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Abstract- In this study, we introduce a new runtime fault 

detection technique for systolic array accelerators oriented to 

neural network applications. The method exploits the functional 

path of the systolic array to compute and process checksum values 

during the execution of the current application instructions flow 

and integrates self-testing capabilities within the systolic array 

Instruction Set Architecture.  The proposed technique does not 

require additional hardware self-testing modules, and the test 

pattern penalty is limited to 3 clock cycles independent of the size 

of the systolic array. Experimental analysis performed with fault 

injection campaigns demonstrates full fault detection capabilities 

of stuck-at faults with an average computing overhead 4 times 

lower than state-of-the-art solutions. Additionally, our approach 

exhibits diminished hardware overhead in contrast to 

conventional techniques. 
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I. INTRODUCTION 

The adoption of deep neural networks (DNNs) in safety-
critical applications such as automotive and avionics has 
sparked scientific interest in solutions that are both high-
performing, to achieve real-time response requirements, and 
reliable, to guarantee the correct functionalities even in harsh 
environments. Among the different computing devices, tensor 
processing units (TPUs) have raised interest due to their systolic 
array-based architecture suitable for accelerating the intensive 
matrix calculation operations of DNNs [1]. These accelerators 
can address the demand for DNN’s high-performance and low-
power consumption thanks to their highly parallel multiply and 
accumulate (MAC)-based datapath equipped with a large 
amount of on-chip memory, which enables fast and efficient 
DNN inference. However, the MAC grid is used to process all 
the neural network (NN) layers in a computing stream. Hence, 
if a fault occurs in the grid's processing element (PE), it may 
result in a cascading erroneous effect across all the layers, 
compromising the DNN model accuracy.  

Permanent or transient faults may happen within the TPU 
hardware architecture due to environmental conditions (e.g., 
radiation effects or temperature variations), aging, or 
manufacturing defects. 

Several works developed approaches to assess the 
robustness and reliability of TPU accelerators when affected by 
faults, mostly based on fault injection rather than detection [2]-
[5]. When addressing fault detection in systolic array-based 
architectures, two branches of methods are commonly 
considered. On one side, there are algorithm-based fault 
tolerance (ABFT) approaches, which employ algorithmic 
techniques to enhance matrix multiplication by introducing data 

redundancy and performing additional computations, often 
involving checksum calculations. Even though the ABFT 
approach enables runtime fault detection on systolic array 
resources during application execution, it implies both area and 
performance overhead while not testing other crucial 
components of TPU architectures, such as accumulators [6]-[8]. 
These components become mandatory when operation slicing is 
implemented to accommodate the core size or when executing 
complex layers such as convolution on 3D tensors. 

 On the other side, commonly used design for testability 
(DFT) techniques include test scan chains. In particular, when 
applied to systolic arrays, the scan chains are implemented by 
exploiting the functional paths among the PEs already available 
in the datapath, enabling efficient testing and fault diagnosis. 
However, scan methodologies cannot be executed in real-time 
during the inference process. This is because they require the 
application of specific test patterns, which necessitates 
interrupting the ongoing application. As a result, scan-based 
testing techniques are typically employed during the design 
phase or during dedicated testing periods rather than during 
regular runtime execution [9][10]. 

In this work, we propose a new methodology that combines 
the properties of ABFT techniques and the test pattern 
propagation in the  TPUs datapath. The proposed solution 
detects permanent and transient faults during the application 
execution. The main contribution of this work consists of 
developing a new methodology for runtime self-testing on the 
main resources of TPU architectures. In particular, we 
minimized the hardware overhead compared to previous 
approaches by efficiently exploiting the available resources of 
the datapath while introducing negligible performance 
degradation. We integrated this methodology as a custom 
instruction within the TinyTPU [11] open-core instruction set 
architecture (ISA).  

We experimentally evaluated the effectiveness of the 
developed methodology, implementing the TPU accelerator 
enhanced with the proposed methodology on the system-on-a-
programmable-chip (SoPC) Xilinx Zynq 7020.  The accelerator 
was mapped to the field-programmable gate array (FPGA) as a 
co-processor of an ARM core. The ARM core controls the TPU 
accelerator and manages the information about the fault 
conditions.  We evaluated the robustness and detection 
capabilities by conducting two fault injection campaigns, one 
focused on stuck-at faults and the other on the wider FPGA 
faults scenario. As a running application, we adopted a complete 
set of NN classification tasks. Experimental results 
demonstrated the effectiveness of the proposed approach, 
achieving 100% error rate detection at runtime for stuck-at faults  



when utilizing an ASIC model. 
Furthermore, the employed methodology resulted in a 

runtime detection rate exceeding 94% when evaluating 
hardware fault models in static random access memory 
(SRAM)-FPGA implementations. In both cases, the detection 
penalty is of 3 clock cycles, which does not depend on the 
systolic array size and is four times faster than existing state-of-
the-art scan solutions.  
 The paper is organized as follows. Section II presents the 
TPU architecture characteristics, while Section III deeply 
overviews state-of-the-art approaches. Section IV outlines the 
systolic array fault models and Section V details the proposed 
methodology. Section VI proposes the experimental results. 
Finally, Section VII presents the concluding remarks. 

