:toy poodle

in:redshank

in:brambling

in:three-toed sloth

in:chow

in:shower curtain

in:guinea pig

in:black stork

in:Scotch terrier

in:modem

in:kite

in:pickelhaube

in:bookcase

in:impala

in:electric guitar

in:weasel

in:magnetic compass

in:flagpole

in:cabbage butterfly

in:wild boar

in:geyser

in:pay-phone

in:cocker spaniel

in:broccoli

in:crib

in:backpack

in:half track

in:sock

in:leopard

in:soccer ball

in:police van

in:radio telescope

in:mixing bowl

in:miniature schnauzer

in:mailbox

in:liner

in:bee

in:toilet tissue

in:stupa

in:jean

in:pool table

in:Ibizan hound

in:Border terrier

in:Sussex spaniel

in:black and gold garden spider

in:cheetah

in:pomegranate

in:Shetland sheepdog

in:steel arch bridge

in:Japanese spaniel

in:gazelle

in:orangutan

in:sports car

in:web site

in:mobile home

in:king crab

in:rugby ball

in:hartebeest

in:conch

in:convertible

in:Gordon setter

in:lion

in:lemon

in:eel

in:space bar

in:trailer truck

in:bakery

in:papillon

in:bookshop

in:black swan

in:poncho

in:dung beetle

in:Angora

in:wall clock

in:cup

in:spiny lobster

in:goldfinch

in:speedboat

in:dial telephone

in:mountain tent

in:chain

in:mosquito net
in:washer

in:airliner

in:pillow

in:monarch

in:park bench

in:snowmobile

in:dining table

in:ruddy turnstone

in:football helmet

in:bolo tie

in:African elephant

in:hermit crab

in:minivan

in:Irish water spaniel

in:gibbon

in:Granny Smith

in:rock crab

in:soap dispenser

in:giant schnauzer

in:Irish wolfhound

in:malamute

in:artichoke

in:upright

in:German shepherd

in:grey whale

in:pelican

in:standard schnauzer

in:horizontal bar

in:freight car

in:sea urchin

in:jinrikisha

in:military uniform

in:fireboat

in:limousine

in:garbage truck

in:Siberian husky

in:ambulance

in:tobacco shop

in:anemone fish

in:aircraft carrier

in:carpenter's kit

in:cardoon

in:Dutch oven

in:jay

in:tabby

in:mountain bike

in:tape player

in:moving van

in:Greater Swiss Mountain dog

in:trifle

in:sunglasses

in:electric ray

in:schooner

in:parallel bars

in:malinois

in:fire engine

in:Kerry blue terrier

in:catamaran

in:green lizard

in:ruffed grouse

in:Persian cat

in:notebook

in:volleyball

in:breastplate

in:spoonbill

in:English foxhound

in:tank

in:dome

in:sea anemone

in:lorikeet

in:street sign

Fig. 4.7 Pruned version of the original graph, with no Intra-Dataset, obviously correct
nor noisy edges. Width and darkness of a link are proportional to the weight. Each
node’s position is determined by applying the ForceAtlas2 algorithm for graph
visualization [205].



124 Monitoring Data Changes

places:/o/ocean

places:/w/wave

places:/c/creek

places:/m/mountain_snowy

places:/i/ice_skating_rink/outdoor

places:/s/swimming_pool/indoor

places:/s/snowfield

places:/s/ski_slope

sun:/m/mountain

sun:/o/ocean

sun:/s/ski_resort

sun:/s/ski_slope

in:bathing cap

in:ski

in:valley

in:dogsled
in:snowmobile

in:grey whale

Fig. 4.8 Examples of isolated clusters consisting of few nodes.

places:/s/shoe_shop

places:/h/home_theater

places:/c/carrousel

places:/o/office_cubicles

places:/h/home_office

sun:/o/office

sun:/c/cubicle/office

in:television

in:screen

in:running shoe

in:home theater

in:monitor

in:Loafer

in:clog

in:carousel

in:plane

in:desktop computer

in:cowboy boot

in:shoe shop

in:desk

in:sandal

Fig. 4.9 Examples of strong edges between classes representing the same concepts
with slightly different names. The underscore prevented shoe shop and home theater
to be paired with their counterparts, whereas different wording or spelling were
responsible for mismatches in the case of cubicle/office and carrousel.



4.3 OOD Detection in DL 125

places:/c/campsite

sun:/t/tent/outdoor

in:sleeping bag

in:yurt

in:mountain tent

places:/c/church/indoor

places:/l/living_room

places:/t/throne_room

places:/c/church/outdoor

sun:/a/abbey

sun:/a/apse/indoor

sun:/b/basilica

sun:/c/cathedral/indoor

sun:/c/cathedral/outdoor

sun:/p/pulpit

sun:/p/parlor

sun:/s/synagogue/indoor

in:vault
in:altar

in:throne

in:organ

in:church

places:/r/recreation_room

sun:/g/game_room

sun:/c/casino/indoor

sun:/p/poolroom/establishment
sun:/p/poolroom/home

in:pool table

Fig. 4.10 Examples of strong edges between different concepts, linked by meronym-
holonym and similar relationships.

than semantic similarity: towers, lighthouses and telescopes are grouped due to their
similar shape despite their different use.

Fig. 4.11 Examples of network biases that affect classification results.

Features Extraction Examining the computed features at different layers in the
network can also be useful for interpreting the performance of OOD detection
techniques. To this extent, the validation splits of the datasets were chosen to perform
a visualization of the features, as extracted by the pre-trained model at several
layers. The visualization of the features was done using the T-SNE technique on a



126 Monitoring Data Changes

random sample of 10,000 observations. Fig. 4.12, 4.13 and 4.14 show the resulting
distributions for some of the datasets considered. The remaining ones are omitted
for simplicity. As expected, the baseline setting presents a clear distinction between
ID and OOD data at most network levels, thanks to the different characteristics of
the two adopted datasets. The remaining OOD detection settings are significantly
harder, as all samples depict real-world objects or scenes and are highly interleaved
in feature space.

Fig. 4.12 T-SNE visualization of the features extracted from the Baseline dataset at
different network layers.



4.3 OOD Detection in DL 127

Fig. 4.13 T-SNE visualization of the features extracted from the Inter-Dataset OOD
Detection dataset at different network layers.

4.3.5 Experimental Settings

In this section, the implementation and evaluation of the selected OOD detection
techniques is detailed.

ODIN and OODL Evaluation Although the original ODIN paper provides hyper-
parameter values that best suit the ODIN technique on the analyzed datasets [171],
these values may differ from the ideal ones for the network and data used in the
current work. Therefore, a validation procedure was conducted to determine the



128 Monitoring Data Changes

Fig. 4.14 T-SNE visualization of the features extracted from the FACETS OOD
Detection T1 dataset at different network layers.

optimal set of values for ε and T . Each hyperparameter was varied while keeping
the other one fixed. Specifically, ε was tested on linearly spaced values in the range
[0.0002, 0.004] with step 0.0002. On the other hand, T was chosen from the set of
values {2, 5, 10, 20, 50, 100, 200, 500, 1000}. Experimental results (see Fig. 4.15)
demonstrate the effectiveness of temperature scaling for OOD detection, even though
the performance did not improve for high values of T . This is not true for the
perturbation magnitude, as performance appeared to consistently worsen with an
increase in the value of ε , with the exception of the Baseline dataset. This difference
may be attributed to the nature of the Baseline dataset. As the dataset is composed



4.3 OOD Detection in DL 129

of Far-OOD samples, it is likely that the OOD samples are already far from regions
where the softmax is very high and are marginally affected by input preprocessing.
Conversely, if an input sample is very similar to the ID classes, its gradient could
be highly influenced by the presence of several local maxima. The perturbed point
might end up moving in the wrong direction or overshooting the desired region.
Furthermore, none of the selected values for the hyperparameter ε outperformed the
setting where no input preprocessing was used.

