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A comparison between generalized least squares regression and top-kriging for 
homogeneous cross-correlated flood regions
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Alberto Viglione b,e, Günter Blöschl b and Attilio Castellarin a
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ABSTRACT
Spatial cross-correlation among flood sequences impacts the accuracy of regional predictors. Our study 
investigates this impact for two regionalization procedures, generalized least squares (GLS) regression 
and top-kriging (TK), which deal with cross-correlation in two fundamentally different ways and therefore 
might be associated with different accuracy and uncertainty of predicted flood quantiles. We perform a 
Monte Carlo experiment based on a dataset of annual maximum flood series for 20 catchments in a 
hydrologically homogeneous region. Based on a log-Pearson type III parent distribution, we generate 
3000 realizations of the region with different degrees of cross-correlation. For each realization, GLS and 
TK are applied in leave-one-out cross-validation to predict at-site flood quantiles. Our study shows that (a) 
TK outperforms GLS when catchment area is the only catchment descriptor used for predicting “true” 
population (theoretical) flood quantiles, regardless of the level of cross-correlation, and (b) GLS and TK 
perform similarly when multiple catchment descriptors are used.
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1 Introduction: state of the art and aims of the study

1.1 Prediction of flood quantiles in ungauged basins

The accurate estimation of flood quantiles (i.e. flood discharge 
associated with a given non-exceedance probability, usually 
expressed in terms of return period T– although the latter 
concept is often prone to misuses, especially in the presence 
of nonstationarity, see e.g. Serinaldi 2015) is of paramount 
importance in many practical engineering applications. 
Because gauging stations are heterogeneously and sparsely 
distributed in space, one of the most common tasks for hydro
logical engineers is to produce an accurate estimate of the 
design flood at ungauged or scarcely gauged river cross-sec
tions (see the Predictions in Ungauged Basins (PUB) initiative 
of the International Association of Hydrological Sciences 
(IAHS) for the decade 2003–2012; (Sivapalan et al. 2003, 
Blöschl et al. 2013)). The term “ungauged” generally refers to 
a river cross-section where no streamflow data are available. A 
special case is when the ungauged river cross-section has no 
information available upstream or downstream within the 
given catchment (that is absent of nested gauged catchments, 
i.e. no gauges are within the watershed of other gauges); in this 
article, we refer to this latter case as “fully ungauged” 
conditions.

The estimation of flood quantiles at ungauged sites is often 
addressed by means of regional flood frequency analysis, or 
statistical regionalization, which consists of transferring the 

hydrological information collected at gauged sites that are 
supposed to be hydrologically similar to the ungauged (or 
scarcely gauged) target site (Hosking and Wallis 1993, 1997). 
In this process, it is important to consider that, being based on 
gathering data from a finite number of observations (i.e. 
events) collected at a finite number of sites (i.e. limited record 
size), the obtained empirical estimates of flood quantiles can 
differ considerably from the theoretical ones, which could be 
theoretically known based upon the perfect knowledge of the 
process (i.e. infinite observations). In regional flood frequency 
analysis, this difference is usually amplified by the presence of 
the intersite dependence of streamflow series (i.e. spatial cross- 
correlation), due to the temporal overlap between time series 
of observed streamflow at streamgauges that are close in space 
(i.e. concurrent flows are recorded at different streamgauges). 
For these reasons, the distinction between empirical and the
oretical flood quantiles is crucial in regional flood frequency 
analysis: while empirical quantiles can be seen as estimates of 
what the T-year flood would have been if the target site was 
gauged, theoretical quantiles are the “true” population flood 
quantiles. The implications related to this difference are 
important: as observed records are realizations of a random 
process that will never be repeated, the knowledge of the “true” 
distribution (i.e. theoretical flood quantiles) from which obser
vations arise would be fundamental for making general evalua
tions capable of accounting for the main properties of the 
(true) natural process.
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1.2 Statistical regionalization

The literature reports several regional statistical methods, 
which assume the hydrological variable of interest to be a 
random variable: they can be classified as regression-based 
methods, index-flood methods and geostatistical methods 
(see e.g. Blöschl et al. 2013). These methods can differ signifi
cantly in the way they identify groups of hydrologically similar 
catchments and account for the limited size of record and the 
presence of cross-correlation. Regression-based methods relate 
the hydrological variable of interest to observable catchment 
and climate characteristics; they can require the preliminary 
identification of a homogeneous region and may or may not 
account for the presence of spatial cross-correlation and of 
unequal record lengths from site to site (see e.g. Thomas and 
Benson 1970, Tasker 1980, Stedinger and Tasker 1985, Tasker 
and Stedinger 1989) (see also Durocher et al. 2019, for an 
application of nonparametric regression methods with spatial 
components). Index-flood methods (see e.g. Dalrymple 1960, 
Hosking and Wallis 1997) estimate the hydrological design 
variable of interest as the product between an index-flood  
(i.e. scale factor), which depends only on the specific target 
site, and a dimensionless quantile (i.e. growth factor), 
which is unique within the given homogeneous region. 
Note that the concept of homogeneous region has evolved 
significantly over the last few decades: the traditional idea 
of contiguous and geographically identifiable regions (see e. 
g. NERC 1975) has been gradually replaced with the more 
general idea of homogeneous pooling-groups of sites with 
similar hydrological behaviour, which may or may not be 
geographically close to each other (see e.g. Acreman and 
Wiltshire 1989, Burn 1990, Ouarda et al. 2001). Finally, 
geostatistical methods assume the hydrological signature of 
interest in the ungauged catchment to be a weighted mean 
of the hydrological signatures in the neighbouring catch
ments, where the weights account for the spatial correlation 
of the signatures and the mutual locations of the catch
ments (see e.g. De Marsily 1986, Chokmani and Ouarda 
2004, Skøien et al. 2006, Skøien and Blöschl 2007).

1.3 Impact of intersite correlation

In regional flood frequency analysis, the presence of spatial 
cross-correlation among flood sequences motivates informa
tion transfer from gauged to ungauged neighbouring sites (for 
interpolating in space) or from long-record sites to short- 
record sites (see e.g. Vogel and Stedinger 1985). For instance, 
spatial interpolation techniques (see e.g. Skøien et al. 2006, 
Archfield and Vogel 2010) consider spatial correlation an 
opportunity for predicting streamflow indices in ungauged 
sites. At the same time, cross-correlation tends to decrease 
the effective record length of series for computing regional 
statistics (see e.g. Matalas and Langbein 1962), thereby redu
cing the overall information content of regional datasets. This 
limits the accuracy with which moments of the regional parent 
distribution can be estimated (see e.g. Stedinger 1983), thus 
hampering the identification of the theoretical regional flood 
statistics. Classical studies (Matalas and Langbein 1962, 
Stedinger 1983) theoretically derived the reduction of the 

hydrological information content for a region having cross- 
correlated flood sequences, and quantified the corresponding 
increase of uncertainty in regional estimators of streamflow 
statistics. Hosking and Wallis (1988) showed that intersite 
correlation increases the variance of regional flood statistics 
by impacting the prediction uncertainty of regional flood fre
quency models (not their bias). Rosbjerg (2007) demonstrated 
the importance of including the cross-correlation of flood 
peaks for properly quantifying the uncertainty of regional 
estimates of flood quantiles. Further studies (Hosking and 
Wallis 1997, Madsen and Rosbjerg 1997, Madsen et al. 2002) 
showed that cross-correlation may also hamper the identifica
tion of the actual degree of heterogeneity of the region by 
reducing the power of the statistical tests used for this aim 
(see e.g. Castellarin et al. 2008, for a quantification of the loss of 
performance of the homogeneity tests proposed by Hosking 
and Wallis 1993, 1997). This impacts the assessment of the 
homogeneity of the region (e.g. heterogeneous pooling-groups 
of cross-correlated sites may be considered homogeneous), 
which is the fundamental hypothesis of the index-flood pro
cedures (Dalrymple 1960) and a fundamental requirement for 
performing an effective regional estimation of flood quantiles 
(see e.g. Lettenmaier et al. 1987, Stedinger and Lu 1995).

