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Abstract: The aim of this review was to present an overview of the state of the art in the use of the
Microsoft Kinect camera to assess gait in post-stroke individuals through an analysis of the available
literature. In recent years, several studies have explored the potentiality, accuracy, and effectiveness of
this 3D optical sensor as an easy-to-use and non-invasive clinical measurement tool for the assessment
of gait parameters in several pathologies. Focusing on stroke individuals, some of the available
studies aimed to directly assess and characterize their gait patterns. In contrast, other studies focused
on the validation of Kinect-based measurements with respect to a gold-standard reference (i.e.,
optoelectronic systems). However, the nonhomogeneous characteristics of the participants, of the
measures, of the methodologies, and of the purposes of the studies make it difficult to adequately
compare the results. This leads to uncertainties about the strengths and weaknesses of this technology
in this pathological state. The final purpose of this narrative review was to describe and summarize
the main features of the available works on gait in the post-stroke population, highlighting similarities
and differences in the methodological approach and primary findings, thus facilitating comparisons
of the studies as much as possible.

Keywords: RGB-D sensors; gait analysis; stroke; hemiplegia; markerless motion analysis

1. Introduction

Stroke and cerebrovascular diseases are leading causes of both death and long-term
disabilities worldwide [1,2], and hemiplegia is the most common impairment in the sur-
vivors [3,4]. Stroke results in a wide range of neurological deficits [5], and it severely affects
motor skills, causing muscular weakness or partial hemi-paralysis that compromises the
full arm function [6] and the mobility of the lower limbs [5,7].

With respect to lower limbs, hemiplegic gait is the most common manifestation of
stroke: it is characterized by inter-limb asymmetry in walking or dragging gait due to
the unilateral weakness of the affected side, together with abnormal torso tilting rota-
tion [5,8–14]. The decline in functional abilities and the impaired motor performance
greatly affect the post-stroke patient’s quality of life [9,15–17]. In order to limit the conse-
quent impact on people’s daily life, a timely assessment is crucial for proper monitoring
of the improvement or worsening of motor skills, and to set up effective rehabilitation
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protocols fitting each individual’s condition [18–20]. In this context, specific rehabilitation
protocols that assess the functionality of the trunk/pelvis and the joints of the lower limbs
are desirable.

The assessment of gait-related impairments in hemiplegic post-stroke patients is com-
monly performed using standardized clinical scales (e.g., the Fugl-Meyer Assessment
score) [21] and specific walking tests. Among them, there are the 10-meter walk test
(10MWT) [22], the 6-minute walk test [23], and the Timed Up and Go (TUG) test [24],
which are often performed as part of the same examination session to gain a complete
description of the patient’s walking behavior [25]. In the clinical field, optoelectronic 3D
motion capture systems and force plates are the broadly acknowledged gold standard tools
to assess gait patterns in a laboratory setting due to their consistency and measurement
accuracy [5,9,26,27]. Such systems provide spatiotemporal parameters, kinematics and
kinetics that quantitatively describe the main features of the gait cycle, thus allowing
for the functional performance assessment of patients and the identification of atypical
patterns [5,28]. However, optoelectronic systems cannot be extensively used due to their
high cost, complexity and often-troublesome equipment wearing requirements [29,30],
together with the dependency on dedicated laboratory settings and specifically trained op-
erators [26,31,32] and the need to wear limited clothing, which represents a great limitation
for the application in many types of patients (for example, in patients with eating disorders
or neurological patients with great functional problems in dressing).

