
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RunSAFER: A Novel Runtime Fault Detection Approach for Systolic Array Accelerators / Vacca, Eleonora; Ajmone,
Giorgio; Sterpone, Luca. - ELETTRONICO. - (2023), pp. 596-604. (Intervento presentato al convegno The 41st IEEE
International Conference on Computer Design tenutosi a Washington DC (USA) nel 6-8 November 2023)
[10.1109/ICCD58817.2023.00095].

Original

RunSAFER: A Novel Runtime Fault Detection Approach for Systolic Array Accelerators

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICCD58817.2023.00095

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982644 since: 2023-10-05T11:11:46Z

IEEE

RunSAFER: A Novel Runtime Fault Detection

Approach for Systolic Array Accelerators
Eleonora Vacca, Giorgio Ajmone, Luca Sterpone

Politecnico di Torino, Dipartimento di Automatica e Informatica

Turin, Italy

{eleonora.vacca, giorgio.ajmone, luca.sterpone}@polito.it

Abstract- In this study, we introduce a new runtime fault

detection technique for systolic array accelerators oriented to

neural network applications. The method exploits the functional

path of the systolic array to compute and process checksum values

during the execution of the current application instructions flow

and integrates self-testing capabilities within the systolic array

Instruction Set Architecture. The proposed technique does not

require additional hardware self-testing modules, and the test

pattern penalty is limited to 3 clock cycles independent of the size

of the systolic array. Experimental analysis performed with fault

injection campaigns demonstrates full fault detection capabilities

of stuck-at faults with an average computing overhead 4 times

lower than state-of-the-art solutions. Additionally, our approach

exhibits diminished hardware overhead in contrast to

conventional techniques.

Keywords—Systolic Arrays, Fault Detection, TPU, ABFT, DFT

I. INTRODUCTION

The adoption of deep neural networks (DNNs) in safety-
critical applications such as automotive and avionics has
sparked scientific interest in solutions that are both high-
performing, to achieve real-time response requirements, and
reliable, to guarantee the correct functionalities even in harsh
environments. Among the different computing devices, tensor
processing units (TPUs) have raised interest due to their systolic
array-based architecture suitable for accelerating the intensive
matrix calculation operations of DNNs [1]. These accelerators
can address the demand for DNN’s high-performance and low-
power consumption thanks to their highly parallel multiply and
accumulate (MAC)-based datapath equipped with a large
amount of on-chip memory, which enables fast and efficient
DNN inference. However, the MAC grid is used to process all
the neural network (NN) layers in a computing stream. Hence,
if a fault occurs in the grid's processing element (PE), it may
result in a cascading erroneous effect across all the layers,
compromising the DNN model accuracy.

Permanent or transient faults may happen within the TPU
hardware architecture due to environmental conditions (e.g.,
radiation effects or temperature variations), aging, or
manufacturing defects.

Several works developed approaches to assess the
robustness and reliability of TPU accelerators when affected by
faults, mostly based on fault injection rather than detection [2]-
[5]. When addressing fault detection in systolic array-based
architectures, two branches of methods are commonly
considered. On one side, there are algorithm-based fault
tolerance (ABFT) approaches, which employ algorithmic
techniques to enhance matrix multiplication by introducing data

redundancy and performing additional computations, often
involving checksum calculations. Even though the ABFT
approach enables runtime fault detection on systolic array
resources during application execution, it implies both area and
performance overhead while not testing other crucial
components of TPU architectures, such as accumulators [6]-[8].
These components become mandatory when operation slicing is
implemented to accommodate the core size or when executing
complex layers such as convolution on 3D tensors.

 On the other side, commonly used design for testability
(DFT) techniques include test scan chains. In particular, when
applied to systolic arrays, the scan chains are implemented by
exploiting the functional paths among the PEs already available
in the datapath, enabling efficient testing and fault diagnosis.
However, scan methodologies cannot be executed in real-time
during the inference process. This is because they require the
application of specific test patterns, which necessitates
interrupting the ongoing application. As a result, scan-based
testing techniques are typically employed during the design
phase or during dedicated testing periods rather than during
regular runtime execution [9][10].

In this work, we propose a new methodology that combines
the properties of ABFT techniques and the test pattern
propagation in the TPUs datapath. The proposed solution
detects permanent and transient faults during the application
execution. The main contribution of this work consists of
developing a new methodology for runtime self-testing on the
main resources of TPU architectures. In particular, we
minimized the hardware overhead compared to previous
approaches by efficiently exploiting the available resources of
the datapath while introducing negligible performance
degradation. We integrated this methodology as a custom
instruction within the TinyTPU [11] open-core instruction set
architecture (ISA).

We experimentally evaluated the effectiveness of the
developed methodology, implementing the TPU accelerator
enhanced with the proposed methodology on the system-on-a-
programmable-chip (SoPC) Xilinx Zynq 7020. The accelerator
was mapped to the field-programmable gate array (FPGA) as a
co-processor of an ARM core. The ARM core controls the TPU
accelerator and manages the information about the fault
conditions. We evaluated the robustness and detection
capabilities by conducting two fault injection campaigns, one
focused on stuck-at faults and the other on the wider FPGA
faults scenario. As a running application, we adopted a complete
set of NN classification tasks. Experimental results
demonstrated the effectiveness of the proposed approach,
achieving 100% error rate detection at runtime for stuck-at faults

when utilizing an ASIC model.
Furthermore, the employed methodology resulted in a

runtime detection rate exceeding 94% when evaluating
hardware fault models in static random access memory
(SRAM)-FPGA implementations. In both cases, the detection
penalty is of 3 clock cycles, which does not depend on the
systolic array size and is four times faster than existing state-of-
the-art scan solutions.
 The paper is organized as follows. Section II presents the
TPU architecture characteristics, while Section III deeply
overviews state-of-the-art approaches. Section IV outlines the
systolic array fault models and Section V details the proposed
methodology. Section VI proposes the experimental results.
Finally, Section VII presents the concluding remarks.