Fig. 4.15 ODIN validation procedure. AUROC of the OOD detection performance
when varying the temperature T and the ε hyperparameters.

In the following set of experiments, three different methods derived from the
ODIN algorithm will be considered. The first method is called TS (Temperature
Scaling), which will be evaluated in isolation. The best hyperparameters combination
resulting from the previous validation procedure will be used, which are T = 1000
and ε = 0. The second method is the full ODIN algorithm with the parameters
selected by its authors and commonly used in literature, which are T = 1000 and
ε = 0.0014. This method will be tested for comparison purposes. The third method
is a mixed solution named IP TS MLV (Input Preprocessing, Temperature Scaling,
Max Logit Value). This approach combines MLV with ODIN by using the maximum
logit of the perturbed sample, scaled by the temperature parameter T = 1000, as the
OOD detection score. The preprocessing magnitude is ε = 0.0014.



130 Monitoring Data Changes

OODL requires a more complex procedure in order to be adapted to the dataset
and model it will be evaluated on. Two main steps can be identified: learning a
decision function and applying it to the model. The original OODL paper [194] does
not provide any detailed information on how the detector is implemented, besides
the choice of the One-Class SVM and the presence of the hyperparameters k (the
chosen kernel function) and ν (fraction the allowed training errors). The official code
( [195]) reveals that these hyperparameters are fixed to ν = 0.001 and k = ’RBF’.
The other hyperparameters of the OODL implementation are the followings:

• Average: parameter of the SGDOneClassSVM, when True averages the model
coefficients over different calls to partial_fit instead of replacing older ones.
Values assumed: {True, False}

• Kernel Approximator: the function used in order to approximate a Radial
Basis Function, required in order to apply the kernel trick to the otherwise
linear SGDOneClassSVM. Values assumed: {’Nystroem’, ’RBFSampler’}

• γ: parameter of the RBF kernel, needed by both the aforementioned approxi-
mators. Its value is fixed to the reciprocal of the number of features, the same
solution implemented as ’auto’ in OneClassSVM.

• ν: parameter of SGDOneClassSVM, fixes the ratio of training samples that
can be incorrectly classified, selected among {0.01, 0.1, 0.5}.

For each of the 12 possible sets of hyperparameters values a Support Vector
Machine is trained and tested on the features extracted by specific layers of the
model on the validation dataset. Eventually, the model yielding the highest AUROC
is selected and returned as the resulting classifier. To this extent, it is required to
determine the layer from which features are extracted. AUROC scores for each layer
were evaluated experimentally and are reported in Fig. 4.16. The optimal OOD
detection layers, together with the hyperparameters of the corresponding OCSVM
were collected for each dataset. Results are shown in Table 4.6.

These results are in accordance with two findings from [194]: the optimal layer
tends to be one of the early modules of the network, as deeper ones are more focused
on class separation, and does not depend on the choice of the OOD dataset. Both of
these properties are preserved when moving from the small datasets tested by the
authors to more complex ones such as ours, the only exception being the baseline.



4.3 OOD Detection in DL 131

Fig. 4.16 OODL validation AUROC for each candidate layer.

OOD Dataset Layer Average Kernel approximator ν γ

Baseline 22.0 False Nystroem 0.5 0.0078125
InterDataset OOD Detection 15.1 True Nystroem 0.01 0.0078125

WordNet ImageNet T40 15.1 True Nystroem 0.01 0.0078125
WordNet ImageNet T45 15.1 True Nystroem 0.01 0.0078125
WordNet ImageNet T50 15.1 True Nystroem 0.01 0.0078125

FACETS OOD Detection T1 15.1 True Nystroem 0.01 0.0078125
FACETS OOD Detection T2 15.1 True Nystroem 0.01 0.0078125

Table 4.6 OODL Validation results

Evaluation and metrics The aforementioned methods for OOD detection, with the
hyperparameters and configuration resulting from the validation step, were evaluated
on the test splits of the datasets described in Section 4.3.3. The results of the OOD
detection are reported by means of three scoring functions, namely FPR@95TPR ↓,
Detection Error ↓ and AUROC ↑. The arrows describe whether a higher (↑) or lower
(↓) value is an indicator of a higher performance.

4.3.6 Results

Performance of the selected OOD detection techniques are shown in Table 4.7, and
the best score for each dataset is highlighted in bold.



132 Monitoring Data Changes

FPR@95%TPR ↓ / Detection Error ↓ / AUROC ↑

MSP TS MLV ODIN IP TS MLV OODL

Baseline 22.36/13.68/94.79 4.50/ 4.75/99.02 4.50/ 4.74/99.02 10.34/ 7.67/97.82 10.34/ 7.67/97.82 0.37/ 1.61/99.81

InterDataset OOD Detection 86.85/45.91/64.40 79.69/42.34/69.79 79.67/42.33/69.79 84.43/44.72/65.73 84.46/44.72/65.74 80.83/42.92/71.30

WordNet ImageNet T40 87.22/46.11/63.99 81.28/43.14/68.91 81.27/43.14/68.91 85.27/45.13/64.84 85.26/45.13/64.85 82.06/43.53/70.93

WordNet ImageNet T45 87.64/46.32/63.44 82.16/43.58/68.05 82.15/43.58/68.05 86.44/45.72/63.80 86.43/45.71/63.81 83.19/44.09/70.24

WordNet ImageNet T50 88.66/46.83/62.28 85.30/45.15/66.29 85.30/45.15/66.29 88.14/46.56/62.30 88.14/46.56/62.30 85.37/45.18/69.54

FACETS OOD Detection T1 82.64/43.82/69.56 74.19/39.60/75.87 74.19/39.59/75.87 79.11/42.05/72.39 79.10/42.05/72.40 82.24/43.62/67.49

FACETS OOD Detection T2 82.44/43.72/69.83 74.01/39.51/76.38 74.02/39.51/76.38 78.92/41.96/72.70 78.93/41.96/72.70 81.49/43.25/68.43

Table 4.7 OOD detection results: the best score is highlighted in bold. Specif-
ically, for each dataset, the OOD detection techniques that score the smallest
FPR@95%TPR, the smallest detection error, and the largest AUROC are high-
lighted. If multiple techniques have equal performance, both scores are highlighted
in bold.

Differences among datasets are evident: most methods are able to deal with
the Baseline providing good results, but struggle as the complexity of the problem
increases. The first sharp decrease is observable when moving to InterDataset OOD
Detection, as even the basic statistics of ID and OOD images start to become very
similar. The need for discrimination based on the semantic content further affects
the ability of the model to detect outliers, as proven by the worse performance on the
WordNet ImageNet datasets. This is even clearer when an additional data source and
more categories are added, such as with FACETS OOD Detection datasets. These
behaviours are particularly evident from the scores achieved by OODL, considering
it is the only method to rely on a decision function which is specifically trained on
each dataset.

The MSP technique proves to be a solid baseline, but is generally outperformed
by more complex solutions. Test results confirm the disadvantage for methods
relying on input perturbation: ODIN and IP TS MLV do not improve over their
basic versions, TS and MLV. OODL appears to be a suitable solution for simpler
datasets, especially in terms of AUROC. Classifier-based scores such as TS and
MLV, however, tend to largely outperform the SVM on the FACETS OOD Detection
datasets, providing even better results with respect to simpler benchmarks like
WordNet ImageNet.

The difference with respect to the adopted method could be due to the difficulties
faced by SVMs when the required decision boundary becomes very complex, while
the one with respect to WordNet datasets is likely to be a consequence of the manual
labelling: it is possible that some of the labels pander to existing network biases,



4.3 OOD Detection in DL 133

rewarding it for its mistakes rather than applying penalties. For instance, most of
the categories representing aquatic animals and fishes in ImageNet are considered
ID in the manual labelling procedure, as they are typically depicted in environments
like ocean_deep, aquarium or coral_reef, which are represented in Places365. At
the same time, since these species are usually associated with the aforementioned
scenes, the classifier might tend to use them as a shortcut to identify them. As a
consequence, test images representing one of these animals in an unusual context or
on a blank background are wrongly labelled as ID, but are likely to be given high
scores by softmax and logit-based methods. This is considered to be a correct OOD
detection result and improves the performance metrics accordingly, however it is the
effect of both the ground truth label and the classifier output being wrong.