1.4 Regional models accounting for, or exploiting, 
intersite correlation

The presence of spatial correlation is an important considera
tion when predicting flood quantiles in ungauged basins. 
Several studies in the literature tackled the problem of 
accounting for, or exploiting, the presence of spatial correla
tion among concurrent streamflows when predicting flood 
quantiles in ungauged basins (i.e. by means of regression 
methods, or spatial interpolation methods). Concerning 
regression-based methods, one example is the generalized 
least squares (GLS) regression introduced by Stedinger and 
Tasker (1985). Specifically, Tasker and Stedinger (1989) devel
oped a particular version of GLS explicitly for the estimation of 
streamflow characteristics in fully ungauged basins (i.e. no 
gauged sites upstream or downstream within the same river 
basin). The Stedinger-Tasker GLS regression, which is illu
strated in detail in the Appendix, accounts for sampling varia
bility and cross-correlation among concurrent streamflows in 
developing a regional (multi-)regression model, with the aim 
of estimating the theoretical regional flood statistics (i.e. redu
cing the hampering effect due to the cross-correlation struc
ture of the study region). The Stedinger-Tasker GLS regression 
(hereinafter referred to as GLS, for the sake of brevity), which 
is adapted for a log-Pearson type III (LP3) frequency analysis 
(see Bulletin 17B of the Interagency Advisory Committee on 
Water Data 1982, and the most recent Bulletin 17C by England 
et al. 2018), is the reference procedure for estimating stream
flow characteristics in ungauged catchments in the US (Eng et 
al. 2009) and has been widely used for the regionalization of 
flood quantiles (see e.g. Tasker et al. 1986, Grehys 1996, Feaster 
and Tasker 2002).

It is important to note that GLS regression has been 
formulated to perform estimates at fully ungauged sites 
and that the presence of nested gauged sites with 
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considerably overlapping drainage areas can result in high 
cross-correlations (i.e. they share an analogous flooding 
experience and can be considered redundant); for this rea
son, Gruber and Stedinger (2008) and Veilleux et al. (2011) 
introduced some metrics to identify these redundant sites 
and then delete one gauged site from each pair of redundant 
sites. Also, a Bayesian-GLS (B-GLS) regression model has 
been introduced for estimating model error variance and 
regression parameters (see e.g. Reis et al. 2005, Gruber et al. 
2007, Gruber and Stedinger 2008, Veilleux et al. 2011; 
Bulletin 17C by England et al. 2018); more recently, Reis 
et al. (2020) developed an operational B-GLS regression 
capable of providing a comprehensive framework for regio
nal hydrological analyses, estimation of flood quantiles 
included.

Other significant examples are the spatial interpolation 
methods (or geostatistical procedures), which were developed 
in the last few decades as an evolution of ordinary kriging 
(OK) (Matheron 1971, Farmer 2016) and explicitly exploit 
spatial correlation (e.g. canonical kriging (CK), see Ouarda et 
al. 2001, Chokmani and Ouarda 2004; top-kriging (TK), see 
Skøien et al. 2006). Also, maintenance of variance extension 
(MOVE) techniques (see e.g. Hirsch et al. 1982, Vogel and 
Stedinger 1985, Grygier et al. 1989) can be used to fill in 
missing observations at scarcely gauged locations by explicitly 
leveraging cross-correlation.

Concerning spatial interpolation methods, they have been 
shown to be effective for predicting several streamflow 
indices and hydrological signatures in nested ungauged 
catchments (see e.g. Castiglioni et al. 2009, Archfield et al. 
2013, Pugliese et al. 2014, 2016, 2018). For instance, for 
estimating daily streamflows at an ungauged catchment, 
the map-correlation method introduced by Archfield and 
Vogel (2010) suggests that if the correlations between a set 
of streamgauges and the ungauged catchment could be reli
ably estimated (by means of spatial methods, such as kri
ging), then the selection of the most correlated gauge leads 
to better performances than the selection of the nearest one 
(see also Patil and Stieglitz 2012, which show that spatial 
proximity alone cannot fully explain the prediction perfor
mance at a given location).

Another recently developed geostatistical procedure is top- 
kriging (TK) (Skøien et al. 2006), which interpolates the runoff 
signature of interest along the stream network by taking the 
area and the nested structure of catchments into account. The 
method, originally tested for the prediction of specific 100-year 
flood for two Austrian regions (Skøien et al. 2006), was shown 
to provide more plausible and accurate estimates than OK. TK, 
which is thoroughly described in the Appendix, has been 
shown to be particularly successful in predicting a wide spec
trum of point streamflow indices and variables in various 
geographical and climatic contexts: low flows (Castiglioni et 
al. 2011, Laaha et al. 2014), high flows and floods (Merz et al. 
2008, Archfield et al. 2013), flow-duration curves (Pugliese et 
al. 2014, 2016, 2018, Castellarin et al. 2018), stream tempera
ture (Laaha et al. 2013), habitat suitability indices (Ceola et al. 
2018), and daily streamflow series (Skøien and Blöschl 2007, 
Vormoor et al. 2011, Parajka et al. 2015, de Lavenne et al. 2016, 
Farmer 2016).

1.5 Open problems and aim of the study

In this context, a recent study by Archfield et al. (2013) com
pared the performances of GLS regression, CK and TK in 
predicting empirical estimators of flood quantiles across a set 
of 61 nested gauged basins (i.e. many of the gauges were within 
the watershed of other gauges) located in the Flint River basin 
in the south-eastern USA. Their study demonstrated that when 
the goal is the prediction of estimated empirical flood quantiles 
in nested ungauged sites, TK is likely to provide better predic
tions (i.e. smaller absolute errors and higher Nash-Sutcliffe 
efficiency; see Nash and Sutcliffe 1970) than CK and GLS 
regression models. Nevertheless, Archfield et al. (2013) also 
pointed out that, being entirely based on empirical data, their 
analysis cannot address the fundamental problem of under
standing which technique is better suited (i.e. provides less 
uncertain estimates) for predicting the theoretical (“true” 
population) unknown flood quantiles in ungauged sites when 
the observed flood sequences are affected by cross-correlation.

In fact, referring to a set of correlated streamflow observa
tions, in which the regional information content is reduced by 
intersite dependence, could hamper the identification of the 
theoretical flooding potential at a given ungauged site. On the 
one hand, one might expect TK to have better efficiencies in 
predicting the empirical estimator of the flood quantiles, 
weighting empirical information on the basis of the observed 
cross-correlation. On the other hand, one might assume that 
GLS, which explicitly models spatial correlation, would be 
more accurate in predicting the theoretical (and unknown) 
flood quantiles (i.e. “true” population flood quantiles). 
Despite its fundamental importance, this aspect has not yet 
been formally addressed in the literature, which motivates our 
study. Moreover, as recently suggested by Reis et al. (2020), it is 
important to point out that the application performed by 
Archfield et al. (2013) considered ungauged catchments that 
are nested with gauged ones (i.e. not fully ungauged): in such 
conditions, which are common in hydrological applications, 
TK takes advantage of flood data collected at nested gauged 
catchments, while GLS does not, being formulated to estimate 
hydrological statistics at fully ungauged sites.

