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ABSTRACT

Wind energy plays a crucial role in the energy transition.
However, it is often seen as an unreliable source of energy,
with many production peaks and lows. Some of the drivers of
uncertainty in energy production are the unexpected wind tur-
bine (WT) failures and associated unscheduled maintenance.
To support an effective health management and maintenance
planning of WTs, we propose an integrated data-driven frame-
work for Remaining Useful Life (RUL) prognostics and in-
spection planning of WTs. We propose a Long-short term
memory (LSTM) neural network with Monte Carlo dropout
to estimate the distribution of the RUL of WTs, i.e. we de-
velop probabilistic prognostics. Different from existing stud-
ies focused on prognostics for single components, we con-
sider the simultaneous health-monitoring of multiple compo-
nents of the WTs, thus seeing the turbine as an integrated
system. The obtained prognostics are further included into
a stochastic planning model which determines optimal mo-
ments for inspections. For this, we pose the problem of WT
inspections as a renewal reward process. We illustrate our
framework for four offshore WTs which are continuously mon-
itored by Supervisory Control and Data Acquisition (SCADA)
systems. The results show that LSTMs are able to estimate
well the RUL of the WTs, even in the early phase of their
usage. We also show that the prognostics are informative for
maintenance planning and are conducive to conservative in-
spections.

1. INTRODUCTION

The current global environmental crisis has prompted the ac-
tive shift towards renewable energy solutions. For this, as out-
lined in the European Green Deal, the primary objective set
forth by the Global Wind Energy Council is to actively con-

Davide Manna et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tribute to meeting, by 2030, no less than 20% of the world-
wide demand for electricity through the utilization of wind
energy. Furthermore, the overarching ambition extends to re-
alizing a fully decarbonized electricity supply by 2050, po-
sitioning wind energy at the forefront of renewable sources
(Apunda & Nyangoye, 2017).

The focus on wind energy is motivated by the fact that wind
is a clean, sustainable and inexhaustible source of energy, it
has low operational costs, and that WTs can be installed in
various locations, including remote areas where higher wind
speeds can result in a higher energy production. Wind en-
ergy is, however, perceived as an unreliable source of energy,
with many production peaks and lows. Some of the main
drivers of uncertainty in energy production are the amount of
unexpected failures and associated unscheduled maintenance
(Letcher, 2023).

Horizontal Axis Wind Turbines (HAWTs), currently the most
promising global wind energy technology (Rezamand et al.,
2020), often face accelerated degradation due to their place-
ment in regions with harsh and variable meteorological condi-
tions (Astolfi, Pandit, Terzi, & Lombardi, 2022). Exposed to
variable aerodynamic loads and mechanical stress (Tchakoua
et al., 2014), WTs necessitate continuous health monitoring
and dynamic maintenance planning to achieve reliable oper-
ations (Yang, Tavner, Crabtree, Feng, & Qiu, 2014; Tautz-
Weinert & Watson, 2017).

In general, a HAWT integrates several essential subsystems,
including aerodynamic rotor blades, a central hub for energy
transfer, a gear reducer (Tong, 2010) (typically spur, helical
(Errichello & Muller, 1994), or planetary (Ragheb & Ragheb,
2010)), an electrical generator for power conversion (Wagner,
2020), a nacelle housing all critical machinery, a yaw sys-
tem enabling optimal wind alignment and a towering struc-
ture (Griffith et al., 2016). The subsystems with the highest
fault rates for onshore wind farms are towers, gearboxes, and
rotor blades, while for offshore wind farms, the most affected
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components are gearboxes, rotor blades, generators, and tow-
ers (Rezamand et al., 2020). Generally, the most critical com-
ponents of WTs are the gearbox, the main bearing, and the
blades (Yang, Court, & Jiang, 2013).

