
11 July 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Structured Method to Generate Self-Test Libraries for Tensor Cores / Limas Sierra, Robert; Guerrero Balaguera, Juan
David; Rodriguez Condia, Josie E.; Sonza Reorda, Matteo. - In: ELECTRONICS. - ISSN 2079-9292. - 14:11(2025).
[10.3390/electronics14112148]

Original

A Structured Method to Generate Self-Test Libraries for Tensor Cores

Publisher:

Published
DOI:10.3390/electronics14112148

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/3000405 since: 2025-05-26T07:33:13Z

MDPI

Academic Editor: Yue Wu

Received: 22 April 2025

Revised: 20 May 2025

Accepted: 23 May 2025

Published: 25 May 2025

Citation: Limas Sierra, R.; Guerrero

Balaguera, J.D.; Rodriguez Condia,

J.E.; Sonza Reorda, M. A Structured

Method to Generate Self-Test Libraries

for Tensor Cores. Electronics 2025, 14,

2148. https://doi.org/10.3390/

electronics14112148

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Structured Method to Generate Self-Test Libraries for
Tensor Cores
Robert Limas Sierra * , Juan David Guerrero Balaguera , Josie E. Rodriguez Condia and Matteo Sonza Reorda

Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy;
juan.guerrero@polito.it (J.D.G.B.); josie.rodriguez@polito.it (J.E.R.C.); matteo.sonzareorda@polito.it (M.S.R.)
* Correspondence: robert.limassierra@polito.it

Abstract: Modern computing systems increasingly rely on specialized hardware accelera-
tors, such as Graphics Processing Units (GPUs), to meet growing computational demands.
GPUs are essential for accelerating a wide range of applications, from machine learning
and scientific computing to safety-critical domains like autonomous systems and aerospace.
To enhance performance, modern GPUs integrate dedicated in-chip units, such as Tensor
Cores(TCs), which are designed for efficient mixed-precision matrix operations. How-
ever, as semiconductor technologies scale down, reliability challenges emerge. Permanent
hardware faults caused by aging, process variations, or environmental stress can lead to
Silent Data Corruptions, which silently compromise computation results. In order to detect
such faults, self-test libraries (STLs) are widely used, corresponding to suitably crafted
pieces of code, able to activate faults and propagate their effects to visible points (e.g., the
memory) and possibly signal their occurrence. This work introduces a structured method
for generating STLs to detect permanent hardware faults that may arise in TCs. By lever-
aging the parallelism and regular structure of TCs, the method facilitates the creation of
effective STLs for in-field fault detection without hardware modifications and with minimal
requirements in terms of test time and memory. The proposed approach was validated on
an NVIDIA GeForce RTX 3060 Ti GPU, installed in a Hewlett-Packard Z2 G5 workstation
with an Intel Core i9-10800 CPU and 32 GB RAM, available at the Department of Control
and Computer Engineering (DAUIN), Politecnico di Torino, Turin, Italy.This setup was
used to address stuck-at faults in the arithmetic units of TCs. The results demonstrate that
the methodology offers a practical, scalable, and non-intrusive solution for enhancing GPU
reliability, applicable in both high-performance and safety-critical environments.

Keywords: functional testing; GPUs; hardware accelerators; tensor cores; silent data
corruption; silent data errors; reliability; safety; artificial intelligence; faults

1. Introduction
Tensor cores (TCs), embedded within Graphics Processing Units (GPUs), are crucial

for the efficient execution of general matrix multiplication (GEMM)—a fundamental opera-
tion in applications such as artificial intelligence (AI), scientific computing, robotics, and
automotive systems [1,2]. As these fields increasingly depend on advanced autonomy and
real-time decision making, computational workloads are escalating not only in complexity
but also in scale due to the incorporation of data-intensive tasks and extensive sensor ar-
rays [3,4]. To address these challenges, modern computing platforms utilize highly parallel
architectures, particularly TCs, to enhance GEMM performance through mixed-precision
execution and structured dataflow [1].

Electronics 2025, 14, 2148 https://doi.org/10.3390/electronics14112148

https://doi.org/10.3390/electronics14112148
https://doi.org/10.3390/electronics14112148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5206-3757
https://orcid.org/0000-0001-6852-2372
https://orcid.org/0000-0001-5957-5624
https://orcid.org/0000-0003-2899-7669
https://doi.org/10.3390/electronics14112148
https://www.mdpi.com/article/10.3390/electronics14112148?type=check_update&version=1

Electronics 2025, 14, 2148 2 of 19

Although GPUs with TCs offer significant performance and energy efficiency, their
reliability can be compromised by permanent hardware defects that arise during in-field
operation [5]. In safety-critical environments, such as automotive or aerospace, even a
single undetected hardware defect might lead to silent data corruptions (SDCs) with poten-
tially catastrophic consequences, as it was recently demonstrated for data centers [6–8].
Hardware defects may arise from manufacturing imperfections, aging, or harsh environ-
mental conditions and can remain latent until being activated during runtime [9,10]. Thus,
to guarantee the reliable execution of GEMM workloads in such systems, robust in-field
fault detection mechanisms that can operate during normal execution, i.e., in-field testing,
are required. In particular, permanent hardware fault models—such as stuck-at faults
(SAFs)—are commonly used to represent physical defects. Moreover, these are also used to
evaluate and validate testing and mitigation mechanisms as suggested by safety standards
like ISO 26262 [11].

Several fault detection strategies have been explored in the literature, including
hardware-based mechanisms such as Logic Built-In Self-Test (LBIST) and NVIDIA’s In-System
Test (IST) [12,13]. These approaches are typically limited to power-on or power-off tests and
struggle to detect datapath-level faults during runtime. Similarly, Reliability, Availability,
and Serviceability (RAS) features—while effective for memory and control logic—do not
extend to computational engines like TCs [14]. Moreover, these hardware-based solutions
often require complex design-time integration and deep architectural knowledge, making
them inaccessible to system integrators or third-party developers.

As a more flexible alternative, software-based self-testing (SBST) methodologies offer a
practical approach for in-field testing without requiring hardware modifications [15]. This
strategy has been widely adopted by many companies for testing digital components in
the field (e.g., CPUs, MCUs, and memory interfaces) used in safety-critical applications
such as in automotive contexts [16]. SBST techniques are used to develop Software Test Li-
braries (STLs), which activate, propagate, and observe fault effects using carefully designed
routines. STLs are also effective in validating key GPU modules [17–19]. However, their ap-
plication to highly parallel and specialized accelerators, such as TCs, remains limited. The
development of STLs for these units typically requires low-level programming expertise
and careful workload mapping to prevent excessive overhead.

In order to validate the generated STLs (i.e., to compute the fault coverage they can
achieve), suitable fault injection solutions are required. Several frameworks, such as SAS-
SIFI [20], GPU-Qin [21], NVBit [22], and SIFI [23], have explored software-based fault
injection and architectural vulnerability analysis. While useful for diagnostics and fault
characterization, these tools often rely on privileged execution, architecture-specific instru-
mentation, or internal error injection hooks—factors that limit their practical deployment
in production systems. Moreover, they mainly support transient fault models, while STLs
target permanent faults. Consequently, they have not been considered for this work (apart
from NVBit, which was used for a specific validation task).

To the best of our knowledge, only one prior work [24] has investigated permanent
fault detection in TCs within GPUs. That approach employed a Universal Test Pattern (UTP)
methodology, achieving 92% stuck-at fault coverage with low detection latency. However, it
required detailed internal hardware descriptions and fine-grain architectural access, which
are typically unavailable to system integrators. Hence, this approach is impractical for
deployment outside of chip design environments.