The main objective of our study is to address the funda
mental theoretical issue raised by Archfield et al. (2013), i.e. to 
understand which of the two ways of incorporating informa
tion on the cross-correlation structure of the data featured by 
GLS and TK is the most effective for estimating (a) the local 
empirical quantile estimate and (b) the theoretical flood quan
tile. To this aim, differently from Archfield et al. (2013), we 
consider a spatially limited, hydrologically homogeneous 
region and perform a controlled Monte Carlo experiment, 
which enables us to also assess the performance of the proce
dures in predicting the theoretical flood quantiles. In particu
lar, we mimic the regional flood frequency regime and the 
spatial structure of the correlation among concurrent flows 
of a real-world example dataset for a homogeneous pooling- 
group of catchments (see the Supplementary material for a 
detailed description of the dataset). Based on the structure of 
the real-world study region, we design a Monte Carlo simula
tion framework to generate 1000 realizations of the homoge
neous regional set of floods (hereinafter referred to as the 
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homogeneous region, for the sake of brevity) for three levels of 
regional cross-correlation (i.e. 3000 realizations in total).

In this preliminary study, we disregard the representation of 
the possible impact of nestedness in defining the cross-correla
tion structure based on the evidence. This impact is shown to be 
negligible for the study area (see the Supplementary material) as 
well as for other areas (see e.g. Fig. 4 in Castellarin 2007). Future 
analyses will specifically address this aspect, which has been 
shown to be significant in other geographical areas and hydro- 
climatic contexts (see e.g. Gruber and Stedinger 2008, Veilleux et 
al. 2011). For each realization of the region and level of cross- 
correlation, we apply GLS and TK to obtain predictions of at-site 
flood quantiles for return periods T equal to 10, 30, 50 and 
100 years in a leave-one-out cross-validation (LOOCV) scheme, 
consistently with several studies on regionalization, including 
Archfield et al. (2013). Differently from Archfield et al. (2013), 
which considered a simple-regression application (i.e. based on 
Gotvald et al. 2009, drainage area was the only significant 
physiographic explanatory variable considered for their study 
area) of the two methods, we apply GLS and TK in both simple 
(i.e. univariate) and multiple (i.e. multivariate: more than one 
significant physiographic explanatory variable) versions. Finally, 
we compare the cross-validated GLS and TK regional flood 
quantiles against (a) the empirical estimators of flood quantiles 
and (b) their known theoretical values at each site in the realiza
tions of the region.

As the basis for our simulations experiments, we consider a 
dataset of annual maximum series (AMS) of peak flow dis
charges collected at 20 nested catchments in Triveneto (north- 
eastern Italy; see Persiano et al. 2016, and see the Supplementary 

material of the present article for a more detailed illustration), 
which may be regarded as possibly homogeneous in terms of 
flood frequency regime according to the test proposed by 
Hosking and Wallis (1997) (see also Castellarin et al. 2008). In 
the Supplementary material we also show that performing the 
exercise described in Archfield et al. (2013) for the Triveneto 
case study (i.e. application of GLS and TK in an LOOCV scheme 
for predicting at-site empirical flood quantiles in a nested 
region, see S.3 in the Supplementary material) leads to exactly 
the same results and conclusions as those obtained by Archfield 
et al. (2013) for the study area located in the south-east United 
States.

2 Structure of the analysis

2.1 Monte Carlo simulation framework

To assess the behaviour of GLS and TK under different cross- 
correlation scenarios and their accuracy in predicting the 
theoretical unknown flood quantiles at ungauged sites, we 
implement a Monte Carlo simulation experiment for generat
ing realizations of a given cross-correlated homogeneous 
region, which can be summarized as follows (see also Fig. 1):

Step 1. We focus on a real-world regional dataset (see the 
Supplementary material) to (a) mimic the regional flood fre
quency regime and controls of relevant catchment descriptors, 
as well as evaluate spatial correlation structure of flood flows, 
and (b) define theoretical flood quantiles at each and every site 
in the region referring to a unique regional parent distribution.

Figure 1. Flowchart describing the main steps of the adopted procedure. s-GLS, m-GLS, s-TK, m-TK identify the univariate (s-) and multivariate (m-) applications of GLS 
and TK. RBIAS (relative bias) and RMSNE (root mean square normalized error) are the metrics used for assessing the prediction performance for the considered 
methods.
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Step 2. We generate 1000 realizations of the homogeneous 
region, with three different degrees of regional cross-correlation; 
each realization consists of N = 20 concurrent sequences (i.e. 
sites) of 35 annual floods (see Section 2.2 for the Monte Carlo 
simulation algorithm).

Step 3. We apply the L-moments algorithm (Hosking and 
Wallis 1993, 1997) for predicting at-site flood quantiles asso
ciated with return periods T = 10, 30, 50, 100 years at each and 
every site in each realization (see Section 2.3).

Step 4. We then refer to at-site flood quantiles for predicting 
flood quantiles in ungauged locations by means of simple and 
multiple (i.e. univariate and multivariate) applications of GLS 
(i.e. s-GLS and m-GLS) and TK (i.e. s-TK and m-TK) within 
an LOOCV procedure for each realization (see Section 2.4);

Step 5. Finally, we compare GLS and TK cross-validated 
flood quantile predictions with their empirical and theoretical 
counterparts in terms of relative bias (RBIAS) and root mean 
square normalized error (RMSNE).

The main steps of the analysis and performance metrics are 
synthetically reported in Fig. 1. A more detailed description is 
reported in the following subsections.

2.2 Step 2. Realizations of cross-correlated regions

To investigate the impact of spatial correlation in flood data on 
the prediction accuracy of both GLS and TK, we refer to 
realizations of cross-correlated homogeneous regions gener
ated in a Monte Carlo framework for three different degrees of 
intersite (or spatial, or cross-) correlation. We generate numer
ous realizations of cross-correlated hypothetical regions (each 
one composed of cross-correlated annual sequences of flood 
flows) that mimic the main characteristics of the real-world 
homogeneous reference region in terms of its flood frequency 
regime, these being: (1) the regional parent distribution of 
annual flood flows (we refer to the LP3 distribution, for 
which the Stedinger-Tasker GLS regression is adapted; see 
S.1); (2) the geomorphological and climatic controls on annual 
flood; and (3) the cross-correlation structure (see S.1 and S.2 in 
the Supplementary material).