Over the last decade, different technologies and methods [33–42] have been proposed
as an alternative to the optoelectronic systems for the analysis of body movements and
functions as a medical diagnostic tool as well as in sports assessment. Among them,
low-cost optical body-tracking sensors, such as the Microsoft Kinect, have proved to be
particularly promising in order to assess both healthy and pathological gait, posture,
postural instability, and balance in a non-invasive way [5,9,43–47]. Originally featured for
entertainment together with the XboxTM video game consoles, Microsoft Kinect® (Microsoft
Corporation, Redmond, WA, USA) has become a ground-breaking vision-based motion
capture system, based on its color and depth sensors, finding application in new contexts
including medical–clinical and rehabilitation settings [15,48]. Acknowledged as a non-
intrusive tracking device [49], it requires neither any subject preparation nor attachment
of markers to the patient’s body, nor a dedicated handheld controller [15]. In fact, its
inherent technology is able to detect and capture the movements of the body in real-time by
estimating the positions of the main joints through the anatomical landmarks of a skeletal
model in the 3D space [50]. As it does not require any additional equipment, people are free
to move with their natural patterns as they perform various tasks inside the device’s field
of view, and their movements can be reproduced in real-time on the computer screen, for
example, to obtain visual feedback [15]. The device is small, portable, and does not require a
complex laboratory setup [26], enabling its use even as part of virtual home tele-monitoring
and tele-rehabilitation systems [51–56] that may allow the patients to practice exercises
in a private environment [3]. In addition, it allows for training in specific motor and non-
motor tasks with an amusing game-based approach that may increase the motivation and
engagement of the patients [15,57–63], in particular those in outpatient settings. This could
permit an adequate and prolonged clinical monitoring in real-life contexts, thus replacing
dedicated hospitalizations [64].

In recent years, several studies have investigated the accuracy and effectiveness of
Microsoft Kinect for the assessment of posture, gesture, lower limbs and gait performance
in several pathological states, such as stroke, Parkinson’s disease [26,65–70] and other
pathologies [71–74]. Different studies have reported its reliability for the assessment of
spatiotemporal gait parameters (e.g., step length and gait speed) and kinematic variables
(e.g., trunk angle) in healthy individuals, with results comparable to those of laboratory-
grade systems [25,75–80] using both the first and second model of the device. The last
version of the device, the Azure Kinect DK, was released in 2019 and, thanks to its new
body tracking algorithm based on deep learning and convolutional neural networks [81],
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shows improved features in terms of depth accuracy and the number of joints tracked
compared to the previous generations. Pilot studies on gait analysis [81,82] highlight higher
accuracy of the device in the estimation of spatial gait parameters and kinematics compared
to the previous models. Recent studies found that Azure Kinect had good agreement
with a traditional motion capture system setup, indicating that the sensor could provide
clinically relevant measurement of spatiotemporal parameters during gait [83], postural
control [84], and sit-to-stand movement strategies, allowing for improved precision in
clinical decision-making across multiple clinical populations [85]. The results showed high
levels of agreement in evaluating spatiotemporal and kinematic variables during walking,
sit-to-stand, and functional balance tasks, indicating that this technology is capable of
accurate, and clinically relevant, assessment of motion data while performing these tasks.
However, to date, no studies have explored its applicability in the characterization of a
pathological condition.

Kinect sensor has been extensively used in Parkinson’s disease gait analysis [65,86]
and postural control tests [66], such as the single-leg eyes-closed standing balance [87],
claiming concurrent validity with the gold standard systems [88] and showing its ability to
accurately measure some temporal and clinically relevant spatial features [49]. This non-
invasive optical sensor increased the odds of virtual reality in the rehabilitation. The use
of exergames is an innovative viable strategy for rehabilitation purposes, because it is not
only recreational, but it also allows one to stimulate cognitive and motor functions and to
promote physical activities through a more engaged game interaction [89–92]. However, at
present, few studies have used this technology in specific neurological treatments, such as in
patients with stroke. The use of Kinect for the rehabilitation of post-stroke patients is in fact
a recent topic. The first controlled and randomized studies were published in 2013 [93,94].
Moreover, the studies selected here represented small samples, and the majority comprised
less than 30 volunteers. The greater use of Kinect with more significant results in the
treatment of stroke patients was in the recovery of motor function and postural balance [95].
Nevertheless, conclusive findings on these and other variables were not yet possible, which
increased the necessity for caution with this device in rehabilitation. With respect to
the post-stroke population, however, just a few studies have focused on characterizing
pathological gait patterns, but the lack of homogeneity among the characteristics of the
cohorts, the selected pool of gait parameters, and the methodologies and objectives of the
research make it difficult to directly compare their results.