II. BACKGROUND ON TENSOR PROCESSING UNIT 

The TPU is an application-specific architecture designed to 
support the computational workload of NN inference which 
consists of the computation of several wide matrix 
multiplications. Equipped with its own ISA, the TPU is a 
(complex instruction set computer) CISC-type architectural 
model, characterized by a large amount of on-chip memory, for 
storing NN model weights and activations. The main 
computation core is the matrix multiply unit (MMU), which 
consists of a two-dimensional systolic array of MAC units, 
interconnected in a mesh-like structure. Each MAC multiplies 
an activation input xi,j by a weight wi,j  and accumulates the result 
in a single clock cycle. The peculiar interconnection layout 
among MACs enables efficient data propagation between 
processing elements and performs on-site accumulation of 
partial products, avoiding memory accesses to store and load 
intermediate results. Alongside the systolic array, external 
accumulators store and process intermediate results during the 
computation. These accumulators are crucial when employing 
operation tiling to accommodate the core size when executing 
large layers.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The systolic-array accelerator architecture with weight stationary data 
mapping. 

Since NN’s weight matrices are typically larger than the 
input tensor, the weight stationary (WS) data mapping policy, 
shown in Fig.1, minimizes data transfer and memory accesses. 
Specifically, before the input data starts flowing row-wise, all 
the weights are loaded in the MAC grid. Each weight is loaded 
in the register of a specific MAC unit for the entire computation 

process. After the weights loading, at each clock cycle, a new 
input vector is fetched, with the leftmost column receiving the 
new input while the previous vector is processed by the 
subsequent column. At the same time, each MAC produces one 
output element for the MAC on its bottom, contributing to the 
per-column output accumulation through the dedicated 
interconnection path. Hence, when the WS policy is adopted in 
systolic arrays, it involves a dual data flow within the core. 
Firstly, there is a left-to-right propagation of the activation input 
between consecutive MAC units. Secondly, there is a top-to-
bottom propagation of the partial sum with accumulation. 

III. RELATED WORKS 

 The introduction of Google's TPUs has reignited interest in 
systolic arrays, prompting analysis of their performance and 
reliability [2][4] while fault detection and correction techniques 
in systolic arrays have been explored since the 90s  [12]-[14]. 
The growing use of systolic array-based accelerators in critical 
applications like autonomous driving and avionics has 
emphasized the need for effective fault diagnosis and fault-
tolerant design with marginal power, performance, and area 
overheads. Indeed, the high density of MAC units in systolic 
arrays and routing congestion, combined with technology 
scaling, make them more sensitive to permanent and transient 
faults [3][5]. As the systolic array workload moved towards NN 
inference, new fault-tolerant architecture proposals arose based 
on weight pruning, model compression, and bypass of faulty PEs 
[15]-[17]. However, these approaches assume prior knowledge 
of the fault locations, not accounting for fault detection and 
diagnosis. In contrast, when facing real-time applications 
requiring high reliability, ABFT can be an effective solution 
since it aims at both error detection and correction on the fly. 
The main idea is to enhance the data encoding process through 
checksum, which enables detecting computational errors, while 
correction can be done in limited cases provided that hardware 
support has been included in the design [18]-[21]. However, 
ABFTs require additional hardware to compute and process the 
checksum values, impacting the chip area, power, and 
performance. As a result, scientific research has made headway 
in exploring lighter alternatives.  
 Considering the A x B operation, traditional ABFT requires 
the computation of column checksums for matrix A and row 
checksums for matrix B, followed by augmenting the original 
matrices with these checksums before performing matrix 
multiplication. In [7], authors propose a streamlined version of 
ABFT to address voltage scaling-induced transient errors, which 
solely compute the row checksum for matrix B. To achieve this 
at runtime, they allocated N additional PEs into a systolic array 
of size N x N, along with an additional column of digital 
integrators and comparators for error detection. Moreover, this 
approach introduces a penalty of 2 clock cycles on the matrix 
multiplication process, while missing exhaustive fault coverage. 
Similarly, authors in [8] propose the Light ABFT technique for 
systolic arrays. They identify the presence of faults by 
comparing the sum of all the elements of the outputs matrix C = 
A x B with the product (L) of the column checksum of matrix A 
and the row checksum of matrix B. 
 In the proposed method [8], checksums and L values are 
computed in parallel with matrix multiplication execution, 
requiring an overall architectural cost of 1 multiplier, 2N+2 
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adders, and N comparators, if considering an N x N systolic 
array.  However, both techniques [7][8]  do not perform any fault 
diagnosis. 

Another branch of approaches involves the DFT solutions, 
which include using scan chains and built-in self-test (BIST) 
methods. Traditional scan chains are commonly employed in 
digital circuits for the purpose of enhancing testability, allowing 
a more efficient application of test patterns and collection of 
responses. In the context of systolic arrays, the concept of scan 
chains has been adapted to exploit the existing functional paths 
and registers within the array structure. Recalling the dataflow 
explained in Section II, where activation inputs flow row-wise 
from left-to-right of the array, and the partial sum column-wise 
from top to bottom, both authors in [9] and [10] exploit these 
interconnections to build scan chains. Likewise, the weight 
registers within each column are transformed into a scan chain 
using the existing functional paths.  

Specifically, [9] proposes a methodology that utilizes inter-
MAC communication to propagate test patterns achieving 100% 
stuck-at fault coverage with zero hardware overhead on the 
systolic array.  However, to ensure accurate testing when 
utilizing the partial sum functional path, a specific condition 
must be met. The weight data of each MAC unit needs to be set 
to zero to prevent any computational interference caused by the 
simultaneous application of test patterns to both the activation 
inputs and partial sum. By setting the weights to zero, it is 
ensured that the output produced by each MAC unit is solely 
influenced by the test pattern introduced through the partial sum 
scan chain, nullifying the product of weight per activation 
contribution. In their method, the authors assume the correct 
behavior of the external accumulators and use their dedicated 
register banks to store the partial sum propagated output, which 
is further compared using an MBIST methodology but not 
discussed in the paper. This technique has a severe disadvantage 
related to the testing routine timing penalties, which are 
proportional to 3 times the number of the array size. Besides, 
although this solution does not introduce hardware overhead on 
the systolic array, fault detection cannot be performed in parallel 
with the main application workload since it requires setting 
specific patterns in all PEs. Moreover, even if not explicitly 
mentioned, handling test pattern applications and monitoring 
requires BIST logic which has not been addressed.  