To boost the reliability of WTs, recent studies have developed
diagnostics and prognostics for components of WTs, focusing
particularly on critical components such as gearboxes, main
bearings, and blades. Given the increasing availability of
condition monitoring measurements, a large fraction of these
studies develops data-driven approaches for diagnostics and
prognostics using machine learning. For data-driven diagnos-
tics of WTs, frequent approaches are clustering algorithms,
Principle Component Analysis (PCA), and Neural Networks.
For example, in (Kim et al., 2011), a data-driven, unsuper-
vised clustering algorithm, together with PCA is developed
for diagnostics of gearboxes of WTs. Anomalies due to gear-
box failures are identified based on measurements related to
rotor speed and power production. In (Zaher, McArthur, In-
field, & Patel, 2009), a multilayer neural networks is pro-
posed to detect anomalies of the WT gearbox. The main in-
put of the neural network is the temperature of the gearbox.
In (Garan, Tidriri, & Kovalenko, 2022), the authors estimate
whether the WT will fail or not within the next 60 days using
a decision tree. Here, the focus is on optimizing the data pre-
processing and feature selected steps of the methodology. A
regression mode is proposed in (Orozco, Sheng, & Phillips,
2018) to detect anomalies of gearboxes.

For data-driven Remaining Useful Life prognostics using ma-
chine learning, which is also the case of our analysis, ex-
isting studies have focused on supervised neural networks.
Frequently, vibration and/or Supervisory Control and Data
Acquisition measurements are considered as input for these
neural networks. Table 1 gives an overview of the main data-
driven machine learning approaches, as well as the perfor-
mance achieved. We note that all these studies focus on spe-
cific WT components when developing prognostics. The main
components considered for prognostics development are the
gearbox and the bearings. Neural networks are a frequently
employed approach, which achieves accurate prognostics at
various prognostics horizons (e.g., months/days before the
actual failure). A recent study (Rajaoarisoa, Randrianandraina,
& Sayed-Mouchaweh, 2024) develops a recurrent neural net-
work to estimate the RUL of WTs, following the identifica-
tion of faults using autoencoders. Completementary to this
work, in this paper we propose a Long-short term memory
(LSTM) neural network that directly estimates the RUL of
the WTs. Here, the health monitoring and generation of RUL
prognostics is performed at system level, i.e., the wind turbine
is seen as an integrated system. Moreover, existing studies do
not consider the development of maintenance planning mod-
els for WTs based on prognostics, e.g., predictive inspection
planning for wind turbines. To the best of our knowledge,
we propose for the first time a maintenance planning model

for WTs based on RUL prognostics that are developed using
actual measurements and machine learning models.

In this paper, we propose a LSTM neural network for RUL
prognostics of WT. As datasets, we consider the recordings
of the SCADA systems of the EDP Wind Farm open-source
dataset (EDP, 2023). Different from existing studies, our ap-
proach involves the simultaneous health monitoring of mul-
tiple WT components such as the transformer, the gearbox,
the generator, the hydraulic system. Consequently, we define
the end-of-life of the WT as the occurrence of the first failure
among its components. We use a LSTM neural network to
estimate RUL prognostics for the WT seen as an integrated
system, i.e., we determine system-level prognostics. By ap-
plying Monte Carlo dropout in the testing phase of the LSTM,
we quantify the uncertainty associated with these prognos-
tics, i.e., we determine probabilistic RUL prognostics. These
prognostics are updated over time, as more measurements be-
come available. The results show that the LSTM network is
effective in accurately predicting the RUL of the WTs, even
in the early stages of usage. Last, taking into account the ob-
tained probabilistic RUL prognostics, we pose the problem
of WT inspections as a renewal reward process and develop
a planning model for inspections. The results show that the
RUL prognostics support a conservative planning of inspec-
tions. This inspection planning is adjusted over time, as prog-
nostics are themselves updated with newly acquired measure-
ments.

The remainder of the paper is as follows. Section 2 introduces
the open-source dataset considered for prognostics develop-
ment. Subsequently, in Section 3.1, the importance of these
features is quantified based on their SHAP values, and the
most important features are selected for prognostics develop-
ment. Section 3 proposes a LSTM neural network with Monte
Carlo dropout for system-level probabilistic RUL prognos-
tics for WT. Section 4 proposes a stochastic planning model
for WT inspections, which integrates the probabilistic RUL
prognostics obtained. Numerical results for WT system-level
RUL prognostics and WT inspection planning are presented
in Section 5. Last, conclusions are provided in Section 6.