This has led to uncertainties about the strengths and weaknesses of this technology
to analyze and quantify gait patterns and walking strategies in post-stroke patients [18].
The aim of this narrative review was to present an overview on the state of the art regard-
ing the use of the different Microsoft Kinect camera models to assess gait in post-stroke
individuals through an analysis of the available literature. Both studies using this sensing
technology to directly evaluate and characterize the gait patterns and studies aimed at its
validation against gold standard references (i.e., optoelectronic systems) were considered
and included.

2. Materials

An extensive search of the literature was performed in February 2022, with a focus
on studies published over the past 12 years (2010–2022). The search was performed on
Web of Science, PubMed, Scopus, Mendeley, and Google Scholar via customized queries
using keywords and Boolean operators in the form “(Kinect OR Xbox) AND (Hemiplegia
OR post-stroke) AND (Gait Analysis OR lower limbs)”. The document type was set to
“Article” and the selection was limited to full articles written in English. Additionally, the
bibliographies of the selected papers were manually checked in order to find other suitable
studies. It was decided to include studies assessing only adults (>18 years) with hemiplegia,
evaluating the functional limitation or the effects of rehabilitation with Microsoft Kinect.
Studies focused on non-adult participants or in which the Kinect technology was not the
main tool used to assess the participants were not included.
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3. Results

A total of 33 articles were retrieved from the above-mentioned electronic databases.
Three items were added by visual inspection of refence lists of the selected studies. After
removing 10 duplicates, title and abstract screening led to the exclusion of six papers. Out
of the remaining 20 articles, 13 failed to meet the inclusion criteria. The selection process is
shown in Figure 1.
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Figure 1. Process of study selection.

Table 1 presents a summary of the papers on the use of Microsoft Kinect to evaluate
the gait behavior of hemiplegic patients, together with the demographic characteristics of
the evaluated cohort of patients, details regarding the experimental setup (analyzed gait
parameters) and the purpose of the study, distinguishing between gait characterization,
system validation or both.

Table 1. Summary of the main details of the reviewed studies.

Source Year and
Country

# Participants, Age (yrs) and
Gender (# M/F)

Height (cm) and
Weight (kg) Functional Tests Gait Parameters Finality of the

Study

Vernon et al.
[25]

2015
Australia

Total: 30 post-stroke
68 ± 15 yrs
M: 21/F: 9

Height: 166.7 ± 9.4
Weight: 72.5 ± 11.9

Gait analysis
(10 m walk)

TUG (Timed Up
and Go)

FR (Functional
Reach)

ST (Step test)

Trunk flexion (deg)
Flexion angle velocity (deg/s)

Step length (m)
Stride length (m)
Gait speed (m/s)
Turning time (s)

Total time (s)

Characterization
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Table 1. Cont.

Source Year and
Country

# Participants, Age (yrs) and
Gender (# M/F)

Height (cm) and
Weight (kg) Functional Tests Gait Parameters Finality of the

Study

Clark et al.
[87]

2015
Australia

Total: 30 post-stroke
68 ± 15 yrs
M: 21/F: 9

Height: 166.7 ± 9.4
Weight: 72.5 ± 11.9

Gait analysis
(10 m walk)

TUG (Timed Up
and Go)

FR (Functional
Reach)

ST (Step test)

Affected step length (mm)
Unaffected step length (mm)
Step length asymmetry (%)

Affected foot swing velocity
(m/s)

Unaffected foot swing
velocity (m/s)

Foot swing velocity
asymmetry (%)

Mean velocity (m/s)
Peak velocity (m/s)
Peak–Mean velocity

difference (%)

Characterization

Luo et al.
[26]

2020
China

Total: 60
Hemiplegia patients: 20

54.3 ± 12. yrs
M: 12/F: 8

Control group (healthy old):
20

71.83 ± 10.55 yrs
M: 10/F: 10

Control group (healthy
young): 20

24.43 ± 3.83 yrs
M: 13/F: 7

Height:
164.75 ± 6.13

Weight: 61.5 ± 10.1
Height:

159.83 ± 10.49
Weight: 58.16 ± 7.52
Height: 169 ± 6.87

Weight:
59.93 ± 13.58

Gait Analysis
(4 m walk test)