Finally, the reliability and robustness of the model pre-trained on Places365 in
rejecting strongly misclassified ID samples was investigated. An important factor in
the choice of a method over the others can therefore be the performance in detecting
ID data, labelled with the negative class when wrongly classified and with the positive
when assigned to the correct category. Results are reported in Table 4.8.

FPR@95%TPR ↓ / Detection Error ↓ / AUROC ↑

MSP TS MLV ODIN IP TS MLV OODL

76.33/40.66/77.74 81.92/43.45/70.84 81.91/43.45/70.84 81.83/43.41/71.23 81.84/43.41/71.23 96.40/49.97/47.24

Table 4.8 Misclassification detection results on Places365-Standard (val)

While MSP was proven to be suboptimal when used for OOD detection, it is by
far the best of the evaluated methods in the misclassification detection scenario. The
softmax approach can in this case benefit from the lack of unknown categories, which
means that its main hypothesis (the closed world assumption) is met. Indeed, the
normalization step forces the total probability of the output classes to be 1, enhancing
the confidence estimates for ID samples although disregarding any additional concept
and negatively affecting OOD detection capabilities. Methods specifically designed
to identify outliers do not shine in this setting, especially OODL which was trained
in a discriminative way using a different kind of labelling. It is then predictable
(and desirable) for it to be so far from MSP in terms of performance, even achieving
sub-random AUROC scores.



134 Monitoring Data Changes

4.3.7 Discussion

As shown by [175], different OOD detection techniques do not behave consistently:
each of them might be better suited for a given type of dataset and not able to
generalize to every possible novel distribution. In particular, distance-based methods
are effective on outliers that are far from the ID data, while softmax-based ones
are better when OOD samples are close to the decision boundaries. This kind of
behavior can be observed on the custom datasets (Table 4.7): the one-class SVM
outperforms the remaining techniques on the Baseline dataset, which presents well-
separated clusters (Fig. 4.12). However, it starts to struggle when ID and OOD data
are overlapped (Fig. 4.14).

Several past works have addressed issues that are combined in the setting un-
der consideration: large datasets [178], real world images [177], large number of
classes [180], high inter-category similarity and semantic content as OOD detection
criterion [181]. The overlapping of different problems is likely to have been the
main cause of misalignment between the results and previous findings. For example,
with respect to ODIN, it was demonstrated that input preprocessing had a negative
impact on most of the datasets in this study, while being beneficial for the Baseline
and the approach used in [171]. On the other hand, although heavily modified from
its original implementation, OODL [194] matched the expectations by confirming
the intuitions that motivated its authors and by outperforming ODIN in most OOD
detection occasions, especially in terms of AUROC. Despite the fact that the results
obtained in the study are significantly worse than what is typically achieved by the
same methods on simpler datasets, they are still better than those obtained by [178]
in a very similar scenario: Table 4.9 compares the AUROC scores for Inter-Dataset
OOD detection (Places vs ImageNet).

Current Work Roady et al. [178]
ODIN OODL ODIN OCSVM
65.73 71.30 49.9 62.4

Table 4.9 Comparison of AUROC scores for ODIN and OCSVM applied to the
Places vs ImageNet task (Inter-Dataset OOD Detection), as reported by [178] and
in this study. Although the dataset was inspired by [178], it is important to note
that the implementation of both the dataset and the detection techniques differs. For
instance, Places365 was adopted as the ID, while Places434 was originally used by
the authors.



4.4 Concluding Remarks 135

4.4 Concluding Remarks

Dataset drift, or changes in the distribution of the input data, is a common and
challenging problem in the field of ML and DL applications [153]. These changes
can significantly degrade the performance of ML/DL models, making it difficult
for practitioners to adopt these blackbox models in practical settings. One cost-
effective solution for addressing dataset drift is the detection of changes in the
incoming data distribution, which can be achieved by monitoring the distribution of
features learned by the model itself [170, 163]. This approach is computationally
efficient, easy to deploy, and does not require continuous labeling of data. The case
study described in this work demonstrates that there is a strong correlation between
performance degradation and the distance from a reference feature distribution. It
was found that stronger performance deviation corresponds to larger distances [155].
Future work will involve extending the comparison to different types of CDTs with
the aim of further improving the detection accuracy, as well as investigating the
generalizability of this approach to different models and applications under more
complex drift patterns and scenarios. These findings have practical implications for
MLOps [170, 163]. The proposed strategy is readily applicable to models that are
developed in-house and to open-source implementations. However, many companies
rely on models that are trained by third-party and commercial providers, which do
not typically enable access to inner model features for various reasons, including
intellectual property concerns [155]. In such cases, end-users of blackbox models
could resort to training an auxiliary model, such as an auto-encoder [170, 163],
to learn the data distribution before or when the model is put in production. It
should be noted that this approach incurs additional costs and the features learnt by
auxiliary models could differ from those learnt by the prediction model. Finally, it
was also found that the use of synthetic data has the potential to be a powerful tool
for benchmarking concept drift detection algorithms and tailoring them to specific
use cases [155].

The work presented in the second part of the Chapter focused the problem of
OOD detection applied to a scene classifier pre-trained on Places365, evaluating
several techniques commonly adopted in past literature. The main difference with
respect to previous comparisons lies in the selection of benchmarks: the most
common choices in literature, such as CIFAR10, CIFAR100 or TinyImageNet, have
been evaluated as not sufficiently representative of a realistic scenario and were thus



136 Monitoring Data Changes

superseded by custom datasets. Similarly to [181] and [182], the focus was brought
to the semantic content of the images rather than their appearance or the source they
were taken from. Differently from their approach of manually selecting images or
categories that are not at risk of semantic ambiguity from a subset of the original data,
each class was labeled as ID or OOD, taking into account the entirety of the data.
Furthermore, the feasibility of automating this operation was evaluated using the
WordNet database and concept similarity, leading to the three WordNet-ImageNet
datasets.

Some experimental choices were driven by practical convenience or constraints:
for instance, the focus on OOD detection techniques that do not require re-training
the classifier was motivated by the opportunity to use pre-trained models made
available by third-parties. However, significant room for future developments is
open. The main limitation of the proposed experiments is the adoption of a single
ID distribution and model. Testing the same procedure on a different setting would
strengthen and complement the results. When defining the datasets on which the
analysis was carried out, aiming to develop a more fine-grained labelling than the
typical ones (which are based on the data source), each class was declared ID or
OOD. While this is clearly a step in the right direction, it is far from being optimal.
Especially when dealing with object-centric data, images belonging to the same
category might depict highly diverse scenes, meaning that some of them should
be considered ID and others OOD. For instance, a real-world picture of a chair
in a living room would be ID, while a chair on a blank background is obviously
OOD. Manually inspecting every image is not feasible, thus the operation must be
automated. Hendrycks et al. [206] proposed an adversarial procedure to separate
ID and OOD images, however this is likely to introduce a strong bias that prevents
the same network to be used at test time. A possible alternative would be to run an
image captioning model and later measure the distance between the captions and the
ID labels. To measure instead the distance among concepts, the change that would
improve the most the results of this work is probably the selection of a better metric
with respect to the synset similarity that was adopted. As already discussed, similarity
is not able to model several types of semantic relationship which are instead highly
relevant when assessing closeness between ideas. Improving the distance metric will
have consequences on the labelling of WordNet-ImageNet datasets, on the Prediction
Similarity values and on the comparisons between concept closeness and output



4.4 Concluding Remarks 137

OOD scores. Additional benefits could come from testing other OOD detection
methods, as well as investigating an ensemble of metrics.