Finally, in [10], the authors propose STRAIT which is 
equivalent to [9] with only a difference in the propagation of 
partial sum values. They introduce a mux for each MAC unit, to 
avoid forcing the weights registers to zero. In this way, they 
build an additional functional path, where partial sum registers 
of each MACi,j unit can be either fed by the outcome of the 
multiply and accumulate operation (i.e., canonical) or directly 
from the partial sum register of MACi-1,j, hence building proper 
scan chain of partial sum registers per each column in the array. 
After constructing the scan chains, they introduce the concept of 
Hybrid BIST, which combines Logic and Memory, since 
external accumulators are also utilized in this case for result 
comparison and storage. 

While the number of test patterns to be applied is limited, 
typically around twelve for both [9] and [10], and the associated 
hardware overhead is also minimal, these approaches are not 
conducive to concurrent inference execution. This limitation 
arises due to the necessity of activating dedicated paths, 

performing data shifting, and substituting weights, which are 
incompatible with the execution of NN models. Compared to 
previous approaches, our solution harnesses the significant 
advantages offered by ABFT and scan chains. Similarly to 
[9][10] we employ test input patterns encompassing both 
activations and partial sums. By effectively utilizing the 
interconnection layout and data flow characteristics of the WS 
policy these test patterns are designed to generate and propagate 
complementary values among the resources in consecutive 
clock cycles, allowing for stuck-at-fault detection. Furthermore, 
the test patterns generate column checksum values specific to 
the currently processed weight matrix as outputs of the systolic 
array. Similarly to the approach presented in [7][8], these 
checksums are compared against expected values that in our 
proposed solution are computed in parallel using the external 
accumulators. Subsequently, following the canonical data flow, 
the accumulators are used to compare the generated checksums. 
The resulting comparisons enable an error unit to perform fault 
diagnosis,  identifying fault location and distinguishing whether 
it resides in MACs or in the accumulators, if it concerns weights, 
partial sum propagation, or activations.  

The proposed method enables the evaluation of faults 
without compromising the integrity of the original NN weight 
data, ensuring the undisturbed progress of the main computation 
and facilitating robust inference. Compared to [7][8] we have no 
hardware overhead related to checksums, and we perform 
diagnosis by identifying the fault locations. Compared to [9][10] 
fault detection occurs with less granularity, but it is a good 
tradeoff with the ability to run the testing mode in runtime 
during inference. 

Overall, the proposed approach has demonstrated seamless 
integration within an actual system executing an NN model, 
with minimal overhead on the hardware and performance. 

IV. THE SYSTOLIC ARRAY FAULT MODEL 

In TPU architectures, various types of faults can arise, 
potentially causing disruptions in the architecture's operation. 
Stuck-at faults can impact individual processing elements like 
MACs, accumulators, registers, and interconnections. These 
faults result in signals permanently stuck at a high or low logic 
level. Additionally, bitflips can occur in internal registers used 
by MAC units to store weights and input tensors. These bitflips 
can lead to erroneous computations and affect the accuracy of 
the inference. Shorts and opens in the interconnection layout can 
also introduce faults that hinder proper data flow within the 
architecture.  

By examining the faulty behavior at the output of the systolic 
array and considering the operations performed by each PE 
along with the data flow, we can effectively determine the fault 
locations. This allows us to investigate a self-test methodology 
capable of covering various scenarios with negligible overhead. 
When considering the WS policy, which involves partial 
product propagation per column and activation propagation per 
row from left to right, we can deduce the source of fault by 
certain error pattern manifestations. Consider each MACi,j 
produces one item per clock cycle as follows, 

                     𝑝𝑜𝑖,𝑗
= pii,j

+  (di  ∗  wi,j) =  poi−1,j
+ (di  ∗  wi,j)            (1) 

where po is the output partial product generated, pi is the input 
partial product, coming from MACi-1,j, di is the activation, and 
wi,j is the weight data.  



If a MAC unit is faulty, due to the column-wise 
accumulation, it will produce a faulty po that will propagate as a 
faulty pi contribution for all the MACs in the same column, 
reaching the output. Similarly, faults in weights or partial sums 
will result in a column producing output values different from 
the expected ones.  

In contrast, when a fault affects an activation input, due to 
the left-to-right flow of activation inputs explained in Section II, 
where at each clock cycle each MACi,j receives di input from the 
MACi,j-1, we observe the propagation of compromised data 
along the row. Specifically, the corrupted data spreads from the 
faulty PE toward the right side of the array. However, the fault 
does not remain confined to the row alone. Due to the WS 
policy, every MAC unit receiving the corrupted di term will 
contribute to generating a corrupted output po, which, again, 
propagates throughout the entire column. Consequently, a fault 
in the activation results in multiple adjacent corrupted values at 
the output of the systolic array. Note that the index of the first 
corrupted output value aligns with the column’s index affected 
by the activation input fault.  

Therefore, the propagation mechanism can be effectively 
exploited for implementing self-testing methodologies without 
incurring additional hardware costs and with minimal 
computational delay. When employing the WS policy, 
combining the propagation map with a column-wise detection 
mechanism allows for identifying stuck-at and bitflips that affect 
any resource of the array. When identifying a computational 
error in a single column, the issue probably pertains to a weight 
or partial product associated with that specific column. 
Conversely, when multiple faults are identified in adjacent 
columns, it is more probable that the fault lies within the inputs 
of the initial column within the block of faulty columns. Hence, 
if two or more non-adjacent columns generate inaccurate 
outputs, multiple faults are raised within the system, as shown 
in Fig. 2.  