2. DATA DESCRIPTION

We consider the Energias de Portugal (EDP) open-source dataset
consisting of time-series of sensor measurements recorded for
five offshore WT located in the West African Gulf of Guinea
in the period 1st January 2017 - 31st December 2017. The
information available in the EDP dataset consists of SCADA
measurements, meteorological recordings, and the logs of the
WT component failures, see also the complete list of mea-
surements (EDP, 2023). The capacity of the each WT is
10MW. The measurements are recorded every 10min. For
WT09, the logs recorded concern the Gearbox noise and Pitch
position error, which does not indicate a proper fault/damage.

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 803



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Overview of data-driven prognostics for WT components, where ANFIS = Adaptive Neuro-Fuzzy Inference System,
(K)ELM = (Kernel) Extreme Learning Machine, NN = Neural Network, SVM= Support Vector Machine; ACC = Accuracy,
MA(P)E = Mean Absolute (Percentage) Error, NE = Normalized Error, PRC= Precision, (R)MSE = (Root) Mean Squared
Error, SSE= Sum Squared Error.

Reference Component Method Achieved Performance
(Li, Xu, Lei, Cai, & Kong, 2022) Gearbox NN RMSE = 0.0025
(Merainani, Laddada, Bechhoefer, Chikh, & Benazzouz, 2022) Bearing NN RMSE = 0.0025
(Kramti et al., 2021) Bearing NN graphs available
(Elasha, Shanbr, Li, & Mba, 2019) Gearbox NN SSE=661.98
(Pan, Hong, Chen, Singh, & Jia, 2019) Gearbox ELM RMSE=0.91, MAE=0.734, ACC=95.4%
(Carroll et al., 2019) Gear bearing NN; SVM ACC=72%; ACC=60%
(Cao, Qian, & Pei, 2018) Bearing SVM RMSE=16.4, MAPE=42.9%
(Herp, Ramezani, Bach-Andersen, Pedersen, & Nadimi, 2018) Bearing NN, GP 0.5 ≤PRC≤1
(Kramti, Ali, Saidi, Sayadi, & Bechhoefer, 2018) Bearing NN MSE=0.0023
(Teng, Zhang, Liu, Kusiak, & Ma, 2016) Bearing NN NE= 12.78%
(Chen, Matthews, & Tavner, 2013), Pitch system ANFIS ACC≥ 78%, prognostic horizon =21days,
(Chen, Matthews, & Tavner, 2015) ACC≥ 80%, prognostic horizon =14days

ACC≥ 86%, prognostic horizon =7days
(Zhao, Liu, Jin, Dang, & Deng, 2021) Bearing KELM 4.68% <NE<458.14%

As such, for our analysis, we consider the remaining four
WTs (WT01, WT06, WT07, WT11).

Preliminary feature selection

Feature engineering from existing studies on prognostics and
diagnostics for WTs (see also Table 1), indicate temperature-
related features, production power, the generator and rotor
speed rotation as parameters with a high explainability power
for failures. In this line, we make a preliminary selection
from the available parameters, leading to the following 31
features to be analysed for RUL prognostics: Average Tem-
perature Hydraulic Oil (◦C), Max/Min/ Average/STD Gen-
erator RPM (rpm), Average Temperature Bearing/ Bearing2
(◦C), Average Temperature Generator Phase 1/2/3 (◦C), Av-
erage Temperature Gearbox Oil (◦C), Average Temperature
Gearbox Bearing (◦C), Average Temperature Nacelle (◦C),
Max/Min/Average Rotor RPM (RPM), Average Temperature
High Volt Transformer Phase1/2/3 (◦C), Average Tempera-
ture Grid Inverter Phase1 (◦C), Average Temperature Con-
troller Top (◦C), Average Temperature Controller Hub (◦C),
Average Temperature Controller VCP (◦C), Average Temper-
ature Controller VCP Chokcoil (◦C), Average Temperature
VCP Cooling Water (◦C), Average Temperature VCP Cool-
ing Water (◦C), Average Temperature Spinner (◦C), Latest
Production Total Active Power (Wh), Average Temperature
Generator Slip Ring (◦C), Average Temperature Grid Rotor
Inverter Phase1/2/3 (◦C).