II. BACKGROUND ON TENSOR PROCESSING UNIT

The TPU is an application-specific architecture designed to
support the computational workload of NN inference which
consists of the computation of several wide matrix
multiplications. Equipped with its own ISA, the TPU is a
(complex instruction set computer) CISC-type architectural
model, characterized by a large amount of on-chip memory, for
storing NN model weights and activations. The main
computation core is the matrix multiply unit (MMU), which
consists of a two-dimensional systolic array of MAC units,
interconnected in a mesh-like structure. Each MAC multiplies
an activation input xi,j by a weight wi,j and accumulates the result
in a single clock cycle. The peculiar interconnection layout
among MACs enables efficient data propagation between
processing elements and performs on-site accumulation of
partial products, avoiding memory accesses to store and load
intermediate results. Alongside the systolic array, external
accumulators store and process intermediate results during the
computation. These accumulators are crucial when employing
operation tiling to accommodate the core size when executing
large layers.

Fig. 1. The systolic-array accelerator architecture with weight stationary data
mapping.

Since NN’s weight matrices are typically larger than the
input tensor, the weight stationary (WS) data mapping policy,
shown in Fig.1, minimizes data transfer and memory accesses.
Specifically, before the input data starts flowing row-wise, all
the weights are loaded in the MAC grid. Each weight is loaded
in the register of a specific MAC unit for the entire computation

process. After the weights loading, at each clock cycle, a new
input vector is fetched, with the leftmost column receiving the
new input while the previous vector is processed by the
subsequent column. At the same time, each MAC produces one
output element for the MAC on its bottom, contributing to the
per-column output accumulation through the dedicated
interconnection path. Hence, when the WS policy is adopted in
systolic arrays, it involves a dual data flow within the core.
Firstly, there is a left-to-right propagation of the activation input
between consecutive MAC units. Secondly, there is a top-to-
bottom propagation of the partial sum with accumulation.

III. RELATED WORKS

 The introduction of Google's TPUs has reignited interest in
systolic arrays, prompting analysis of their performance and
reliability [2][4] while fault detection and correction techniques
in systolic arrays have been explored since the 90s [12]-[14].
The growing use of systolic array-based accelerators in critical
applications like autonomous driving and avionics has
emphasized the need for effective fault diagnosis and fault-
tolerant design with marginal power, performance, and area
overheads. Indeed, the high density of MAC units in systolic
arrays and routing congestion, combined with technology
scaling, make them more sensitive to permanent and transient
faults [3][5]. As the systolic array workload moved towards NN
inference, new fault-tolerant architecture proposals arose based
on weight pruning, model compression, and bypass of faulty PEs
[15]-[17]. However, these approaches assume prior knowledge
of the fault locations, not accounting for fault detection and
diagnosis. In contrast, when facing real-time applications
requiring high reliability, ABFT can be an effective solution
since it aims at both error detection and correction on the fly.
The main idea is to enhance the data encoding process through
checksum, which enables detecting computational errors, while
correction can be done in limited cases provided that hardware
support has been included in the design [18]-[21]. However,
ABFTs require additional hardware to compute and process the
checksum values, impacting the chip area, power, and
performance. As a result, scientific research has made headway
in exploring lighter alternatives.
 Considering the A x B operation, traditional ABFT requires
the computation of column checksums for matrix A and row
checksums for matrix B, followed by augmenting the original
matrices with these checksums before performing matrix
multiplication. In [7], authors propose a streamlined version of
ABFT to address voltage scaling-induced transient errors, which
solely compute the row checksum for matrix B. To achieve this
at runtime, they allocated N additional PEs into a systolic array
of size N x N, along with an additional column of digital
integrators and comparators for error detection. Moreover, this
approach introduces a penalty of 2 clock cycles on the matrix
multiplication process, while missing exhaustive fault coverage.
Similarly, authors in [8] propose the Light ABFT technique for
systolic arrays. They identify the presence of faults by
comparing the sum of all the elements of the outputs matrix C =
A x B with the product (L) of the column checksum of matrix A
and the row checksum of matrix B.
 In the proposed method [8], checksums and L values are
computed in parallel with matrix multiplication execution,
requiring an overall architectural cost of 1 multiplier, 2N+2

w00 w02

w10 w11 w12

w20 w21 w22

W1 W2

d0

…

WEIGHT BUFFER

U
N

IF
IE

D
 B

U
FF

ER

d1

w01

…

dm

d20 d10 d00

d21 d11 d01 *

d22 d12 d02 *

P20

P10

P00

P21

P11

P01

P22

P21

P20

+
+

+

ACCUMULATORS

t 4 t3 t2 t1 t0

t3

t4

t5

t6

t7

x

+

adders, and N comparators, if considering an N x N systolic
array. However, both techniques [7][8] do not perform any fault
diagnosis.

Another branch of approaches involves the DFT solutions,
which include using scan chains and built-in self-test (BIST)
methods. Traditional scan chains are commonly employed in
digital circuits for the purpose of enhancing testability, allowing
a more efficient application of test patterns and collection of
responses. In the context of systolic arrays, the concept of scan
chains has been adapted to exploit the existing functional paths
and registers within the array structure. Recalling the dataflow
explained in Section II, where activation inputs flow row-wise
from left-to-right of the array, and the partial sum column-wise
from top to bottom, both authors in [9] and [10] exploit these
interconnections to build scan chains. Likewise, the weight
registers within each column are transformed into a scan chain
using the existing functional paths.

Specifically, [9] proposes a methodology that utilizes inter-
MAC communication to propagate test patterns achieving 100%
stuck-at fault coverage with zero hardware overhead on the
systolic array. However, to ensure accurate testing when
utilizing the partial sum functional path, a specific condition
must be met. The weight data of each MAC unit needs to be set
to zero to prevent any computational interference caused by the
simultaneous application of test patterns to both the activation
inputs and partial sum. By setting the weights to zero, it is
ensured that the output produced by each MAC unit is solely
influenced by the test pattern introduced through the partial sum
scan chain, nullifying the product of weight per activation
contribution. In their method, the authors assume the correct
behavior of the external accumulators and use their dedicated
register banks to store the partial sum propagated output, which
is further compared using an MBIST methodology but not
discussed in the paper. This technique has a severe disadvantage
related to the testing routine timing penalties, which are
proportional to 3 times the number of the array size. Besides,
although this solution does not introduce hardware overhead on
the systolic array, fault detection cannot be performed in parallel
with the main application workload since it requires setting
specific patterns in all PEs. Moreover, even if not explicitly
mentioned, handling test pattern applications and monitoring
requires BIST logic which has not been addressed.

