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Abstract 

The prediction of defects occurring during manufacturing processes is one of the strategies to be 

implemented by organizations to reach the goals of Zero-Defect Manufacturing (ZDM). In low-

volume productions, characterized by a high level of complexity and customization, defects 

prediction may be challenging owing to the small amount of historical data typically available. This 

paper proposes a diagnostic tool that provides an in-line identification of critical steps of assembly 

processes. The method is based on a self-adaptive defect prediction model of the process, updated as 

new data are acquired. Assembly complexity of both the process and the design are used as predictors 

of the defect model. The methodology identifies critical assembly workstations where the respective 

average defectiveness deviates from the average defectiveness predicted by the model. Detecting 

critical workstations facilitates quality engineers in identifying the causes of non-conformities and 

undertaking appropriate corrective actions. The relevance of the method is emphasized by an 

application to a real case study related to the assembly of rotating ring wrapping machines used in 

end-of-line packaging.  

Keywords: zero-defect manufacturing, defect prediction model, assembly process; assembly 

complexity; low-volume production. 

1 Introduction 

Customer needs require products with a high degree of customization, with an increasingly high level 

of quality. This inevitably requires manufacturing companies to continuously adapt to the changes 

imposed by customers: short product life cycles, high customization, high quality and low costs. 
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Therefore, in order to remain competitive, companies started new strategies to achieve higher product 

quality while keeping costs as low as possible (Psarommatis and Kiritsis 2019). Among these, an 

emerging one is the so-called Zero-Defect Manufacturing (ZDM), which aims to decrease and 

mitigate failures and defects in different manufacturing processes. The main challenges associated 

with ZDM are the integration of large amounts of data from many sources, the development of 

advanced technologies and methods, modeling of ZDM, and timely real-time computation 

(Lindström et al. 2020; Psarommatis et al. 2020; Eger et al. 2018). However, achieving these goals is 

not straightforward (Ferretti et al. 2013). Strategies to achieve ZDM goals include the Detect, Prevent, 

Predict and Repair of a defect (Psarommatis and Kiritsis 2018; Psarommatis et al. 2020). Amongst 

all, the most critical strategy is defect detection because the others rely on data collected in the 

detection phase (Psarommatis and Kiritsis 2019).  

The detection of defects is a very important step of a manufacturing process (Iglesias, Martínez, and 

Taboada 2018; Galetto, Verna, and Genta 2020; Galetto et al. 2020, 2018; Liong et al. 2020). Indeed, 

defects generated during production can drastically affect the product, both in quality and cost terms 

(Genta, Galetto, and Franceschini 2018). To cope with the in-process detection of defects, appropriate 

process control and monitoring systems and adequate predictive maintenance techniques should be 

adopted by manufacturing companies (Aivaliotis et al. 2019; Zhou et al. 2019; Papavasileiou et al. 

2021; Aivaliotis et al. 2021; Papacharalampopoulos, Petrides, and Stavropoulos 2019; Anyfantis, 

Stavropoulos, and Chryssolouris 2018; Papacharalampopoulos et al. 2020). Although such 

approaches are straightforwardly applied to understand, monitor, and improve performances of mass 

production processes, their adoption is not devoid of issues in the case of low-volume productions. 

Low-volume productions are typically made up of highly customized and complex products, tailor-

made for customers. For this reason, collecting enough data in the short term to apply the above 

traditional techniques is trivial (Del Castillo et al. 1996; Trovato et al. 2010; Marques et al. 2015; 

Does 1997). Therefore, it is necessary to identify new approaches to diagnose the production process 

and then improve it. Over the past few decades, some statistical process control methods specific to 

low-volume production have been proposed in the literature, highlighting advantages and 

shortcomings (Verna et al. 2020b; Celano et al. 2011).  

This paper aims to propose a novel and practical diagnostic tool suitable for the assembly of low-

volume productions. The overall assembly process is decomposed into workstations, which are 

process steps in which a specific assembly operation is performed. The proposed tool, in line with 

ZDM goals, aims at detecting assembly workstations that are critical in terms of defectiveness. The 
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tool is built upon a self-adaptive defect prediction model, which can be updated as new data becomes 

available. The predictors of the model are the complexity factors of both the process and the design. 

Two specific Research Questions (RQs) are addressed in the manuscript: 

RQ1: How can the defect prediction model be exploited as a diagnostic tool to detect critical 

workstations? 

RQ2: How do model parameters self-adapt over time as new data are acquired from individual 

workstations?  

This study aims to contribute to the growing area of research about zero defect manufacturing by 

extending previous research conducted in the field. A novel practical diagnostic tool to in-line detect 

defective workstations relying on a self-adaptive prediction model is proposed. This approach 

represents a novelty compared to previous models (e.g. Shibata (2002) and Su et al. (2010)) mainly 

for its self-adaptability, diagnostic accuracy and timeliness.  

The remainder of the paper is organized as follows. In Section 2, a review of methods for assembly 

defect detection and prediction is proposed. Section 3 presents the self-adaptive defect prediction 

model for low-volume productions. Section 4 illustrates the diagnostic tool to identify critical 

workstations and improve assembly process. The relevance of the approach is highlighted by its 

application to a case study in the field of wrapping machine assembly. Finally, Section 5 summarizes 

the original contributions of the research, focusing on its implications, limitations and possible future 

developments. 