3. SYSTEM-LEVEL RUL PROGNOSTICS FOR WIND TUR-
BINES

We consider a WT consisting of multiple components. The
health of each component is monitored continuously by mul-
tiple sensors. We say that the system-level RUL of the WT is
the remaining time until the first failure of any one of these
components. We are interested in estimating the system-level

RUL of the WT based on the sensor measurements recorded.
At time step d (dth day), we have available the following mea-
surements for WT i, i ∈ {1, 2, . . . , n},

xid = {xi1,d, xi2,d, . . . , xim,d}, (1)

where m is the total number of considered features and xij,d
is the measurement corresponding to feature j, 1 ≤ j ≤ m
recorded on day d for WT i.

Then, the actual system-level RUL of WT i at time d is:

RULa(WTi) = min{τ(ci1)− d, τ(ci2)− d, . . . , τ(cin)− d},
(2)

where τ(cij), 1 ≤ j ≤ n is the time of failure of component
cij of WT i, and n the total number of components of WT i.

We are interested in estimating the system-level RUL of the
four WTs in the EDP dataset at various moments (k) in time.
Table 2 shows four Cases when each of the WT is the testing
set, while the datasets of the remaining three WTs constitute
the training and validation sets. The failure of three out of
the four WTs is due to a failure of the Hydraulic group. The
remaining WT fails due to a failure of the Transformer.

3.1. Feature importance using SHAP values

In Section 2, a total of 31 features has been considered. In
this section we quantify the importance of these features for
WT system-level RUL estimation using the Shapley additive
explanations (SHAP) values (Lundberg & Lee, 2017). SHAP
values quantify the impact of a feature on the RUL prognos-
tic. SHAP values are determined as follows:

ϕi =
∑

S⊆Fi

|S|!(|F | − |S| − 1)!

|F |! |f(S ∪ {i} − f(S))|, (3)
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Table 2. Overview of data used for testing, training and validation - EDP dataset for WT health monitoring.

Case 1 Case 2 Case 3 Case 4
Testing WT06 WT07 WT11 WT01
Training WT01, WT07 WT01, WT06 WT06, WT07 WT06, WT07
Validation WT11 WT11 WT01 WT11
First fault Hydraulic Group Hydraulic Group Hydraulic Group Transformer
Actual Lifetime 8 months 6 months 4 months 8 months

with F the set of all features considered for RUL prognostics,
S ⊆ F a subset of features obtained from the set F except
feature i, and f(S) the expected algorithm output given by
the set S of considered features. The SHAP value quantifies
the magnitude of the impact, i.e., how much a specific fea-
ture value contributes to the accurate estimation of the RUL.
A large SHAP value for a given feature indicates a large im-
portance of this feature for the RUL estimation.

For each of the four Cases, we select the 60% most impor-
tant features of the the total of 31 features, i.e., we select
20 features with the highest SHAP value, see Figures 1-4.
The results show that, although the WTs have various com-
ponents that trigger the failure of the entire system, i.e., either
the hydraulic group or the transformer, the average RPM of
the generator is the feature with the highest importance for all
four WTs. These confirms the findings of existing literature
(see also Table 1), that the health condition of the generator
is crucial for the overall operation of WTs. Most importantly,
these results show that regardless of the failure mode, the WT
can be seen as a system and the available measurements can
support the development of system-level prognostics.