Finally, in [10], the authors propose STRAIT which is
equivalent to [9] with only a difference in the propagation of
partial sum values. They introduce a mux for each MAC unit, to
avoid forcing the weights registers to zero. In this way, they
build an additional functional path, where partial sum registers
of each MACi,j unit can be either fed by the outcome of the
multiply and accumulate operation (i.e., canonical) or directly
from the partial sum register of MACi-1,j, hence building proper
scan chain of partial sum registers per each column in the array.
After constructing the scan chains, they introduce the concept of
Hybrid BIST, which combines Logic and Memory, since
external accumulators are also utilized in this case for result
comparison and storage.

While the number of test patterns to be applied is limited,
typically around twelve for both [9] and [10], and the associated
hardware overhead is also minimal, these approaches are not
conducive to concurrent inference execution. This limitation
arises due to the necessity of activating dedicated paths,

performing data shifting, and substituting weights, which are
incompatible with the execution of NN models. Compared to
previous approaches, our solution harnesses the significant
advantages offered by ABFT and scan chains. Similarly to
[9][10] we employ test input patterns encompassing both
activations and partial sums. By effectively utilizing the
interconnection layout and data flow characteristics of the WS
policy these test patterns are designed to generate and propagate
complementary values among the resources in consecutive
clock cycles, allowing for stuck-at-fault detection. Furthermore,
the test patterns generate column checksum values specific to
the currently processed weight matrix as outputs of the systolic
array. Similarly to the approach presented in [7][8], these
checksums are compared against expected values that in our
proposed solution are computed in parallel using the external
accumulators. Subsequently, following the canonical data flow,
the accumulators are used to compare the generated checksums.
The resulting comparisons enable an error unit to perform fault
diagnosis, identifying fault location and distinguishing whether
it resides in MACs or in the accumulators, if it concerns weights,
partial sum propagation, or activations.

The proposed method enables the evaluation of faults
without compromising the integrity of the original NN weight
data, ensuring the undisturbed progress of the main computation
and facilitating robust inference. Compared to [7][8] we have no
hardware overhead related to checksums, and we perform
diagnosis by identifying the fault locations. Compared to [9][10]
fault detection occurs with less granularity, but it is a good
tradeoff with the ability to run the testing mode in runtime
during inference.

Overall, the proposed approach has demonstrated seamless
integration within an actual system executing an NN model,
with minimal overhead on the hardware and performance.

IV. THE SYSTOLIC ARRAY FAULT MODEL

In TPU architectures, various types of faults can arise,
potentially causing disruptions in the architecture's operation.
Stuck-at faults can impact individual processing elements like
MACs, accumulators, registers, and interconnections. These
faults result in signals permanently stuck at a high or low logic
level. Additionally, bitflips can occur in internal registers used
by MAC units to store weights and input tensors. These bitflips
can lead to erroneous computations and affect the accuracy of
the inference. Shorts and opens in the interconnection layout can
also introduce faults that hinder proper data flow within the
architecture.

By examining the faulty behavior at the output of the systolic
array and considering the operations performed by each PE
along with the data flow, we can effectively determine the fault
locations. This allows us to investigate a self-test methodology
capable of covering various scenarios with negligible overhead.
When considering the WS policy, which involves partial
product propagation per column and activation propagation per
row from left to right, we can deduce the source of fault by
certain error pattern manifestations. Consider each MACi,j
produces one item per clock cycle as follows,

 𝑝𝑜𝑖,𝑗
= pii,j

+ (di ∗ wi,j) = poi−1,j
+ (di ∗ wi,j) (1)

where po is the output partial product generated, pi is the input
partial product, coming from MACi-1,j, di is the activation, and
wi,j is the weight data.

If a MAC unit is faulty, due to the column-wise
accumulation, it will produce a faulty po that will propagate as a
faulty pi contribution for all the MACs in the same column,
reaching the output. Similarly, faults in weights or partial sums
will result in a column producing output values different from
the expected ones.

In contrast, when a fault affects an activation input, due to
the left-to-right flow of activation inputs explained in Section II,
where at each clock cycle each MACi,j receives di input from the
MACi,j-1, we observe the propagation of compromised data
along the row. Specifically, the corrupted data spreads from the
faulty PE toward the right side of the array. However, the fault
does not remain confined to the row alone. Due to the WS
policy, every MAC unit receiving the corrupted di term will
contribute to generating a corrupted output po, which, again,
propagates throughout the entire column. Consequently, a fault
in the activation results in multiple adjacent corrupted values at
the output of the systolic array. Note that the index of the first
corrupted output value aligns with the column’s index affected
by the activation input fault.

Therefore, the propagation mechanism can be effectively
exploited for implementing self-testing methodologies without
incurring additional hardware costs and with minimal
computational delay. When employing the WS policy,
combining the propagation map with a column-wise detection
mechanism allows for identifying stuck-at and bitflips that affect
any resource of the array. When identifying a computational
error in a single column, the issue probably pertains to a weight
or partial product associated with that specific column.
Conversely, when multiple faults are identified in adjacent
columns, it is more probable that the fault lies within the inputs
of the initial column within the block of faulty columns. Hence,
if two or more non-adjacent columns generate inaccurate
outputs, multiple faults are raised within the system, as shown
in Fig. 2.

When considering ASIC and FPGA implementations, the
cause of faults may vary. However, the manifestation of these
errors and their propagation mechanisms are equivalent, as they
primarily depend on the circuit topology rather than the specific
implementation technology. Therefore, the classifications of
errors remain applicable to systolic array-based accelerator
implementations in both ASIC and FPGA technologies.

V. THE PROPOSED APPROACH

The proposed approach detects any fault-induced anomaly in

the functionality of the systolic array computational units,

allowing coarse-grained fault localization. To achieve this goal,

we used the available resources and the unique data flow of the

accelerator datapath to develop a self-test methodology that

integrates checksum computation and the scan chains

methodology. Unlike previous works [7][8] that rely on

dedicated external modules for checksum computation, our

approach exploits the resources of the systolic array itself to

generate the checksums. Additionally, AI accelerators based on

systolic arrays often employ external accumulators to support

tiling operations on matrices larger than the available resources.