This work proposes a user-oriented methodology for constructing STLs capable of de-
tecting permanent faults in the field possibly arising in tensor cores. The generated STLs
can be easily stored in some non-volatile memory on board the target system (together
with the application code) and activated with a specified frequency (e.g., by the operating

Electronics 2025, 14, 2148 3 of 19

system). The most common usage of STLs is based on activating them during the idle
times of the application or at power-on. By leveraging the inherent parallelism and structured
execution model of TCs, they enable fault detection during normal runtime execution without
requiring hardware modifications. Unlike prior works, our approach does not require a
deep knowledge of the internal structure of the TC or the hosting GPU. It can thus be easily
adopted by system integrators, offering a practical, scalable, and low-overhead alternative
to hardware-dependent techniques. We validate the proposed method through a custom
CUDA-based STL deployed on an NVIDIA GeForce RTX 3060 Ti GPU, hosted in an HP Z2 G5
workstation featuring an Intel Core i9-10800 CPU (20 cores) and 32 GB of RAM. The system
is located at the Department of Control and Computer Engineering (DAUIN), Politecnico di
Torino, Turin, Italy.While the study targets NVIDIA devices, the underlying methodology
can be extended to other GPU architectures featuring similar tensor-processing capabilities.

Our experimental evaluation confirms that the proposed method can effectively and
systematically transform the test vectors designed to detect faults in a given TC’s arithmetic
unit into STLs that perform matrix multiplication. These STLs activate and propagate faults
in TC datapaths with minimal overhead regarding execution time and memory footprint.
Rather than solely focusing on maximizing theoretical fault coverage, this work emphasizes
a structured, reproducible methodology for constructing GPU-compatible STLs that balance
detection effectiveness, performance overhead, and implementation accessibility.

The major contributions of this work are summarized as follows:

• We propose a software-based fault detection mechanism for Tensor Cores in GPUs, lever-
aging software test libraries (STLs) for in-field fault testing without requiring hardware
modifications.

• We introduce a systematic methodology for constructing STLs that execute HMMA instruc-
tions on TCs and are orchestrated through CUDA-based kernels. This design enables
the precise activation and propagation of permanent fault effects while maintaining
compatibility with standard GPU programming workflows.

• We demonstrate that our approach enables accessible, low-overhead, and high-performance
in-field fault testing, making it suitable for adoption by system integrators across diverse
application domains.

The manuscript is organized as follows. Section 2 provides background information
about GPUs as well as the organization and operation of TCs. Section 3 presents the current
work relative to the state of the art and discusses it. Section 4 introduces the proposed
method for applying software-based testing libraries to TC cores. Section 5 outlines the
case study. Section 6 analyzes the experimental results of the case study and discusses the
findings. Finally, Section 7 presents the conclusions and addresses future work.

2. Background
This section introduces the architectural structure of Graphics Processing Units (GPUs)

and the execution of matrix multiplication (M×M) on their in-chip accelerators, known as
Tensor Cores (TCs).

2.1. Organization of Graphics Processing Units (GPUs)

Modern GPUs are high-performance accelerators designed to maximize computational
throughput through arrays of homogeneous clusters of parallel cores, known as Streaming
Multiprocessors (SMs). SMs serve as the fundamental execution units, integrating multiple
sub-cores to enhance parallel thread execution. These sub-cores facilitate the concurrent
execution of multiple threads organized into warps (e.g., 32 threads), by leveraging a
combination of integer units (INTs), floating-point units (FPUs), special function units (SFUs),
and Tensor Cores (TCs). The heterogeneous architecture, combined with dedicated register

Electronics 2025, 14, 2148 4 of 19

file banks, memory structures, and advanced scheduling mechanisms, ensures the efficient
execution of large-scale workloads while minimizing latency.

Each SM typically consists of 32 to 64 INTs and FPUs, 4 SFUs, and 2 TCs, collectively
accelerating general-purpose computations, neural network inference, and scientific com-
puting. Figure 1 provides an overview of GPU architecture, illustrating the integration of
TCs within the memory hierarchy and scheduler components. TCs are tightly coupled with
the SM’s execution pipelines, optimizing data movement and computation while reducing
external memory dependencies.

GPU

Global Memory

Constant Memory

Texture Memory

SM SM

SM SM

SM

Instruction Cache

Warp Scheduler

Register file

Shared Memory

INT FPU

SFU

TCU

SFU

SFU SFU

+

X

X

X

Xa01b30

a11b31
a21b32
a31b33

d33

DPU33

Tensor Core Unit

Buffers
A B C

Sc
he

du
le

r

TCU0 TCU1

Figure 1. A general scheme of GPU architecture that illustrates TCU cores within an SM core alongside
memory elements. Each TCU consists of a scheduler, 16 DPU cores, and its internal buffers. In this
illustration, the matrix segments A, B, and C, along with their octets, are represented by the colors
yellow, green, red, and violet. Specifically, each field in the buffers stores four elements. Adapted
from [25,26].

The vectorized execution model of TCs necessitates highly optimized thread schedul-
ing and memory management within an SM. These optimizations extend to the GPU’s
Instruction Set Architecture (ISA), ensuring efficient TC utilization. The next subsection de-
tails the operational characteristics of TCs as specialized in-chip accelerators within GPUs.

2.2. Architecture and Operation of TCs

TCs are dedicated hardware units optimized for matrix-multiply-and-accumulate
(MMAC) operations, extensively used in deep learning, scientific computing, and sig-
nal processing [1,27–29]. These units process matrix tiles (e.g., 4× 4) in half-precision,
mixed-precision, and integer arithmetic (e.g., INT8/INT4), achieving exceptionally high
throughput, often exceeding hundreds of teraFLOPS [1].

Recent NVIDIA GPU architectures—such as Volta—feature multiple TCs per SM,
typically two per sub-core, resulting in up to eight TCs per SM. Each TC consists of
16 parallel four-element dot-product units (DPUs) and dedicated memory structures (buffers,
immediate registers, or near-registers) [30]. These units generate a 4× 4 output per clock
cycle, efficiently executing dense matrix operations. To maximize throughput, a single
warp utilizes two TCs in parallel, ensuring that a 16× 16 tile computation is decomposed
into smaller and more manageable 4× 4 operations.

Warp execution is structured hierarchically to optimize memory locality and register
reuse. A warp is divided into eight thread groups, with tiles A and B (e.g., 16× 16) being
loaded multiple times across different thread groups. These thread groups are further
organized into octets, which collectively compute 8× 8 sub-results. The warp coordinates
these octets, executing multiple sets of partial outer products, leading to a final 16× 16
output tile [25].

To efficiently handle large matrix computations, NVIDIA GPUs implement warp-
wide matrix instructions (WMMA), which break down large matrix operations (e.g., 16× 16)
into smaller, sequential tensor core operations. These WMMA instructions are compiled into

Electronics 2025, 14, 2148 5 of 19

hardware-level HMMA SASS instructions, which execute the actual matrix computations
within TCs [25].

Each WMMA instruction is decomposed into multiple sets, each consisting of several
HMMA instructions that operate on register pairs holding matrix fragments. These matrix
fragments are 4 × 4 submatrices extracted from larger operand tiles (such as 8 × 8 or
16× 16) and serve as the fundamental computational units handled by individual DPUs
within a TC. Each fragment contains operand values loaded into registers and processed
independently by the DPUs during matrix multiply-accumulate operations. For instance,
in 16× 16 mode, a single WMMA expands into eight HMMA instructions, divided into four sets,
with each set further subdivided into two steps. During each step, 4× 4 matrix sub-blocks
are processed within the TC, grouped into four sets, with each set further subdivided into
two steps. During each step, the TC processes 4× 4 matrix sub-blocks in parallel. Figure 2
illustrates this execution for thread group 0, showing how input segments are processed
through a sequence of HMMA instructions to produce the final output.

16

HMMA RegD, RegA, RegB, RegC

B C D+ =

+ =

+ =

+ =

+ =

16
A *

*

*

*

*

HMMA RegD, RegA, RegB, RegC

Set 1

Set 2
HMMA RegD, RegA, RegB, RegD

HMMA RegD, RegA, RegB, RegD

Set 3
HMMA RegD, RegA, RegB, RegD

Set 4

HMMA RegD, RegA, RegB, RegD

HMMA RegD, RegA, RegB, RegD

HMMA RegD, RegA, RegB, RegD

Figure 2. A general representation of the M×M processing scheme for input segments (A, B, and
C matrix segments) and the corresponding instructions executed by thread group 0 to compute two
output segments in the 16× 16 mode is illustrated. The HMMA instructions are structured into
sets, each responsible for processing 4× 4 input segments and managing intermediate results. After
executing a sequence of four sets, the final output segment D is produced. Throughout this process,
register banks (or buffers) function as temporary accumulators for partial results, ensuring efficient
computation and data handling. This scheme is adapted from [25].