3.2. Long-short term memory (LSTM) for probabilistic
RUL prognostics

Given the long-term dependencies in the measurements, as
well as the high nonlinearity of the features, we propose a
Long-short term memory (LSTM) with Monte Carlo dropout
(Hochreiter & Schmidhuber, 1997) to estimate the distribu-
tion of the RUL (probabilistic RUL prognostics) of the WTs
in each of the four Cases.

We consider a LSTM consisting of L layers, each consisting
of N neurons, and LeakyReLu activation layers (Graves &
Graves, 2012). The last layer of the LSTM is a Dense layer,
for which a ReLu activation function is assumed. The input
gate it, the output gate ot, and the forget gate ft of the LSTM
are defined as follows. The forget gate ft determines whether
to consider or not the previous state ct−1, i.e,

ft = σ(Wf · [ht−1, xt] + bf ) (4)

where xt is the current input, ht−1 is the previous hidden
state, Wf is a trainable weight, bf is bias. The input gate
determines whether to update the state of the LSTM using

the current observation, using a sigmoid layer:

it = σ(Wi · [ht−1, xt] + bi). (5)

where xt is the current input, ht−1 is the previous hidden
state, Wi is a trainable weight, bi is the bias. The output gate
ot determines whether the hidden state ht is passed to the next
iteration, i.e.,

ot = σ(Wo · [ht−1, xt] + bo). (6)

where xt is the current input, ht−1 is the previous hidden
state, Wo is a trainable weight, bo is the bias. Table 3 shows
the hyperparameters of the considered LSTM.

Table 3. Hyperparameters tuning - LSTM.

Number Layers 4
Neurons Layer 1 128
Neurons Layer 2 64
Neurons Layer 3 64
Neurons Layer 4 64
Dropout rate 0.5
Epochs 40
Batch size 32
Window length 3

Monte Carlo dropout for probabilistic RUL prognostics

Commonly, Monte Carlo dropout is applied in the training
phase of the neural networks to avoid overfitting. To obtain
the distribution of the RUL, i.e., to obtain probabilistic RUL
prognostics, we also apply Monte Carlo dropout in the testing
phase of the LSTM. In this line, (Gal & Ghahramani, 2016)
shows that such a neural network with Monte Carlo dropout
approximates a Bayesian neural network representing a deep
Gaussian process.

Let X be the samples in the training set of the LSTM, and
let Y be the corresponding RUL values. In a Bayesian neural
network, we aim to estimate the posterior distribution p(y|x,X, Y ):

p(y|x,X, Y ) =

∫
p(y|x, ω)p(ω|X,Y )dω (7)

with ω the weights of the neural network, p(y|x, ω) the prob-
ability that the RUL is y, given the test sample x and the
weights ω, and p(ω|X,Y ) the posterior distribution of the
weights, given the training samples X and Y .
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Figure 1. Case 1: WT06 - SHAP values of features.

Figure 2. Case 2: WT07 - SHAP values of features.
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Figure 3. Case 3: WT11 - SHAP values of features.

Figure 4. Case 4: WT01 - SHAP values of features.
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It is computationally expensive to analyze the posterior dis-
tribution p(ω|X,Y ) exactly (Gal & Ghahramani, 2016). As
such, we approximate p(ω|X,Y ) with a distribution q(ω)∗

that minimizes Kullback–Leibler divergence KL with the true
posterior distribution p(ω|X,Y ), i.e. (Blei, Kucukelbir, &
McAuliffe, 2017):

q∗(ω) = argminq(ω){KL(q(ω|p(ω|X,Y )))}. (8)

Using q(ω)∗, we approximate the posterior distribution of the
RUL of a test sample by:

q(y|x) =
∫
p(y|x, ω)q∗(ω)dω (9)

where q(y|x) is the approximation of p(y|x,X, Y ).

Lastly, we approximate the expected value ŷ of the RUL of a
test sample by:

ŷ = Eq(y|x)(y) =
1

M

M∑

1

ŷj(x, ω
j) (10)

where M is the number of forward passes through the neural
network, ωj are the weights of the neural network belonging
to the j-th forward pass (i.e., where some neurons are dropped
out), and ŷj(x, ωj) is the resulting RUL prediction from the
j-th forward pass through the neural network. For the distri-
bution of the RUL, we give each individual RUL prediction
ŷj(x, ω

j) a probability 1
M .