Stride length (m)
Gait speed (m/s)
L/R distance (m)

Up/Down distance (m)

Characterization

Latorre et al.
[28]

2018
Spain

Total: 83
Hemiplegia patients: 38

56.1 ± 13.2 yrs
M: 22/F: 16

Control group: 45
30.6 ± 7.6 yrs
M: 31/F: 14

Not reported Gait Analysis (6 m
walk test)

Gait speed (m/s)
Stride length (m)

Stride time (s)
Step length (m)

Step time (s)
Step asymmetry (m)

Double support time (s)
Swing time (s)

Characterization

Latorre et al.
[18]

2019
Spain

Total: 464
Hemiplegia patients: 82

48.3 ± 16.14 yrs
M: 55/F: 27

Control group: 382
43.3 ± 18.6 yrs
M: 169/F: 186

Not reported

BBS (Berg Balance
Scale)

DGI (Dynamic Gait
Index)

1mWT (1-min
walking test)

Gait Analysis (10 m
walk test)

Gait speed (m/s)
Stride length (m)

Stride time (s)
Step length (m)

Step time (s)
Step width (m)

Cadence (step/min)
Step asymmetry (m)

Double support time (s)
Swing time (s)

Angles (trunk, pelvis, hip,
knee and ankle joints)

Characterization

Gao et al. [9] 2021
China

Total: 20
Hemiplegia patients: 15
41–60 yrs (average 49)

M: 8/F: 7
Control Group: 15

42–62 yrs (average 48)
M: 8/F: 7

Weight: 68.25
(range:
61–74)

Height: 168.96
(range: 1.63–1.75)

Weight: 69.82
(range: 62–76),

Height: 169 (range:
164–176).

30 sWT (30 s
walking test) GQI (Gait Quality Index) Characterization

Ferraris et al.
[5]

2021
Italy

Hemiplegia patients: 11
53.3 ± 13.9 yrs

M: 8/F: 3
Not reported

TUG (Timed Up
and Go)

Gait analysis

Step length (m)
Stance duration (%)

Double support duration (s)
Mean velocity (m/s)
Cadence (step/min)

Step width (m)

Validation and
Characterization

The study carried out by Latorre et al. [18] included also non-adult participants (aged
between 10 and 17 years), but as the authors worked with a large cohort of patients and the
number of non-adult participants was small compared to the total number of participants,
it was decided to include this study in the review.

The selected studies were analyzed in depth in order to reveal methodological similar-
ities and differences. Specifically, the studies were compared in terms of study objectives,
setup and data acquisition, participants and experimental protocol, estimated gait parame-
ters, statistical analysis, findings, and data availability.
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3.1. Study Objectives

A first source of inhomogeneity concerned the primary objectives of the reviewed stud-
ies, which implicitly affected all the other aspects as well. For instance, in Latorre et al. [28],
the main goal was to characterize gait by comparing five different methodologies to esti-
mate gait parameters and using video analysis for validation purposes. In Latorre et al. [18],
on the other hand, the primary purpose was to estimate gait parameters to check their
correlation with some clinical tests commonly used on post-stroke subjects. The studies
performed by Vernon et al. [25] and Clark et al. [87] were based on the same approach,
whilst Ferraris et al. [5] had the primary goal of validating the proposed solution for gait
characterization against a traditional gait analysis system. Finally, unlike the previous
studies, Luo et al. [26] and Gao et al. [9] focused on characterizing walking patterns through
objective parameters for classification purposes, using supervised classifiers and machine
learning techniques, and on estimating a summary index of gait quality from joint trajec-
tories, respectively. The differences in main objectives also led these studies to differ in
methodology, experimental protocols, data analysis, and final outcomes.