We adopt as parameters of the theoretical parent distribution 
for each realization the LP3 regional L-moments, μR, σR and χR, 
presented in S.1, hence we consider as theoretical dimensionless 
quantiles the regional LP3 quantiles qR

T with return periods T = 
10, 30, 50 and 100 years. It is worth noting here that we adopt as 
theoretical dimensional flood quantiles at each and every site i, 
QR

Ti, the product between qR
T and local empirical mean annual 

flood, MAFi (i.e. the mean value of the observed AMS at site i).
The cross-correlation structure of the study region is mod

elled in the standard-normal space through the nonlinear 
model of Tasker and Stedinger (1989) (see Equation (A6) in 
the Appendix) and without distinguishing between cases 
where basins are nested and where they are not, for the reasons 
described above and according to the empirical evidence illu
strated in the Supplementary material (see Fig. S4). We con
sider a scenario with �ρ equal to 0.6 (values of the parameters of 
the model by Tasker and Stedinger 1989, equal to θ,0.95 and 

α,0.07; see Equation (A6) in the Appendix) and two alter
native models that adopt similar laws of decay between corre
lation and distance, describing a lower and higher degree of 
cross-correlation (or cross-correlation scenario) in the stan
dard-normal space, and resulting in �ρ equal to 0.2 (θ,0.91, 
α,0.03) and 0.8 (θ,0.96, α,0.18), respectively.

For each cross-correlation scenario (i.e. �ρ = 0.2, 0.6, 0.8), 
1000 realizations of the hypothetical homogeneous region are 
compiled by generating cross-correlated random annual flood 
sequences. Each realization of the region consists of 20 over
lapping annual sequences with record length equal to 35 years 
(average record length in the real-world dataset). Flood 
sequences are simulated by first generating cross-correlated 
annual series from a multivariate standard-normal distribu
tion with the selected record length (i.e. 35) and cross-correla
tion structure (i.e. a 20 × 20 correlation matrix resulting from 
the nonlinear model for the specific cross-correlation sce
nario). The generated standard-normal variates are then 
back-transformed to dimensionless LP3 flows (with para
meters μR, σR and χR) through a quantile-quantile transforma
tion. Note that the quantile-quantile back-transformation 
from the standard normal variate to the dimensionless LP3 
flows introduces a slight distortion in terms of average cross- 
correlation: a slight negative bias is observed (�ρ = 0.2, 0.6, 0.8 in 
the standard-normal space correspond to �ρ = 0.17, 0.55, 0.76 in 
the real space, after back-transformation), yet the variation 
range does not change noticeably. For this reason, the distor
tion is found to be not relevant for the aims of our study, and 
in this manuscript we always refer to �ρ computed in the 
standard-normal space.

Finally, to obtain the synthetic dimensional annual sequence 
of flood flows at site i, the i-th synthetic dimensionless sequence 
is multiplied by the local empirical mean annual flood, MAFi. 
Note that, due to sampling variability (i.e. limited record length), 
the empirical mean value of each generated dimensionless series 
is not exactly equal to 1; for this reason, the resulting dimen
sional series for site MAFi shows an arithmetic mean value that 
can differ from the local theoretical mean annual flood (MAFi, 
that is the empirical estimate from the real-world annual 
sequence for site i), and varies from realization to realization 
across the region according to the regional cross-correlation 
structure used in the random generation.

Moreover, it is worth noting here that, consistent with the 
hypothesis of homogeneity, the Monte Carlo generation of the 
synthetic dimensionless series considers no spatial pattern in 
the flood frequency distribution of the regional dimensionless 
samples, only different values of cross-correlation. The regional 
spatial pattern in the theoretical dimensional series is intro
duced by the local empirical mean annual flood, MAFi, which is 
always the same for the different realizations of the region, i.e. 
we mimic the same regional spatial pattern in terms of flood 
frequency distribution in all the Monte Carlo realizations.

Figure 2 illustrates the cross-correlation structure in the stan
dard-normal space as results from an empirical analysis of 1000 
realizations for each cross-correlation scenario: (a) �ρ = 0.2, (b) 
�ρ = 0.6, (c) �ρ = 0.8. Figure 2(d) shows the overall distributions of 
empirical cross-correlation coefficients for the 1000 realizations 
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of the three correlation scenarios, which are centred around the 
corresponding average cross-correlation (i.e. the median values 
of each box plot are consistent with the imposed �ρ values).

2.3 Step 3. Empirical flood quantiles

For each realization and each site in the region, empirical flood 
quantiles are then estimated for arbitrarily selected return 
periods T (i.e. T = 10, 30, 50, 100 years). The quantile estimator 
combines at-site and regional information. In particular, we 
refer to the LP3 distribution (i.e. no uncertainty on the model 
selection) and estimate the LP3 parameters of location and 
scale, μ and σ, respectively, locally by using the L-moments 
method (Hosking and Wallis 1997) (i.e. uncertainty from 
sampling error only on the moments of order 1 and 2); while 
the shape parameter χ is set equal to χR (theoretical shape 
parameter, i.e. no uncertainty on the third-order moment).

2.4 Step 4. Prediction of flood quantiles in ungauged 
sites: application of GLS and TK in cross-validation

The Appendix recalls the theoretical bases of GLS and TK. 
Both methods are applied to the locally estimated (dimen
sional) empirical flood quantiles recalled in Section 2.3 for 
any realization that we generated as described above in order 
to predict flood quantiles at ungauged locations. Ungauged 
conditions at each and every site are simulated through an 
LOOCV scheme. For each realization in each cross-correlation 
scenario, we apply a simple and a multiple implementation of 
GLS and TK, as described in the following sections.

2.4.1 Application of GLS
The GLS analysis is carried out using the R-package WREG (i.e. 
Farmer 2017) (see also Eng et al. 2009) in the statistical envir
onment R (R Core Team 2016). Applying the GLS procedure to 
a given site i requires estimates of standard deviation si, regional 
skew GR;i, weighted skew ~Gw;i and LP3 distribution standard 
deviate Ki (see also Griffis and Stedinger 2007b). These variables 
are computed for the log-transformed samples of each synthetic 
region, as follows:

● standard deviation si is evaluated as the at-site empirical 
standard deviation;

● we use the same value of regional skew GR for each and 
every catchment in the synthetic region (i.e. assumption of 
homogeneity); this value is computed as the empirical 
skew of the log-transformed regional dimensionless 
sample;

● weighted skew ~Gw;i for each site is computed as indicated 
in Equation (A4) in the Appendix, by combining the at- 
site empirical skew gi with the regional skew GR; weights 
are computed as indicated in Equation (A5), evaluating 
the estimated mean square errors MSEðgiÞ and MSEðGRÞ

according to Bulletin 17B of the Interagency Advisory 
Committee on Water Data (1982) (see also Eng et al. 
2009);

● the standard deviates Ki are computed as a function of 
non-exceedance probability (i.e. return period T) and 
weighted skew ~Gw;i, as indicated in Bulletin 17B of the 
Interagency Advisory Committee on Water Data (1982) 
and in the most recent Bulletin 17C (England et al. 2018).

Figure 2. One thousand realizations of the hypothetical cross-correlated region for each cross-correlation scenario. Grey dots (panels (a), (b) and (c)) show the 
distribution of empirical cross-correlation coefficients around the corresponding cross-correlation model (black solid line) for �ρ = 0.2, 0.6 and 0.8, respectively; the 
dashed lines indicate the 90% confidence band (upper and lower lines represent 95th and 5th quantiles, respectively). Box plots in panel (d) show the overall 
distribution of average correlation values for the 1000 realizations of the three cross-correlation scenarios (�ρ = 0.2, 0.6 and 0.8, respectively).
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The application of the GLS procedure requires an estimate 
of the cross-correlation structure, in terms of parameters θ and 
α in Equation (A6) (see Tasker and Stedinger 1989). We 
estimate the cross-correlation model relative to the distances 
between catchment centroids by optimizing model parameters 
θ and α through the ordinary least squares (OLS) procedure.