When considering ASIC and FPGA implementations, the 
cause of faults may vary. However, the manifestation of these 
errors and their propagation mechanisms are equivalent, as they 
primarily depend on the circuit topology rather than the specific 
implementation technology. Therefore, the classifications of 
errors remain applicable to systolic array-based accelerator 
implementations in both ASIC and FPGA technologies.  

V. THE PROPOSED APPROACH 

The proposed approach detects any fault-induced anomaly in 

the functionality of the systolic array computational units, 

allowing coarse-grained fault localization. To achieve this goal, 

we used the available resources and the unique data flow of the 

accelerator datapath to develop a self-test methodology that 

integrates checksum computation and the scan chains 

methodology. Unlike previous works [7][8] that rely on 

dedicated external modules for checksum computation, our 

approach exploits the resources of the systolic array itself to 

generate the checksums. Additionally, AI accelerators based on 

systolic arrays often employ external accumulators to support 

tiling operations on matrices larger than the available resources. 

In our method, these accumulators are utilized to generate and 

process comparative checksums, in parallel, on the same data 

processed by the systolic array. Therefore, by comparing the  

Fig. 2. Fault propagation model when WS data mapping is adopted. (a) single 
fault affecting either weight or per column output propagation (b) single fault 
affecting input (c) concurrent multiple faults. 

two units’ results, we simultaneously detect faults both in the 

systolic array core and in the accumulators, with the ability to 

distinguish which of these units is affected by a fault and where 

the fault is located (i.e., which accumulator and which column 

of PEs). Furthermore, the checksums’ generation process 

involves stimulating the datapath with test patterns that shift 

both in MAC’s activations and partial sums inputs bitwise 

complemented data between consecutive clock cycles. This 

allows the stuck-at fault detection without area overhead since 

exploiting the embedded inter-MAC connections as scan chains 

as demonstrated in [9][10]. By integrating both methodologies, 

we can execute a self-test routine while the main application is 

running, achieving runtime error detection while ensuring 

minimal impact on performance and area. 

A. The Fault Detection Methodology 

The proposed approach consists of three phases:  

1. Compute two checksums on the weight matrix loaded 
to the systolic array by the NN application using the 
resources of the systolic array. 

2. Compare the checksums with golden values, 
computed at runtime by dedicated resources available 
in the Datapath, using the accumulators present in the 
Datapath.  

3. Evaluate checksums and comparison results to detect 
and locate any potential fault affecting both the 
systolic array and the golden value generation unit.  

The generation of the golden checksums depends on the 
specific datapath. When accumulators are available, the golden 
checksums on weight data can be computed by exploiting them 
with a few architectural modifications. This will be fully 
discussed in the following section concerning the hardware 
implementation of the proposed method. Otherwise, additional 
dedicated units should be inserted to fulfill the purpose. Please 
consider that comparing the checksum generated by the systolic 
array with those generated by specialized modules, like the 
accumulators, helps identify which part of the Datapath is 
malfunctioning. 

Starting with the first phase, the systolic array’s activation 
register chain is sequentially fed by two 1D test patterns. These 
test patterns are designed to serve two purposes. Firstly, to 
generate column checksums for the current weight matrix. 
Secondly, to assess the inter-MACs propagation of (i) the 
activation data, from the left to the right of the systolic array, (ii) 
partial sums, from top to the bottom of the systolic array, to 
address the row fault model and the column fault model 

(a) (b) (c)



discussed in Section IV and shown in Fig. 2a and Fig. 2b 
respectively.  

The proper functioning of the inter-MACs data transfer in 
both directions is achieved by enforcing the propagation of 
bitwise complemented values in two consecutive clock cycles, 
enabling stuck-at fault detection.     

Considering a systolic array of size M rows and N columns, 
a weight matrix W of size M x N, and a unit row vector U of size 
1 x M, with each element initialized to 1. Due to WS policy, 
each wi,j element in W is always mapped to the MAC i,j in the 
systolic array. By applying as the first test pattern the vector U, 
we stimulate the systolic array to compute the matrix 
multiplication  U x W, resulting in a row vector R of size 1 x N. 
The value of each element in R corresponds to the sum of the 
weights in the corresponding column of matrix W. 
Mathematically, this can be represented as: 

 R = U ×  W      with   R[j] = ∑ wi,j
M
i=1    with j ∈ [0, N[          (2)  

Hence, R is the column checksum of matrix W. Then, to 
evaluate the inter-MACs communication against stuck-at, we 
need to invert each register's bit and driving signal in the 
architecture, which means computing and propagating the 

bitwise complement of the previous computation, i.e., 𝑅  . 
Considering the 2s’complement of number x, shown in (3), to 
compute its complemented value we need to invert the sign and 
subtract  1. 

        𝑥2′complement =  −x − 1                                 (3)                   

Therefore, if we apply as an activation test pattern a vector 
U† of size 1 x M, with each element initialized to -1, the systolic 
array is stimulated to compute U† x W, resulting in −𝑅. If, at 
the same time we shift -1 in the partial sum chain of each 

column, then according to (4) we obtain 𝑅. 
                  

         R† = U†x W − 1 =  −R − 1 = 𝑅                               (4) 

 
Hence, by applying two test patterns U† and U to the 

activation chains and concurrently two test patterns (0 and -1) to 
the partial sum propagation chains, just letting the systolic array 
simply process the test patterns as normal input vectors, we are 
able to evaluate the inter-MACs communication through the 
propagation of bitwise complemented data.  

In the following, 𝑅𝑆𝐴  and 𝑅𝑆𝐴   indicate the checksums 
produced exploiting the systolic array. 