Performance metrics for RUL prognostics

To evaluate the ability of the LSTM model to predict the RUL,
we consider the Mean Absolute Error (MAE), the Root Mean
Square Error (RMSE), and the Continuous Ranked Probabil-
ity Score (CRPS), which are defined as follows.

MAE =

n∑

i=1

|RULa
i − ¯RUL

p
i |

n
, (11)

RMSE =

√√√√
n∑

i=1

(RULa
i − ¯RUL

p
i )

2

n
, (12)

with n the number of days over which predictions are made,
and ¯RUL

p
i the mean predicted RUL at day i, 1 ≤ i ≤ n.

Since we estimate the distribution of the RUL, to be able to
quantify the fitness of these distributions relative to the ac-
tual RUL (a point value), we consider the Continuous Ranked
Probability Score (CRPS) and the Weighted CRPS (CRPSW ).
Here, CRPS evaluates whether the estimated RUL distribu-
tion is centered around the actual RUL of the WT and whether
the variance of this distribution is low (a high sharpness of the
RUL prognostic) (Mitici, de Pater, Barros, & Zeng, 2023).
The Weighted CRPS applies a (larger) penalty β when over-

estimating the RUL then when underestimating the RUL. This
is of particular importance when planning the inspections of
the WTs - planning too late inspections (after the actual fail-
ure of the wind turbine) does not make effective use of the
prognostics to timely identify and act upon anticipated fail-
ures of the WTs.

CRPS is defined as follows (Gneiting & Katzfuss, 2014),

CRPS =
1

n

n∑

i=1

CRPSi, (13)

CRPSi =

∫ ∞

−∞
(Fŷi

(x)− I{yi ≤ x})2dx (14)

with I{yi ≤ x} =
{
1 if yi ≤ x
0 if yi > x.

The weighted CRPS (CRPSW ) is defined as follows (Gneiting
& Katzfuss, 2014):

CRPSW =
1

N

N∑

i=1

CRPSW
i , (15)

CRPSW
i = (2− β)

∫ yi

−∞
(Fŷi

(x))2dx (16)

+ β

∫ ∞

yi

(Fŷi
(x)− 1)2dx, 0 ≤ β ≤ 2.

4. INSPECTION PLANNING OF WIND TURBINES USING
PROBABILISTIC RUL PROGNOSTICS

In this Section we pose the problem of WT inspections as a
renewal reward process (Tijms, 2003), which integrates the
probabilistic RUL prognostics developed in Section 3.2. We
aim to determine optimal times for WT inspections.

We consider a renewal reward process {Nt} where the pro-
cess regenerates when a wind turbine is inspected, i.e., our
knowledge about the actual health condition of the wind tur-
bine is reset upon an inspection. At day k during the life
of the WT, we are interested in determining an optimal time
k + t∗k to inspect the WT. At day k, using the measurements
recorded up to day k and a LSTM with Monte Carlo dropout
(see Section 3.2), we estimate the probability that the RUL of
the WT is i days, i ≥ 0. Let ϕk(i) denote the probability that
the WT, after being used for k days, has a RUL of exactly i
days. To determine an optimal time to inspect the WT, we
consider the expected cost per unit of time:

[Expected cost over the current inspection cycle]
[Expected current inspection cycle]

. (17)

At day k, we are interested in finding an optimal time for

7
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inspection t∗k such that:

t∗k := argmintk>0
E[C(k, tk)]
E[L(k, tk)]

, (18)

with C(k, tk) the cost of inspecting the WT at day k + tk,
given that this WT has already been used for k days, and
L(k, tk) is the length of the inspection cycle of the WT.

If the WT is scheduled for inspection at day k + tk, then a
cost cr is incurred. If, however, the WT fails at some day
j, k < j < k + tk before an inspection is planned, then a
failure cost cf is incurred (corrective maintenance).