2. Overview of methods for assembly defect defection and prediction 

In the last years, a considerable body of research has been dealing with the problem of defect 

generation in manufacturing because of the relevance of the topic from an engineering and economic 

point of view. The sources of these defects can be highly diverse, depending on the product and the 

manufacturing context. The importance of quality control and, more specifically defect detection, has 

particularly taken hold in assembly manufacturing processes, as the product life cycle requires a faster 

response and a lower defect rate (Zhong, Liu, and Shi 2010). Among the various faults and defects 

that can occur in assembly, human errors still weigh heavily, especially in low-volume production, 

where many human interventions and limited automation exist during the production process. For 

instance, 25% of the total assembly errors are induced by human mistakes in semiconductor assembly 

(Shibata 2002) and operator errors account for 20% of the total defects in copier assembly (Su, Liu, 

and Whitney 2010). To cope with these high percentages, defect detection and prediction methods 

have been developed in the scientific literature. For instance, Caputo et al. (2017) developed a 
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quantitative model to assess error probability and the error correction costs in part feeding systems 

for assembly lines to compare alternative part feeding policies and identify corrective measures. 

Another line of research focused on the close relationship between assembly complexity and human 

mistakes to predict defects (Hinckley 1994; Shibata 2002; Su, Liu, and Whitney 2010; Antani 2014; 

Krugh et al. 2016a; Falck et al. 2017b; Galetto, Verna, and Genta 2020; Le, Qiang, and Liangfa 2012; 

Verna et al. 2021). Indeed, if assembly complexity is not managed adequately at the early stages of 

process planning, it can increase assembly time and errors and reduce assembly quality and efficiency 

(Alkan 2019; Krugh et al. 2016a; Falck et al. 2017a, 2016). To this aim, several prediction models 

were developed, mainly for mass productions. In the wake of the prediction model proposed by 

Hinckley (1994), derived by using long-term defect data from automobile, hard disk drive and 

semiconductor companies involving tens of millions of parts and assembly operations, Shibata (2002) 

adapted it to Sony's home audio products assembly. Several thousands of data related to four different 

models of audio equipment produced over months were analyzed in the study. Later, Su et al. (2010) 

developed a new defect model to match the characteristics of copier assembly. Antani (2014) used 

manufacturing complexity, estimated to incorporate variables driven by design, process and human 

factors, to predict product quality reliably in mixed-model automotive assembly. Such an approach 

was adapted by Krugh et al. (2016b, 2016a) to automotive electromechanical connections in a large 

complex system. Falck et al. (2017b) designed a tool to predict and control operator-induced quality 

errors by developing a method for predictive assessment of manual assembly complexity.  

In the modern framework of Industry 4.0, the growing data sets coming from the ongoing 

digitalization process can be used by Artificial Intelligence and especially Machine Learning (ML) 

applications to acquire knowledge from historical events. In particular, ML techniques have exhibited 

great effectiveness in the domain of manufacturing in analyzing complex systems and solving 

problems (Z. Kang, Catal, and Tekinerdogan 2020), including product quality and fault detection. 

Several reviews and surveys on data mining and ML applications focusing on the issue of quality in 

manufacturing have been published in the literature, see, e.g., Weichert et al. (2019), Cadavid et al. 

(2020), Dalzochio et al. (2020), Fahle et al. (2020), Kang et al. (2020). Typical industrial applications 

for quality improvement based on ML can be found in fields such as plastic injection molding and 

semiconductor manufacturing due to the high amount of data points and the short cycle times 

(Khakifirooz, Chien, and Chen 2018; Chien, Liu, and Chuang 2017).  

The major topics addressed by ML in the area of product/process quality improvement are (i) root 

cause analysis, (ii) quality prediction: virtual metrology and early prediction, and (iii) systems 

diagnostics. Root cause analysis is the analysis of existing data records to extract relevant features 
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and feature combinations for high or low product quality (Weichert et al. 2019). Virtual detection, 

also called virtual metrology or quality prediction in the literature, refers to a set of algorithms used 

to find a defect without measuring the actual part when the physical measurements are not possible 

or too expensive, as in semiconductor manufacturing (Psarommatis et al. 2020; S. Kang and Kang 

2017). Furthermore, some authors moved further, trying to make a reliable prediction of the final 

quality at the early stages of the process and identify relations between process steps. Hence, 

correcting actions before finishing the whole production process may be undertaken (Chen and 

Boning 2017). Diagnostic systems within the production line may monitor both the product itself 

(part diagnosis) and/or the machines (equipment diagnosis). Both approaches signal a part/machine 

condition that is abnormal or becoming abnormal, requiring corrective action to be taken (Z. Kang, 

Catal, and Tekinerdogan 2020). Although the extensive use of ML techniques for manufacturing 

quality control and improvement, some problems are still not fully addressed. First of all, the lack of 

relevant data or difficulties in getting access to the machine's control systems may compromise ML 

performance. 

For this reason, ML is primarily applied in highly complex processes, where a huge amount of data 

is generated from production. Such a problem might be overcome, at least partially, with time passing 

to gain expertise, fill storages, and break down obstacles by hardware and software. The lack of 

sufficient data is one of the main obstacles to adopting ML approaches in low-volume production 

systems. Indeed, the cycle time is relatively long due to the high flexibility and diversity of products 

and, typically, the many human interventions and limited automation make the adoption of ML 

methods extremely difficult.  

2.1. Defect prediction models for mass productions 

In this section, the most reliable models for predicting assembly defects, developed for mass 

production, are presented.  

According to Shibata (2002), a generic product assembly process can be decomposed into a series of 

process steps, also referred to as workstations, in which a specific task is performed. A certain number 

of job elements in each workstation, i.e., elementary operations, is carried out (Aft 2000; Shibata 

2002). The job elements are the minimum components of a specific task. These have easily 

identifiable starting and stopping points and are repeatable regularly throughout the workday. To 

predict the defects per unit occurring in each i-th workstation (DPUi), a process-based complexity 

factor for each workstation, CfP,i, was considered as a predictor, defined as follows: 
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𝐶𝑓𝑃,𝑖 = ∑ 𝑆𝑆𝑇𝑖𝑗
𝑁𝑎,𝑖

𝑗=1 − 𝑡0 ⋅ 𝑁𝑎,𝑖 = 𝑇𝐴𝑇𝑖 − 𝑡0 ⋅ 𝑁𝑎,𝑖  (i = 1, …, m), (1) 

where: 

 the index i refers to the generic i-th workstation;  

 Na,i is the number of job elements in the workstation i;  

 SSTij is the Sony Standard Time spent on the job element j in the workstation i;  

 TATi is the total assembly time related to the workstation i;  

 t0 is the threshold assembly time, i.e., the time required to perform the simplest assembly 

operation, below which neither assembly operations nor assembly defects should exist 

(Shibata 2002). 