This execution model optimizes scheduling and register reuse while ensuring that
each computation step can be executed independently. By structuring tensor core execution
hierarchically, GPUs achieve efficient memory access patterns, reduced register pressure,
and improved data locality, as intermediate results remain within high-speed shared
memory rather than being offloaded to global memory.

By following this structured execution approach, GPUs maximize computational
throughput, memory efficiency, and flexible hardware scheduling, significantly enhancing
the performance for massively parallel matrix operations, such as deep learning inference
and scientific simulations.

In detail, to support efficient large matrix multiplications, GPUs commonly apply a
hierarchical tiling strategy [31]. Global matrices are partitioned into tiles (e.g., 128× 128)
assigned to thread blocks, which further divide them into 16× 16 subtiles mapped to warps.

Electronics 2025, 14, 2148 6 of 19

Each warp splits its tile into 8× 8 or 4× 4 fragments aligned with HMMA instruction
granularity and DPU datapaths. Threads cooperatively load these fragments into registers
or shared memory, enabling efficient data reuse and coalesced access. This multilevel
decomposition maximizes parallelism, registers utilization, and memory locality while
maintaining compatibility with the TC execution model.

3. Related Works
In recent years, the growing complexity of modern accelerators has underscored the

need for effective and efficient in-field testing methods. Early research on software-based
self-testing for GPUs and their internal components—such as functional units, memory
structures, and schedulers—demonstrated the feasibility of self-test libraries (STLs) ex-
ecuted at functional speed. These approaches reduce reliance on external testers while
enabling the high-speed fault coverage of critical GPU components [18,19,32,33].

However, the inherently parallel nature of GPUs introduces significant challenges
for self-testing. Traditional assembly-coded STLs offer fine-grain control over hardware
execution, but they are architecture-specific, labor-intensive to develop, and often impracti-
cal for system-level deployment. More recently, the adoption of high-level programming
models (e.g., CUDA) has enabled more productive and portable STL development [34].
Compiler-aware strategies have shown that a substantial portion of a GPU’s functional
logic can be effectively exercised. However, achieving comprehensive fault coverage for
internal structures like registers and schedulers still often requires low-level access.

An important factor affecting STL effectiveness is the role of compiler optimizations.
Compilers such as NVIDIA’s NVCC apply aggressive transformations—including instruc-
tion reordering, register allocation, and loop unrolling—to enhance performance [35].
While these optimizations improve execution throughput, they can also influence fault
propagation and detection, as redundant instructions that might mask errors are eliminated.
Studies have demonstrated that optimized code (e.g., compiled with -O3) tends to exhibit a
higher error sensitivity compared to unoptimized versions (-O0), though it may complete
more correct computations before failing. Additionally, compiler flags such as -ftz=true
and -use_fast_math further impact fault behavior by altering floating-point operations
and unit utilization. Therefore, compiler configuration plays a critical role in shaping the
reliability of GPU-based STL methods.

Recent studies have also explored the reliability at the register file level, which repre-
sents a significant source of soft-error vulnerability in GPUs. One proposed hardware-level
solution employs resistive memory, such as STT-RAM, to enhance soft-error robustness
while reducing leakage power. This approach achieves 86% vulnerability reduction and 61%
energy savings with negligible performance overhead [36]. In contrast, a compiler-guided
method replaces traditional error correction codes (ECCs) with lightweight error detection
and idempotent recovery. This software-based technique delivers ECC-level resilience with
only 3% runtime overhead while reducing hardware complexity [37]. Together, these works
demonstrate complementary hardware and software strategies for improving soft-error
tolerance in GPU register files.

Beyond the impact of compiler optimizations on fault propagation, other testing
methodologies have been developed to assess reliability in GPU memory structures and
functional units. Functional testing strategies for specialized memory structures in SMs
have achieved up to 100% stuck-at-fault coverage by leveraging parallelism and signature-
per-thread techniques [32]. Additionally, memory fault primitives (e.g., single and coupling
faults) have been mapped into high-level CUDA routines to detect permanent errors in
warp scheduler memory [19]. By exploiting the advanced thread divergence and memory

Electronics 2025, 14, 2148 7 of 19

access patterns, these techniques have achieved up to 100% coverage for both single- and
multi-cell static faults.

In addition to memory testing, researchers have examined self-testing techniques
for functional units responsible for transcendental and mathematical operations [18]. A
proposed self-testing approach targeting GPU Special Function Units integrates test vectors
generated by an Automatic Test Pattern generator (ATPG) and then hand-tuned, achieving up
to 90% stuck-at-fault coverage while maintaining minimal testing duration and memory
overhead. Additionally, variants of STLs (e.g., Image Test Libraries) have been introduced
to identify hardware faults within GPU devices and their floating-point multipliers [33].
The reported findings indicate fault coverage of up to 95% when detecting permanent faults
in the specific modules of a GPU (e.g., arithmetic ones).

Despite these advancements, testing methodologies for dedicated on-chip GPU accel-
erators such as Tensor Cores (TCs) remain scarce. To the best of our knowledge, only one
prior study [24] has explicitly focused on detecting permanent faults in TCs. That work
introduced a Universal Test Pattern (UTP) strategy, using structured test sequences to stress
dense multiply–accumulate (MAC) datapaths across FP16, BF16, and INT8 precision modes.
The method achieved over 92% stuck-at fault coverage with low detection latency and
outperformed pseudo-random testing. However, it was designed for internal test environ-
ments and assumed complete access to the TC’s microarchitectural description, including
fine-grained datapaths and control logic. As such, it is not suitable for system integrators
or developers without hardware-level access. Additionally, the limited methodological
transparency hinders reproducibility and adaptation to evolving GPU architectures.

To address these limitations, this work introduces a user-oriented methodology for
developing Software Test Libraries (STLs) targeting permanent fault detection in TCs. By
leveraging the structured execution model and inherent parallelism of TCs, the proposed
approach enables efficient, non-invasive, and scalable in-the-field testing without requiring
hardware modifications or privileged access. Unlike prior methods, our technique is
designed for portability and accessibility. It operates using HMMA instructions carried
out by TCs, while being managed through CUDA-based kernels, introducing minimal
runtime and memory overhead. These features make it well suited for high-performance
and safety-critical environments, where reliability and in-field testing are essential.

4. Software-Based Testing Library for Tensor Cores
This section presents our methodology for the in-field testing of Tensor Cores (TCs),

specifically targeting permanent hardware faults in the Dot Product Units (DPUs)—the
core arithmetic blocks within TCs. The approach uses HMMA SASS instructions to execute
test routines at the thread-block level. These routines embed controlled patterns into input
matrices and analyze the output for anomalies, enabling fault activation and propagation
within the TC hardware.

Given the parallel nature of GPU architectures, developing effective STLs presents
several challenges, including the synchronized execution and practical observation of fault
effects. To address these challenges, the proposed method emphasizes structured test
execution and the efficient control of data movement. Although test pattern generation
(e.g., via ATPG or pseudo-random techniques) is outside the scope of this work, our method
is compatible with both. The primary focus is on systematically translating these patterns
into GPU-executable routines that apply stimuli to DPU inputs and propagate their effects
to observable outputs (e.g., memory).

The STL development process begins with test vectors derived from the low-level
models of arithmetic modules (e.g., DPUs), either via ATPG or pseudo-random generation
when structural models are unavailable. Regardless of origin, the methodology ensures

Electronics 2025, 14, 2148 8 of 19

these patterns are applied in a structured and observable way, conforming to the GPU
programming model.

The methodology accommodates both single and multiple TCs per SM. As TCs operate
concurrently, test execution is adapted to reflect the hardware’s layout and scheduling
model, ensuring that each unit is evaluated systematically.

As TCs perform M × M matrix operations, the proposed method directly embeds
standard test patterns into the input matrices. The testing process consists of a two-fold
approach. First, it maps structured test patterns onto the matrix operands to ensure
the systematic activation of individual DPUs. Then, it analyzes the resulting output
matrix to identify deviations from the expected results. These steps are detailed in the
following subsections.