After computing the two complemented checksums, the 
second phase commences, during which the accumulators are 
introduced into the self-test routine. Typically, the number of 
accumulators is N, which matches the size of the first 
dimension of the systolic array. Accumulators are employed 
within the test routine in a manner consistent with their usage 
in the normal execution routine. They are intended to gather and 
accumulate the outcomes of consecutive computations, 
mirroring their typical behavior. What differs is the meaning of 
the operands, which are the checksums derived from the 
systolic array and the golden checksums. To be more precise, 
once checksum vector 𝑅𝑆𝐴  has been produced, each 
accumulator Aj produces one output value 𝑎𝑗  as follows: 

 
          𝑎𝑗 = 𝑅𝑆𝐴[j]− 𝑅𝑔𝑜𝑙𝑑[j]  𝑤𝑖𝑡ℎ 𝑗 ∈ [0, 𝑁[                    (5)  

 

Similarly, after the production of 𝑅𝑆𝐴, which is equal to -
Rgold -1 according to (4) in a fault-free system, each accumulator 
Aj  produces one output value 𝑎𝑗

∗ as follows:  

 

                   𝑎𝑗
∗ = 𝑅𝑆𝐴[𝑗] + 𝑅𝑔𝑜𝑙𝑑[𝑗]     𝑤𝑖𝑡ℎ 𝑗 ∈ [0, 𝑁[               (6) 

 
In the absence of faults, regardless of the weights’ values, 

each 𝑎𝑗   will assume value 0 and each 𝑎𝑗
∗  -1.  

Once obtained the complementary checksums and the pair 
( 𝑎𝑗 , 𝑎𝑗

∗  ), where j corresponds to both the systolic array’s 

column index and the accumulator index, we can evaluate and 
classify faults, being the last step of the methodology. 
Specifically, when 𝑎𝑗  ≠ 0 and 𝑎𝑗

∗ ≠ −1. 

• if 𝑎𝑗 =  𝑛𝑜𝑡( 𝑎𝑗
∗)  

The fault concerns a weight resource in column j. If the 
weight wi,j  is affected by an upset, multiplying it by 1 and 
then by -1 will result in an erroneous yet complementary 
value being added to the column sum. Therefore, when the 
accumulators perform the sum with the golden values, the 
resulting value will differ from 0 and -1, but still 
complementary. This discrepancy indicates that there are no 
stuck-at faults in the resources, but rather a bit-flip in the 
weight. A numerical example is shown in Fig. 3b. 

• if 𝑎𝑗 ≠  𝑛𝑜𝑡( 𝑎𝑗
∗) 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑅𝑆𝐴[𝑗]) ≠ 𝑅𝑆𝐴[𝑗] 

The fault concerns stuck-at in the systolic array. Indeed, if the 
column sums produced by the systolic array in the two 

Fig. 3. Data flow example of the proposed algorithm solution on a single column of MAC resources and relative Accumulator. (a) fault-free scenario (b) fault 

in a MAC weight (c) stuck-at in the output propagation path (d) fault in the Accumulator.  By comparing results coming from Accumulators and those produced 

in the systolic array, the fault location and the variation with respect to correct output are identified.  

0x02

0xF7

0x04

(0x02)16 =00000010
(0xFD)16=11111101

+

t3     t2      t1 t0

t3

t4

111
-1-1-1 *

adder’s 2nd operand

t0 t1

0    -1test input pattern

0xFD -0xFD

golden 
checksums

t3t4

t4

t5

Accumulator

00000000

11111111

0x02

0xE7

0x04

(0x12)16 =00010010
(0xED)16=11101101

+ Accumulator

11110000
00001111

0x02

0xF7

0x04

(0x06)16 =00000110
(0xFD)16=11111101

+ Accumulator

00000000

00000011

x

complementary
not 

complementary

not 
complementarycomplementary

0x02

0xF7

0x04

(0x02)16 =00000010
(0xFD)16=11111101

+ Accumulator

00010000

11111111

complementary

x

not 
complementary

(a) (b) (c) (d)

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden 
checksums

t3t4

t4

t5

t3     t2      t1 t0

adder’s 2nd operand

t0 t1

0    -1

t3     t2      t1 t0

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden 
checksums

t3t4

t4

t5

adder’s 2nd operand

t0 t1

0    -1
adder’s 2nd operand

t0 t1

0    -1

t3     t2      t1 t0

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden 
checksums

t3t4

t4

t5



iterations are not complementary, it signifies the presence of 
a stuck-at fault. This fault hinders the ability to flip a value, 
resulting in the lack of complementarity between the sums. A 
numerical example is shown in Fig. 3c. 

• if  aj ≠  not( aj
∗) and not(RSA[j]) = RSA[j] 

The fault is located in the accumulator Aj since the column of 
MACs produced complementary sums, but the accumulator 
results are different from the expected (i.e., all 0s and all 1s). 
A numerical example is shown in Fig. 3d. 

It is worth noticing that, as illustrated in (5) and (6), the 
comparison between the checksums involves addition and 
subtraction operations with 𝑅𝑔𝑜𝑙𝑑. By leveraging the properties 

of two's complement, the accumulators perform the subtraction 
as an addition on complemented data and with the CarryIn set 
to 1. Therefore, following the same principle adopted for the 
systolic array, by executing computations on complemented 
data on all its input (operandA, operandB, CarryIn) in two 
consecutive clock cycles, we are able to detect potential stuck-
at faults even in the accumulators’ resources. The accumulator 
data flow is illustrated in Fig. 4. 

 
 
 
 
 
 
 
 
 

Fig.4 Data flow on the Accumulators when the self-test routine is running. In 
two consecutive clock cycles the accumulators receive and produce 
complemented data which enables stuck-at detection. 