The assembly times SSTij used in the model are derived from the Sony Standard Time (SST), a time 

estimation tool commonly adopted for electronic products. Accordingly, they are the standard times 

in which the operators should complete each job element and not the actual assembly times. The 

correlation relationship between CfP,i and DPUi derived from experimental data was as follows 

(Shibata 2002):  

𝐷𝑃𝑈𝑖 =
(𝐶𝑓𝑃,𝑖)

𝐾

𝐶
, (2) 

where C and K are two regression coefficients obtained by the linearization of the function, in the 

form:  

𝑙𝑜𝑔𝐷𝑃𝑈𝑖 = 𝐾 · 𝑙𝑜𝑔𝐶𝑓𝑃,𝑖 − 𝑙𝑜𝑔𝐶. (3) 

As evidenced by Shibata (2002), the time-related measures, and therefore the CfP,i, may not capture all 

the sources of defects. For this reason, a second predictor was introduced, i.e., the design-based 

assembly complexity factor CfD,i (Shibata 2002). It was defined as the ratio between an arbitrary 

calibration coefficient, KD, and the Ease Of Assembly (EOA) coefficient of the corresponding 

workstation, Di, estimated through the assembly/disassembly cost-effectiveness (DAC) method 

developed in Sony Corporation (Yamagiwa 1988), as follows: 

𝐶𝑓𝐷,𝑖 =
𝐾𝐷

𝐷𝑖
. (4) 

The correlation relationship between CfD,i and the 𝐷𝑃𝑈𝑖 can be expressed as follows:  

𝐷𝑃𝑈𝑖 = 𝑎 ⋅ 𝐶𝑓𝐷,𝑖
𝑏 , (5) 

where a and b are again regression coefficients obtained by the linearization of the function, in the 

form: 

𝑙𝑜𝑔𝐷𝑃𝑈𝑖 = 𝑏 · 𝑙𝑜𝑔𝐶𝑓𝐷,𝑖 + 𝑙𝑜𝑔𝑎. (6) 

By combining Eqs. (2) and (5), a bivariate prediction model was derived, which can be written as:  
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𝐷𝑃𝑈𝑖 = 𝑘1 ⋅ (𝐶𝑓𝑃,𝑖)
𝑘2 ⋅ (𝐶𝑓𝐷,𝑖)

𝑘3, (7) 

where 𝑘1, 𝑘2 and 𝑘3 are regression coefficients that may be obtained by a power-law nonlinear 

regression or by the linearization of the function in the form: 

𝑙𝑜𝑔𝐷𝑃𝑈𝑖 = 𝑘2 · 𝑙𝑜𝑔𝐶𝑓𝑃,𝑖 + 𝑘3 · 𝑙𝑜𝑔𝐶𝑓𝐷,𝑖 + 𝑙𝑜𝑔𝑘1. (8) 

It has to be remarked that, although Eq. (7) is linearizable, as shown in Eq. (8), it is preferable to 

implement a nonlinear regression model when dealing with few non-repeated data and affected by 

high variability, as in the case of DPUs, because of the presence of a retransformation bias (Galetto, 

Verna, and Genta 2020). 

In a subsequent investigation, Su et al. (2010) remarked that the model proposed by Shibata might 

not be directly suitable for other products, such as electromechanical products. Therefore, instead of 

using SST, a new process-based assembly complexity factor was formulated based on Fuji Xerox 

Standard Time, a more suitable time estimation approach for copier production. In addition, since 

DAC method was specifically developed for Sony electronic products, see Eq. (3), they proposed a 

different approach to evaluate the design complexity, based on the technique developed by Ben-Arieh 

for assessing the degree of difficulty of assembly operations (Ben-Arieh 1994; Su, Liu, and Whitney 

2010). First, l parameters - 11 in the specific case of copier assembly – are chosen as criteria for 

evaluating the design-based assembly complexity. Then, the weights of the l criteria are allocated 

using the Analytic Hierarchy Process (AHP) approach (Wei, Chien, and Wang 2005; Saaty 1980). In 

detail, e evaluators - 6 assembly engineers in the study of Su et al. (2010) - are asked to compare the 

relative importance of each parameter in determining the difficulty of inserting a part into a product. 

From such evaluations, the weight wq of the l parameters and the corresponding degrees of difficulty 

are obtained. The degree of difficulty, denoted as Akqi, i.e., the evaluation of the parameter q in the 

workstation i estimated by the evaluator k, is rated by scores between 0 and 10. Accordingly, the new 

design-based complexity factor was redefined as follows (Su, Liu, and Whitney 2010):  

𝐶𝑓𝐷,𝑖 = ∑ (𝑤𝑞 ⋅
1

𝑒
⋅ ∑ 𝐴𝑘𝑞𝑖

𝑒

𝑘=1
)𝑙

𝑞=1       (i = 1, …, m). (9) 

The correlation between each re-designed assembly complexity factor and the DPU was tested, 

showing that the best regression function, in both cases, was a cubic polynomial model. In addition, 

the re-designed process- and design-based complexity factors were also integrated into a new bivariate 

prediction model, whose behavior was confirmed to be again cubic (Su, Liu, and Whitney 2010). 