3.2. Setup and Data Acquisition

As no studies using the latest generation device, the Azure Kinect, had been performed
on hemiplegic patients so far, almost all of the selected studies used the Microsoft Kinect
v.2 (second-generation model), with the exception of the studies by Clark et al. [87] and
Vernon et al. [25], which were based on the Microsoft Xbox 360 (first-generation model)
instead. All researches adopted a frontal view for motion capture during walking, since
the frontal view of the walkway, and thus of the subject, was the one that optimized
the accuracy of the body tracking algorithm [96,97] provided by the optical device and
on which the motion analysis was based. The only exception was in Vernon et al. [25],
where the camera position was slightly off-center with respect to the walkway. In contrast,
Gao et al. [9] did not specify details regarding the camera position in the experimental
setup. In Latorre et al. [28], the setup also included a second optical sensor (a simple RGB
camera) positioned laterally and externally with respect to the walkway to obtain also a
side view of the subject’s gait. The second camera was used solely for validation purposes
through a video analysis method.

All studies adopted a straight walkway approximately 6 m long for motion capture
and data acquisition. Given the operational requirements and field of view of the Kinect
sensor, the area for the estimation of gait parameters is typically limited to a maximum
of 4 m from the camera, with a minimum distance of about 0.5 m to allow for full-body
acquisition. In all studies, data were acquired during a one-way walk toward the camera,
as is done in traditional gait analysis. The only exception was Vernon et al. [25], where the
TUG test was used instead, which involved several phases including getting up from the
chair, walking a shorter round-trip distance (about 3 m), and sitting back down in the chair.

In terms of validation, only Ferraris et al. [5] adopted a traditional validation method,
namely the comparison with a gold standard system. In Latorre et al. [28], an alternative
validation method was adopted by exploiting the lateral RGB camera, a series of vinyl
lines printed along the walkway, and a video labeling procedure: with this approach, it
was possible to compare the estimated measurements with the real ones. The other studies
reported no information regarding a validation procedure.

The last aspect of the setup concerned clothing. Some studies (Latorre et al. [28],
Latorre et al. [18] and Vernon et al. [25]) reported constraints on clothing to optimize the
performance of the body tracking algorithm, particularly the use of tight-fitting, light-
colored, and non-reflective clothing. In Clark et al. [87], shoes and usual clothing were
suggested, using a tape to make the pants tighter, if necessary, in order to make the joints
of the skeletal model more stable. In Ferraris et al. [5], however, because of the need to
apply retroreflective markers at reference points on the body for validation purposes, only
underwear was worn. The other studies did not report information on clothing.
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3.3. Participants and Experimental Protocol

Based on their specific objectives, the studies included enrolling participants according
to well-defined inclusion criteria. Most studies included also a control group consist-
ing of healthy subjects, with the exception of Ferraris et al. [5], Clark et al. [87], and
Vernon et al. [25], in which only post-stroke subjects were considered. In the first study
(Ferraris et al. [5]), the goal was to validate the proposed solution against a gold standard
system; in the last two studies (Clark et al. [87] and Vernon et al. [25]), the goal was to
investigate the correlation between gait parameters and specific clinical tests commonly
used on post-stroke subjects. In some papers, control subjects were not included as the
studies focused exclusively on a post-stroke population; this element could represent a
limitation, as the presence of controls may support data for comparative purposes.

In Latorre et al. [28] and Latorre et al. [18], the control group included both young
and elderly subjects. In the first study (Latorre et al. [28]), the objective was to compare
five different methodologies for assessing spatiotemporal gait parameters. The second
study (Latorre et al. [18]) aimed to evaluate the effect of age (divided into decades) on
spatiotemporal parameters. Therefore, the inclusion of younger subjects in the control
group was in line with the specific objectives of both studies.

In Luo et al. [26], healthy subjects were divided into two distinct groups (young and
old subjects): this division was rather irrelevant considering that the ultimate goal of the
study was to classify participants with and without hemiplegia through machine learning
methods and supervised classifiers.

In Gao et al. [9], the control group matched the post-stroke subjects in age, as the
purpose of the study was to compare the walking characteristics of the two groups.