4.1. Mapping Test Patterns to Input Matrices

Test patterns are systematically encoded into matrix operands used by HMMA instruc-
tions. Unlike WMMA, which abstracts operations at the warp level, HMMA provides thread-
block-level control, exposing matrix fragments that align with internal TC datapaths. This
enables the deterministic injection of test patterns with fine-grained control over execution
and thread scheduling.

Each test operation follows the GEMM form D = A× B + C, where test patterns are
encoded into A, B, and C to target specific DPUs. A pattern includes four values from A,
four from B, and one accumulation value from C, producing a scalar output in D. These
values are encoded in IEEE 754 32-bit format to ensure precise datapath stimulation. These
encoded values are inserted into predetermined positions in the global matrix layout to
target specific DPUs. Algorithm 1 describes this translation process in detail.

Algorithm 1 Translating Test Patterns into Matrix Operands
Input: Test patterns P = {p0, p1, ..., pn−1}
Output: Matrix operands A, B, and C

1: Initialize matrices A, B, and C with zeros
2: for each test pattern p ∈ P do
3: Extract sub-patterns: {a0, a1, a2, a3}, {b0, b1, b2, b3}, c← extractSubpatterns(p)
4: Encode each value to IEEE 754 format: ai, bi, c← encodeToFP32(·)
5: for i = 0 to 3 do
6: Assign A[targetColumn][i]← ai
7: Assign B[i][targetRow]← bi
8: end for
9: Assign C[targetColumn][targetRow]← c

10: end for

Operand matrices (A, B, and C) are organized into fragments to align test patterns
with specific DPUs. In a standard 16× 16 GEMM operation, one HMMA instruction computes
an 8× 8 tile, further decomposed into 4× 4 fragments, each mapped to a DPU. These
fragments correspond to distinct lane and register combinations across threads in a warp.

Figure 3 illustrates this mapping strategy for an 8 × 8 × 16 matrix multiplication.
Colored regions (green and purple) represent two test patterns Px, with lighter shades
showing distributed input encoding and darker blocks highlighting the directly activated
DPU fragment. Thread-level tile assignments (e.g., T0–T3, T16–T19) are outlined with black
borders, representing how the test data propagate through the compute path.

To achieve full coverage across all TCs, the kernel is launched with as many thread
blocks as there are SMs. Each block loads identical test matrices into shared memory and
executes the same test routine using HMMA instructions. CUDA’s dynamic scheduler ensures
that all SMs are engaged uniformly. To target all DPUs, the kernel is executed multiple

Electronics 2025, 14, 2148 9 of 19

times with spatially shifted versions of the test matrices. These controlled shifts allow
complete datapath coverage without requiring knowledge of internal DPU mappings.

`

`

Figure 3. The visual representation of the structured mapping of input matrices A, B, and C during test
execution using 8× 8× 16 matrix multiplication. Colored regions (green and purple) denote distinct
test patterns (Px) embedded into the matrices. Lighter shades represent the distributed allocation of
patterns across the entire input space, while darker shades isolate a single pattern instance targeting
specific DPUs. Each black-bordered rectangle highlights matrix fragments assigned to individual
threads within a warp (e.g., T0–T3, T16–T19), corresponding to the distinct computational blocks of
the TCU.

The use of HMMA enables the explicit management of shared memory and register
allocations, ensuring isolation between concurrent test executions. This structure ensures
the deterministic activation of faults by aligning input values to precise operand locations
and controlling execution flow. The methodology guarantees observability by tightly
binding data placement to compute fragments, avoiding cross-interference and enabling
parallel, scalable, and low-overhead test campaigns.

4.2. Processing and Analyzing the Output Matrix

After the matrix multiplication, the output matrix D is retrieved from device memory.
Each element in D represents a dot-product result from a specific DPU. Faults are detected
by comparing D against a reference matrix Dexpected, which is precomputed using the
original test vectors. We create this reference matrix (Dexpected) directly from the original
test vector, which can be either ATPG-generated or pseudo-random. For each test con-
figuration, we simulate the GEMM-style operation offline to obtain accurate reference
values. This approach eliminates the runtime numerical variations and ensures a precise
bit-level comparison.

After execution, the matrix D is compared element-wise with Dexpected. Any mismatch
is flagged as a fault. Given that each matrix element corresponds to a unique activation
path within a DPU, discrepancies can be directly mapped to specific datapath regions,
aiding fault localization.

The verification step is parallelized across GPU threads, ensuring fast and scalable
output analysis. Matrix fragments are assigned to threads in a manner consistent with
their original test pattern placement, reducing overhead in correlating inputs and outputs.

Electronics 2025, 14, 2148 10 of 19

Because memory access patterns are regular and aligned, the overall latency introduced by
verification is minimal.

In summary, this methodology enables scalable, fine-grained fault detection in Tensor
Cores using only software-level constructs. By combining deterministic test injection, struc-
tured scheduling, and parallel result analysis, it supports in-field testing with a minimal
performance impact, without requiring privileged access or hardware instrumentation.

5. Study Case
The proposed method can systematically transform existing test patterns into corre-

sponding STLs that apply the patterns to TCs and propagate the faults’ effects. To validate
it, we focused on permanent faults within the TC cores of the NVIDIA GeForce RTX 3060 Ti.
This GPU, based on the NVIDIA Ampere architecture, supports a Compute Capability of
8.6, manages up to 255 registers per thread, and allows a maximum of 64 active warps per
SM. The Ampere architecture supports matrix computations across diverse operand shapes
and tiling configurations (e.g., 16× 8× 16, 16× 8× 4, and 8× 8× 16), allowing flexible
adaptation to different matrix sizes and precision modes. These configurations determine
how input operands are partitioned and executed by the TC datapath.

To evaluate the effectiveness of the proposed method, we adopted the standard TC
configuration operating in full-precision mode, where both the input and output matri-
ces used 32-bit elements. In this context, the SASS HMMA.8816 instruction—designed for
8× 8× 16 matrix operations—was employed to validate the methodology. This instruction
was selected because it represents a commonly used configuration in practical workloads,
ensuring that the evaluation aligned with real-world execution scenarios.

As discussed in Section 2, TC cores consist of DPUs that perform MAC operations of
the form d = a× b + c. In this context, a and b are four-element vectors, and c is a scalar.
Each DPU computes a scalar result of the form

d = a[0]× b[0] + a[1]× b[1] + a[2]× b[2] + a[3]× b[3] + c

While each DPU operates on scalar values, the overall matrix operation is applied
across tile fragments extracted from the full input matrices, A, B, and C, enabling parallel
computation across the TC core. However, due to the proprietary nature of NVIDIA’s DPU
microarchitecture, direct fault behavior analysis was not feasible.

To tackle this challenge, we used an open source DPU implementation from the FloPoCo
soft-core generator [38]. The core was not meant to replicate NVIDIA’s design exactly.
Instead, it served as a structurally realistic and publicly available datapath to support
ATPG-based test pattern generation and derive patterns targeting common datapath faults
(e.g., stuck-at faults in FP32 multipliers and adders).

Test pattern generation was conducted using the gate-level netlist of this core after
logic synthesis with a 15 nm technology library [39], using the Design Compiler (Synopsys)
without optimizations. The synthesized netlist allowed for accurate fault modeling at the
hardware level, ensuring that test patterns effectively targeted structural defects in DPUs.

To construct a comprehensive set of test patterns, we used an ATPG tool—TetraMAX
by Synopsys—configured to target stuck-at faults (both SA0 and SA1) across all internal
nets and the I/O pins of the synthesized DPU datapath. The tool was allowed to gener-
ate exhaustive patterns for all detectable faults without enforcing a fixed fault coverage
threshold. In total, 559 distinct test patterns were produced for detecting stuck-at faults.

Using the proposed method, each pattern was encoded into matrix operands and
structured into test matrices for execution in STLs performing GEMM operations. Each
matrix contains two strategically positioned patterns designed to activate specific fault

Electronics 2025, 14, 2148 11 of 19

conditions while ensuring compatibility with the GPU’s parallel execution model. In total,
we generated 840 test matrices (280 matrices for each of the input matrices A, B, and C).