Nevertheless, in a recent study, Galetto et al. (2020) proved that the cubic models resulted from the 

logarithmic transformation bias occurring when predicting low defect rates, thus confirming the 

adequacy of the power-law behavior of Eqs. (2), (5) and (7). 
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3. A novel self-adaptive model to predict defect in low-volume productions 

In this section, a self-adaptive defect prediction model designed for low-volume productions is 

proposed. Such a model combines the approaches proposed by Shibata (2002) and Su et al. (2010) in 

order to make the model as general as possible and applicable to most assembly processes. In detail, 

as mentioned in Section 2.1, the product assembly process is decomposed into m workstations in 

which Na,i elementary operations (job elements) are performed (Shibata 2002). In each i-th 

workstation, a specific operation is carried out. According to Shibata (2002), it is assumed that errors 

made by operators in performing a certain elementary operation in a workstation can introduce at 

most one typology of a defect in the product. Consequently, the total number of possible defects 

within a certain workstation is at most equal to the total number of elementary operations in the same 

workstation. In practical applications, this assumption is reasonable when a refined segmentation of 

elementary operations is performed in each i-th workstation.  

Referring to Eq. (1), the process-based complexity factor adopted in the proposed model, instead of 

Sony standard times, makes use of the standard times in which an operator should complete each job 

element. These can be obtained by the predetermined motion time system Methods–Time 

Measurement (MTM) (Maynard, Stegemerten, and Schwab 1948). Thus, Eq. (1) may be rewritten as:  

𝐶𝑓𝑃,𝑖 = ∑ 𝑆𝑇𝑖𝑗
𝑁𝑎,𝑖

𝑗=1 − 𝑡0 ⋅ 𝑁𝑎,𝑖 = 𝑇𝐴𝑇𝑖 − 𝑡0 ⋅ 𝑁𝑎,𝑖    (i = 1, …, m), (10) 

where STij is the standard time spent on the job element j in the workstation i. 

Referring to the design-based complexity factor, the methodology adopted follows Su et al. (2010) 

approach, described in Section 2.1. Specifically, the l parameters have to be chosen, according to the 

product to be assembled, from the list of parameters related to the parts' geometry (geometry-based 

parameters) and to the type of contact between components (non-geometrical parameters), specified 

by Ben-Arieh (1994) (see Table 1).  
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Table 1 – Design parameters of assembly operations (Ben-Arieh 1994). 

Geometry-based parameters Non-geometrical parameters 

(i) Alignment of components (xii) Belt contact 

(ii) Amount of support required for the assembly operation (xiii) Clamp fit 

(iii) Force required (xiv) Gear contact 

(iv) Interference (reachability) to the assembled component (xv) Position contact 

(v) Length of components intersection (xvi) Snap contact 

(vi) Mating component's length (xvii) Spring contact 

(vii) Mating direction   

(viii) Ratio of length to width (diameter) of the mating component   

(iv) Ratio of the mating component's weight to the mated one   

(x) Shape   

(xi) Stability of the resultant assembly   

 

 

The weights wq of the l parameters are allocated using the Analytic Hierarchy Process (AHP) 

approach (Ben-Arieh 1994; Wei, Chien, and Wang 2005; Saaty 1980), according to Eq. (11): 

𝑤𝑞 =
(∏ 𝑞𝑟

𝑙
𝑟=1 )

1
𝑙

∑ (∏ 𝑞𝑟
𝑙
𝑟=1 )

1
𝑙𝑙

𝑞=1

        (q = 1, …, l), (11) 

where: 

 𝑞𝑟 is the relative importance of parameter q over parameter r (r = 1, … , l); 

 l is the number of parameters; 

Then, the design-based complexity factor 𝐶𝑓𝐷,𝑖 can be obtained by applying Eq. (9).  

Both the complexity factors, 𝐶𝑓𝑃,𝑖 and 𝐶𝑓𝐷,𝑖, are used as predictors of DPU occurring in each 

workstation. Previous research in the electromechanical field established that the relationship between 

DPU and CfP and CfD follows a power-law behavior (Galetto et al. 2020; Verna et al. 2021, 2020a), 

according to Eq. (7). 

Since low-volume productions are typically characterized by very long product life cycles, acquiring 

enough data to build a robust model may not be straightforward. Therefore, in this study, a self-

adaptive model is proposed. Two different approaches can be used to this aim. The first one requires 

that the most up-to-date DPU values be considered and added to the existing data collection to refine 

the parameter estimates of the regression model. On the other hand, a second approach avoids 

working with old data, which may be distant from the current defectiveness state. In particular, 

defined a certain period, a "moving fitting" of the model could be performed, which considers only 

the most recent data of such a moving period. For instance, if the model to be built needs to consider 
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the data of one production year, only the last year's data will be used to update the model parameters, 

neglecting the previous ones. The selection of the most suitable approach depends on the assembly 

process under consideration and related defectiveness data. The second approach is to be preferred to 

the first one when the process is not in a stationary condition, e.g., in the start-up phase of the process. 

In the case study proposed in the following section, the first approach is adopted. Accordingly, the 

most up-to-date DPU values are added to the existing dataset to refine the parameter estimates of the 

regression model reported in Eq. (7). This approach allows having a self-adaptive model fed by the 

"new knowledge" acquired during its operation. Clearly, the more data used to estimate model 

coefficients and the greater the periodicity of self-adaptation, the greater the accuracy of the model 

itself. 

It has to be noted that the proposed model, which combines the approaches proposed by Shibata 

(2002) and Su et al. (2010), can be applied to the majority of assembly processes. Indeed, the design-

complexity factor of Shibata model was specifically designed for electronic devices due to the use of 

DAC method employed in Sony Corporation, see Eq. (4). On the other hand, Su model was designed 

for copier products and did not consider the logarithmic transformation bias occurring when 

predicting low defect rates (Galetto, Verna, and Genta 2020). Thus, applying such models in contexts 

other than those for which they were designed may not be so straightforward, as refinements or 

amendments may be required. On the contrary, the novel approach proposed in this study allows 

estimating product defectiveness for any electromechanical product, as there are no parameters 

designed for specific fields of application. 