Chapter 5

Conclusions

This document outlines research conducted during my Ph.D. path aimed at develop-
ing innovative solutions to enhance the robustness and interpretability of AI in the
field of CV. Specifically, novel data-centric approaches are presented to preprocess,
maintain, and monitor data quality, as well as extended methods for model inter-
pretability to offer more comprehensive and user-friendly explanations. Providing
more reliable and interpretable AI models can pave the way for wider adoption and
implementation of AI technologies in various industries, potentially leading to signif-
icant advancements and improvements. Ensuring the trustworthiness of AI models
can help mitigate the risks associated with biased or erroneous decision-making, en-
hancing their credibility and acceptability. Ultimately, advancing the state-of-the-art
in data-centric solutions for AI can unlock the full potential of this transformative
technology while maintaining a high level of accountability and transparency.

The content of this document has been organized to reflect the stages of a typical
DL pipeline, with each part building upon the previous one to achieve a more
robust and interpretable AI model. The first part focuses on data preprocessing and
domain understanding; this is a crucial step that involves collecting, cleaning, and
labeling data to ensure its quality and reliability. Moving on from data preprocessing,
the next stage involves applying XAI to gain a better understanding of the inner
workings of the AI model, understand its strengths and weaknesses, and improve its
interpretability. Finally, the last part of the pipeline involves data monitoring, which
is an essential aspect of maintaining the quality and reliability of AI models. With



139

the increasing complexity of AI models and the vast amount of data that they operate
on, it is critical to monitor the model’s performance continuously.

Chapter 2 explored the integration of causal models in DL as a data-centric
systematic approach to document and identify potential dataset biases that could
affect the training and deployment of neural networks [28]. The methodology was
applied to a real-life example from an industrial research project, demonstrating
the potential benefits of using causal diagrams to model datasets. The suggestion
put forth in this study is therefore a best practice to mitigate or avoid the presence
of biases in the data, and may be adopted by practitioners in various domains to
improve the robustness of trained models. The case study supports the potential
benefits of causal analysis in improving the performance and generalization ability
of trained models.

In Chapter 3, two studies on the topic of XAI were presented: iNNvestigate-
GUI [97] and HOLMES. The iNNvestigate-GUI tool provides an interactive ap-
proach for analyzing and comparing the behavior of multiple DNNs using visual-
ization methods. A user study showed that the tool is user-friendly and effective
in identifying model behaviors and suggesting useful data samples for analysis.
HOLMES, on the other hand, offers detailed part-level explanations for image classi-
fication tasks, which is a significant advancement beyond the traditional label-level
heatmaps. The approach connects DNN models with a symbolic knowledge base,
such as an ontology, and captures concepts without constraining them to a single
computational unit. Results demonstrate that HOLMES performs better when con-
sidering a small number of parts for an object, and there is still much to explore in
terms of alternative components. The iNNvestigate-GUI approach and HOLMES
provide promising solutions to interpret the behavior of DNNs and enhance image
classification models with part-level explanations, respectively. These approaches
demonstrate the potential of XAI to improve the interpretability and reliability of
DL models, which is becoming increasingly important as these models are being
deployed in critical applications. The user study of iNNvestigate-GUI showed that
even non-expert users can effectively use the tool to analyze the behavior of DNNs.
HOLMES, on the other hand, offers valuable insights into how holonyms are learned
and stored within CNNs during and after the training phase, and connects DNN
models with a symbolic knowledge base. Despite the promising results of both
approaches, there is still much to explore in terms of alternative components. For
iNNvestigate-GUI, future research could investigate the effects of using the acti-



140 Conclusions

vations of units from different convolutional layers to generate explanations. For
HOLMES, future research could explore more refined scraping algorithms, alter-
native perturbation techniques, and new strategies for selecting and filtering the
meronyms of an object. Overall, both the studies represent significant contributions
to XAI and provide a foundation for future research towards trustworthy AI.

Finally, in Chapter 4, two studies were presented focused on concept drift de-
tection [150] and OOD detection. The first study showed that the distance from a
reference feature distribution is strongly correlated with performance degradation,
suggesting that monitoring the distribution of features learned by the model itself is
a cost-effective solution for addressing dataset drift. However, the proposed strategy
is not readily applicable to models that are trained by third-party and commercial
providers, which do not typically enable access to inner model features. In such
cases, end-users of blackbox models could resort to training an auxiliary model to
learn the data distribution before or when the model is put in production. Moreover,
it was found that the use of synthetic data has the potential to be a powerful tool for
benchmarking concept drift detection algorithms and tailoring them to specific use
cases. The second study evaluated several techniques commonly adopted in literature
for OOD detection: the main difference with respect to previous comparisons lies
in the selection of benchmarks. Each class was labeled as ID or OOD, taking into
account the entirety of the data. Furthermore, the feasibility of automating this
operation was evaluated using the WordNet database and concept similarity, leading
to the three WordNet-ImageNet datasets. Despite being significantly worse than what
is typically achieved by the same methods on simpler datasets, the results obtained
are better than the ones obtained by Roady et al. [178] in a very similar scenario.

Both studies have limitations that should be addressed in future research. For
the first study, it is planned to extend the comparison to different types of concept
drift detectors to further improve the detection accuracy. Additionally, the aim is to
investigate the generalizability of this approach to different models and applications,
as well as more complex drift patterns and scenarios. For the second study, the
results support the hypothesis that more comprehensive and realistic benchmarks
are needed to evaluate the effectiveness of OOD detection methods, and that per-
class analysis can provide more realistic benchmarks than intra-dataset comparison.
These findings have practical implications for MLOps, as they provide cost-effective
solutions for addressing dataset drift and detecting OOD data. Overall, it is believed



141

that the insights gained from these studies will contribute to advancing the research
on data-centric approaches towards robust and reliable AI.



References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. Advances
in Neural Information Processing Systems, 28, 2015.

[4] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner,
Tom Madams, Jorge Cuadros, et al. Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. Jama, 316(22):2402–2410, 2016.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[6] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1701–1708, 2014.

[7] Richard Szeliski. Computer vision: Algorithms and applications. Springer
Nature, 2022.

[8] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.



References 143

[10] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of Go without human knowledge. Nature,
550(7676):354–359, 2017.

[11] Sheraz Naseer, Yasir Saleem, Shehzad Khalid, Muhammad Khawar Bashir,
Jihun Han, Muhammad Munwar Iqbal, and Kijun Han. Enhanced network
anomaly detection based on deep neural networks. IEEE Access, 6:48231–
48246, 2018.

[12] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios
Protopapadakis, et al. Deep learning for computer vision: A brief review.
Computational Intelligence and Neuroscience, 2018.

[13] Xin Huang, Xiaopeng Han, Song Ma, Tianjia Lin, and Jianya Gong. Moni-
toring ecosystem service change in the city of shenzhen by the use of high-
resolution remotely sensed imagery and deep learning. Land Degradation &
Development, 30(12):1490–1501, 2019.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[15] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang,
Stefan Schaal, Sergey Levine, and Google Brain. Time-contrastive networks:
Self-supervised learning from video. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1134–1141, 2018.

[16] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical re-
view of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019, 2015.

[17] Nathalie A Smuha. The eu approach to ethics guidelines for trustworthy
artificial intelligence. Computer Law Review International, 20(4):97–106,
2019.

[18] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy
disparities in commercial gender classification. Proceedings of Machine
Learning Research, 81:1–15, 2018.

[19] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmen-
tation for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[20] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted
biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pages 335–340, 2018.

[21] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning
with drift detection. In Brazilian symposium on artificial intelligence, pages
286–295, 2004.



144 References

[22] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study
of the class imbalance problem in convolutional neural networks. Neural
Networks, 106:249–259, 2018.