With this, the expected cost over the current inspection cycle
of the WT is:

E[C(k, tk)] = cf

tk−1∑

i=0

ϕk(i) + cr(1−
tk−1∑

i=0

ϕk(i)). (19)

Also, the expected current inspection cycle is:

E[L(k, tk)] = k +

tk−1∑

i=0

iϕk(i) + tk(1−
tk−1∑

i=0

ϕk(i)). (20)

Eq. (18) is solved using a numerical grid search. The estimate
ϕk(i) after every day k is obtained using a LSTM and the
methodology in Section 3.2.

5. NUMERICAL RESULTS

In this Section we illustrate the results obtained for the proba-
bilistic RUL prognostics and inspection planning for the four
WTs for which measurements are available at (EDP, 2023).

5.1. Probabilistic RUL prognostics for wind turbines

Table 4 shows the performance of the system-level RUL prog-
nostics for the WTs in the four Cases considered.

Table 4. Performance - RUL prognostics using LSTM.

MAE RMSE CRPS CRPSW

β = 1.9
Case 1: WT06 12.72 15.52 9.98 2.51
Case 2: WT07 11.30 13.65 7.86 9.16
Case 3: WT11 9.40 11.80 6.93 6.88
Case 4: WT01 19.35 22.42 14.68 3.11

The results show that the lowest MAE and RMSE are ob-
tained for WT11, while the highest MAE and RMSE are
obtained for WT01. However, when considering the prognos-
tics as input for inspection planning, we are interested in not
missing the failures. This may, however, occur when we over-
estimate the RUL and, based on these overestimates, we plan
late inspections. The Weighted CRPS captures the tendency
of the prognostics to overestimate the RUL. We consider a

large penalty for RUL overestimation (β = 1.9), given our
ultimate goal of planning inspections for WTs based on prog-
nostics. In this line, we are interested in planning inspection
timely, to anticipate the actual failures of the turbines rather
than missing these failures.

Figure 5. Case 1 - RUL estimation, WT06.

Figure 6. Case 2 - RUL estimation, WT07.

The results show that WT07 has the highest CRPSW =
9.16, despite having a relatively low MAE and RMSE.
This indicates that the RUL is predominantly overestimated
and a conservative inspection planning should be considered,
despite the low MAE and RMSE. The results also show
that WT06 has the lowest CRPSW = 2.51, despite having a
relatively high MAE and RMSE among all four turbines.
This indicates that the prognostics have the least tendency
to overestimate the RUL. These make the prognostics suit-
able for inspection planning, despite their high MAE and
RMSE. Overall, the results show that considering MAE
and RMSE alone when aiming to use prognostics for main-
tenance planning is not sufficient. Additional metrics such
as CRPSW , through their ability to evaluate whether the
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RUL is over/under-estimated, are particularly informative of
the suitability of the prognostics for maintenance planning.

Figure 7. Case 3 - RUL estimation, WT11.

Figure 8. Case 4 - RUL estimation, WT01.

The RUL prognostics obtained over time are shown in Fig-
ures 5 - 8. The RUL of WT06 and WT01 are predominantly
underestimated. The RUL of WT07 and WT11 are predomi-
nantly overestimated.

Figures 9 - 11 show the distribution of the RUL for WT06
(Case 1) at {202, 102, 2} days before the actual failure of the
WT. The results show that the sharpness of the estimated dis-
tribution increases closer to the time of failure of the WT.

5.2. Inspection planning for wind turbines using proba-
bilistic RUL prognostics

For inspection planning, we consider cf = 100.000 and cr =
100. Every day k (or equivalently after k days of usage),
based on the measurements collected up to this day, we de-
velop RUL prognostics, i.e., the prognostics are updated ev-

Figure 9. Estimated distribution of RUL, 202 days before the
actual failure of WT06.

Figure 10. Estimated distribution of RUL, 102 days before
the actual failure of WT06.

Figure 11. Estimated distribution of RUL, 2 days before the
actual failure of WT06.

ery day. Based on these prognostics, every day k we deter-
mine an optimal time t∗k to plan a WT inspection.