In our method, these accumulators are utilized to generate and

process comparative checksums, in parallel, on the same data

processed by the systolic array. Therefore, by comparing the

Fig. 2. Fault propagation model when WS data mapping is adopted. (a) single
fault affecting either weight or per column output propagation (b) single fault
affecting input (c) concurrent multiple faults.

two units’ results, we simultaneously detect faults both in the

systolic array core and in the accumulators, with the ability to

distinguish which of these units is affected by a fault and where

the fault is located (i.e., which accumulator and which column

of PEs). Furthermore, the checksums’ generation process

involves stimulating the datapath with test patterns that shift

both in MAC’s activations and partial sums inputs bitwise

complemented data between consecutive clock cycles. This

allows the stuck-at fault detection without area overhead since

exploiting the embedded inter-MAC connections as scan chains

as demonstrated in [9][10]. By integrating both methodologies,

we can execute a self-test routine while the main application is

running, achieving runtime error detection while ensuring

minimal impact on performance and area.

A. The Fault Detection Methodology

The proposed approach consists of three phases:

1. Compute two checksums on the weight matrix loaded
to the systolic array by the NN application using the
resources of the systolic array.

2. Compare the checksums with golden values,
computed at runtime by dedicated resources available
in the Datapath, using the accumulators present in the
Datapath.

3. Evaluate checksums and comparison results to detect
and locate any potential fault affecting both the
systolic array and the golden value generation unit.

The generation of the golden checksums depends on the
specific datapath. When accumulators are available, the golden
checksums on weight data can be computed by exploiting them
with a few architectural modifications. This will be fully
discussed in the following section concerning the hardware
implementation of the proposed method. Otherwise, additional
dedicated units should be inserted to fulfill the purpose. Please
consider that comparing the checksum generated by the systolic
array with those generated by specialized modules, like the
accumulators, helps identify which part of the Datapath is
malfunctioning.

Starting with the first phase, the systolic array’s activation
register chain is sequentially fed by two 1D test patterns. These
test patterns are designed to serve two purposes. Firstly, to
generate column checksums for the current weight matrix.
Secondly, to assess the inter-MACs propagation of (i) the
activation data, from the left to the right of the systolic array, (ii)
partial sums, from top to the bottom of the systolic array, to
address the row fault model and the column fault model

(a) (b) (c)

discussed in Section IV and shown in Fig. 2a and Fig. 2b
respectively.

The proper functioning of the inter-MACs data transfer in
both directions is achieved by enforcing the propagation of
bitwise complemented values in two consecutive clock cycles,
enabling stuck-at fault detection.

Considering a systolic array of size M rows and N columns,
a weight matrix W of size M x N, and a unit row vector U of size
1 x M, with each element initialized to 1. Due to WS policy,
each wi,j element in W is always mapped to the MAC i,j in the
systolic array. By applying as the first test pattern the vector U,
we stimulate the systolic array to compute the matrix
multiplication U x W, resulting in a row vector R of size 1 x N.
The value of each element in R corresponds to the sum of the
weights in the corresponding column of matrix W.
Mathematically, this can be represented as:

 R = U × W with R[j] = ∑ wi,j
M
i=1 with j ∈ [0, N[(2)

Hence, R is the column checksum of matrix W. Then, to
evaluate the inter-MACs communication against stuck-at, we
need to invert each register's bit and driving signal in the
architecture, which means computing and propagating the

bitwise complement of the previous computation, i.e., 𝑅 .
Considering the 2s’complement of number x, shown in (3), to
compute its complemented value we need to invert the sign and
subtract 1.

 𝑥2′complement = −x − 1 (3)

Therefore, if we apply as an activation test pattern a vector
U† of size 1 x M, with each element initialized to -1, the systolic
array is stimulated to compute U† x W, resulting in −𝑅. If, at
the same time we shift -1 in the partial sum chain of each

column, then according to (4) we obtain 𝑅.

 R† = U†x W − 1 = −R − 1 = 𝑅 (4)

Hence, by applying two test patterns U† and U to the

activation chains and concurrently two test patterns (0 and -1) to
the partial sum propagation chains, just letting the systolic array
simply process the test patterns as normal input vectors, we are
able to evaluate the inter-MACs communication through the
propagation of bitwise complemented data.

In the following, 𝑅𝑆𝐴 and 𝑅𝑆𝐴 indicate the checksums
produced exploiting the systolic array.

After computing the two complemented checksums, the
second phase commences, during which the accumulators are
introduced into the self-test routine. Typically, the number of
accumulators is N, which matches the size of the first
dimension of the systolic array. Accumulators are employed
within the test routine in a manner consistent with their usage
in the normal execution routine. They are intended to gather and
accumulate the outcomes of consecutive computations,
mirroring their typical behavior. What differs is the meaning of
the operands, which are the checksums derived from the
systolic array and the golden checksums. To be more precise,
once checksum vector 𝑅𝑆𝐴 has been produced, each
accumulator Aj produces one output value 𝑎𝑗 as follows:

 𝑎𝑗 = 𝑅𝑆𝐴[j]− 𝑅𝑔𝑜𝑙𝑑[j] 𝑤𝑖𝑡ℎ 𝑗 ∈ [0, 𝑁[(5)

Similarly, after the production of 𝑅𝑆𝐴, which is equal to -
Rgold -1 according to (4) in a fault-free system, each accumulator
Aj produces one output value 𝑎𝑗

∗ as follows:

 𝑎𝑗
∗ = 𝑅𝑆𝐴[𝑗] + 𝑅𝑔𝑜𝑙𝑑[𝑗] 𝑤𝑖𝑡ℎ 𝑗 ∈ [0, 𝑁[(6)

In the absence of faults, regardless of the weights’ values,

each 𝑎𝑗 will assume value 0 and each 𝑎𝑗
∗ -1.

Once obtained the complementary checksums and the pair
(𝑎𝑗 , 𝑎𝑗

∗), where j corresponds to both the systolic array’s

column index and the accumulator index, we can evaluate and
classify faults, being the last step of the methodology.
Specifically, when 𝑎𝑗 ≠ 0 and 𝑎𝑗

∗ ≠ −1.

• if 𝑎𝑗 = 𝑛𝑜𝑡(𝑎𝑗
∗)

The fault concerns a weight resource in column j. If the
weight wi,j is affected by an upset, multiplying it by 1 and
then by -1 will result in an erroneous yet complementary
value being added to the column sum. Therefore, when the
accumulators perform the sum with the golden values, the
resulting value will differ from 0 and -1, but still
complementary. This discrepancy indicates that there are no
stuck-at faults in the resources, but rather a bit-flip in the
weight. A numerical example is shown in Fig. 3b.