Moreover, since both vectors U and U† have the LSB value 
of the first item set to 1, to prevent any stuck-at-1 issues in the 
resources associated with the activation input tensor, 
exhaustive fault detection methodology requires an additional 
test pattern to be propagating along the systolic arrays.  

The proposed method generates checksums and compares 
them with the systolic array’s column-level granularity. 
Consequently, unlike approaches solely based on scan chains, 
we are unable to identify the specific corrupted MAC unit, but 
rather the affected column. On the other hand, by processing 
the evaluation results, we can determine whether the error is a 
row fault or a column fault, as explained in Section IV, based 
on the distribution of faulty columns. Moreover, although 
lacking in granularity, our method stimulates and evaluates two 
computational units of the datapath simultaneously, which is 
typically deferred or performed at different times, thereby 
reducing system availability in previous approaches. 

Furthermore, as discussed in the following section, this 
method can be integrated into the runtime execution of an 
application with a reduced penalty. It is also important to 
consider that when exploiting a fully pipelined datapath as 
illustrated in the following section, that processes one vector 
per clock cycle, the overall clock penalty introduced by the 
detection system is stable and independent of the size of the 
systolic array, being 3 clock cycles (one for each test pattern) 
despite the number of MACs unit. Therefore, the lower 
granularity represents a tradeoff with the scalability and 

intrusiveness of the proposed approach, which, as shown in the 
experimental results, enables the detection of faults during 
inference execution. Consequently, in an ideal system, this 
method can be employed as a preliminary runtime detection of 
higher-level anomalies, subsequently triggering more 
comprehensive and fine-grained detection methods. 

B. The Implementation  

To validate the proposed approach, we implemented the 
methodology as an extended version of a matrix multiplication 
instruction in the ISA of an open-source TPU architecture [11]. 
Hence, the architecture now supports the execution of plain 
matrix multiplication and testing-mode matrix multiplication.  

In TPU architecture, the matrix multiplication (matmul) 
operation typically follows a pipeline flow to perform the 
computation efficiently. Considering a systolic array core of 
size N x N, the execution starts with a load weight instruction 
instructing the core to fetch an N x N weight matrix from 
memory and load it into the systolic grid. Since the pipelined 
structure, while the weight matrix is being positioned, the 
matmul instruction starts in parallel after 1 clock cycle (CC). 
This operation includes the fetching of N activation vectors 
from memory. This timing reflects the need for the first column 
of MACs to be filled with weights before receiving the inputs, 
as required by the weight stationary policy. Considering that the 
loading of weights takes N CC, the output vectors, one per CC, 
start after N+4 CC, while the overall duration of the matmul 
operation is 2N-1 CC. As soon as result vectors are produced, 
they are transferred to the accumulators, which either perform 
accumulation with the data stored in the destination register or 
simply overwrite it. Just after the production of the first vector 
result, the second load weights instruction can begin filling the 
systolic array with new data. 

To support the self-test proposed methodology we modified 
the data flow inside the pipeline as follows. When the testing 
mode is active, and the load weight is issued, the weights flow 
both in the systolic arrays and in the accumulators to compute 
the golden checksum Rgold discussed in the previous section. 
The accumulators may be busy accumulating results from the 
last executed matrix multiplication if required by the program 
code. Since efficient NNs rely on data quantization and models 
are trained on 8 or even fewer bits, we assumed that the 
parallelism of the accumulators could be such to enable the 
development of an asymmetric SIMD (Single Instruction, 
Multiple Data) on weights checksum and output product 
accumulation. 

 
 
 
 
 
 
 

 

 

Fig. 5. Asymmetric SIMD on Accumulators to compute the checksums while 
processing application workload results. (a) detailed overview of data handling 
(b) schematic data path.  

This assumption is not an uncommon scenario. For instance, 
state-of-the-art implementations of systolic array-based 
accelerators in FPGA map the MAC units to digital signal 
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processor (DSP) units, which can support operands on more 
than 48 bits (Xilinx 7 Series 48 bits, Xilinx Versal 58bits, Intel 
Agilex 54 bits). Hence, drawing on the method proposed in [22] 
we can apply asymmetric SIMD by concatenating weights data 
and matmul results when feeding accumulators operands. To 
account for the carry condition, we insert one zero as a guard 
bit between the two data being processed as shown in Fig. 5a. 
This allows us to perform canonical accumulation while 
producing the golden checksum. In the scenario where 
asymmetric SIMD is not feasible due to the maximum value of 
the column weight sum exceeding the representable value given 
the available bits, one option could be to limit the testing mode 
to matrices in the pipeline that are temporally separated from 
matrices involving accumulation, preserving the whole bits 
either to results or to checksums computation. Ultimately, 
incorporate dedicated computing units to support checksum 
calculation.  

Once the accumulators have finished the golden checksum 
computation, values are stored in preserved registers R0, R1 
within the accumulators’ registers bank. The control unit then 
waits for the matmul instruction to complete its workload 
processing, but before freeing the unit, applies to the current 
weight matrix the test patterns discussed in Section IV-A to 
generate systolic array’s checksums. As soon as they’re 
produced, they are passed to the accumulators as regular results 
from the matmul operation. The accumulation process for the 
checksums differs slightly from the other output vectors. For 
the rest of the output vectors concerning that matmul instruction 
(operation 2 in Fig. 6b), the accumulation occurs with target 
registers whose address is determined by a specific field in the 
instruction format. Instead, for the last received results related 
to the checksums, the accumulation always takes place using 
the values stored in the R0 and R1 registers, performing phase 
2 discussed in the previous section. The result of the 
accumulation between the accumulator checksums and the 
systolic array checksums is passed to a comparison unit based 
on XNOR and OR logic, which checks the result conditions 
mentioned in Section IV-A. This unit returns an N-bit error 
array status, with each bit associated with a MAC column of the 
systolic array. In the case of a fault, the corresponding bit is set 
to 1.  