[23] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang.
Learning under concept drift: A review. IEEE Transactions on Knowledge
and Data Engineering, 31(12):2346–2363, 2018.

[24] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):1–40, 2016.

[25] Anas Bodor, Meriem Hnida, and Daoudi Najima. Mlops: Overview of current
state and future directions. In Proceedings of the 7th International Conference
on Smart City Applications, pages 156–165, 2023.

[26] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis, and George A
Papakostas. Mlops-definitions, tools and challenges. In Proceedings of the
IEEE 12th Annual Computing and Communication Workshop and Conference,
pages 0453–0460, 2022.

[27] Data-centric AI Resource Hub. https://datacentricai.org/. Accessed: 2023-04-
26.

[28] Fabio Garcea, Lia Morra, and Fabrizio Lamberti. On the use of causal models
to build better datasets. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 1514–1519. IEEE, 2021.

[29] Fabio Garcea, Giacomo Blanco, Alberto Croci, Fabrizio Lamberti, Riccardo
Mamone, Ruben Ricupero, Lia Morra, and Paola Allamano. Self-supervised
and semi-supervised learning for road condition estimation from distributed
road-side cameras. Scientific reports, 12(1):22341, 2022.

[30] Judea Pearl. Causal inference in statistics: An overview. 2009.

[31] Md Nasim Khan and Mohamed M. Ahmed. Weather and surface condition
detection based on road-side webcams: Application of pre-trained convolu-
tional neural network. International Journal of Transportation Science and
Technology, 11(3):468–483, 2022.

[32] Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor
Hugo C de Albuquerque. Deep learning for safe autonomous driving: Current
challenges and future directions. IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

[33] Angelo Ziletti, Devinder Kumar, Matthias Scheffler, and Luca M Ghiringhelli.
Insightful classification of crystal structures using deep learning. Nature
communications, 9(1):1–10, 2018.

[34] Lia Morra, Silvia Delsanto, and Loredana Correale. Artificial intelligence in
medical imaging: From theory to clinical practice. CRC Press, 2019.

https://datacentricai.org/


References 145

[35] Big Data To Good Data: Andrew Ng Urges ML Community To Be More Data-
Centric And Less Model-Centric. https://tinyurl.com/3t6dp5n3. Accessed:
2023-04-29.

[36] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR
2011, pages 1521–1528, 2011.

[37] Mariachiara Mecati, Flavio Emanuele Cannavò, Antonio Vetrò, and Marco
Torchiano. Identifying risks in datasets for automated decision–making. In
International Conference on Electronic Government, pages 332–344. Springer,
2020.

[38] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. Datasheets for
datasets. arXiv preprint arXiv:1803.09010, 2018.

[39] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. A
deeper look at dataset bias. In Domain adaptation in computer vision applica-
tions, pages 37–55. Springer, 2017.

[40] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. A survey on bias and fairness in machine learning. arXiv
preprint arXiv:1908.09635, 2019.

[41] Toon Calders. Machine-learning discrimination: bias in, bias out. In 2019
Ninth International Conference on Intelligent Computing and Information
Systems (ICICIS), pages 27–27, 2019.

[42] Nicholas Petrick, Berkman Sahiner, Samuel G Armato III, et al. Evalua-
tion of computer-aided detection and diagnosis systems. Medical physics,
40(8):087001, 2013.

[43] Markus Borg, Cristofer Englund, Krzysztof Wnuk, et al. Safely entering the
deep: A review of verification and validation for machine learning and a chal-
lenge elicitation in the automotive industry. arXiv preprint arXiv:1812.05389,
2018.

[44] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. Shortcut learning
in deep neural networks. Nature Machine Intelligence, 2(11):665–673, Nov
2020.

[45] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia
Chmielinski. The dataset nutrition label: A framework to drive higher data
quality standards. arXiv preprint arXiv:1805.03677, 2018.

[46] Elena Beretta, Antonio Vetrò, Bruno Lepri, and Juan Carlos De Martin. Detect-
ing discriminatory risk through data annotation based on bayesian inferences.
In Proc. of the 2021 ACM Conference on Fairness, Accountability, and Trans-
parency, pages 794–804, 2021.

https://tinyurl.com/3t6dp5n3


146 References

[47] Lu Zhang, Yongkai Wu, and Xintao Wu. Achieving non-discrimination in
data release. In Proc. of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1335–1344, 2017.

[48] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations
for machine learning: A review. arXiv preprint arXiv:2010.10596, 2020.

[49] Viktoriia Sharmanska, Lisa Anne Hendricks, Trevor Darrell, and Novi
Quadrianto. Contrastive examples for addressing the tyranny of the majority.
arXiv preprint arXiv:2004.06524, 2020.

[50] Bradley Butcher, Vincent S Huang, Christopher Robinson, Jeremy Reffin,
Sema K Sgaier, Grace Charles, and Novi Quadrianto. Causal datasheet for
datasets: An evaluation guide for real-world data analysis and data collection
design using bayesian networks. Frontiers in Artificial Intelligence, 4:18,
2021.

[51] Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, An-
dreas Morel-Forster, and Thomas Vetter. Analyzing and reducing the dam-
age of dataset bias to face recognition with synthetic data. In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops, 2019.

[52] Judea Pearl and Elias Bareinboim. External validity: From do-calculus to
transportability across populations. Statistical Science, pages 579–595, 2014.

[53] Daniel C Castro, Ian Walker, and Ben Glocker. Causality matters in medical
imaging. Nature Communications, 11(1):1–10, 2020.

[54] Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun
Zhang, and Joris Mooij. On causal and anticausal learning. In Proceedings
of the 29th International Conference on Machine Learning, pages 459–466,
2012.

[55] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal
inference: foundations and learning algorithms. The MIT Press, 2017.

[56] Gareth J Griffith, Tim T Morris, Matthew J Tudball, Annie Herbert, Giulia
Mancano, Lindsey Pike, et al. Collider bias undermines our understanding of
covid-19 disease risk and severity. Nature communications, 11(1):1–12, 2020.

[57] Sheela Ramanna, Cenker Sengoz, Scott Kehler, and Dat Pham. Near real-time
map building with multi-class image set labeling and classification of road
conditions using convolutional neural networks. Applied Artificial Intelligence,
pages 1–31, 2021.

[58] Juan Carrillo, Mark Crowley, Guangyuan Pan, and Liping Fu. Comparison of
deep learning models for determining road surface condition from roadside
camera images and weather data. In Transportation Association of Canada
and Intelligent Transportation Systems Canada Joint Conference, pages 1–16,
2019.



References 147

[59] Saira Jabeen, AbdulGhaffar Malkana, Ali Farooq, and Usman Ghani Khan.
Weather classification on roads for drivers assistance using deep transferred
features. In 2019 International Conference on Frontiers of Information Tech-
nology (FIT), pages 221–2215. IEEE, 2019.

[60] P. Jonsson. Road condition discrimination using weather data and camera
images. In 2011 14th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), pages 1616–1621, Oct 2011.

[61] Raouf Babari, Nicolas Hautière, Éric Dumont, Nicolas Paparoditis, and James
Misener. Visibility monitoring using conventional roadside cameras–emerging
applications. Transportation research part C: emerging technologies, 22:17–
28, 2012.

[62] P Allamano, A Croci, and F Laio. Toward the camera rain gauge. Water
Resources Research, 51(3):1744–1757, 2015.

[63] Kshitiz Garg and Shree K Nayar. Vision and rain. International Journal of
Computer Vision, 75(1):3–27, 2007.

[64] Jérémie Bossu, Nicolas Hautiere, and Jean-Philippe Tarel. Rain or snow
detection in image sequences through use of a histogram of orientation of
streaks. International journal of computer vision, 93(3):348–367, 2011.