• if 𝑎𝑗 ≠ 𝑛𝑜𝑡(𝑎𝑗
∗) 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑅𝑆𝐴[𝑗]) ≠ 𝑅𝑆𝐴[𝑗]

The fault concerns stuck-at in the systolic array. Indeed, if the
column sums produced by the systolic array in the two

Fig. 3. Data flow example of the proposed algorithm solution on a single column of MAC resources and relative Accumulator. (a) fault-free scenario (b) fault

in a MAC weight (c) stuck-at in the output propagation path (d) fault in the Accumulator. By comparing results coming from Accumulators and those produced

in the systolic array, the fault location and the variation with respect to correct output are identified.

0x02

0xF7

0x04

(0x02)16 =00000010
(0xFD)16=11111101

+

t3 t2 t1 t0

t3

t4

111
-1-1-1 *

adder’s 2nd operand

t0 t1

0 -1test input pattern

0xFD -0xFD

golden
checksums

t3t4

t4

t5

Accumulator

00000000

11111111

0x02

0xE7

0x04

(0x12)16 =00010010
(0xED)16=11101101

+ Accumulator

11110000
00001111

0x02

0xF7

0x04

(0x06)16 =00000110
(0xFD)16=11111101

+ Accumulator

00000000

00000011

x

complementary
not

complementary

not
complementarycomplementary

0x02

0xF7

0x04

(0x02)16 =00000010
(0xFD)16=11111101

+ Accumulator

00010000

11111111

complementary

x

not
complementary

(a) (b) (c) (d)

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden
checksums

t3t4

t4

t5

t3 t2 t1 t0

adder’s 2nd operand

t0 t1

0 -1

t3 t2 t1 t0

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden
checksums

t3t4

t4

t5

adder’s 2nd operand

t0 t1

0 -1
adder’s 2nd operand

t0 t1

0 -1

t3 t2 t1 t0

t3

t4

111
-1-1-1 *

test input pattern

0xFD -0xFD

golden
checksums

t3t4

t4

t5

iterations are not complementary, it signifies the presence of
a stuck-at fault. This fault hinders the ability to flip a value,
resulting in the lack of complementarity between the sums. A
numerical example is shown in Fig. 3c.

• if aj ≠ not(aj
∗) and not(RSA[j]) = RSA[j]

The fault is located in the accumulator Aj since the column of
MACs produced complementary sums, but the accumulator
results are different from the expected (i.e., all 0s and all 1s).
A numerical example is shown in Fig. 3d.

It is worth noticing that, as illustrated in (5) and (6), the
comparison between the checksums involves addition and
subtraction operations with 𝑅𝑔𝑜𝑙𝑑. By leveraging the properties

of two's complement, the accumulators perform the subtraction
as an addition on complemented data and with the CarryIn set
to 1. Therefore, following the same principle adopted for the
systolic array, by executing computations on complemented
data on all its input (operandA, operandB, CarryIn) in two
consecutive clock cycles, we are able to detect potential stuck-
at faults even in the accumulators’ resources. The accumulator
data flow is illustrated in Fig. 4.

Fig.4 Data flow on the Accumulators when the self-test routine is running. In
two consecutive clock cycles the accumulators receive and produce
complemented data which enables stuck-at detection.

Moreover, since both vectors U and U† have the LSB value
of the first item set to 1, to prevent any stuck-at-1 issues in the
resources associated with the activation input tensor,
exhaustive fault detection methodology requires an additional
test pattern to be propagating along the systolic arrays.

The proposed method generates checksums and compares
them with the systolic array’s column-level granularity.
Consequently, unlike approaches solely based on scan chains,
we are unable to identify the specific corrupted MAC unit, but
rather the affected column. On the other hand, by processing
the evaluation results, we can determine whether the error is a
row fault or a column fault, as explained in Section IV, based
on the distribution of faulty columns. Moreover, although
lacking in granularity, our method stimulates and evaluates two
computational units of the datapath simultaneously, which is
typically deferred or performed at different times, thereby
reducing system availability in previous approaches.

Furthermore, as discussed in the following section, this
method can be integrated into the runtime execution of an
application with a reduced penalty. It is also important to
consider that when exploiting a fully pipelined datapath as
illustrated in the following section, that processes one vector
per clock cycle, the overall clock penalty introduced by the
detection system is stable and independent of the size of the
systolic array, being 3 clock cycles (one for each test pattern)
despite the number of MACs unit. Therefore, the lower
granularity represents a tradeoff with the scalability and

intrusiveness of the proposed approach, which, as shown in the
experimental results, enables the detection of faults during
inference execution. Consequently, in an ideal system, this
method can be employed as a preliminary runtime detection of
higher-level anomalies, subsequently triggering more
comprehensive and fine-grained detection methods.

B. The Implementation

To validate the proposed approach, we implemented the
methodology as an extended version of a matrix multiplication
instruction in the ISA of an open-source TPU architecture [11].
Hence, the architecture now supports the execution of plain
matrix multiplication and testing-mode matrix multiplication.

In TPU architecture, the matrix multiplication (matmul)
operation typically follows a pipeline flow to perform the
computation efficiently. Considering a systolic array core of
size N x N, the execution starts with a load weight instruction
instructing the core to fetch an N x N weight matrix from
memory and load it into the systolic grid. Since the pipelined
structure, while the weight matrix is being positioned, the
matmul instruction starts in parallel after 1 clock cycle (CC).
This operation includes the fetching of N activation vectors
from memory. This timing reflects the need for the first column
of MACs to be filled with weights before receiving the inputs,
as required by the weight stationary policy. Considering that the
loading of weights takes N CC, the output vectors, one per CC,
start after N+4 CC, while the overall duration of the matmul
operation is 2N-1 CC. As soon as result vectors are produced,
they are transferred to the accumulators, which either perform
accumulation with the data stored in the destination register or
simply overwrite it. Just after the production of the first vector
result, the second load weights instruction can begin filling the
systolic array with new data.

To support the self-test proposed methodology we modified
the data flow inside the pipeline as follows. When the testing
mode is active, and the load weight is issued, the weights flow
both in the systolic arrays and in the accumulators to compute
the golden checksum Rgold discussed in the previous section.
The accumulators may be busy accumulating results from the
last executed matrix multiplication if required by the program
code. Since efficient NNs rely on data quantization and models
are trained on 8 or even fewer bits, we assumed that the
parallelism of the accumulators could be such to enable the
development of an asymmetric SIMD (Single Instruction,
Multiple Data) on weights checksum and output product
accumulation.