3.1. Model development for wrapping machine assembly 

Wrapping machines are equipment able to wrap palletized loads, typically regularly shaped, at the 

end of a line of production processes. In this case study, the rotating ring wrapping machine produced 

by the Italian company Tosa Group S.p.A. is considered (see Fig. 1a). Typically, about 50 units are 

assembled in a production year, and each machine may be highly tailored according to the customer's 

requirements. In particular, a single part of the machine is analyzed: the pre-stretch device (circled in 

Fig. 1a). Such an electromechanical device, which is common to all rotating ring wrapping machines, 

is used to (i) pull/unwind the plastic film, (ii) pre-stretch and position the plastic film, (iii) perform 

the necessary number of windings. The 3D Cad model of the device is shown in Fig. 1b, including 

the list of its main component.  
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Fig. 1. (a) Rotating ring wrapping machine of Tosa Group S.p.A. (Italy); (b) 3D CAD model of 

the pre-stretch device and its main components. 

 

According to the model proposed in Section 3, the assembly of the pre-stretch device is subdivided 

into m=29 workstations. In the first 9 workstations, the subassemblies are assembled on the bench. 

From workstation 10 to 29, the assembly is performed on the frame plate, as detailed in Table 2. Table 

2 also reports the experimental DPUi values collected during a typical production year in nominal 

working conditions. 
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Table 2. Subdivision of the assembly process of a pre-stretch device of a wrapping machine 

into workstations (WS) and experimental DPUi values (referring to one production year). 

WS no. Workstation description 
Experimental DPUi  

(one production year) 

1 Motor no. 1 bench assembly 0.0364 

2 Motor no. 2 bench assembly 0.0364 

3 Support plate of motor no. 2 bench assembly 0.0182 

4 Spindle bench assembly 0.0000 

5 Rubber tyres bench assembly 0.1091 

6 Idle rolls bench assembly 0.0545 

7 Rubberized pads bench assembly 0.0000 

8 Belt tensioner device bench assembly 0.0364 

9 Driven wheels of transmission system bench assembly 0.0000 

10 Pre-stretch frame plate preparation  0.0182 

11 Rubber rollers on pre-stretch frame plate assembly 0.0182 

12 Idle rollers on pre-stretch frame plate assembly 0.0182 

13 Motor no. 1 on frame plate assembly 0.0000 

14 Transmission system of motor no. 1 assembly 0.0000 

15 Motor no. 2 on frame plate assembly 0.0182 

16 Transmission system of motor no. 2 assembly 0.0364 

17 Motor no. 1 bracket on pre-stretch frame plate assembly 0.0000 

18 Belt tensioner on pre-stretch frame plate assembly 0.0364 

19 Transmission system of motor no. 1 calibration 0.0364 

20 Transmission system of motor no. 2 calibration 0.0364 

21 Spindle preparation for assembly on pre-stretch frame plate 0.0000 

22 Spindle group on pre-stretch frame plate assembly 0.0364 

23 Rubber pads on pre-stretch frame plate assembly 0.0000 

24 Motor assembly no. 1 final steps 0.0545 

25 Motor assembly no. 2 final steps 0.0545 

26 Spindle release lever bench assembly 0.0000 

27 Spindle release lever on pre-stretch frame plate assembly 0.0000 

28 Compensation arm bench assembly 0.0909 

29 Compensation arm on pre-stretch frame plate assembly 0.0000 

 

For each i-th workstation, the two predictors of the model, CfP,i and CfD,i, are obtained by Eq. (10) and 

(9), respectively. To estimate the first predictor, each workstation is subdivided into elementary 

operations, and the related standard time is obtained by considering an average time of three 

measurements. The threshold assembly time, t0, is set equal to 0.04 min, corresponding to the time to 

complete the least complex elementary operation in the whole assembly process. Regarding the 

second predictor, l=11 parameters are selected from those listed in Table 1 (see Table 3). The weights 

wq of the parameters are calculated by Eq. (11) by considering the individual evaluations of e = 6 

evaluators (2 assembly engineers and 4 assembly operators), who also estimated the degrees of 

difficulty, Akqi. As a result, the process and the design-based complexity factors, CfP,i and CfD,i, derived 

by Eq. (10) and (9), respectively, are reported in Table 4 for each i-th workstation.  
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Table 3. Design parameters in the assembly of wrapping machines. 

Parameter Description (∏𝛼𝑞𝑟

𝑙

𝑟=1

)

1
𝑙

 Weight wq 

P1 Shape of mating objects 1.761 0.139 

P2 Force required 1.529 0.120 

P3 Alignment of components 1.907 0.150 

P4 Mating direction 2.151 0.169 

P5 Ratio of the mating component's weight to the mated one 1.192 0.094 

P6 Ratio of length to width (diameter) of the mating component 1.161 0.091 

P7 Reachability to the assembled component 0.714 0.056 

P8 Mating component's length, 0.810 0.064 

P9 Amount of support required for the assembly 0.466 0.037 

P10 Stability of the resultant assembly 0.523 0.041 

P11 Length of components intersection 0.480 0.038 

 ∑ (∏ 𝑎𝑞𝑟
𝑙
𝑟=1 )

1

𝑙𝑙
𝑞=1   12.693  

The best-fitting model, describing the relationship between DPUi and the two predictors, CfP,i and 

CfD,i, is the power-law regression model, in the form shown in Eq. (7). The analysis was performed 

in the software MINITAB® by using nonlinear regression. This experimental finding corroborates 

previous research in the electromechanical field (Galetto et al. 2020), and confirms that the power-

law model is suitable not only for mass production (Shibata 2002), but also for low volume 

production. The defect prediction model is as follows: 

𝐷𝑃𝑈𝑖 = 5.04 ⋅ 10−5 ⋅ (𝐶𝑓𝑃,𝑖)
0.77 ⋅ (𝐶𝑓𝐷,𝑖)

3.08. (12) 

The analysis of the residuals between experimental DPU and predicted DPU suggests that the power-

law model describes well the trend of the DPU as a function of the assembly complexity. The visual 

analysis of the residues was accompanied by a statistical normality test, the Anderson-Darling test, 

whose result is that the normal distribution cannot be rejected with a confidence level of 95% (Devore 

2011). The S value, i.e., the standard error of the regression, is equal to 0.024. It represents a measure 

of goodness of fit of the model to be used instead of R2 for nonlinear models (Bates and Watts 1988). 