In our proposed system design, where the TPU operates as 
a coprocessor, we have established a mapping between the error 
array status and the interrupt port of the main processor to make 
the runtime detection more effective. Since we targeted FPGA 
design, this information may be used to trigger the autonomous 
FPGA reconfiguration with golden bitstream. In fact, any 
detected error in this scenario is caused by an alteration of the 
content of the device CRAM. So, to correct and solve the fault-
induced problem, CRAM reconfiguration is sufficient. 
Concerning ASIC implementation, once a stuck-at is detected, 
and faulty resources individuated, methods such as model 
compression [16] and fault-aware pruning [15] may be adopted 
to bypass the faulty resource.     

In Fig. 6b the modified pipeline is reported. We added a 
testing mode for the matmul instruction, labeled as tmatmul, in 
order to provide the ability to control when to perform 
calculations in testing mode. This instruction introduces an 
additional latency of 3 CC compared to the plain matmul 
operation as it processes the additional test patterns.  

 

Fig. 6. The original pipeline in (a) and the pipeline when supporting self-test 
instruction (b). Different colors but the same pattern relates operations required 
for single matrix multiplication with accumulation. Execution of operations in 
testing mode (T) introduces a latency of 3 CC while enabling runtime fault 
detection. 

When considering complex NN, their execution on systolic 
arrays necessitates the transformation of layers into general 
matrix multiplication operations [23].  Typically, layer size 
does not match the systolic array size. Therefore, the layer is 
decomposed into smaller matmul operations. The more 
complex the network, the deeper the sequence of matmul 
operations composing each layer. Our method operates at the 
granularity of individual matmul execution, and integrating it 
as an extension of the multiplication instruction allows us to 
choose when to apply test mode, reducing its impact on NN 
real-time response. In general, considering a layer that, when 
decomposed, requires M matmul operations performed in 
sequence, if we want to execute each matmul in testing mode, 
then the penalty on the overall layer will be 3*M CC.  

Therefore, it is up to the programmer to decide whether to 
execute an entire application (i.e., complete inference) in 
testing mode, incurring a penalty of 3 CC for each matmul but 
ensuring that every calculation performed is error-free. 
Alternatively, they can choose to perform only specific 
computations in testing mode, such as only a few matrices per 
layer or only the final layer, according to real-time response 
requirement of the specific application. 

From a perspective focused on design choices, employing 
parallel computation for reference values offers significant 
advantages in terms of scalability and implementation 
flexibility. In FPGA implementations, systolic arrays require 
minimal programmable logic because the MAC units are 
mapped to DSPs. In the specific instance of this open-source 
core, the design utilizes less than 10% of the available LUTs 
and Carry logic within the device. It's important to note that the 
device used is not a next-generation one, which typically offers 
a wealth of additional resources, allowing for more extensive 
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implementation possibilities. As a result, when dealing with 
larger systolic arrays, designers have the option to choose 
between utilizing Datapath accumulators or dedicated 
resources. In our case, we deliberately made use of the 
resources provided by the datapath and employed accumulators 
in parallel to reduce hardware overhead. However, the use of 
parallel adders is also fully compatible, and it does not impact 
the overall methodology. During the third phase of the 
approach, as described in Section V-A, the reference values, 
whether generated by accumulators themselves or by additional 
units, pass through the accumulators. These values are 
subsequently compared with those from the systolic array. The 
rationale behind this data comparison, aimed at identifying fault 
locations, remains valid in both scenarios.  

The adoption of a comparative analysis between values 
produced by different units in runtime allows the detection of 
errors induced not only by stuck-at faults but also by more 
complex scenarios. Indeed, if the checksums produced are not 
complemented values and the values produced by accumulators 
differ from those produced by the systolic arrays, then the 
mismatch between values pinpoints the presence of a fault in 
the Datapath and will trigger the error detection unit. In this 
case, the method is not capable of identifying fault location, 
since it is modeled to target stuck-at, but still, the presence of a 
fault will be detected in most of the cases. In fact in the 
following section fault injection campaign targets not only 
stuck-at but also FPGA fault models. The letter, depending on 
the configuration memory cell affected may result in different 
fault scenarios affecting the systolic core such as stuck-at, logic 
functions alterations, bridge faults, open faults, etc. 

As previously mentioned, our proposed method is not able 
to provide the exact faulty MAC unit, while indicating in which 
column of the array it is located. Hence, detection performance 
is lower if compared to the scan-based method [9][10] while 
providing the benefit of runtime execution, not inducing 
program interruption, which is not the case for the scan test 
routine. Being our proposed method in the middle between scan 
and ABFT, it presents a good tradeoff between the two 
techniques taking the major benefits of both at lower cost both 
in hardware resources and intrusiveness on the workload.  

From a power consumption perspective, the methods do not 
increase static power consumption, since it does not allocate 
additional computational resource. However, both adopting 
SIMD mode in the accumulators and flowing of complemented 
data across the units, incurs an increment of dynamic power 
consumption. However, since the application of the method can 
be confined to a few matmul executions (programmer’s choice), 
the impact on the overall workload may be minimal when 
compared to complete NN execution. 

VI. EXPERIMENTAL RESULTS 

We evaluate the fault detection capabilities of the proposed 
method by implementing a TPU architecture on the Xilinx Zynq 
7020 programmable SoC and performing fault injection 
campaigns. In detail, the TPU module was implemented within  
the SoC programmable logic and interfaced with the embedded 
ARM cores through an AXI bus interface. The TPU module has 
been equipped with an additional debug port capable of 
transmitting the functional conditions of its resources (faulty or 
not faulty) once the self-test operations are executed. Since 

implemented on FPGA, as done by [8] both MACs and 
accumulators have been mapped to DSP, allowing us to exploit 
the proposed asymmetric SIMD. To exploit all the available on-
chip DSPs the systolic core size is 14 x 14 and the datapath is 
provided with 14 accumulators.  