GLS regressions may use several catchment descriptors, e.g. 
drainage area, precipitation, elevation, etc. In the present 
study, we implement a GLS regional model in two ways:

● simple-GLS (hereinafter referred to as s-GLS): the GLS 
quantile regression analysis is performed by considering 
drainage area A alone (as did in Archfield et al. 2013):

QTi ¼ aTAi
bT (1) 

where QTi is the T-year flood for site i, Ai is the drainage 
area for site i, and aT and bT are the GLS parameters;

● multiple-GLS (hereinafter referred to as m-GLS): the GLS 
quantile regression analysis considers more catchment 
descriptors. In particular, we refer to drainage area A, 
mean annual precipitation MAP, latitude of catchment 
centroid Yg , and mean elevation Hmean, which preliminary 
OLS stepwise log-linear regression analyses (see Draper 
and Smith 1981, Weisberg 1985, Chambers 1992) indicated 
are the most significant subset of descriptors (i.e. adjusted 
R2 

adj � 0.87 and normally distributed standardized resi
duals) for predicting the mean annual flood (MAF) for the 
reference real-world dataset described in the 
Supplementary material. The resulting multiple-GLS 
model can be described as:

QTi ¼ aTAi
bT MAPi

CT Ygi
dT Hmeani

eT (2) 

where aT , bT , cT , dT and eT are the GLS parameters.
Equations (1 and 2) are then reduced to linear additive 

forms by means of log-transformation (see e.g. Thomas and 
Benson 1970, Pandey and Nguyen 1999, Griffis and Stedinger 
2007a, Laio et al. 2011).

Both the s- and m-GLS applications are explored in an 
LOOCV scheme, by removing in turn one site from the dataset 
and by referring to the remaining N–1=19 sites while estimating 
(1) the cross-correlation structure (i.e. fitting of the model of 
Tasker and Stedinger 1989), (2) the GLS parameters, and finally 
(3) the flood quantiles QT at the discarded site. Consistently with 
the Monte Carlo generation, where nestedness was not modelled, 
GLS is applied without removing eventual redundant nested sites.

2.4.2 Application of TK
The first step of the ungauged application of TK is the use of 
OLS to identify a regional power-law model between flood 
quantile QT and basin area (see e.g. Pugliese et al. 2014, 
2016). The OLS estimates are then used to standardize LP3 
quantiles (i.e. QT with T = 10, 30, 50, 100 years) at all sites: this 
fundamental step is necessary as TK directly handles drainage 
area as a key variable of the model itself.

We opt for two types of OLS regional power-law to keep the 
applications of GLS and TK consistent (see Section 2.4.1):

● simple-OLS (s-OLS; i.e. considering only drainage area), 
resulting in a standard application of TK (hereinafter 
referred to as s-TK);

● multiple-OLS (m-OLS; i.e. considering the five significant 
descriptors identified via stepwise regression analysis; see 
e.g. Equation (2)), resulting in a TK with external drift 
(hereinafter referred to as m-TK; see e.g. Laaha et al. 2013, 
for the use of m-TK for predicting stream temperatures).

Both s-OLS and m-OLS are applied in linear additive forms 
by means of log-transformation, and their natural estimates (i.e. 
back-transformed from the logarithmic to the natural space) are 
then used to standardize LP3 quantiles. TK interpolation is then 
applied using the R-package rtop (i.e. Skøien et al., 2014; Skøien, 
2014) by fitting the sample variogram of the standardized 
quantiles with the five-parameter fractal-exponential model 
suggested in Skøien et al. (2006) through a modified version of 
weighted least squares (WLS) regression (see Cressie 1993). The 
fitted variogram model is then used to compute the kriging 
weights, referring to the six closest neighbouring stations (in 
line with recent sensitivity analyses, see e.g. Pugliese et al. 2014, 
2016). The standardized quantiles are then predicted site by site 
using Equation (A9) in the Appendix. Finally, the TK estimates 
of the standardized quantiles are combined with the regression 
estimates resulting from s-OLS and m-OLS to obtain the s-TK 
and m-TK estimated T-year value at each site.

Both the s-TK and m-TK analyses are performed in an 
LOOCV scheme, by removing in turn one site from the dataset 
and referring to the remaining N–1=19 sites while estimating (1) 
the OLS regional power-law useful for standardizing flood quan
tiles, (2) the variogram (i.e. five-parameter fractal-exponential 
model suggested in Skøien et al. 2006), and (3) the flood quantiles 
QT at the discarded site.

2.5 Performance metrics

We use two metrics for assessing the prediction performance 
for the considered versions of GLS (i.e. s-GLS and m-GLS) and 
TK (i.e. s-TK and m-TK). In particular, to assess the overall 
performance of GLS and TK in the entire region, we consider 
two error measures, RBIAS and RMSNE: 

RBIAS ¼
1
N

XN

j¼1

x̂i � xi

xi

� �

(3) 

RMNSE ¼
1
N

XN

j¼1

x̂i � xi

xi

� �2
" #1=2

(4) 

where N is the number of sites, ̂xi the estimated variable at site i 
and xi the observed value of the variable at site i. The choice of 
relative (i.e. RBIAS) or normalized (i.e. RMSNE) measures is 
made to quantify errors and performance, regardless of the size 
of the drainage area of each catchment.

3 Results

Box plots in Figs 3 and 4 depict the efficiency of GLS and 
TK in estimating empirical and theoretical flood 
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Figure 4. Prediction performance of s-GLS (red-bordered box plots), m-GLS (red-filled box plots), s-TK (blue-bordered box plots) and m-TK (blue-filled box plots) in 
predicting theoretical flood quantiles for the three degrees of cross-correlation (i.e. �ρ = 0.2, 0.6, 0.8) in ungauged sites (LOOCV scheme): box plots represent the 
distribution of 1000 values for each metric (i.e. RBIAS and RMSNE) computed for each realization and for selected return periods (i.e. T = 10, 30, 50, 100 years).

Figure 3. Prediction performance of s-GLS (red-bordered box plots), m-GLS (red-filled box plots), s-TK (blue-bordered box plots) and m-TK (blue-filled box plots) in 
predicting empirical flood quantiles for the three degrees of cross-correlation (i.e. �ρ = 0.2, 0.6, 0.8) in ungauged sites (LOOCV scheme): box plots represent the 
distribution of 1000 values for each metric (i.e. RBIAS and RMSNE) computed for each realization and for selected return periods (i.e. T = 10, 30, 50, 100 years).
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quantiles, respectively, in ungauged sites (note that 
“ungauged” refers here to the application of the LOOCV 
scheme). Each box plot depicts the distribution of 1000 
values (i.e. one value for each realization of the region) of 
the selected performance measure for the selected 
method, return period and cross-correlation scenario. To 
enable one to visually compare the results across different 
return periods, methods and degree of cross-correlation, 
the y-axes in Figs 3 and 4 are fixed for each row.