Such a value indicates that the experimental values of DPU fall an average distance of 0.024 units 

from the DPU values predicted by Eq. (12). 

To refine model parameters, DPUs collected over a further six months were added to DPU values 

related to one year of production. Therefore, the new data analyzed refer to a year and a half of 

production (about 80 machines). Such values are reported in Table 4. The new prediction model is as 

follows: 

  𝐷𝑃𝑈𝑖 = 3.87 ⋅ 10−4 ⋅ (𝐶𝑓𝑃,𝑖)
0.67 ⋅ (𝐶𝑓𝐷,𝑖)

2.01. (13) 
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Again, the analysis of the residuals between experimental DPU and predicted DPU, and the 

Anderson-Darling test, at a significance level of 5%, lead not to reject the hypothesis of normality of 

the residuals. In this case, the S value is increased to 0.026, showing that the experimental values of 

DPU fall a standard distance of 0.026 units from the DPU values predicted by Eq. (13). 

A comparison of the 95% confidence intervals of the parameter estimations of the two models (Eq. 

(12) and (13)) is provided in Fig. 2. In all three cases, the confidence intervals of the parameters of 

the two models are compatible. In addition, the width of the confidence intervals decreases for 

parameter 𝑘1, while slightly increases for parameters 𝑘2 and 𝑘3. 

Table 4. Defect prediction model variables of the pre-stretch device assembly. 

WS 
no. 

𝐶𝑓𝑃,𝑖 
[min] 

𝐶𝑓𝐷,𝑖 
DPUi predicted by 

Eq. (12) 

Experimental DPUi (1 year and 6 

months of production) 

DPUi predicted by new 

Eq. (13) 
1 7.1 4.4 0.0214 0.0361 0.0277 
2 7.4 4.6 0.0250 0.0361 0.0309 
3 5.8 5.1 0.0287 0.0120 0.0325 
4 3.8 4.3 0.0126 0.0000 0.0177 
5 11.9 5.7 0.0715 0.1084 0.0664 
6 7.7 4.9 0.0320 0.0602 0.0366 
7 3.5 2.8 0.0030 0.0000 0.0069 
8 2.4 3.5 0.0045 0.0361 0.0084 
9 0.3 3.7 0.0012 0.0000 0.0025 
10 4.8 4.2 0.0142 0.0361 0.0199 
11 5.2 5.3 0.0312 0.0241 0.0336 
12 5.7 5.1 0.0298 0.0120 0.0331 
13 3.7 5.1 0.0205 0.0000 0.0241 
14 0.9 5.4 0.0084 0.0000 0.0106 
15 8.5 4.9 0.0355 0.0241 0.0398 
16 0.8 4.9 0.0060 0.0361 0.0084 
17 0.9 4.2 0.0041 0.0000 0.0067 
18 1.7 4.3 0.0067 0.0361 0.0103 
19 5.7 5.2 0.0306 0.0361 0.0338 
20 6.3 5.2 0.0332 0.0361 0.0361 
21 2.2 5.2 0.0147 0.0000 0.0177 
22 13.4 5.6 0.0738 0.0361 0.0692 
23 2.3 4.1 0.0075 0.0000 0.0116 
24 1.1 4.1 0.0041 0.0482 0.0070 
25 1.2 4.3 0.0049 0.0482 0.0078 
26 1.2 4.1 0.0042 0.0602 0.0071 
27 7.9 4.7 0.0293 0.0000 0.0347 
28 12.2 5.5 0.0672 0.0964 0.0641 
29 5.4 5.0 0.0257 0.0000 0.0299 
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Fig. 2. Comparison of 95% confidence intervals of the parameter estimates of the two models, 

see Eqs. (12) and (13). 

 

4. Diagnostic tool to identify critical assembly workstations  

In this section, a diagnostic tool to detect critical workstations is developed, using the self-adapting 

defect prediction model described in Section 3. Such a tool uses the model as a reference of the 

average defect rate (DPU) found in a workstation and, in addition, exploits the corresponding 

uncertainty range. In detail, to each predicted DPUi obtained through the prediction model, it is 

possible to associate two prediction limits. These limits constitute the thresholds for identifying 

critical workstations in terms of defectiveness which are caused by special causes of variation - 

therefore, variations coming from sources not common to the process (Montgomery 2012). The 

approach may be summarized in the following steps:  

1) Defects detected in each workstation over a specific period of time are divided by the number 

of units inspected to obtain the observed DPUi values. It has to be remarked that, on such data, 

it is always advisable to perform a preliminary data analysis using traditional statistical 

techniques for outliers detection and filtering (Barbato, Germak, and Genta 2013). 