[65] Kshitiz Garg and Shree K Nayar. When does a camera see rain? In Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume 1,
volume 2, pages 1067–1074. IEEE, 2005.

[66] Lushan Cheng, Xu Zhang, and Jie Shen. Road surface condition classifi-
cation using deep learning. Journal of Visual Communication and Image
Representation, 64:102638, 2019.

[67] Bin Zhao, Xuelong Li, Xiaoqiang Lu, and Zhigang Wang. A CNN–RNN
architecture for multi-label weather recognition. Neurocomputing, 322:47–57,
2018.

[68] Marcus Nolte, Nikita Kister, and Markus Maurer. Assessment of deep con-
volutional neural networks for road surface classification. In 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC), pages
381–386. IEEE, 2018.

[69] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do
self-supervised models transfer? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5414–5423, 2021.

[70] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4L:
Self-supervised semi-supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1476–1485, 2019.



148 References

[71] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-
invariant representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6707–6717, 2020.

[72] Ke Yan, Xiaosong Wang, Le Lu, Ling Zhang, Adam P Harrison, Moham-
madhadi Bagheri, and Ronald M Summers. Deep lesion graphs in the wild:
relationship learning and organization of significant radiology image find-
ings in a diverse large-scale lesion database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 9261–9270,
2018.

[73] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations. In
International conference on machine learning, pages 1597–1607. PMLR,
2020.

[74] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang,
Serge Belongie, and Yin Cui. Spatiotemporal contrastive video representation
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6964–6974, 2021.

[75] Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke,
David Lobell, and Stefano Ermon. Geography-aware self-supervised learning.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10181–10190, 2021.

[76] Vladan Stojnic and Vladimir Risojevic. Self-supervised learning of remote
sensing scene representations using contrastive multiview coding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 1182–1191, 2021.

[77] Omar Elharrouss, Noor Almaadeed, and Somaya Al-Maadeed. A review of
video surveillance systems. Journal of Visual Communication and Image
Representation, 77:103116, 2021.

[78] David W Hughes, BD Yallop, and CY Hohenkerk. The equation of time.
Monthly Notices of the Royal Astronomical Society, 238(4):1529–1535, 1989.

[79] Julia M Rohrer. Thinking clearly about correlations and causation: Graphical
causal models for observational data. Advances in Methods and Practices in
Psychological Science, 1(1):27–42, 2018.

[80] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause
and effect. Basic Books, 2018.

[81] Luke Darlow, Stanisław Jastrzębski, and Amos Storkey. Latent adversarial
debiasing: Mitigating collider bias in deep neural networks. arXiv preprint
arXiv:2011.11486, 2020.



References 149

[82] Computer Vision Annotation Tool (CVAT). https://github.com/
openvinotoolkit/cvat. Accessed: 2023-04-29.

[83] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[84] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-
balanced loss based on effective number of samples. In CVPR, 2019.

[85] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[86] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML, volume 3, page 896, 2013.

[87] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital
Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised
learning. arXiv preprint arXiv:1905.02249, 2019.

[88] Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled
data are equal: Learning to weight data in semi-supervised learning. Advances
in Neural Information Processing Systems, 33, 2020.

[89] Fabio Garcea, Alessandro Cucco, Lia Morra, and Fabrizio Lamberti. Object
tracking through residual and dense lstms. In International Conference on
Image Analysis and Recognition, pages 100–111. Springer, 2020.

[90] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017
IEEE winter conference on applications of computer vision (WACV), pages
464–472. IEEE, 2017.

[91] Dennis D Boos. Introduction to the bootstrap world. Statistical science,
18(2):168–174, 2003.

[92] Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Com-
paring the areas under two or more correlated receiver operating characteristic
curves: a nonparametric approach. Biometrics, pages 837–845, 1988.

[93] Elahe Vahdani and Yingli Tian. Deep learning-based action detection in
untrimmed videos: A survey. arXiv preprint arXiv:2110.00111, 2021.

[94] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I
trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat


150 References

[95] Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria
Farinella, and Lamberto Ballan. Knowledge distillation for action anticipation
via label smoothing. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 3312–3319. IEEE, 2021.

[96] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and
Manohar Paluri. A closer look at spatiotemporal convolutions for action
recognition. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 6450–6459, 2018.

[97] Fabio Garcea, Sina Famouri, Davide Valentino, Lia Morra, and Fabrizio
Lamberti. innvestigate-gui-explaining neural networks through an interactive
visualization tool. In Artificial Neural Networks in Pattern Recognition: 9th
IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4,
2020, Proceedings 9, pages 291–303. Springer, 2020.

[98] Francesco Dibitonto, Fabio Garcea, Panisson André, Perotti Alan, Lia Morra,
et al. Holmes: Holonym-meronym based semantic inspection for convolu-
tional image classifiers. COMMUNICATIONS IN COMPUTER AND INFOR-
MATION SCIENCE, 2023.

[99] Waddah Saeed and Christian Omlin. Explainable ai (xai): A systematic
meta-survey of current challenges and future opportunities. Knowledge-Based
Systems, page 110273, 2023.

[100] Zachary C Lipton. The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery. Queue, 16(3):31–
57, 2018.

[101] Cynthia Rudin. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature machine
intelligence, 1(5):206–215, 2019.

[102] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. International Journal of
Computer Vision, 128(2):336–359, 2019.

[103] Christin Seifert, Aisha Aamir, Aparna Balagopalan, Dhruv Jain, Abhinav
Sharma, Sebastian Grottel, and Stefan Gumhold. Visualizations of deep
neural networks in computer vision: A survey. In Transparent Data Mining
for Big and Small Data, pages 123–144. Springer, 2017.

[104] Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Polo Chau.
Activis: Visual exploration of industry-scale deep neural network models.
IEEE transactions on visualization and computer graphics, 24(1):88–97,
2017.



References 151

[105] Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele,
Kristof T Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller,
Sven Dähne, and Pieter-Jan Kindermans. iNNvestigate neural networks! J.
Mach. Learn. Res., 20(93):1–8, 2019.

[106] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dan-
delion Mane, Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin
Wattenberg. Visualizing dataflow graphs of deep learning models in tensor-
flow. IEEE transactions on visualization and computer graphics, 24(1):1–12,
2017.

[107] Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B.
Viégas, and Martin Wattenberg. Embedding projector: Interactive visualiza-
tion and interpretation of embeddings, 2016.

[108] Sunghyo Chung, Sangho Suh, Cheonbok Park, Kyeongpil Kang, Jaegul Choo,
and Bum Chul Kwon. Revacnn: Real-time visual analytics for convolutional
neural network. In KDD 16 Workshop on Interactive Data Exploration and
Analytics, pages 30–36, 2016.

[109] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[110] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Polo Chau.
Summit: Scaling deep learning interpretability by visualizing activation and
attribution summarizations. IEEE transactions on visualization and computer
graphics, 26(1):1096–1106, 2019.

[111] Nicola Pezzotti, Thomas Höllt, Jan Van Gemert, Boudewijn PF Lelieveldt,
Elmar Eisemann, and Anna Vilanova. Deepeyes: Progressive visual analytics
for designing deep neural networks. IEEE transactions on visualization and
computer graphics, 24(1):98–108, 2017.

[112] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M.
Rush. Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent
neural networks, 2016.

[113] Junpeng Wang, Liang Gou, Hao Yang, and Han-Wei Shen. Ganviz: A visual
analytics approach to understand the adversarial game. IEEE transactions on
visualization and computer graphics, 24(6):1905–1917, 2018.

[114] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia
Liu. Towards better analysis of deep convolutional neural networks. IEEE
transactions on visualization and computer graphics, 23(1):91–100, 2016.

[115] Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viégas, and Mar-
tin Wattenberg. Direct-manipulation visualization of deep networks.
arXiv:1708.03788, 2017.