Concerning the efficiencies in estimating the empirical esti
mates of flood quantiles, TK results in generally better predictions 
of empirical quantiles (i.e. lower RBIAS and lower RMSNE) than 
the corresponding version of GLS (see Fig. 3): s-TK outperforms 
s-GLS, and m-TK shows similar median RMNSE, but smaller 
RBIAS than m-GLS. Moreover, the comparison of s-GLS with m- 
GLS, and of s-TK with m-TK, shows that the inclusion of more 
catchment descriptors in the regression analysis (i.e. m-GLS; m- 
OLS for m-TK) leads to substantially improved performances. In 
particular, the weak performances of s-GLS can be explained by 
the fact that drainage area alone is not enough for fully describing 
MAF (and therefore dimensional flood quantiles) in the study 
region. Moreover, the similar behaviour of m-GLS and m-TK can 
be attributed to the fact that they both use the important physio
graphic information needed to explain variations in the mean 
flood. In this regard, as observed for the real-world study area (see 
S.3 in the Supplementary material), all the considered procedures 
are slightly positively biased, with median RBIAS values that are 
similar to the corresponding values obtained for the real-world 
application (see Table S1 for the 100-year flood quantiles), and 
RBIAS substantially decreasing from s-GLS to m-TK.

Another aspect shown in Fig. 3 is the dependence on T: for 
each �ρ and considered method, we observe that the higher the 
T value, the lower the performance (i.e. the higher the bias or 
uncertainty). This behaviour is expected and confirms that 
estimates of flood quantiles associated with lower probability 
of occurrence (i.e. higher return period T) are affected by 
higher uncertainties.

Finally, we observe a dependence of the performance in 
estimating empirical flood quantiles on the average regional 
cross-correlation �ρ: for a given method and return period T, 
the higher the �ρ the better the median of the performance and 
the lower the uncertainty, with much less dispersed perfor
mance. This behaviour is expected, especially for TK, which 
explicitly exploits cross-correlation in predicting flood 
quantiles.

With regards to the efficiencies of GLS and TK in estimating 
the theoretical flood quantiles, Fig. 4 confirms the trend 
already observed for empirical flood quantiles: s-TK, m-GLS 
and m-TK outperform s-GLS in predicting theoretical flood 
quantiles (i.e. lower RBIAS and lower RMSNE), and, in parti
cular, m-GLS and m-TK perform similarly, with slightly less 
biased predictions for m-TK. This confirms that incorporating 
multiple regression in m-GLS and m-TK improves substan
tially the prediction performances. Moreover, the weak depen
dence on T is confirmed: the higher the T value, the higher the 
uncertainty.

4 Discussion

Notwithstanding the above-mentioned similarities in the rela
tive behaviour of the methods, a significant difference is pre
sent in the extent of the performances: all the considered 
methods show generally higher uncertainty in estimating the
oretical flood quantiles than empirical quantiles. This can be 
explained by the fact that the presence of cross-correlation 
hampers the identification of the theoretical flooding potential 
in the region, and none of the considered methods is able to 
effectively overcome this effect, unless the regional average 
cross-correlation is very limited (i.e. see results for �ρ = 0.2). 
An exception is observed for �ρ = 0.2, for which RBIAS values 
show a larger dispersion in predicting theoretical flood quan
tiles (compare panels (a) in Figs 3 and 4), yet RMNSE indicates 
higher accuracies for all the considered methods in predicting 
theoretical flood quantiles than their empirical estimates. In 
this regard, other important indications come from the depen
dence on �ρ: contrary to what is observed for empirical flood 
quantiles, for estimating theoretical flood quantiles, the higher 
the �ρ the lower the performance for both GLS and TK. As the 
spatial correlation has the effect of hampering the identifica
tion of the flood magnitude for a limited set of flood-flow 
observations, and TK exploits cross-correlation to perform 
its estimates, the decreasing performances and increasing 
uncertainty of s-TK and m-TK with increasing �ρ are expected. 
On the other hand, the increasing uncertainty of GLS with 
increasing �ρ shows that, even if GLS is able to reduce the 
hampering effect due to cross-correlation thanks to its efficient 
estimation of the covariance matrix (Kroll and Stedinger 
1998), a remaining uncertainty, increasing with increasing 
levels of spatial correlation, is still present.

In summary, the Monte Carlo experiment performed in this 
study enables us to address the unsolved issue raised by Archfield 
et al. (2013) regarding the ability of GLS and TK in predicting the 
theoretical unknown flood quantiles in ungauged sites when the 
flood sequences observed at nested gauged catchments are affected 
by cross-correlation. The main outcome of our study is that, 
despite the different nature of GLS and TK and their different 
ways to treat spatial correlation, cross-correlation controls GLS and 
TK accuracy of prediction of empirical and theoretical flood quan
tiles in a very similar way. In particular, TK outperforms GLS when 
catchment area is the only catchment descriptor used for predict
ing theoretical flood quantiles, regardless of the level of cross- 
correlation. These results are valid under the simplifying assump
tions adopted in the analysis; a fair interpretation of the outcomes 
of our study, which is the first to address this very interesting issue, 
needs to acknowledge the simplifying hypotheses we adopted, 
which are recalled and discussed below.

We refer to synthetic regions that mimic the real-world 
reference dataset (i.e. an acceptably homogeneous region, 
with partially nested catchments, and no noticeable influence 
of nestedness on the cross-correlation structure; see the 
Supplementary material). Indeed, given the partial nestedness 
of catchments in the study area, the LOOCV scheme per
formed in our analyses refers to ungauged sites that are likely 
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to have other gauges upstream or downstream within the same 
catchment, and therefore are not fully ungauged catchments in 
the strict sense. Although the presence of nested catchments 
represents a common situation in hydrological applications, it 
is important to recall that Stedinger and Tasker (1985) con
sidered GLS very explicitly for fully ungauged catchments (no 
nested sites), and Veilleux et al. (2011) suggested to remove 
(redundant) nested gauged sites when they share a large por
tion of drainage area. For this reason, future studies could 
explore the more general case where cross-correlation is mod
elled by considering nestedness and GLS is applied by remov
ing redundant sites (as suggested by e.g. Veilleux et al. 2011).

Another important aspect is related to the homogeneity of 
our study region: we refer to the straightforward case of a 
homogeneous region, yet the homogeneity hypothesis (i.e. 
the same growth factor but index flood varying in space) is 
not a fundamental prerequisite for the application of GLS and 
TK, which can indeed be applied to heterogeneous areas. For 
this reason, future studies could consider the application of a 
Monte Carlo experiment similar to the one considered here, 
but referring to a heterogeneous region (i.e. theoretical flood 
quantiles for each site referring to different values for the 
parameters of the chosen distribution). Also, our experiment 
(see Section 2.2) mimics the same regional spatial pattern (in 
terms of regional flood frequency distribution) in all the Monte 
Carlo realizations of the region: while no spatial pattern is 
introduced in the regional dimensionless samples (i.e. hypoth
esis of homogeneity), the generated dimensional samples 
depend on the local empirical mean annual flood, MAFi, 
which is always the same for the different realizations of the 
region. Therefore, our Monte Carlo generation does not model 
the dependence of the generated series from the considered 
catchment descriptors (i.e. covariates). In this context, future 
studies could consider synthetic series generated as a function 
of the covariates (as done e.g. by Stedinger and Tasker 1986).

Moreover, we considered overlapping annual sequences 
with record length equal to 35 years for every site, without 
investigating the sensitivity of the methods to different record 
lengths. Finally, we referred to the L-moments approach 
(Hosking and Wallis 1993, 1997) to fit the LP3 distribution, 
but we should consider that the GLS procedure implements 
another approach for fitting LP3 (see Section 2.4.1), and this 
difference could in part affect the results.