2) The prediction limits of each DPUi value are derived according to the following equations:  

  𝑈𝑃𝐿𝑖 = 𝐷𝑃𝑈𝑖 + 𝑡1−𝛼
2
,ν ⋅ √𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) + 𝑆2 (14a) 



16 

 

 

  𝐿𝑃𝐿𝑖 = 𝐷𝑃𝑈𝑖 − 𝑡1−𝛼
2
,ν ⋅ √𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) + 𝑆2, (14b) 

where: 

 𝑈𝑃𝐿𝑖 is the upper prediction limit and 𝐿𝑃𝐿𝑖 is the lower prediction limit of 𝐷𝑃𝑈𝑖; 

 𝑡1−𝛼
2
,𝑣 is the value of Student's t distribution with ν degrees of freedom and significance 

level ; 

 𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) is the variance of the 𝐷𝑃𝑈𝑖, calculated by using the average values of the 

regression parameter estimates, their standard deviations and the correlation matrix for 

parameter estimates, according to Eq. (15): 

  𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) ≈ [
𝜕𝐷𝑃𝑈𝑖

𝜕𝑲
]
𝑇

⋅ 𝑐𝑜𝑣(𝑲) ⋅ [
𝜕𝐷𝑃𝑈𝑖

𝜕𝑲
], (15) 

where 𝑲 = [𝑘1, 𝑘2, 𝑘3]
T is the vector of regression parameters of Eq. (7) and 𝑐𝑜𝑣(𝑲) 

is the variance-covariance matrix of regression parameters, both estimated by applying 

the Gauss-Newton method implemented in the software MINITAB® to the model of 

Eq. (7) (Bates and Watts 1988). 

 S is the standard error of the estimate, also known as the standard error of the 

regression, derived from the sum of the squared residuals RSS, the number of 

observations N and the number of free parameters P - 3 in the case of the proposed 

defect prediction model of Eq. (7), according to Eq. (16) (Bates and Watts 1988): 

  𝑆 = √
𝑅𝑆𝑆

𝑁−𝑃
. (16) 

1) The observed DPUi values are compared with the corresponding prediction limits: 

a. If the observed DPUi falls within the prediction range (𝐿𝑃𝐿𝑖 , 𝑈𝑃𝐿𝑖), the workstation is 

not detected as critical. 

b. If the observed DPUi is higher than the upper prediction limit (UPLi), it means that an 

abnormal defectiveness is occurring in such workstation, and accordingly, the 

workstation is to be signaled as critical. 

c. If the observed DPUi is below the lower prediction limit (LPLi), the workstation is also 

to be signaled as critical due to the low defect rate observed, which might be due to 

quality inspection errors (false negatives). 

Therefore, the proposed diagnostic tool aims at detecting abnormal workstations and can be 

implemented whenever new observed DPUs are available on each workstation. In this view, the tests 

carried out may be seen as in-progress controls.  
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4.1. Practical application to wrapping machines assembly 

The diagnostic tool described in Section 4 is applied to detect critical workstations in the assembly 

of wrapping machines. In such a case, the defect prediction model developed in Section 3.1 is used 

as the reference model. Table 5 reports the upper and lower limits of the 95% prediction interval of 

the defects per unit in each i-th workstation (DPUi), calculated by considering the model built with 

the data of one year of production (see Eq. (12)) and the refined model that considers the additional 

data of the last 6 months (see Eq. (13)). To obtain the prediction limits, the variance of DPUi is 

calculated according to Eq. (15), for both the models, as reported in Table 5. Then, Eqs. (14a) and 

(14b) are applied by considering 𝑡1−𝛼
2
,ν = 𝑡

1−
0.05

2
,26

= 2.055, as the degrees of freedom ν = 26 are 

obtained by subtracting the number of estimated model parameters (i.e., 𝑘1, 𝑘2 and 𝑘3) from the total 

number of workstations (m=29). Moreover, as mentioned in Section 3.1,  S=0.024 in the first model 

and S=0.026 in the second model. It should be noted that negative values of LPLi are set equal to zero 

in Table 1. Accordingly, for most workstations, the prediction interval is not symmetric with respect 

to the predicted DPUi. 

The diagnostic tool is applied to the DPU derived by collecting the defects occurring in each 

workstation over a period of 6 months (corresponding to 28 pre-stretch devices), which are also 

reported in Table 5. According to the step 3 illustrated in Section 4, each DPUi (last column of Table 

5) is compared with the 95% prediction limits obtained for both models. It is found that workstations 

10 and 26 are detected as critical workstations when considering the model of Eq. (12), because DPUi 

values are higher than the corresponding UPLi. On the other hand, when considering the refined model 

of Eq. (13), only workstation 26 is identified as critical. The difference in the two diagnostic tests is 

due to the refined model of Eq. (13), being more representative of the actual process defectiveness.  
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Table 5. Variance, lower and upper 95% prediction limits of 𝑫𝑷𝑼𝒊, considering the model 

of Eq. (12) and the refined model of Eq. (13), and observed 𝑫𝑷𝑼𝒊 values of the last 6 months. 

WS no. 
Model - Eq. (12) New model - Eq. (13) 

Observed DPUi (last 6 months) 
𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) LPLi UPLi 𝑉𝐴𝑅(𝐷𝑃𝑈𝑖) LPLi UPLi 