Furthermore, to demonstrate the applicability of the proposed method in scenarios
without access to detailed hardware models, we also generated and applied pseudo-random
test patterns. These patterns populated the input matrices A, B, and C with randomly
generated 32-bit floating-point values. The generated patterns were divided into three
categories, each reflecting a different type of workload:

• Narrow: Uniform values in the range [−1.0, 1.0], representing normalized inputs
typical in machine learning workloads, where inputs are normalized (e.g., ReLU,
sigmoid inputs).

• Wide: Uniform values in [−2.0, 2.0], representing broader data distributions.
• Full-Range: Random values spanning the whole 32-bit floating-point domain (includ-

ing values up to 231 − 1), intended to stress-test extreme datapath conditions.

For each category, 1500 test matrices were produced—500 per input matrix (A, B,
and C). These matrices were generated independently for each run. To capture statistical
variation and enhance the representativeness of the fault detection results, each run was
repeated five times. The same GEMM-based test routine used for ATPG patterns was
used for these pseudo-random matrices, allowing a direct and fair comparison between
deterministic and randomized approaches to fault detection.

Once the STLs have been generated, the execution flow follows a synchronous model
as depicted in Algorithm 2. First, the GPU is initialized, and the test matrices generated
by the method are uploaded to the system memory. The STL multiplying each test ma-
trix is then run, resorting to the HMMA.8816 instruction to apply the target test patterns
to the TC cores. After executing a matrix multiplication, the output matrix D is com-
pared against a precomputed reference Dexpected. Bit-exact comparison ensures strict fault
detection, avoiding false negatives—an essential requirement under ISO 26262 [11] for
safety-critical systems.

Algorithm 2 Synchronous test application flow.

1: Initialize GPU resources
2: Load Test_Matrices to memory
3: for each test_matrix in Test_Matrices do
4: Configure HMMA instruction for execution
5: Apply STL by performing test_matrix multiplication
6: Output_Matrix ← Retrieve GPU results
7: Compare(Output_Matrix, Expected_Matrix)
8: if discrepancy detected then
9: Flag faulty DPU

10: end if
11: end for
12: End testing and generation of the fault report

Although this study used a synchronous flow for deterministic validation, perfor-
mance can be improved using CUDA streams and asynchronous memory operations
(Algorithm 3). Overlapping memory transfers with computation might reduce idle time
and improve SM utilization. Persistent kernels and CUDA graphs offer further opportuni-
ties for runtime efficiency in production deployments. While these techniques were not
activated in the current study to maintain tight control over fault injection, they offer strong
potential for future STL engines in performance-sensitive environments.

Electronics 2025, 14, 2148 12 of 19

Algorithm 3 Asynchronous test application flow.

1: Initialize GPU resources and create multiple CUDA streams
2: Load all Test_Matrices into host memory
3: for each test_matrix in Test_Matrices do
4: Assign stream Si for test_matrix
5: cudaMemcpyAsync(test_matrix_to_device, stream = Si)
6: Launch HMMA-based kernel in stream Si
7: Add a callback or flag to check for completion
8: end for
9: cudaMemcpyAsync(output_matrix_to_host, stream = Si)

10: Synchronize all streams
11: for each output_matrix do
12: Compare(Output_Matrix, Expected_Matrix)
13: if discrepancy detected then
14: Flag faulty DPU
15: end if
16: end for
17: End testing and generate a fault report

To verify that STLs triggered the correct execution paths, we used NVBit [22], a dy-
namic instrumentation tool for NVIDIA GPUs. NVBit enabled the instruction-level tracing
of executed SASS instructions, allowing us to confirm that the HMMA.8816 instructions
matched the test matrices and kernel structure. Although NVBit does not perform fault
injection or validation, it served as a reliable tool for verifying execution alignment and
operand dispatch. Additionally, performance profiling was conducted with NVIDIA Nsight
Compute [40], allowing a detailed analysis of kernel execution characteristics, including
clock cycles, instruction counts, and warp divergence statistics.

6. Experimental Results
This section presents the experimental results we gathered, providing a comprehensive

evaluation of the proposed methodology. The primary objective was to assess the ability to
transform existing test vectors, capable of detecting permanent faults in TCs, into structured
matrices suitable for execution via GEMM kernels. We begin by analyzing the resulting
fault coverage, execution time, and memory footprint associated with the STLs. We then
validated instruction-level correctness using NVIDIA’s NVBit tool to ensure accurate test
execution across the hardware datapaths. Finally, we present a comparative discussion
that positions our approach with respect to existing fault detection strategies in terms
of performance, deployability, and hardware requirements. To validate the strategy, we
employed both ATPG-generated and pseudo-random test patterns.

The experiments were conducted using an open source DPU implementation from a
modern soft-core generator [38]. A total of 88,880 stuck-at-faults (SAFs) were considered
using the core’s gate-level model to generate test patterns. Additionally, a functional safety
analysis was performed using JasperGold (Cadence), which identified 6628 functionally
untestable faults (i.e., faults that can never produce a failure during the operational phase).
Among these, 1616 were structurally safe (i.e., activated but not propagated), and 5012 were
activation safe, meaning they could not be triggered from any combination of primary input
conditions and are therefore not detectable under standard excitation scenarios [41]. These
functionally untestable faults were excluded from the fault coverage (FC) calculation [42].
To evaluate runtime behavior and memory usage, the generated test matrices were exe-
cuted on an NVIDIA GeForce RTX 3060 Ti GPU, integrated into an HP Z2 G5 workstation
with an Intel Core i9-10800 CPU (20 cores) and 32 GB of RAM. The system is located at

Electronics 2025, 14, 2148 13 of 19

the Department of Control and Computer Engineering (DAUIN), Politecnico di Torino,
Turin, Italy.

6.1. Fault Coverage and Performance Overhead

To assess the method’s fault detection capabilities, we first generated 559 ATPG-based
test vectors targeting the DPU’s arithmetic datapath. These were transformed into 840 struc-
tured test matrices—280 for each of the input matrices A, B, and C—which represent the
input for GEMM-based STLs. Secondly, we generated 1000 pseudo-random test vectors for
each of the three input categories (Narrow, Wide, and Full-Range). Each category resulted in
1500 test matrices (500 per input matrix). To ensure statistical significance, we generated
five independent sets of pseudo-random test vectors per category and averaged the results
over these five executions using the same GEMM-based infrastructure.

Table 1 reports the fault coverage, total number of executed SASS instructions, memory
usage, and the total amount of clock cycles (CCs) required for each test configuration. For
the pseudo-random-based STLs, we present both the average and standard deviation
across five runs. The reported fault coverage (FC) refers specifically to the subset of testable
stuck-at faults in the synthesized DPU datapath. In addition, the reported clock cycle count
includes both the total number of cycles required for the complete STL execution and the
average number of cycles required to compute a single 8× 8× 16 matrix multiplication.

Table 1. Fault coverage and overhead results.

Test Type Test
Patterns

Test
Matrices FC (%) Executed

SASS Inst
Memory

Usage (KB)
CC Total

(Avg./Matrix)

ATPG-based 559 840 97.35 14.5× 106 420 37, 569× 106

(134.17× 103)

Pseudo-random
Narrow 1000 1500 80.03± 0.16 25.9× 106 720 67, 087× 106

(134.17× 103)

Pseudo-random
Wide 1000 1500 81.26± 0.32 25.9× 106 720 67, 087× 106

(134.17× 103)

Pseudo-random
Full-Range 1000 1500 82.23± 0.61 25.9× 106 720 67, 087× 106

(134.17× 103)

The results confirmed that the transformation of vectors into STL-compatible inputs
preserved the fault activation and propagation characteristics of the original test pat-
terns. The ATPG-based STLs achieved the highest coverage (97.35%), demonstrating that
the GEMM-based testing structure effectively maintained fault detectability throughout
GPU execution.

Furthermore, the feasibility of deploying such STLs without in-depth hardware knowl-
edge was validated using pseudo-randomly generated test vectors. Obviously, pseudo-
random tests exhibited lower—but still substantial—fault coverage. Notably, the results
showed a positive correlation between the diversity of input values and the ability to
detect faults. In detail, the Narrow configuration achieved 80.03%, the Wide configuration
improved to 81.26%, and the Full-Range test reached 82.23%.