Relaxing the above-mentioned simplifying assumptions 
opens up interesting future research avenues that can deepen 
our current understanding on how best to handle spatial 
correlation of flood sequences for predicting flood quantiles 
in partially gauged or fully ungauged catchments.

5 Conclusions

The present study addresses an important research question 
raised by Archfield et al. (2013), namely understanding which 
of two techniques, Tasker-Stedinger generalized least squares 
(GLS) regression or top-kriging (TK), is better suited for pre
dicting the theoretical unknown flood quantiles in ungauged 
sites when the observed flood sequences are affected by cross- 
correlation and nestedness does not play a significant role on 
the cross-correlation structure of the study region. The 

performance of GLS and TK is evaluated relative to the pre
diction in ungauged conditions of the local empirical quantile 
estimates (i.e. those that would have been estimated if data 
were available at that location) and the theoretical flood 
quantiles.

The preliminary LOOCV analysis performed over a real- 
world study area (i.e. a spatially limited, hydrologically homo
geneous region in Triveneto consisting of 20 partially nested 
catchments; see the Supplementary material) highlights that the 
behaviour of the simple (i.e. function of the drainage area alone) 
versions of GLS (i.e. s-GLS) and TK (i.e. s-TK) applied for 
predicting the 10-year flood is consistent with the results 
reported by Archfield et al. (2013). The better performances of 
s-TK compared to s-GLS are expected: referring to n neighbour
ing sites, TK is implicitly able to take some climate and geomor
phological similarities between catchments into account. 
However, the inclusion of more catchment descriptors in the 
analysis (i.e. m-GLS, m-TK) can lead to substantially improved 
performances, especially for GLS. Although informative, our 
preliminary analysis cannot address the unsolved problem 
raised by Archfield et al. (2013), as the theoretical flood quantiles 
are unknown in real-world study areas.

To shed some light on the above-mentioned research ques
tion, we resort to the Monte Carlo simulation experiment 
described in Section 2, generating a total of 3000 realizations 
of the homogeneous region with different values of average 
regional cross-correlation (i.e. equal to 0.2, 0.6, 0.8), where the 
cross-correlation structure does not distinguish between 
nested and non-nested catchments. For each realization, GLS 
and TK are applied to obtain predictions of at-site flood 
quantiles (with return periods equal to 10, 30, 50, 100 years) 
in an LOOCV scheme. This application provides us with some 
significant information about the ability of GLS and TK to 
predict empirical estimates of flood quantiles and theoretical 
flood quantiles at nested ungauged catchments, when GLS is 
applied in its traditional formulation (i.e. non-Bayesian and 
without removing redundant nested gauged sites), consistent 
with Archfield et al. (2013). First, in agreement with what is 
observed for the real-world application, the multiple versions 
of both GLS and TK are better suited than the corresponding 
simple versions for predicting both empirical and theoretical 
flood quantiles. Moreover, the analyses highlight an analogous 
dependence of GLS and TK performance on the degree of 
cross-correlation: the larger the regional average cross-correla
tion, the better the empirical estimators of flood quantiles, and 
the poorer the estimators of the theoretical flood quantiles. 
These findings prove that, under the adopted simplifying 
assumptions, the presence of cross-correlation in the annual 
flood sequences hampers the identification of the theoretical 
flood magnitude for both GLS and TK. This behaviour is 
totally expected for TK (which explicitly exploits spatial corre
lation in performing its estimates), whereas what was observed 
for GLS may be explained by acknowledging the very specific 
and simplified situation considered in our study (i.e. homo
geneous region with nested gauged sites). The investigation of 
a more general case where nested catchments may impact the 
cross-correlation structure, which should therefore be mod
elled in GLS by removing redundant sites, is left for future 
studies.
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In particular, the multiple versions of GLS and TK show 
very similar performances: the application of m-GLS or m-TK 
is almost equivalent when descriptive geomorphological and 
climatic catchment attributes are available for representing 
mean annual flood; for practical estimation in cases like this, 
one could consider the application of a model-averaging 
approach between the two candidate models. On the contrary, 
when only a simple-regression analysis with drainage area is 
performed, the application of TK is recommended, especially 
in the presence of high degrees of spatial correlation. In this 
context, an interesting issue to be investigated in future studies 
could be the use of GLS (instead of OLS) for identifying the 
regional power-law model between flood quantiles and catch
ment descriptors when applying TK.

The findings outlined are valid for the simplified situa
tion that is investigated here and suggest that, for a homo
geneous region, the benefits of applying traditional GLS 
over TK are rather limited even in estimating theoretical 
flood quantiles. Therefore, in such a situation, the applica
tion of TK is suggested over traditional GLS. Further ana
lyses regarding heterogeneous regions (i.e. the presence of a 
regional spatial signal), flood series generated as a function 
of catchment descriptors (see e.g. Stedinger and Tasker 
1986), fully ungauged conditions (no information is avail
able upstream or downstream within a given catchment, i.e. 
the absence of nested catchments) and/or the application of 
more recent versions of GLS (e.g. with removal of redun
dant nested gauged catchments, B-GLS), as well as sensitiv
ity analyses of the results to the presence of different record 
lengths in the AMS series are suggested for future studies.
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Appendix Methods.

A.1 Generalized least squares (GLS)

Multi-linear regressions are one of the most commonly used approaches 
for estimating the T-year flood, or design flood (i.e. flood quantile asso
ciated with a given return period T), for ungauged catchments. Such 

models relate observable catchment characteristics (e.g. drainage area, 
mean annual precipitation, catchment slope, etc.) to streamflow charac
teristics (e.g. flood quantiles), as follows: 

Ŷ ¼ Xβþ ε (A1) 

where Ŷ is a (n� 1) vector of streamflow characteristics at n sites, X is the 
(n� k) matrix of (k � 1) catchment characteristics augmented with a 
column of 1, β is the (k� 1) vector of regression parameters, and ε is 
the (n� 1) vector of total errors. In particular, each component of ε is 
envisioned as a random variable with zero mean and variance equal to σ2

� .
Traditionally, the regression parameters are estimated using least 

squares procedures. The general expression that indicates the estimation 
of regression parameters is given by: 

β̂ ¼ XTΛ� 1X
� �� 1XTΛ� 1Ŷ (A2) 

where XT indicates the transposition of matrix X, and Λ� 1 is the inverse of 
the weighting matrix Λ. Once estimated, β̂ can be used to compute the 
regression estimates Ŷ (i.e. ŷi at the ith gauge).

Ordinary least squares (OLS) regression is traditionally used for esti
mating the regression parameters β̂, by setting Λ ¼ I in Equation (A2), 
where I indicates the identity matrix (Thomas and Benson 1970, Hardison 
1971, Riggs 1973). To estimate β̂, OLS considers the total errors of the 
model to be homoscedastic and independently distributed (Riggs 1973); 
however, these assumptions are often violated in hydrological applica
tions, where different streamgauges usually have different record lengths, 
and concurrent streamflows observed at different gauges in a region are 
often cross-correlated (Tasker and Stedinger 1989). If not properly repre
sented in a regional analysis, cross-correlation affects the precision of 
regression parameters, and the estimators of flood characteristics are 
inefficient in that they are not as accurate as they could be (i.e. the higher 
the cross-correlation, the higher the model errors; see Stedinger and 
Tasker 1985).