Regarding the experimental protocol, all studies required participants to perform
multiple walking trials to ensure repeatability. In Latorre et al. [28], Latorre et al. [18],
and Ferraris et al. [5], the experimental protocol planned at least three repetitions; while
nine repetitions were planned in Luo et al. [26]. Contrarily, in Gao et al. [9], no multiple
walking trials were planned, but rather a continuous walk of at least 30 s. Additionally, in
Vernon et al. [25] and Clark et al. [87], no number of walking repetitions was specified, but
only two test sessions were separated by one week. Finally, no trials at different walking
speeds were included in the selected studies: instead, all experimental protocols instructed
participants to use a comfortable and normal walking velocity.

3.4. Estimated Gait Parameters

Gait assessment is commonly based on spatiotemporal parameters, as in traditional
gait analysis with gold-standard systems. However, there is a certain level of inhomogeneity
among studies in this regard. In particular, the spatiotemporal parameters considered are
generally not the same. In addition, the method used to estimate gait parameters varies
from study to study: this introduces a bias in the results that makes direct comparisons
between studies complicated.

For example, in Latorre et al. [28] and Latorre et al. [18], some of the most commonly
used spatiotemporal parameters in traditional gait analysis were estimated: gait speed, step
information (distance and time), stride information (distance and time), asymmetry, double
support, and swing time. In Latorre et al. [18], in addition to spatiotemporal parameters,
some kinematic parameters were estimated and analyzed.

In contrast, Clark et al. [87] and Ferraris et al. [5] estimated only a subset of spatiotem-
poral parameters related to the body’s single side (right and left sides) and the overall walk.
In addition, Ferraris et al. [5] included parameters related to the body’s center of mass,
which could be relevant for identifying specific abnormalities during walking associated
with increased risk of fall (e.g., walking patterns with relevant lateral body sways). For
the same reason, Luo et al. [26] also used parameters related to the body center of mass,
derived with a methodology similar to Ferraris et al. [5], as they could be significant for
classifying subjects with and without hemiplegia.
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Vernon et al. [25], on the other hand, estimated a small number of spatiotemporal
parameters related only to the first step, the first stride, and the walking speed, as the
setup used limited the space available for the gait analysis. Along a different line was
Gao et al. [9], where no spatiotemporal parameters were estimated. Instead, a gait index
was estimated from the analysis and overall motion (i.e., 3D trajectories) of specific joints in
the skeletal model.

3.5. Statistical Analysis Methods

The statistical analysis is also closely linked to the objectives of a study, and for
this reason, it generally includes several statistical tests that can, consequently, make the
comparison of results more or less complex.

For example, in studies involving a validation procedure, the goal is to demonstrate
the accuracy of the obtained measures compared to a gold-standard system. In fact, in
Latorre et al. [28], the average values (with standard deviation) of the estimated parameters
for the control group and the post-stroke subjects were reported, as well as the estimated
mean square error compared to the video analysis, that is, the gold-standard for this study.

In Ferraris et al. [5], a series of statistical (Wilcoxon test) and correlation (Spearman
correlation and ICC) tests were considered to demonstrate the accuracy of the estimated
parameters on post-stroke subjects: estimated parameters were reported as median values
with first quartile, compared to an optoelectronic system, the gold-standard for this study.
In addition, Spearman’s correlation was used to investigate the correlation between the
estimated parameters and the TUG test, administered before the walking trials.

Other studies mainly focused on the correlation between walking parameters and tests
commonly used in clinical practice on post-stroke subjects, consequently using a statistical
analysis that was more or less complex but appropriate to the study’s objectives. For
example, because the study had multiple objectives, many statistical and correlation tests
were used in Latorre et al. [18]: paired t-test to evaluate the significance of the statistical
difference between populations divided by decade (control group and post-stroke subjects)
and to identify subjects at risk of falling compared to the Berg balance scale; Pearson’s
correlation coefficient to evaluate the effect of age on the estimated parameters and to
validate the proposed solution against a set of clinical tests; and two-way random effect
ICC to evaluate the inter-rater reliability between two raters and the intra-rater reliability
for each individual rater.

In contrast, Vernon et al. [25] included only two statistical tests: ICC for the test-retest
reliability between the estimated parameters and the clinical tests performed on post-stroke
subjects in the two planned sessions; and Spearman’s correlation to evaluate the correlation
between the estimated parameters and the TUG test. The same statistical tests were also
included in Clark et al. [87], where the Spearman’s correlation was used to evaluate the
correlation of estimated gait parameters with static and dynamic balance. In contrast, the
studies by Luo et al. [26] and Gao et al. [9], which focused on classification, did not report
information on statistical analysis.