These findings are attributed to the broader numerical ranges exercised by full-range
patterns—including small, large, positive, and negative floating-point values—which
generate a greater variety of bit-level combinations. These combinations stimulate more
of the datapath’s internal logic, including sign handling, exponent normalization, and
overflow/underflow detection circuits [43]. Such diversity increases the likelihood of
toggling internal logic lines that may remain inactive under narrower or repetitive input

Electronics 2025, 14, 2148 14 of 19

distributions. These results highlight the importance of input value selection in pseudo-
random testing, particularly when applied to hardware self-test campaigns.

While ATPG-based testing provides superior diagnostic accuracy, pseudo-random
STLs are significantly easier to generate and deploy. They require no extensive architec-
tural knowledge, synthesis tools, or hardware-level access, making them highly practical
for system integrators in real-world environments. Our method applies equally well to
both scenarios.

To assess runtime costs, we compared the number of executed SASS instructions
between our STL-based method and a standard GEMM kernel executing 8× 8× 16 matrix
multiplications. As shown in Table 1, the total number of SASS instructions reflects the cu-
mulative execution across the entire GPU. Standard GEMM kernels required approximately
14.3× 103 instructions per matrix. In contrast, our STL-based implementation averaged
around 17.3× 103 instructions per matrix—a 21% increase—primarily due to additional
steps for comparing the results. Importantly, more than 90% of the executed instructions
belonged to the arithmetic pipeline, confirming that the test logic was efficiently fused into
the matrix computation path.

We also measured warp divergence statistics to evaluate control flow efficiency. Across
all test campaigns, warp divergence remained below 1.7% on average, with most diver-
gence occurring in the result checking logic, where conditional branches compare the
computed and expected outputs. The core GEMM execution itself exhibited minimal to no
divergence, as expected from tile-structured matrix operations. These low divergence rates
confirm that the STL kernels maintain high SIMD (Single Instruction, Multiple Data) uti-
lization and are well suited for efficient GPU execution, even in the presence of conditional
checking mechanisms.

In terms of execution time, each GEMM kernel processing an 8× 8× 16 matrix com-
pletes in approximately 134.175× 103 clock cycles, corresponding to roughly 96 ms on
the NVIDIA GeForce RTX 3060 Ti. For the whole STL campaign, the total clock cycles
amounted to 37.5× 106 for the ATPG-based (deterministic) test suite and 67× 106 for the
pseudo-random (heuristic) variant. These figures reflect the cumulative execution across
all test matrices and confirm that the runtime overhead remains within acceptable bounds
for in-field testing. Notably, the predictable and bounded nature of this overhead makes
the method suitable for periodic or background reliability checks in safety-critical and
high-performance environments.

We also outline the fact that the generated input matrices for STLs can be used in a
flexible manner. particularly if the required time for running the overall resulting STLs
is too large, they can be easily split, each GEMM operation runs independently, and the
computed results are checked.

The experimental findings confirmed the effectiveness of the proposed approach for
generating STLs for TCs. The proposed methodology requires an acceptable runtime cost,
limited additional memory, and efficient scaling with GPU parallelism—key attributes for
in-field reliability assurance.

6.2. Instruction-Level Execution Validation

To ensure the correctness of test pattern translation into matrices, extensive profiling
was conducted using NVBit [22]. This validation process was essential in confirming
that each test pattern was executed independently within its designated DPU, preventing
unintended interactions that could compromise fault detection accuracy.

The profiling confirmed that the method reliably mapped test patterns into matrices,
achieving deterministic execution and consistent fault detection. Maintaining execution
isolation was crucial to prevent fault masking effects. Additionally, the validation results

Electronics 2025, 14, 2148 15 of 19

demonstrated that the methodology scaled effectively across multiple execution units,
underscoring its compatibility with different GPU architectures.

6.3. Discussion

The experimental results demonstrate that the proposed methodology effectively
transforms both deterministic (ATPG-based) and stochastic (pseudo-random) test vectors
into matrix-based STLs, achieving the high observability of permanent faults in TCs. These
STLs are compatible with GEMM-style execution and introduce only modest overhead
in terms of runtime and memory usage, which makes them suitable for embedded and
high-performance environments.

A key advantage of the approach is its complete independence from low-level hard-
ware access. Unlike prior methods that rely on microarchitectural knowledge or privileged
execution modes [24], our technique operates entirely in user space, using standard CUDA
intrinsics. This design enables seamless deployment in production systems, particularly in
safety-critical domains such as automotive, aerospace, and high-performance computing,
where hardware introspection is impractical or prohibited. It also contributes to silent data
corruption (SDC) mitigation by enabling the runtime fault detection without interrupting
normal GPU operations.

Moreover, our method addresses a fundamental limitation of previous work. Tech-
niques like SASSIFI [20] and GPU-Qin [21] focus on fault injection for vulnerability char-
acterization. While valuable for architectural studies, they require instrumentation layers
or privileged access and are not applicable to runtime fault detection in field-deployed
systems. Similarly, UTP [24], though closer in goal, requires microarchitectural access
unavailable to most users, limiting its real-world applicability.

By contrast, our method provides lightweight, direct fault detection that is fully de-
ployable without architectural transparency. Even in black-box scenarios, pseudo-random
test campaigns—particularly those with full-range input values—achieved over 82% fault
coverage, approaching ATPG-level effectiveness. This robustness confirms that the method
is not only technically sound but also broadly adaptable.

It is also important to emphasize the hardware-agnostic nature of the proposed tech-
nique. Although our implementation targets NVIDIA GPUs using HMMA instructions, the
underlying principles—translating test patterns into matrix operands and verifying results
against a golden reference—are architecture-neutral. As long as the structured matrix execu-
tion and output visibility are supported, the approach is portable. This allows the method
to be applied to other accelerators, such as Intel NPUs (e.g., via the matmul() API [44])
and AMD GPUs with matrix core support through ROCm MFMA instructions [45]. The
effectiveness of fault detection depends on the specific architecture of the datapath and the
test patterns utilized. However, the method can be implemented on different platforms
with minimal modifications at the kernel or API level, as long as comparable low-level
matrix operations are available.

Table 2 summarizes key distinctions between our approach and existing GPU fault-
handling frameworks. While approaches like UTP [24] offer internal diagnostic capabilities,
they are restricted to vendor-controlled or privileged execution contexts. In contrast,
our method enables runtime fault detection at the application level using standard APIs,
requiring no special system privileges or vendor instrumentation. This makes it well suited
for scalable deployment in real-world environments.

Electronics 2025, 14, 2148 16 of 19

Table 2. Quantitative comparison with representative GPU fault detection methods.

Method Hardware
Access

In-Field
Deployable

Runtime
Overhead

Memory
Usage

UTP [24]

Requires
microarchitectural

access
Fault detection

✗ Medium Medium

Proposed
method

No/Optional
special
access

Fault detection

✓
Low

(21%)
Low

(420–720 KB)

Note: ✓ indicates “Yes”; ✗ indicates “No”.

In summary, the proposed methodology offers a scalable, non-intrusive, and fully
software-driven solution for permanent fault detection in tensor cores. It advances the
state of the art by eliminating the need for hardware modifications, supporting dynamic
and stochastic testing strategies, maintaining high fault coverage, and enabling straightfor-
ward integration into safety-critical and high-performance deployments. These characteristics
position our method as a practical and portable alternative to conventional GPU test strategies.

7. Conclusions and Future Work
This paper introduced a software-based methodology for testing Tensor Cores (TCs) in

modern GPU architectures, targeting the detection of permanent faults in their Dot-Product
Units (DPUs). The approach leverages HMMA-based matrix operations to embed determinis-
tic and pseudo-random test patterns directly into GEMM-style operands. The methodology
supports coarse-grained yet precise fault activation and observation, fully implemented in
software without requiring hardware modifications or privileged architectural access.

Designed for portability and runtime applicability, the method enables developers to
deploy lightweight fault detection capabilities within user-space GPU applications. This
makes it particularly relevant for safety-critical and high-performance domains, where
architectural transparency is limited and intrusive techniques are impractical.