The fault injection has been deployed targeting the insertion 
of faults within the SoC bitstream resources controlling the 
mapped TPU design. The insertion of a faulty bitstream mimics 
the insertion of permanent faults within the TPU resources 
depending on the selected bitstream coordinates according to the 
techniques developed in [24]. Please note that the effective 
injection within the bitstream is done before the upload of the 
programmable logic configuration memory (CRAM).  

The experimental validation campaigns have been done 
evaluating 20,000 faults. In order to evaluate the proposed 
methodology with respect to the execution of typical TPU 
applications, we developed two benchmark applications: a 
Convolutional Neural Network and a Multilayer Perceptron 
Neural Network. The two applications were settled to execute a 
classification task on the MNIST digit dataset. Each model is 
executed by exploiting the tmatmul instruction to assess the 
validity of the proposed method.  

The obtained results demonstrate detection capabilities with 
an average rate of  94.6% for the two NN models. Additionally, 
the detection latency was found to be low, as the system is 
capable of identifying faults and notifying the host PC from the 
first NN layer execution. However, it should be noted that the 
proposed method cannot achieve a 100% detection rate on 
FPGA design due to the higher complexity of the fault model. 
As mentioned before, a single bitflip in CRAM may induce 
stuck-at as well as bridge, conflict, and open faults, which are 
not directly addressed by the proposed approach. However, 
independently from faults type, if the effects result in a 
mismatch between checksums, it will be detected. Indeed, 
during the injection campaign, the fault location was random 
and the fault effect unpredictable, but still we were able to detect 
more than 90% of faults.  Therefore, compared to the method 
described in [8], which relies on multiple checksum computation 
and processing, the detection rate is lower as they report 
obtaining around 97% detection rate,  while in [7] they do not 
provide actual statistics. Nevertheless, as shown in Table I, the 
overhead induced by our method is negligible compared to 
ABFT approaches while introducing the ability of fault 
diagnosis. The tradeoff between performance, area, 
functionalities, and detection capabilities is evident.  

In order to compare our method with scan-based solutions, 
we performed a stuck-at based fault simulation by injecting 
stuck-at faults in all MAC units, inputs, and outputs resources. 
Our detection system demonstrated a fault coverage of 100% 
similar to [9] [10] but with a drastically lower computing 
overhead. We observed, that our approach requires the 
application of 4 times less test patterns versus previous 
approaches, without PE architectural modifications.  
 We evaluated the area overhead by comparing the equivalent 
ASIC gate count for LUT-based implementation, as reported in 
[25], and in order to be comparable with [10], we also 
configured the systolic array size to 256 x 256, mapping MACs 
to LUTs. As can be seen in Table II, our method has an area 
overhead of 0.31%. Overall, the experimental results proved that 
with minor modifications to the architecture, it is possible to 



monitor the conditions of the computational resources in real-
time without interrupting the inference execution. The proposed 
method also exhibits flexibility, as it is capable of detecting the 
presence of stuck-at faults as well as other types of faults with a 
fair detection rate while maintaining reduced overhead in terms 
of performance and area.  

When considering mission-critical applications such as 
avionics or automotive the fault scenario and requirement may 
be different and strictly dependent on target technology. If we 
consider SRAM-based implementation, the bitflip fault model 
we adopted to assess the effectiveness of the methods holds. In 
fact, high-energy particles typically induce single event upset in 
CRAM which leads to structural changes in the Datapath, as we 
tested in our fault injection campaign where we obtained 94.6% 
detection rate. However, we evaluated only the case of one fault 
per time, while multiple-bit upset can occur, affecting multiple 
resources of the device at the same time. This scenario will be 
deeper explored in future work. On the other hand, considering 
ASIC implementation, another kind of error apart from stuck-at 
faults may be induced by transient propagation as analyzed in 
[3]. In this case, if a weight resource samples the transient, our 
proposed method will detect the data corruption, for the 
reasoning explained in Section V-A  (case if 𝑎𝑗 =  𝑛𝑜𝑡( 𝑎𝑗

∗)), 

while the effects on the input will be addressed in the future. 

TABLE I  

ARCHITECTURAL OVERHEAD CONSIDERING N X N SYSTOLIC ARRAY IN ABFT 

METHODS 

 [7] [8] RunSAFER 

PEs N 0 0 

Checksums N adders 2N+1 adders, 1 MAC 0 

Detection 
Comparators 

N N+2 N 

TABLE II  

COMPARISON WITH SCAN METHODS FOR SYSTOLIC ARRAY 256X56 

 [9] [10] RunSAFER 

Required Test Patterns 11 12 3 

Area Overhead NA 5.25% 0.31% 

Fault Coverage SA 100% 100% 100% 

TABLE III  

FUNCTIONALITY COMPARISON 

VII. CONCLUSIONS 

In this work, RunSAFER is proposed as a runtime fault 
detection methodology suitable for systolic array-based 
accelerators. The proposed method attempts to combine the 
characteristics of scan methods and ABFT to achieve real-time 
fault detection with reduced hardware overhead and limited 
timing penalities, regardless of systolic array size. Its feasibility 
has been proved by embedding the methodology as custom 
extension of matmul instruction in a TPU open-source core, 
while its validity has been proved through fault injection 
campaign. The experimental results proved 100% fault 
coverage for stuck-at faults and a four times speed up versus 
state-of-the-art solutions when running complex neural 
network applications. 
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