1 1.05E-04 0.0000 0.0755 1.22E-04 0.0000 0.0864 0.0357 

2 9.43E-05 0.0000 0.0788 1.00E-04 0.0000 0.0889 0.0357 

3 3.79E-05 0.0000 0.0802 3.93E-05 0.0000 0.0882 0.0000 

4 3.21E-05 0.0000 0.0639 4.41E-05 0.0000 0.0735 0.0000 

5 2.08E-04 0.0134 0.1295 2.14E-04 0.0044 0.1283 0.1071 

6 5.84E-05 0.0000 0.0843 5.68E-05 0.0000 0.0929 0.0714 

7 2.11E-05 0.0000 0.0538 7.85E-05 0.0000 0.0640 0.0000 

8 1.56E-05 0.0000 0.0551 3.81E-05 0.0000 0.0640 0.0357 

9 1.86E-06 0.0000 0.0512 6.69E-06 0.0000 0.0569 0.0000 

10 5.20E-05 0.0000 0.0663 7.03E-05 0.0000 0.0767 0.0714 

11 9.33E-05 0.0000 0.0849 8.97E-05 0.0000 0.0912 0.0357 

12 4.47E-05 0.0000 0.0815 4.62E-05 0.0000 0.0891 0.0000 

13 6.18E-05 0.0000 0.0730 6.78E-05 0.0000 0.0809 0.0000 

14 8.67E-05 0.0000 0.0618 1.09E-04 0.0000 0.0689 0.0000 

15 7.02E-05 0.0000 0.0883 6.80E-05 0.0000 0.0965 0.0357 

16 3.56E-05 0.0000 0.0573 5.59E-05 0.0000 0.0646 0.0357 

17 1.03E-05 0.0000 0.0544 2.23E-05 0.0000 0.0617 0.0000 

18 1.58E-05 0.0000 0.0573 2.85E-05 0.0000 0.0655 0.0357 

19 5.08E-05 0.0000 0.0826 5.20E-05 0.0000 0.0899 0.0357 

20 4.72E-05 0.0000 0.0850 4.89E-05 0.0000 0.0921 0.0357 

21 8.84E-05 0.0000 0.0682 1.02E-04 0.0000 0.0757 0.0000 

22 2.16E-04 0.0155 0.1322 2.31E-04 0.0066 0.1317 0.0357 

23 1.75E-05 0.0000 0.0581 3.06E-05 0.0000 0.0669 0.0000 

24 9.31E-06 0.0000 0.0544 2.06E-05 0.0000 0.0619 0.0357 

25 1.24E-05 0.0000 0.0553 2.50E-05 0.0000 0.0629 0.0357 

26 9.42E-06 0.0000 0.0545 2.08E-05 0.0000 0.0620 0.1786 (*) 

27 8.75E-05 0.0000 0.0828 8.72E-05 0.0000 0.0921 0.0000 

28 1.49E-04 0.0113 0.1230 1.68E-04 0.0037 0.1244 0.1071 

29 3.61E-05 0.0000 0.0771 3.77E-05 0.0000 0.0855 0.0000 

 

According to the diagnostic test results, the process engineers may carry out specific and accurate 

checks. The anomalous defectiveness found in workstation 26, marked in Table 5 with an asterisk, is 

due to the use of a batch of a mechanical component to assemble the spindle release lever, purchased 

from an external supplier, which turned out to be out of tolerance. On the other hand, as regards 

workstation 10, DPU of the last 6 months, which were defined as physiological using the most up-to-

date model, are due to the bad finishing of the frame plate holes, an operation that is carried out 

manually by the operator using a manual grinding machine. This inevitably produces defects that are 

due to the process itself and the type of operation performed, and not to special causes of variation. 

In light of these results, the defect prediction model to be used for future diagnostic tests should not 

consider the defects of the last months for workstation 26, because they are caused by special causes 

of variation, and therefore are not representative of the physiological defectiveness of the process. 
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5. Conclusions  

Achieving Zero-Defect Manufacturing (ZDM) goals is key in manufacturing organizations to 

maintain their position in the marketplace. One of the strategies of ZDM is the detection of defects. 

In low-volume assembly processes, the scarcity of historical data and the non-applicability of 

traditional statistical process approaches make defect detection and prevision a remarkable issue. In 

this investigation, the aim is to propose a novel diagnostic tool to identify critical workstations based 

on the formulation of a probabilistic model for defect prediction. The proposed methodology involves 

the decomposition of the assembly process into workstations, in which a specific operation is 

performed. Then, a prediction model relating the observed defects per unit (DPU) in each workstation 

and the level of complexity in terms of the assembly process and design is developed. Such a model 

can be defined as self-adaptive as its parameters are continuously refined as new data becomes 

available from the process. This diagnostic tool exploits such a prediction model and its variability to 

identify critical workstations. In detail, the workstations whose defectiveness deviates, at a specific 

confidence level, from the predicted value can be easily identified by verifying whether the observed 

DPU value does not fall within the prediction interval. Consequently, engineers are guided to 

recognize the special causes of variation of such abnormal defectiveness to undertake appropriate 

corrective actions. The conceptual presentation of the approach is supported by a practical application 

in the assembly of low-volume production of wrapping machines.  

The potential of the proposed method lies in the ease of application in real contexts and the speed of 

identification of critical steps of the production process. However, some issues that may arise when a 

practitioner or researcher applies the method to real cases are summarized below. Firstly, the process 

should be appropriately decomposed into elementary operations and workstations in order to comply 

with the assumption that the total number of possible defects within a certain workstation is at most 

equal to the total number of elementary operations in the same workstation. Secondly, to estimate the 

design-based complexity factor, the design parameters (see Table 3) should be carefully selected 

according to the case study considered. Furthermore, expert evaluations are critical to obtaining an 

accurate estimate of the complexity of the design, so it is necessary to guide experts through the 

evaluation of weights and degree of difficulty. Once the defect prediction model has been defined, 

the implementation of the diagnostic tool is straightforward and does not involve any particular 

operational issues. 

The proposed diagnostic tool is subject to some limitations. First of all, a defect prediction model 

should be available. Thus, an initial historical dataset of the defectiveness of the process is necessary. 

However, in the modern industrial context, the increasing use of widespread sensor technology and 
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online control systems allows a real-time acquisition of data to be used as preliminary inputs. 

Therefore, this limitation may be partially overcome. Secondly, the generalizability of the proposed 

approach is subject to certain restrictions. The model is suitable for electromechanical assemblies. As 

a first approximation, if a specific defect prediction model is not available, the proposed model may 

be adopted for other products belonging to the electromechanical field, without any particular 

amendments. Then, once new data are collected, the model can be updated to make it more 

representative of the specific process considered.  

In the future, some research will be devoted to overcoming (at least in part) the above limitations.  In 

addition, the proposed diagnostic tool will be enhanced through the use of Machine Learning (ML) 

techniques, thus increasing the effectiveness and timeliness of diagnosis. Finally, further research will 

be conducted to monitor workstation defectiveness over time to complement the diagnostic control 

proposed in this study, adopting, for example, specific DPU-control charts. 
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