Experimental validation demonstrated that the ATPG-based STL variant achieved
over 97% fault coverage with only a 21% instruction overhead. Though pseudo-random
campaigns are more straightforward to generate, they still deliver substantial fault activa-
tion potential, particularly when using full-range input values, highlighting the method’s
robustness even in black-box testing scenarios.

Overall, the proposed methodology offers a scalable and architecture-agnostic solu-
tion for in-field reliability assurance across GPU platforms. Its ability to transform test
patterns into executable matrix operands with minimal system disruption positions it as a
practical tool for enhancing dependability in both embedded and large-scale computing
environments.

Future work will aim to extend the methodology to support additional fault models
(e.g., delay faults), deployment in multi-GPU and heterogeneous systems, and evaluation
on non-NVIDIA platforms such as AMD and Intel matrix accelerators. These efforts aim to
broaden the methodology’s applicability and further enhance its resilience under diverse
operating conditions.

Author Contributions: Conceptualization: R.L.S., J.D.G.B. and J.E.R.C.; methodology: R.L.S., J.D.G.B.,
J.E.R.C. and M.S.R.; software/hardware: R.L.S. and J.E.R.C.; validation, R.L.S., J.D.G.B. and J.E.R.C.;
formal analysis: R.L.S., J.D.G.B., J.E.R.C. and M.S.R.; writing—original draft preparation: R.L.S.;

Electronics 2025, 14, 2148 17 of 19

writing—review and editing: R.L.S., J.D.G.B., J.E.R.C. and M.S.R.; visualization: R.L.S., J.D.G.B.,
J.E.R.C. and M.S.R. All authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by the Italian Ministry of University and Research via the “National
Recovery and Resilience Plan (PNRR) through the National Center for HPC, Big Data and Quantum
Computing”.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dally, W.J.; Keckler, S.W.; Kirk, D.B. Evolution of the Graphics Processing Unit (GPU). IEEE Micro 2021, 41, 42–51. [CrossRef]
2. Lee, A. Train Spotting: Startup Gets on Track with AI and NVIDIA Jetson. Available online: https://resources.nvidia.com/en-

us-smart-spaces/rail-vision-startup-uses (accessed on 7 May 2025).
3. Peccerillo, B.; Mannino, M.; Mondelli, A.; Bartolini, S. A survey on hardware accelerators: Taxonomy, trends, challenges, and

perspectives. J. Syst. Archit. 2022, 129, 102561. [CrossRef]
4. Dally, B. Hardware for Deep Learning. In Proceedings of the 2023 IEEE Hot Chips 35 Symposium (HCS), Palo Alto, CA, USA,

27–29 August 2023; IEEE Computer Society: Washington, DC, USA, 2023; pp. 1–58.
5. Guerrero Balaguera, J.D.; Rodriguez Condia, J.E.; Sonza Reorda, M. Effective Fault Effects Evaluation for Permanent Faults in

GPUs executing DNNs. ACM Trans. Des. Autom. Electron. Syst. 2025, 30, 33. [CrossRef]
6. Dixit, H.D.; Pendharkar, S.; Beadon, M.; Mason, C.; Chakravarthy, T.; Muthiah, B.; Sankar, S. Silent Data Corruptions at Scale.

arXiv 2021, arXiv:2102.11245.
7. Hochschild, P.H.; Turner, P.; Mogul, J.C.; Govindaraju, R.; Ranganathan, P.; Culler, D.E.; Vahdat, A. Cores That Do not Count. In

Proceedings of the Workshop on Hot Topics in Operating Systems, Ann Arbor, MI, USA, 1–3 June 2021; pp. 9–16.
8. Wang, S.; Zhang, G.; Wei, J.; Wang, Y.; Wu, J.; Luo, Q. Understanding Silent Data Corruptions in a Large Production CPU

Population. In Proceedings of the 29th Symposium on Operating Systems Principles, Koblenz, Germany, 23–26 October 2023;
SOSP ’23; pp. 216–230. [CrossRef]

9. IEEE. International Roadmap for Devices and Systems (IRDS™) 2022 Edition. In Proceedings of the Institute of Electrical and
Electronics Engineers (IEEE), Virtual, 19–23 September 2022.

10. Strojwas, A.J.; Doong, K.; Ciplickas, D. Yield and Reliability Challenges at 7nm and Below. In Proceedings of the 2019 Electron
Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 179–181.

11. ISO 26262-5:2018—Functional Safety of Road Vehicles. Available online: https://www.iso.org/standard/68387.html (accessed
on 7 May 2025).

12. Steininger, A. Testing and built-in self-test—A survey. J. Syst. Archit. 2000, 46, 721–747. [CrossRef]
13. Datla Jagannadha, P.K.; Yilmaz, M.; Sonawane, M.; Chadalavada, S.; Sarangi, S.; Bhaskaran, B.; Bajpai, S.; Reddy, V.A.; Pandey, J.;

Jiang, S. Special Session: In-System-Test (IST) Architecture for NVIDIA Drive-AGX Platforms. In Proceedings of the 2019 IEEE
37th VLSI Test Symposium (VTS), Monterey, CA, USA, 23–25 April 2019; pp. 1–8. [CrossRef]

14. NVIDIA Corporation. NVIDIA BlueField-3 Reliability, Availability, and Serviceability (RAS); NVIDIA Corporation: Santa Clara, CA,
USA, 2025. Available online: https://docs.nvidia.com/networking/display/bluefieldbsp490/ras (accessed on 24 May 2025).

15. Psarakis, M.; Gizopoulos, D.; Sanchez, E.; Sonza Reorda, M. Microprocessor Software-Based Self-Testing. IEEE Des. Test Comput.
2010, 27, 4–19. [CrossRef]

16. Bernardi, P.; Cantoro, R.; De Luca, S.; Sánchez, E.; Sansonetti, A. Development Flow for On-Line Core Self-Test of Automotive
Microcontrollers. IEEE Trans. Comput. 2016, 65, 744–754. [CrossRef]

17. Rodriguez Condia, J.E.; da Silva, F.A.; Bağbaga, A.Ç.; Guerrero-Balaguera, J.D.; Hamdioui, S.; Sauer, C.; Sonza Reorda, M. Using
STLs for Effective In-Field Test of GPUs. IEEE Des. Test 2023, 40, 109–117. [CrossRef]

18. Guerrero-Balaguera, J.D.; Condia, J.E.R.; Sonza Reorda, M. On the Functional Test of Special Function Units in GPUs. In
Proceedings of the 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Vienna,
Austria, 7–9 April 2021; pp. 81–86.

19. Di Carlo, S.; Condia, J.E.R.; Sonza Reorda, M. An On-Line Testing Technique for the Scheduler Memory of a GPGPU. IEEE Access
2020, 8, 16893–16912. [CrossRef]

20. Hari, S.K.S.; Tsai, T.; Stephenson, M.; Keckler, S.W.; Emer, J. SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation. In Proceedings of the 2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), Santa Rosa, CA, USA, 24–25 April 2017; pp. 249–258. [CrossRef]

http://doi.org/10.1109/MM.2021.3113475
https://resources.nvidia.com/en-us-smart-spaces/rail-vision-startup-uses
https://resources.nvidia.com/en-us-smart-spaces/rail-vision-startup-uses
http://dx.doi.org/10.1016/j.sysarc.2022.102561
http://dx.doi.org/10.1145/3715327
http://dx.doi.org/10.1145/3600006.3613149
https://www.iso.org/standard/68387.html
http://dx.doi.org/10.1016/S1383-7621(99)00041-7
http://dx.doi.org/10.1109/VTS.2019.8758636
https://docs.nvidia.com/networking/display/bluefieldbsp490/ras
http://dx.doi.org/10.1109/MDT.2010.5
http://dx.doi.org/10.1109/TC.2015.2498546
http://dx.doi.org/10.1109/MDAT.2022.3188573
http://dx.doi.org/10.1109/ACCESS.2020.2968139
http://dx.doi.org/10.1109/ISPASS.2017.7975296

Electronics 2025, 14, 2148 18 of 19

21. Fang, B.; Pattabiraman, K.; Ripeanu, M.; Gurumurthi, S. GPU-Qin: A methodology for evaluating the error resilience of GPGPU
applications. In Proceedings of the 2014 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Monterey, CA, USA, 23–25 March 2014; pp. 221–230. [CrossRef]

22. Villa, O.; Stephenson, M.; Nellans, D.; Keckler, S.W. NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October
2019; MICRO ’52; pp. 372–383. [CrossRef]

23. Vallero, A.; Gizopoulos, D.; Di Carlo, S. SIFI: AMD southern islands GPU microarchitectural level fault injector. In Proceedings
of the 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece,
3–5 July 2017; pp. 138–144. [CrossRef]

24. Hukerikar, S.; Saxena, N. Runtime Fault Diagnostics for GPU Tensor Cores. In Proceedings of the IEEE International Test
Conference (ITC), Anaheim, CA, USA, 23–30 September 2022; pp. 524–528. [CrossRef]

25. Raihan, M.; Goli, N.; Aamodt, T.M. Modeling Deep Learning Accelerator Enabled GPUs. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 24–26 March 2019; pp. 79–92.