Fig. 5. Asymmetric SIMD on Accumulators to compute the checksums while
processing application workload results. (a) detailed overview of data handling
(b) schematic data path.

This assumption is not an uncommon scenario. For instance,
state-of-the-art implementations of systolic array-based
accelerators in FPGA map the MAC units to digital signal

+
RSA

t0t1 ACCUMULATOR

Rgold

t0t1

CarryIn
0 1

0x000xFF

(a)

wi+1,j 0 pi+1,j

wi,j pi,j

++

32 bits15 bits

Addition 1Addition 2

==

0

Checksum Result AccumulationC

+

wi+1,j 0 pi+1,j

Systolic Array ResultWeight streams

(b)
Accumulator

processor (DSP) units, which can support operands on more
than 48 bits (Xilinx 7 Series 48 bits, Xilinx Versal 58bits, Intel
Agilex 54 bits). Hence, drawing on the method proposed in [22]
we can apply asymmetric SIMD by concatenating weights data
and matmul results when feeding accumulators operands. To
account for the carry condition, we insert one zero as a guard
bit between the two data being processed as shown in Fig. 5a.
This allows us to perform canonical accumulation while
producing the golden checksum. In the scenario where
asymmetric SIMD is not feasible due to the maximum value of
the column weight sum exceeding the representable value given
the available bits, one option could be to limit the testing mode
to matrices in the pipeline that are temporally separated from
matrices involving accumulation, preserving the whole bits
either to results or to checksums computation. Ultimately,
incorporate dedicated computing units to support checksum
calculation.

Once the accumulators have finished the golden checksum
computation, values are stored in preserved registers R0, R1
within the accumulators’ registers bank. The control unit then
waits for the matmul instruction to complete its workload
processing, but before freeing the unit, applies to the current
weight matrix the test patterns discussed in Section IV-A to
generate systolic array’s checksums. As soon as they’re
produced, they are passed to the accumulators as regular results
from the matmul operation. The accumulation process for the
checksums differs slightly from the other output vectors. For
the rest of the output vectors concerning that matmul instruction
(operation 2 in Fig. 6b), the accumulation occurs with target
registers whose address is determined by a specific field in the
instruction format. Instead, for the last received results related
to the checksums, the accumulation always takes place using
the values stored in the R0 and R1 registers, performing phase
2 discussed in the previous section. The result of the
accumulation between the accumulator checksums and the
systolic array checksums is passed to a comparison unit based
on XNOR and OR logic, which checks the result conditions
mentioned in Section IV-A. This unit returns an N-bit error
array status, with each bit associated with a MAC column of the
systolic array. In the case of a fault, the corresponding bit is set
to 1.

In our proposed system design, where the TPU operates as
a coprocessor, we have established a mapping between the error
array status and the interrupt port of the main processor to make
the runtime detection more effective. Since we targeted FPGA
design, this information may be used to trigger the autonomous
FPGA reconfiguration with golden bitstream. In fact, any
detected error in this scenario is caused by an alteration of the
content of the device CRAM. So, to correct and solve the fault-
induced problem, CRAM reconfiguration is sufficient.
Concerning ASIC implementation, once a stuck-at is detected,
and faulty resources individuated, methods such as model
compression [16] and fault-aware pruning [15] may be adopted
to bypass the faulty resource.

In Fig. 6b the modified pipeline is reported. We added a
testing mode for the matmul instruction, labeled as tmatmul, in
order to provide the ability to control when to perform
calculations in testing mode. This instruction introduces an
additional latency of 3 CC compared to the plain matmul
operation as it processes the additional test patterns.

Fig. 6. The original pipeline in (a) and the pipeline when supporting self-test
instruction (b). Different colors but the same pattern relates operations required
for single matrix multiplication with accumulation. Execution of operations in
testing mode (T) introduces a latency of 3 CC while enabling runtime fault
detection.

When considering complex NN, their execution on systolic
arrays necessitates the transformation of layers into general
matrix multiplication operations [23]. Typically, layer size
does not match the systolic array size. Therefore, the layer is
decomposed into smaller matmul operations. The more
complex the network, the deeper the sequence of matmul
operations composing each layer. Our method operates at the
granularity of individual matmul execution, and integrating it
as an extension of the multiplication instruction allows us to
choose when to apply test mode, reducing its impact on NN
real-time response. In general, considering a layer that, when
decomposed, requires M matmul operations performed in
sequence, if we want to execute each matmul in testing mode,
then the penalty on the overall layer will be 3*M CC.

Therefore, it is up to the programmer to decide whether to
execute an entire application (i.e., complete inference) in
testing mode, incurring a penalty of 3 CC for each matmul but
ensuring that every calculation performed is error-free.
Alternatively, they can choose to perform only specific
computations in testing mode, such as only a few matrices per
layer or only the final layer, according to real-time response
requirement of the specific application.

From a perspective focused on design choices, employing
parallel computation for reference values offers significant
advantages in terms of scalability and implementation
flexibility. In FPGA implementations, systolic arrays require
minimal programmable logic because the MAC units are
mapped to DSPs. In the specific instance of this open-source
core, the design utilizes less than 10% of the available LUTs
and Carry logic within the device. It's important to note that the
device used is not a next-generation one, which typically offers
a wealth of additional resources, allowing for more extensive

1

2

3
ACCUMULATORS

Load
Weights

Time (CC)

O
p

er
at

io
n

s
 (

#)

1

2

SYSTOLIC ARRAY

3

1

2

3

1

2

3

T
T

SYSTOLIC ARRAY

ACCUMULATORS

(a)

(b)

Matmul

Accumulate
Results

Checksums
Evaluation

Systolic Array
Checksums
Generation

Time (CC)

O
p

er
at

io
n

s
 (

#)

Accumulator
Checksums
Generation

implementation possibilities. As a result, when dealing with
larger systolic arrays, designers have the option to choose
between utilizing Datapath accumulators or dedicated
resources. In our case, we deliberately made use of the
resources provided by the datapath and employed accumulators
in parallel to reduce hardware overhead. However, the use of
parallel adders is also fully compatible, and it does not impact
the overall methodology. During the third phase of the
approach, as described in Section V-A, the reference values,
whether generated by accumulators themselves or by additional
units, pass through the accumulators. These values are
subsequently compared with those from the systolic array. The
rationale behind this data comparison, aimed at identifying fault
locations, remains valid in both scenarios.