152 References

[116] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred
Hohman, Minsuk Kahng, and Duen Horng Chau. Cnn explainer: Learning
convolutional neural networks with interactive visualization. arXiv preprint
arXiv:2004.15004, 2020.

[117] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual
analytics in deep learning: An interrogative survey for the next frontiers. IEEE
transactions on visualization and computer graphics, 25(8):2674–2693, 2018.

[118] Keras Explain. https://github.com/primozgodec/keras-explain. Accessed:
2023-04-29.

[119] DeepExplain. https://github.com/marcoancona/DeepExplain. Accessed: 2023-
04-29.

[120] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning impor-
tant features through propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages
3145–3153. JMLR. org, 2017.

[121] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou,
and Antonio Torralba. Understanding the role of individual units in a
deep neural network. Proceedings of the National Academy of Sciences,
117(48):30071–30078, 2020.

[122] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Fe-
lix A. Wichmann, and Wieland Brendel. Imagenet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness. In
International Conference on Learning Representations, 2019.

[123] Arman Sarraf, Mohammad Azhdari, and Saman Sarraf. A comprehensive
review of deep learning architectures for computer vision applications. Ameri-
can Scientific Research Journal for Engineering, Technology, and Sciences,
77:1–29, 03 2021.

[124] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015.

[125] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? In Advances in Neural Information
Processing Systems, volume 27, pages 3320–3328, 2014.

[126] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible
AI. Information Fusion, 58:82–115, 2020.

https://github.com/primozgodec/keras-explain
https://github.com/marcoancona/DeepExplain


References 153

[127] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black box
models. ACM computing surveys, 51(5):1–42, 2018.

[128] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in neural information processing systems, pages
4765–4774, 2017.

[129] Valentina Ghidini, Alan Perotti, and Rossano Schifanella. Quantitative and
ontology-based comparison of explanations for image classification. In Inter-
national Conference on Machine Learning, Optimization, and Data Science,
pages 58–70. Springer, 2019.

[130] Natalia Díaz Rodríguez, Alberto Lamas, Jules Sanchez, Gianni Franchi, Ivan
Donadello, Siham Tabik, David Filliat, Policarpo Cruz, Rosana Montes, and
Francisco Herrera. Explainable neural-symbolic learning (X-NeSyL) method-
ology to fuse deep learning representations with expert knowledge graphs:
The monumai cultural heritage use case. Information Fusion, 79:58–83, 2022.

[131] Roberto Confalonieri, Fermín Moscoso del Prado, Sebastia Agramunt, Daniel
Malagarriga, Daniele Faggion, Tillman Weyde, and Tarek R. Besold. An
ontology-based approach to explaining artificial neural networks. CoRR,
abs/1906.08362, 2019.

[132] G. Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[133] Priyanka Samanta and Shweta Jain. Analysis of perceptual hashing algorithms
in image manipulation detection. Procedia Computer Science, 185:203–212,
2021.

[134] Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. Do semantic
parts emerge in convolutional neural networks? International Journal of
Computer Vision, 126, 2018.

[135] Wissam Siblini, Jordan Fréry, Liyun He-Guelton, Frédéric Oblé, and Yi-Qing
Wang. Master your metrics with calibration. Advances in Intelligent Data
Analysis XVIII, page 457–469, 2020.

[136] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun,
and Alan Loddon Yuille. Detect what you can: Detecting and representing
objects using holistic models and body parts. 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1979–1986, 2014.

[137] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolu-
tional neural networks. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8827–8836, 2018.

[138] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling
for explanation of black-box models. In British Machine Vision Conference,
2018.



154 References

[139] Dohun Lim, Hyeonseok Lee, and Sungchan Kim. Building reliable explana-
tions of unreliable neural networks: Locally smoothing perspective of model
interpretation. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6464–6473, 2021.

[140] C. Silberer, V. Ferrari, and M. Lapata. Visually grounded meaning represen-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(11):2284–2297, 2017.

[141] Dario Molinari, Giulia Pasquale, L. Natale, and B. Caputo. Automatic creation
of large scale object databases from web resources: A case study in robot
vision. In International Conference on Image Analysis and Processing, 2019.

[142] Nizar Massouh, Francesca Babiloni, Tatiana Tommasi, Jay Young, Nick
Hawes, and Barbara Caputo. Learning deep visual object models from noisy
web data: How to make it work. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5564–5571. IEEE, 2017.

[143] Lia Morra and Fabrizio Lamberti. Benchmarking unsupervised near-duplicate
image detection. Expert Systems with Applications, 135:313–326, 2019.

[144] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and Liwu Chang.
A novel anomaly detection scheme based on principal component classifier.
In Proceedings of International Conference on Data Mining, 01 2003.

[145] Yazhou Yao, Fumin Shen, Guosen Xie, Li Liu, Fan Zhu, Jian Zhang, and
Heng Tao Shen. Exploiting web images for multi-output classification: From
category to subcategories. IEEE transactions on neural networks and learning
systems, 31(7):2348–2360, 2020.

[146] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Object detectors emerge in deep scene cnns. International Conference
on Learning Representations, abs/1412.6856, 2015.

[147] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Network dissection: Quantifying interpretability of deep visual representa-
tions. In Computer Vision and Pattern Recognition, 2017.

[148] C. Chen, O. Li, Alina Barnett, Jonathan Su, and C. Rudin. This looks like
that: deep learning for interpretable image recognition. In Advances in neural
information processing systems, 2019.

[149] Chuanyi Zhang, Qiong Wang, Guosen Xie, Qi Wu, Fumin Shen, and Zhenmin
Tang. Robust learning from noisy web images via data purification for fine-
grained recognition. IEEE Transactions on Multimedia, 2021.

[150] Luca Piano, Fabio Garcea, Valentina Gatteschi, Fabrizio Lamberti, and Lia
Morra. Detecting drift in deep learning: A methodology primer. IT Profes-
sional, 24(5):53–60, 2022.



References 155

[151] Pietro Recalcati, Fabio Garcea, Luca Piano, Fabrizio Lamberti, Lia Morra,
et al. Toward a realistic benchmark for out-of-distribution detection. In
Proceedings of the 10th IEEE International Conference on Data Science and
Advanced Analytics (DSAA). IEEE, 2023.

[152] Tania Cerquitelli, Nikolaos Nikolakis, Lia Morra, Andrea Bellagarda, Matteo
Orlando, Riku Salokangas, Olli Saarela, Jani Hietala, Petri Kaarmila, and
Enrico Macii. Data-driven predictive maintenance: A methodology primer.
In Predictive Maintenance in Smart Factories: Architectures, Methodologies,
and Use-cases, pages 39–73. Springer Singapore, Singapore, Republic of
Singapore, 2021.

[153] Alexander Lavin, Ciarán M Gilligan-Lee, Alessya Visnjic, Siddha Ganju,
Dava Newman, Sujoy Ganguly, Danny Lange, Atılım Güneş Baydin, Amit
Sharma, Adam Gibson, et al. Technology readiness levels for machine learning
systems. arXiv:2101.03989, 2021.

[154] Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart,
Sergey Levine, and Yarin Gal. Can autonomous vehicles identify, recover
from, and adapt to distribution shifts? In ICML, pages 3145–3153, 2020.

[155] Zhenyi Liu, Trisha Lian, Joyce Farrell, and Brian A Wandell. Neural network
generalization: The impact of camera parameters. IEEE Access, 8:10443–
10454, 2020.

[156] N Alan Heckert, James J Filliben, C M Croarkin, B Hembree, William F
Guthrie, P Tobias, J Prinz, et al. Handbook 151: Nist/sematech e-handbook
of statistical methods. 2002.

[157] Frank E Grubbs. Procedures for detecting outlying observations in samples.
Technometrics, 11(1):1–21, 1969.

[158] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mo-
hammad Hossein Rohban, and Mohammad Sabokrou. A unified survey on
anomaly, novelty, open-set, and out-of-distribution detection: Solutions and
future challenges. arXiv preprint arXiv:2110.14051, 2021.