3.6. Findings and Data Availability

As discussed in the previous points, the inhomogeneity of the study objectives led to
different methodological approaches and thus to different results and findings.

Latorre et al. [28] characterized gait by comparing five different video analysis method-
ologies to estimate spatiotemporal parameters during gait, using video analysis for vali-
dation purposes. Following this approach, the overall results revealed limited accuracy
between the Kinect-based and the video-based measurements in both the healthy and
post-stroke groups. The authors hypothesized that such inaccuracies may be due to the
speed and jitter of the tracking of ankle and toe [98,99], thus explaining the poor results
achieved on the estimation of short duration and length event (e.g., double support) and the
event that required the toe-off detection (e.g., swing time). Additionally, even though the
use of video analysis is acknowledged as a valid approach in clinical setting, it may intro-
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duce additional errors in the measurements with respect to laboratory-grade systems [100].
According to the overall results, they concluded that the Kinect v2 could be used as a
complementary tool to support the gait analysis in the estimation of events with a certain
duration and length.

With regard to the validation of the optical device with respect to the gold-standard
optoelectronic systems, the results achieved by Ferraris et al. [5] show good agreement,
accuracy, and correlation between the subset of spatiotemporal parameters estimated by
the two systems, and compared with a clinical assessment test (i.e., Timed Up and Go
Test). The results suggest the reliability of an optical-based system for the evaluation of
gait impairments, even though some aspects need to be further explored. For instance, the
restricted number of participants may have biased the robustness of the characterization of
the gait parameters, thus affecting the clinical and statistical findings.

Regarding the correlation of the Kinect-derived gait parameters with clinical tests for
post-stroke patient assessment, the study presented by Latorre et al. [18] showed excellent
intra-reliability between the clinical test and almost all gait measures, also allowing for the
identification of patterns exposing the patient to fall risk. However, the minimal detectable
change was inconstant among the measured gait parameters, resulting in a poor estimation
of the kinematic parameters.

Similar results on the estimation of gait parameters were achieved by Vernon et al. [25]
and Clark et al. [87]. In particular, in Vernon et al. [25], all Kinect-estimated variables
showed excellent reliability (ICC > 0.90), with the exception of the trunk flexion angle.
Similarly, as the two authors worked on the same dataset, the estimated variables con-
firmed the previously found high reliability (ICC > 0.80), even though many of the results
were redundant.

The remaining studies focused on gait pattern characterization and classification through
objective parameters using machine learning techniques. In particular, Luo et al. [26] worked
on the development of a random forest method for the classification and analysis of
hemiplegic gait. The method was developed starting from a pool of gait features (e.g.,
stride length, gait speed, left/right moving distances) acquired via Kinect, resulting in the
achievement of an averaged classification accuracy of 90.65% among all the combinations
of gait features.

Conversely, whereas Luo et al. [26] highlighted the usability of Kinect-derived data in
machine learning techniques, Gao et al. [9] used the Kinect to record kinematic data during
walking to obtain a quantitative evaluation of the gait quality of the hemiplegia group
according to a gait quality index (GQI) based on a radar map. The final results show a
significant negative correlation between the GQI and the Fugl-Meyer Assessment score for
lower limbs, together with a significant statistical difference in lower limb joint movement
quality between the healthy and the hemiplegia groups, reflecting the differences in motion
quality of the joints for the two groups. The results thus highlight the reliability of the
GQI, estimated from joint trajectories, as an assessment tool to support clinical decisions on
rehabilitation programs.