The adoption of a comparative analysis between values
produced by different units in runtime allows the detection of
errors induced not only by stuck-at faults but also by more
complex scenarios. Indeed, if the checksums produced are not
complemented values and the values produced by accumulators
differ from those produced by the systolic arrays, then the
mismatch between values pinpoints the presence of a fault in
the Datapath and will trigger the error detection unit. In this
case, the method is not capable of identifying fault location,
since it is modeled to target stuck-at, but still, the presence of a
fault will be detected in most of the cases. In fact in the
following section fault injection campaign targets not only
stuck-at but also FPGA fault models. The letter, depending on
the configuration memory cell affected may result in different
fault scenarios affecting the systolic core such as stuck-at, logic
functions alterations, bridge faults, open faults, etc.

As previously mentioned, our proposed method is not able
to provide the exact faulty MAC unit, while indicating in which
column of the array it is located. Hence, detection performance
is lower if compared to the scan-based method [9][10] while
providing the benefit of runtime execution, not inducing
program interruption, which is not the case for the scan test
routine. Being our proposed method in the middle between scan
and ABFT, it presents a good tradeoff between the two
techniques taking the major benefits of both at lower cost both
in hardware resources and intrusiveness on the workload.

From a power consumption perspective, the methods do not
increase static power consumption, since it does not allocate
additional computational resource. However, both adopting
SIMD mode in the accumulators and flowing of complemented
data across the units, incurs an increment of dynamic power
consumption. However, since the application of the method can
be confined to a few matmul executions (programmer’s choice),
the impact on the overall workload may be minimal when
compared to complete NN execution.

VI. EXPERIMENTAL RESULTS

We evaluate the fault detection capabilities of the proposed
method by implementing a TPU architecture on the Xilinx Zynq
7020 programmable SoC and performing fault injection
campaigns. In detail, the TPU module was implemented within
the SoC programmable logic and interfaced with the embedded
ARM cores through an AXI bus interface. The TPU module has
been equipped with an additional debug port capable of
transmitting the functional conditions of its resources (faulty or
not faulty) once the self-test operations are executed. Since

implemented on FPGA, as done by [8] both MACs and
accumulators have been mapped to DSP, allowing us to exploit
the proposed asymmetric SIMD. To exploit all the available on-
chip DSPs the systolic core size is 14 x 14 and the datapath is
provided with 14 accumulators.

The fault injection has been deployed targeting the insertion
of faults within the SoC bitstream resources controlling the
mapped TPU design. The insertion of a faulty bitstream mimics
the insertion of permanent faults within the TPU resources
depending on the selected bitstream coordinates according to the
techniques developed in [24]. Please note that the effective
injection within the bitstream is done before the upload of the
programmable logic configuration memory (CRAM).

The experimental validation campaigns have been done
evaluating 20,000 faults. In order to evaluate the proposed
methodology with respect to the execution of typical TPU
applications, we developed two benchmark applications: a
Convolutional Neural Network and a Multilayer Perceptron
Neural Network. The two applications were settled to execute a
classification task on the MNIST digit dataset. Each model is
executed by exploiting the tmatmul instruction to assess the
validity of the proposed method.

The obtained results demonstrate detection capabilities with
an average rate of 94.6% for the two NN models. Additionally,
the detection latency was found to be low, as the system is
capable of identifying faults and notifying the host PC from the
first NN layer execution. However, it should be noted that the
proposed method cannot achieve a 100% detection rate on
FPGA design due to the higher complexity of the fault model.
As mentioned before, a single bitflip in CRAM may induce
stuck-at as well as bridge, conflict, and open faults, which are
not directly addressed by the proposed approach. However,
independently from faults type, if the effects result in a
mismatch between checksums, it will be detected. Indeed,
during the injection campaign, the fault location was random
and the fault effect unpredictable, but still we were able to detect
more than 90% of faults. Therefore, compared to the method
described in [8], which relies on multiple checksum computation
and processing, the detection rate is lower as they report
obtaining around 97% detection rate, while in [7] they do not
provide actual statistics. Nevertheless, as shown in Table I, the
overhead induced by our method is negligible compared to
ABFT approaches while introducing the ability of fault
diagnosis. The tradeoff between performance, area,
functionalities, and detection capabilities is evident.

In order to compare our method with scan-based solutions,
we performed a stuck-at based fault simulation by injecting
stuck-at faults in all MAC units, inputs, and outputs resources.
Our detection system demonstrated a fault coverage of 100%
similar to [9] [10] but with a drastically lower computing
overhead. We observed, that our approach requires the
application of 4 times less test patterns versus previous
approaches, without PE architectural modifications.
 We evaluated the area overhead by comparing the equivalent
ASIC gate count for LUT-based implementation, as reported in
[25], and in order to be comparable with [10], we also
configured the systolic array size to 256 x 256, mapping MACs
to LUTs. As can be seen in Table II, our method has an area
overhead of 0.31%. Overall, the experimental results proved that
with minor modifications to the architecture, it is possible to

monitor the conditions of the computational resources in real-
time without interrupting the inference execution. The proposed
method also exhibits flexibility, as it is capable of detecting the
presence of stuck-at faults as well as other types of faults with a
fair detection rate while maintaining reduced overhead in terms
of performance and area.

When considering mission-critical applications such as
avionics or automotive the fault scenario and requirement may
be different and strictly dependent on target technology. If we
consider SRAM-based implementation, the bitflip fault model
we adopted to assess the effectiveness of the methods holds. In
fact, high-energy particles typically induce single event upset in
CRAM which leads to structural changes in the Datapath, as we
tested in our fault injection campaign where we obtained 94.6%
detection rate. However, we evaluated only the case of one fault
per time, while multiple-bit upset can occur, affecting multiple
resources of the device at the same time. This scenario will be
deeper explored in future work. On the other hand, considering
ASIC implementation, another kind of error apart from stuck-at
faults may be induced by transient propagation as analyzed in
[3]. In this case, if a weight resource samples the transient, our
proposed method will detect the data corruption, for the
reasoning explained in Section V-A (case if 𝑎𝑗 = 𝑛𝑜𝑡(𝑎𝑗

∗)),

while the effects on the input will be addressed in the future.