26. Boswell, B.R.; Siu, M.Y.; Choquette, J.H.; Alben, J.M.; Oberman, S. Generalized Acceleration of Matrix Multiply Accumulate
Operations. U.S. Patent and Trademark Office, U.S. Patent 10,338,919, 2 July 2019.

27. Lee, W.K.; Seo, H.; Zhang, Z.; Hwang, S.O. TensorCrypto: High Throughput Acceleration of Lattice-Based Cryptography Using
Tensor Core on GPU. IEEE Access 2022, 10, 20616–20632. [CrossRef]

28. Groth, S.; Teich, J.; Hannig, F. Efficient Application of Tensor Core Units for Convolving Images. In Proceedings of the 24th
International Workshop on Software and Compilers for Embedded Systems, Eindhoven, The Netherlands, 1–2 November 2021;
Association for Computing Machinery: Melbourne, Australia, 2021; SCOPES ’21; pp. 1–6.

29. Wang, H.; Yang, W.; Hu, R.; Ouyang, R.; Li, K.; Li, K. A Novel Parallel Algorithm for Sparse Tensor Matrix Chain Multiplication
via TCU-Acceleration. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2419–2432. [CrossRef]

30. Gebhart, M.; Johnson, D.R.; Tarjan, D.; Keckler, S.W.; Dally, W.J.; Lindholm, E.; Skadron, K. Energy-efficient mechanisms for
managing thread context in throughput processors. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (ISCA), San Jose, CA, USA, 4–8 June 2011; pp. 235–246.

31. Huang, J.; Yu, C.D.; van de Geijn, R.A. Implementing Strassen’s Algorithm with CUTLASS on NVIDIA Volta GPUs. arXiv 2018,
arXiv:1808.07984.

32. Condia, J.E.R.; Sonza Reorda, M. On the testing of special memories in GPGPUs. In Proceedings of the 2020 IEEE 26th
International Symposium on On-Line Testing and Robust System Design (IOLTS), Napoli, Italy, 13–15 July 2020; pp. 1–6.
[CrossRef]

33. Ruospo, A.; Gavarini, G.; Porsia, A.; Sonza Reorda, M.; Sanchez, E.; Mariani, R.; Aribido, J.; Athavale, J. Image Test Libraries for
the on-line self-test of functional units in GPUs running CNNs. In Proceedings of the 2023 IEEE European Test Symposium (ETS),
Venice, Italy, 22–26 May 2023; pp. 1–6. [CrossRef]

34. Guerrero-Balaguera, J.D.; Condia, J.E.R.; Sonza Reorda, M. STLs for GPUs: Using High-Level Language Approaches. IEEE Des.
Test 2023, 40, 51–60. [CrossRef]

35. Dos Santos, F.F.; Carro, L.; Vella, F.; Rech, P. Assessing the Impact of Compiler Optimizations on GPUs Reliability. ACM Trans.
Archit. Code Optim. 2024, 21, 26. [CrossRef]

36. Tan, J.; Li, Z.; Chen, M.; Fu, X. Exploring Soft-Error Robust and Energy-Efficient Register File in GPGPUs using Resistive Memory.
ACM Trans. Des. Autom. Electron. Syst. 2016, 21, 34. [CrossRef]

37. Kim, H.; Zeng, J.; Liu, Q.; Abdel-Majeed, M.; Lee, J.; Jung, C. Compiler-directed soft error resilience for lightweight GPU register
file protection. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
London, UK, 15–20 June 2020; PLDI 2020; pp. 989–1004. [CrossRef]

38. de Dinechin, F.; Pasca, B. Designing Custom Arithmetic Data Paths with FloPoCo. IEEE Des. Test Comput. 2011, 28, 18–27.
[CrossRef]

39. Martins, M.; Matos, J.M.; Ribas, R.P.; Reis, A.; Schlinker, G.; Rech, L.; Michelsen, J. Open Cell Library in 15nm FreePDK Technology.
In Proceedings of the 2015 Symposium on International Symposium on Physical Design, Monterey, CA, USA, 29 March–1 April
2015; ISPD ’15; pp. 171–178. [CrossRef]

40. NVIDIA Corporation. Range Profiler. 2018. Available online: https://docs.nvidia.com/nsight-graphics/2018.4/content/nsight_
graphics/range_profiler_d3d11.htm (accessed on 7 May 2025).

41. Condia, J.E.R.; Da Silva, F.A.; Hamdioui, S.; Sauer, C.; Sonza Reorda, M. Untestable faults identification in GPGPUs for safety-
critical applications. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
Genoa, Italy, 27–29 November 2019; pp. 570–573. [CrossRef]

42. Bernardi, P.; Bonazza, M.; Sanchez, E.; Sonza Reorda, M.; Ballan, O. On-line functionally untestable fault identification in
embedded processor cores. In Proceedings of the 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Melbourne, Australia, 18–22 March 2013; pp. 1462–1467. [CrossRef]

http://dx.doi.org/10.1109/ISPASS.2014.6844486
http://dx.doi.org/10.1145/3352460.3358307
http://dx.doi.org/10.1109/IOLTS.2017.8046209
http://dx.doi.org/10.1109/ITC50671.2022.00065
http://dx.doi.org/10.1109/ACCESS.2022.3152217
http://dx.doi.org/10.1109/TPDS.2023.3288520
http://dx.doi.org/10.1109/IOLTS50870.2020.9159711
http://dx.doi.org/10.1109/ETS56758.2023.10174176
http://dx.doi.org/10.1109/MDAT.2023.3267601
http://dx.doi.org/10.1145/3638249
http://dx.doi.org/10.1145/2827697
http://dx.doi.org/10.1145/3385412.3386033
http://dx.doi.org/10.1109/MDT.2011.44
http://dx.doi.org/10.1145/2717764.2717783
https://docs.nvidia.com/nsight-graphics/2018.4/content/nsight_graphics/range_profiler_d3d11.htm
https://docs.nvidia.com/nsight-graphics/2018.4/content/nsight_graphics/range_profiler_d3d11.htm
http://dx.doi.org/10.1109/ICECS46596.2019.8964677
http://dx.doi.org/10.7873/DATE.2013.298

Electronics 2025, 14, 2148 19 of 19

43. Benso, A.; Prinetto, P. (Eds.) Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 2004. [CrossRef]

44. Welcome to Intel NPU Acceleration Library’s Documentation. Available online: https://intel.github.io/intel-npu-acceleration-
library/index.html (accessed on 7 May 2025).

45. Sitaraman, G.; McDougall, D.; Oostrum, R.V.; Malaya, N.; Chalmers, N.; O’Reilly, O. AMD Matrix Cores. Available online:
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html (accessed on 7 May 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/b105828
https://intel.github.io/intel-npu-acceleration-library/index.html
https://intel.github.io/intel-npu-acceleration-library/index.html
https://rocm.blogs.amd.com/software-tools-optimization/matrix-cores/README.html

	Introduction
	Background
	Organization of Graphics Processing Units (GPUs)
	Architecture and Operation of TCs

	Related Works
	Software-Based Testing Library for Tensor Cores
	Mapping Test Patterns to Input Matrices
	Processing and Analyzing the Output Matrix

	Study Case
	Experimental Results
	Fault Coverage and Performance Overhead
	Instruction-Level Execution Validation
	Discussion

	Conclusions and Future Work
	References