Figures 12 -15 show the results for the optimal inspection
times of the four WTs relative to the actual RUL and the mean
estimated RUL. For Case 1 - WT06, although the MAE and
RMSE are relatively high, the fact that CRPSW is low,
i.e., the overestimation of the RUL is low, is reflected in the
inspection planning - timely planning that does not miss the
failure of the WT. In fact, in the last phase of the monitoring
of this WT, it is consistently indicated that an optimal action
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Figure 12. Case 1: WT06, Optimal time inspection.

Figure 13. Case 2: WT07, Optimal time inspection.

Figure 14. Case 3: WT11, Optimal time inspection.

is to plan an inspection immediately.

For Case 2 - WT07, theCRPSW is the highest, i.e., the prog-

Figure 15. Case 4: WT01, Optimal time inspection.

Table 5. Optimal time for WT inspection.

RULa k ¯RUL
p

t∗k
Case 1: WT06

200 27 193.82 139
100 127 96.62 67
50 177 49.96 27
25 202 33.18 6

Case 2: WT07
150 14 135.44 101
100 64 94.11 68
50 114 38.61 37
25 139 26.5 24

Case 3: WT11
100 12 86.72 53
75 37 70.28 43
50 62 61.64 39
25 87 29.64 13

Case 4: WT01
200 18 192.69 118
100 118 74.69 59
50 168 28 4
25 193 8.46 0

nostics have the tendency to overestimate the RUL, which is
expected to delay the planning of the inspections leading to a
potential miss of the failure. This is reflected in the inspection
planning, particularly in the last phase of the monitoring of
the WT, see also Figure 13. For Case 3 - WT11, theCRPSW

is high, i.e. the prognostics have a tendency to overestimate
the RUL. As a result, delayed inspections are planned in the
last phase of the monitoring of the WT. For Case 4 - WT01,
despite the lowest achieved MAE and RMSE, a moderate
CRPSW is reflected in the inspection planning - timely in-
spection planning, particularly in the last phase of the WT
monitoring, when an immediate inspection is consistently in-
dicated as an optimal action (see also Figure 15). Overall,
for all four cases, the planning of the inspections is conserva-
tive, where timely inspections are indicated as being optimal
actions.
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Table 5 shows in detail several moments throughout the mon-
itoring of the WTs when inspections are planned (t∗k), relative
to the actual RUL (RULa), the usage of the WT (k), and the
mean estimated RUL ( ¯RUL

p).

6. CONCLUSIONS

This paper proposes a machine learning approach for system-
level probabilistic RUL prognostics for WTs. In contrast with
existing studies, which develop component-based prognos-
tics, we see the WT as an integrated system and develop
system-level RUL prognostics. These prognostics are fur-
ther employed to determine optimal moments for inspections
of the WTs, in anticipation of failures. To the best of our
knowledge, this is the first study that proposes a maintenance
planning model for WT based on data-driven prognostics. A
LSTM with Monte Carlo dropout is developed to estimate the
distribution of the RUL of the WTs, i.e., we develop proba-
bilistic RUL prognostics. By using dropout in the test phase
of the LSTM, the uncertainty associated with the RUL prog-
nostics is quantified. To plan inspections for the WTs, a
renewal reward process is proposed, which integrates these
probabilistic RUL prognostics.

We illustrate our approach for four offshore wind turbines lo-
cated in the West African Gulf of Guinea, and which have
been monitored in the period 1st January - 31st December
2017. The results show that the proposed LSTM estimates
well the RUL of the WTs, with a Mean Absolute Error rang-
ing between 9.40 days to 19.35 days when considering all
four wind turbines. Based on these RUL prognostics, inspec-
tions are planned conservatively, well ahead of the actual day
of failure. The results show that, although imperfect, prog-
nostics are informative for maintenance and support an effi-
cient planning of inspection tasks.

As future work we aim to improve our RUL prognostics by
considering additional features such as attention mechanisms
integrated into the neural networks.
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