4. Conclusions

The aim of this review was to give an overview of the state of the art in the use of
a low-cost and non-invasive optical body tracking system, based on Microsoft Kinect, to
assess gait in post-stroke individuals through an extensive search of the available literature.
As a narrative review, it was aimed at summarizing the current state of the art on the
presented application, in order to open a general debate on the topic and to underline the
validity of such approaches, together with the current lack of knowledge. For this reason, it
was chosen not to apply any standards for the critical appraisal of the studies’ quality [101],
as this approach is typical of systematic reviews. In the future, to complete this work, it will
be possible to write a systematic review using quantitative methods to assess the quality of
the chosen works.
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As previously discussed, the main limitation of the papers included in this review
was related to a lack of homogeneity among the different studies in terms of methodology
(experimental setup, parameters identification, statistical analysis) that prevented a full
and accurate comparison of the results from several aspects, above all those regarding
quantitative comparisons. At present, this fact, in our opinion, precludes the possibility
of using clinical-statistical techniques for a metanalysis. In particular, differences in the
primary goal led to significant differences in methodology, experimental setup, protocols,
data analysis, and final findings. For instance, although most of the studies focused on
investigating the correlation of gait parameters with specific clinical tests commonly used
on post-stroke patients, they generally considered different spatiotemporal parameters
estimated with different approaches and algorithms. Additionally, it should be noted that
just one study [5] reported a traditional validation methodology versus a gold-standard
system (i.e., optoelectronic system). Whilst the results revealed good agreement, accuracy,
and correlations between the spatiotemporal gait parameters estimated by the two systems,
it should be noted that Kinect-based estimation may sometimes have had limited accuracy
and limited sensitivity to kinematic parameters [18].

Despite the lack of homogeneity among the different studies, independently from
the different choice of parameters and estimation methods, our overview of selected
studies showed the growing potential of using the Kinect sensor in human motion analysis,
including the quantitative assessment of gait parameters, in patients with stroke. A limited
number of studies used Kinect technology in these specific neurological patients to quantify
the functional impairment during gait or the effects of rehabilitative programs. The use of
Kinect for the rehabilitation of stroke patients is in fact a recent topic.

Although the Kinect-only based approach for motion analysis is not yet fully used to
evaluate gait patterns in clinical settings, its use as a complementary tool with laboratory-
grade systems is encouraged, as the obtained results demonstrated the usefulness of a
Kinect-based gait analysis as a low-cost tool that can overcome the typical limitations
of measurements in indoor laboratory environments, such as high cost, dependency on
trained personnel, and the need to wear limited clothing.

It is important to highlight that researchers are very interested in devices such as the
Kinect that were not originally designed for the purpose of medical research on walking
assessment. This device provides in fact unparalleled access to a low-cost, markerless, non-
invasive, portable, and easy-to-use solution for assessing the kinematic and spatiotemporal
aspects of physical function in healthy and clinical populations. While studies have assessed
the validity of the Kinect for over-ground gait assessment, in pathological populations
such as Parkinson’s disease [77,88,102] and stroke [87], few have examined whether the
data it provides could be beneficial in a clinical setting. Some studies have demonstrated
the ability of Kinect to discriminate between healthy and pathological individuals [103].
However, its advantages should be weighed against its sensitivity, which, as reported
by Latorre et al. [18], may be limited with respect to kinematic parameters, as well as in
estimating more challenging spatiotemporal parameters, such as step width [5] or gait cycle
phase [104]. Thus, although the full strengths and weaknesses of Kinect-based analysis
methods need to be further investigated, the Kinect seems to be particularly suitable to be
used also for post-stroke subjects as a non-invasive and easy-to-use motion analysis tool in
environments where gold standard systems cannot be used, including ambulatory settings
and private home environments, thus opening new perspectives for remote monitoring and
rehabilitation strategies, especially in unsupervised settings. Rehabilitation, for instance,
is less demanding regarding accuracy requirements. Video-based systems could provide
adequate accuracy and a finer evaluation of gait patterns compared to clinical judgments,
detecting changes not yet recognized by clinicians, scales or questionnaires. Clinicians may
continue to use the clinical scales and tests that are familiar to them (such as the TUG test),
but can also rely on an automated assessment of gait, consistent with the scales, which is
able to provide significantly more information and allow detection of more changes. These
aspects are particularly important for promptly modulating and personalizing the home
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rehabilitation program, for the reduction of cost effectiveness, thereby limiting the need for
hospital evaluations and improving the patient’s quality of life at the same time.
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