[159] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-
distribution detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

[160] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schul-
man, and Dan Mané. Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565, 2016.

[161] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration
of Modern Neural Networks. arXiv e-prints, page arXiv:1706.04599, June
2017.

[162] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu
networks yield high-confidence predictions far away from the training data
and how to mitigate the problem. CoRR, abs/1812.05720, 2018.



156 References

[163] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. Failing loudly:
An empirical study of methods for detecting dataset shift. Advances in Neural
Information Processing Systems, 32:1396–1408, 2019.

[164] Sara Castellanos. Fake it to make it: Companies beef up AI models with
synthetic data, Jul 2021.

[165] Joaquin Quiñonero-Candela, Masashi Sugiyama, Neil D Lawrence, and Anton
Schwaighofer. Dataset shift in machine learning. Mit Press, 2009.

[166] Simone Disabato and Manuel Roveri. Learning convolutional neural networks
in presence of concept drift. In IJCNN, pages 1–8, 2019.

[167] Gregory Ditzler and Robi Polikar. Hellinger distance based drift detection
for nonstationary environments. In IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE), pages 41–48,
2011.

[168] Thomas Viehmann, Luca Antiga, Daniele Cortinovis, and Lisa Lozza. Torch-
drift: Drift detection for pytorch, 2019.

[169] Jaka Demšar and Zoran Bosnić. Detecting concept drift in data streams using
model explanation. Expert Systems with Applications, 92:546–559, 2018.

[170] Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong,
and Yoshua Bengio. Deep verifier networks: Verification of deep discrim-
inative models with deep generative models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 7002–7010, 2021.

[171] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability
of out-of-distribution image detection in neural networks. 2018.

[172] Dario Fontanel, Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,
Elisa Ricci, and Barbara Caputo. Boosting deep open world recognition by
clustering. IEEE Robotics and Automation Letters, 5(4):5985–5992, 2020.

[173] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in
open set recognition: A survey. IEEE Transactions on Pattern Analysis and
Mchine Intelligence, 43:3614–3631, 2021.

[174] Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and
C Lee Giles. Learning to extract semantic structure from documents using
multimodal fully convolutional neural networks. In CVPR, pages 5315–5324,
2017.

[175] Fahim Tajwar, Ananya Kumar, Sang Michael Xie, and Percy Liang. No true
state-of-the-art? OOD detection methods are inconsistent across datasets.
CoRR, abs/2109.05554, 2021.



References 157

[176] Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natara-
jan, Joseph R. Ledsam, Patricia MacWilliams, Pushmeet Kohli, Alan Karthike-
salingam, Simon A. A. Kohl, taylan. cemgil, S. M. Ali Eslami, and Olaf
Ronneberger. Contrastive training for improved out-of-distribution detection.
ArXiv, abs/2007.05566, 2020.

[177] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of
out-of-distribution detection. CoRR, abs/2106.03004, 2021.

[178] Ryne Roady, Tyler L Hayes, Ronald Kemker, Ayesha Gonzales, and Christo-
pher Kanan. Are out-of-distribution detection methods effective on large-scale
datasets? arXiv preprint arXiv:1910.14034, 2019.

[179] Dan Hendrycks, Steven Basart, Mantas Mazeika, Mohammadreza Mostajabi,
Jacob Steinhardt, and Dawn Song. A benchmark for anomaly segmentation.
CoRR, abs/1911.11132, 2019.

[180] Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection
for large semantic space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8710–8719, 2021.

[181] Faruk Ahmed and Aaron C. Courville. Detecting semantic anomalies. CoRR,
abs/1908.04388, 2019.

[182] Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng,
Wayne Zhang, and Ziwei Liu. Semantically coherent out-of-distribution
detection. CoRR, abs/2108.11941, 2021.

[183] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. arXiv preprint
arXiv:1610.02136, 2016.

[184] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized ODIN:
Detecting out-of-distribution image without learning from out-of-distribution
data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10951–10960, 2020.

[185] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 1563–1572, 2016.

[186] Julian Bitterwolf, Alexander Meinke, and Matthias Hein. Certifiably adversar-
ially robust detection of out-of-distribution data. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 16085–16095. Curran Associates, Inc.,
2020.

[187] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[188] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng.
Reading digits in natural images with unsupervised feature learning. 2011.



158 References

[189] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms, 2017.

[190] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

[191] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015.

[192] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and
Andrea Vedaldi. Describing textures in the wild. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3606–3613,
2014.

[193] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. Places: A 10 million image database for scene recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[194] Vahdat Abdelzad, K. Czarnecki, Rick Salay, Taylor Denouden, Sachin
Vernekar, and Buu Phan. Detecting out-of-distribution inputs in deep neural
networks using an early-layer output. ArXiv, abs/1910.10307, 2019.

[195] OODL Github Repository. https://github.com/vahdat-ab/OODL. Accessed:
2023-04-29.

[196] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[197] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
net::similarity - measuring the relatedness of concepts. 04 2004.

[198] Claudia Leacock and Martin Chodorow. Combining local context and wordnet
similarity for word sense identification. WordNet: An electronic lexical
database, 49(2):265–283, 1998.

[199] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. arXiv
preprint cmp-lg/9406033, 1994.

[200] Philip Resnik. Using information content to evaluate semantic similarity in a
taxonomy. arXiv preprint cmp-lg/9511007, 1995.

[201] Dekang Lin et al. An information-theoretic definition of similarity. In Icml,
volume 98, pages 296–304, 1998.

[202] Jay J Jiang and David W Conrath. Semantic similarity based on corpus
statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.

https://github.com/vahdat-ab/OODL


References 159

[203] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio
Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 3485–3492, 2010.

[204] Gephi The Open Graph Viz Platform. https://gephi.org/. Accessed: 2023-04-
29.

[205] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu
Bastian. Forceatlas2, a continuous graph layout algorithm for handy network
visualization designed for the gephi software. PloS one, 9(6):e98679, 2014.

[206] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Xi-
aodong Song. Natural adversarial examples. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15257–15266,
2021.

https://gephi.org/

	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 Understanding the Data Domain
	2.1 Introduction
	2.2 Causal Modeling in DL: Understanding Complex Data Relationships
	2.2.1 Related Work
	2.2.2 Problem Definition
	2.2.3 Methodology
	2.2.4 Case Studies

	2.3 Road Condition Estimation with CNNs and LSTMs
	2.3.1 Dataset
	2.3.2 Methodology
	2.3.3 Experimental Settings
	2.3.4 Results

	2.4 Concluding Remarks

	3 Interpreting DL Models
	3.1 Introduction
	3.2 iNNvestigate-GUI: a Scalable GUI for XAI Techniques
	3.2.1 Related Work
	3.2.2 Design Challenges
	3.2.3 iNNvestigate-GUI
	3.2.4 Usability Results

	3.3 HOLMES: Exaplaining CNNs Through HOLonym-MEronym Relationships
	3.3.1 Related Work
	3.3.2 Methodology
	3.3.3 Experimental Settings
	3.3.4 Results
	3.3.5 Discussion
	3.3.6 Limitations and Future Directions

	3.4 Concluding Remarks

	4 Monitoring Data Changes
	4.1 Introduction
	4.2 Drift Detection: Ensuring Model Robustness and Performance
	4.2.1 Related Work
	4.2.2 Problem Definition
	4.2.3 Simulating Data Drift in Scanned Document Segmentation
	4.2.4 Methodology
	4.2.5 Results

	4.3 OOD Detection in DL
	4.3.1 Related Work
	4.3.2 OOD Detection: Problem Definition
	4.3.3 Proposed Benchmark
	4.3.4 Preliminary Analysis
	4.3.5 Experimental Settings
	4.3.6 Results
	4.3.7 Discussion

	4.4 Concluding Remarks

	5 Conclusions
	References