TABLE I

ARCHITECTURAL OVERHEAD CONSIDERING N X N SYSTOLIC ARRAY IN ABFT

METHODS

 [7] [8] RunSAFER

PEs N 0 0

Checksums N adders 2N+1 adders, 1 MAC 0

Detection
Comparators

N N+2 N

TABLE II

COMPARISON WITH SCAN METHODS FOR SYSTOLIC ARRAY 256X56

 [9] [10] RunSAFER

Required Test Patterns 11 12 3

Area Overhead NA 5.25% 0.31%

Fault Coverage SA 100% 100% 100%

TABLE III

FUNCTIONALITY COMPARISON

VII. CONCLUSIONS

In this work, RunSAFER is proposed as a runtime fault
detection methodology suitable for systolic array-based
accelerators. The proposed method attempts to combine the
characteristics of scan methods and ABFT to achieve real-time
fault detection with reduced hardware overhead and limited
timing penalities, regardless of systolic array size. Its feasibility
has been proved by embedding the methodology as custom
extension of matmul instruction in a TPU open-source core,
while its validity has been proved through fault injection
campaign. The experimental results proved 100% fault
coverage for stuck-at faults and a four times speed up versus
state-of-the-art solutions when running complex neural
network applications.

REFERENCES
[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit”, ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), 2017, pp. 1-12.

[2] R. L. R. Junior et al., “Reliability of Google’s Tensor Processing Units
for Convolutional Neural Networks”, 52nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks -
Supplemental Volume (DSN-S), 2022, pp. 25-27.

[3] E. Vacca, et al. “A Comprehensive Analysis of Transient Errors on
Systolic Arrays”, 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), 2023, pp. 175-
180.

[4] Kundu et al., “Toward Functional Safety of Systolic Array-Based Deep
Learning Hardware Accelerators”, in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2021, vol. 29, no. 3, pp. 485-498.

[5] K. T. Chitty-Venkata et al., “Impact of Structural Faults on Neural
Network Performance”, 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
2019, pp. 35-35.

[6] K. Cui et al., “A Diagonal Checksum Algorithm-Based Fault Tolerance
for Parallel Matrix Multiplication” 2020 Eighth International Symposium
on Computing and Networking Workshops (CANDARW), 2020, pp. 218-
223.

[7] M. Safarpour et al., “Algorithm Level Error Detection in Low Voltage
Systolic Array” in IEEE Transactions on Circuits and Systems II: Express
Briefs, Feb. 2022, vol. 69, no. 2, pp. 569-573.

[8] F. Libano, et al., “Efficient Error Detection for Matrix Multiplication with
Systolic Arrays on FPGAs”, in IEEE Transactions on Computers, Aug.
2023, vol. 72, no. 8, pp. 2390-2403.

[9] J. Kim, et al., “ZOS: Zero Overhead Scan for Systolic Array-based AI
accelerator”, 2022 19th International SoC Design Conference (ISOCC),
2022, pp. 360-361.

[10] H. Lee, et al., “STRAIT: Self-Test and Self-Recovery for AI
Accelerator”, in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Sept. 2023, pp. 3092-3104 .

[11] J. Fuhrmann, “ Implementierung einer Tensor Processing Unit mit dem
Fokus auf Embedded Systems und das Internet of Things”, 2018,
http://hdl.handle.net/20.500.12738/8527

[12] V. S. S. Nair, et al., “Efficient techniques for the analysis of algorithm-
based fault tolerance (ABFT) schemes”, in IEEE Transactions on
Computers, April 1996, vol. 45, no. 4, pp. 499-503.

[13] J. Yuen et al., “VLSI design and implementation of a self-testing systolic
array chip for signal processing”, 1992 IEEE International Symposium on
Circuits and Systems (ISCAS), 1992, pp. 375-378 vol.1.

[14] C. . -I. H. Chen et al., “A self-testing and self-diagnostic systolic array
cell for signal processing”, 1991 Proceedings, International Conference
on Wafer Scale Integration, 1991, pp. 75-81.

[15] J. J. Zhang et al., “Fault-Tolerant Systolic Array Based Accelerators for
Deep Neural Network Execution”, in IEEE Design & Test, Oct. 2019, vol.
36, no. 5, pp. 44-53.

[16] K. T. Chitty-Venkata et al., “Model Compression on Faulty Array-based
Neural Network Accelerator”, IEEE 25th Pacific Rim International
Symposium on Dependable Computing (PRDC), 2020, pp. 90-99.

[17] Y. Zhao, et al., "FSA: An Efficient Fault-tolerant Systolic Array-based
DNN Accelerator Architecture," IEEE 40th International Conference on
Computer Design (ICCD), 2022, pp. 545-552.

[18] K. Huang, et al., “Algorithm-based fault tolerance for matrix operations”
IEEE Transactions on Computers (Spec. Issue Reliable & Fault-Tolerant
Comp.), 33 (1984), pp. 518-528.

[19] A. Roy-Chowdhury, et al., “Algorithm-based fault location and recovery
for matrix computations”, 24th International Symposium on Fault-
Tolerant Computing, 1994, pp. 1239-1247.

[20] G. Bosilca, et al., “Algorithm-based fault tolerance applied to high
performance computing”,Journal of Parallel and Distributed Computing,
2009, vol. 69, pp. 410-416.

[21] L. Chen, et al.,"Extending checksum-based ABFT to tolerate soft errors
online in iterative methods," 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2014, pp. 344-351.

[22] J. Sommer, et al., “DSP-Packing: Squeezing Low-precision Arithmetic
into FPGA DSP Blocks”, 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), 2022, pp. 160-166.

[23] A. Anderson, et. al, "High-Performance Low-Memory Lowering:
GEMM-based Algorithms for DNN Convolution," IEEE 32nd
International Symposium on Computer Architecture and High
Performance Computing, 2020, pp. 99-106.

[24] E. Sanchez et al."Effective emulation of permanent faults in ASICs
through dynamically reconfigurable FPGAs," 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014,
pp. 1-6.

[25] https://blogs.synopsys.com/breakingthethreelaws/2015/02/part-deux-
how-many-asic-gates-does-it-take-to-fill-an-fpga

 [7] [8] [9] [10] RunSAFER

Detection ✓ ✓ ✓ ✓ ✓

Diagnosis X X ✓ ✓ ✓

Runtime ✓ ✓ X X ✓