To deal with situations where regression model residuals are hetero
scedastic and cross-correlated, the regression parameters can be estimated 
by means of a generalized least squares (GLS) technique, which is the best 
linear unbiased estimator (BLUE) when the true residual error covariance 
matrix Λ is known (Johnston 1972). Unfortunately, in general Λ is 
unknown and an estimator must be employed. Stedinger and Tasker 
(1985, 1986) and Tasker and Stedinger (1989) addressed the issue of the 
loss of efficiency from using an approximation of the covariance matrix 
when estimating streamflow characteristics in non-nested ungauged (i.e. 
fully ungauged) basins: they developed a procedure for estimating Λ 
accounting for both correlated streamflows and time-sampling errors. 
The Stedinger-Tasker GLS improves the representation of the overall 
regression error ε, by assuming that it equals the sum of the sampling 
error η for the estimates of the streamflow statistics (e.g. flood statistics), 
and the modelling error δ in modelling the theoretical streamflows (e.g. 
flood quantiles) across catchments. Kroll and Stedinger (1998) demon
strated that when estimating flood quantiles with the Stedinger-Tasker 
GLS Λ-estimator, estimation of ΛGLS results in little loss of efficiency. 
More recently, Reis et al. (2005) considered Bayesian estimators of model 
error and regression parameters. Note that, unlike feasible GLS (FGLS) 
estimation (which can be applied to any frequency distribution; see e.g. 
Greene 2002), the Stedinger-Tasker GLS regression is applied for a log- 
Pearson type III (LP3) frequency analysis (see Bulletin 17C by England et 
al. 2018), which is the reference procedure for estimating streamflow 
characteristics in ungauged catchments in the US (Eng et al. 2009).

In particular, the Stedinger-Tasker GLS (hereinafter referred to as GLS, 
for the sake of brevity) computes the regression parameters by setting Λ ¼
ΛGLS in Equation (A2), where ΛGLS contains the estimates of the covar
iances of εi among gauged sites. The main diagonal elements of ΛGLS 
include a part associated with the model error δi and all elements include 
the effect of the time-sampling errors ηi. For streamflow characteristics 
that are computed from a log-Pearson type III (LP3) frequency analysis 
(see Bulletin 17B of the Interagency Advisory Committee on Water Data 
1982, and the most recent Bulletin 17C by, England et al. 2018), Tasker 
and Stedinger (1989) propose to estimate ΛGLS as follows: 

HYDROLOGICAL SCIENCES JOURNAL 577

https://doi.org/10.1007/978-1-4020-5741-0_12
https://doi.org/10.1007/s00477-014-0916-1
https://doi.org/10.1007/s00477-014-0916-1
https://doi.org/10.1623/hysj.48.6.857.51421
https://doi.org/10.1623/hysj.48.6.857.51421
https://doi.org/10.1029/2006WR005760
https://doi.org/10.1029/2006WR005760
https://doi.org/10.1016/j.cageo.2014.02.009
https://doi.org/10.5194/hess-10-277-2006
https://doi.org/10.1029/WR019i002p00503
https://doi.org/10.1029/WR019i002p00503
https://doi.org/10.1007/BF01581758
https://doi.org/10.1029/WR021i009p01421
https://doi.org/10.1029/WR022i010p01487
https://doi.org/10.1029/WR016i006p01107
https://doi.org/10.1029/WR016i006p01107
https://doi.org/10.1029/WR021i005p00715
https://doi.org/10.1080/15715124.2010.543905


Λ̂GLS;ij ¼

σ2
δi þ

σ2
i

mi
1þ KiGi þ 0:5K2

i 1þ 0:75G2
i

� �� �
; if i ¼ j

ρ̂ijσiσjmij

mimj
1þ 0:5KiGi þ 0:5 KjGj þ 0:5KiKj ρ̂ij þ 0:75 GiGj

� �h i
; if i � j

8
<

:

(A3) 

where i and j are indices of the gauged sites in the region of interest, σ2
δi is 

the model-error variance at site i, Ki and Kj are the LP3 standard deviates 
(function of exceedance probability, i.e. return period T, and at-site 
empirical skew g; see Bulletin 17B of the Interagency Advisory 
Committee on Water Data 1982, and Bulletin 17C by England et al. 
2018), Gi and Gj are the corresponding skew values (i.e. equal to either 
at-site empirical skews g, or weighted skew Gw), mi and mj are the 
corresponding record lengths, mij is the concurrent record length, and 
ρ̂ij is an estimated value for the cross-correlation of time series of stream
flow values used to calculate the streamflow characteristics at gauges i and 
j.

As reported in Bulletin 17B of the Interagency Advisory Committee on 
Water Data (1982), and consistent with the more recent Bulletin 17C 
(England et al. 2018), the weighted skew Gwi for the i-th gauged site can be 
computed as: 

Gw;i ¼ ωi gi þ 1 � ωið ÞGR;i (A4) 

where GR;i is the regional skew estimate for the i-th gauged site, and 

ωi ¼
MSE GRð Þ

MSE gið Þ þMSE GRð Þ
(A5) 

where MSEðgiÞ is the estimated mean square error of the skew value at the 
i-th gauged site, and MSEðGRÞ is the estimated mean square error of the 
regional skew values. Several methods are available for the determination 
of GR values: Tasker and Stedinger (1986) developed a weighted least 
squares procedure for estimating regional skewness coefficients based on 
sample skewness coefficients for the logarithms of annual peak-discharge 
data; more recently, a Bayesian-GLS (B-GLS) regression model for regio
nal skewness analyses was introduced (see e.g. Reis et al. 2005, Gruber et 
al. 2007, Gruber and Stedinger 2008, Veilleux et al. 2011; Bulletin 17C by 
England et al. 2018).

Empirical estimates of ρij are imprecise due to the short record lengths 
of observed flows. To overcome this problem, values of the cross-correla
tion are usually approximated by referring to the nonlinear relationship 
introduced by Tasker and Stedinger (1989), which is useful for smoothing 
the sample correlations as a function of distance between gauges: 

ρ̂ij ¼ θ
dij

1þα dij ¼ e
ln θð Þ dij
1þα dij (A6) 

where dij is the distance between gauges i and j, and θ and α are the 
dimensionless model parameters estimated from data. In particular, ρ̂ij is a 
convex, monotonically decreasing function of dij when 0 < θ < 1 and α > 0.

As reported by Stedinger and Tasker (1985), the β̂ values of Equation 
(A2) for GLS and the σ2

δi values in Equation (A3) are jointly determined 
by recursively searching for a non-negative solution to the following 
equation: 

Ŷ � Xβ̂
� �T

Λ� 1
GLS Ŷ � Xβ̂
� �

¼ n � kþ 1ð Þ (A7) 

As Equation (A3) does not account for the error associated with estimat
ing G, Griffis and Stedinger (2007b) introduced a modified version of 
ΛGLS, named ΛGLS;skew, which accounts for the uncertainty in the skew 
estimates. For the estimation of ΛGLS;skew values, Griffis and Stedinger 
(2007b) consider additional terms, such as the partial derivatives for the 
gauges (calculated from the approximation for K given by Kite 1975, 
1976), the covariance between the skew values at the different gauged 
sites, which, in turn, depends on the correlation ρg i g j 

between skew values 
(estimated by Martins and Stedinger 2002) and on the variances of the 
skew values at gauges i and j (estimated by Griffis and Stedinger 2009).   

Further details concerning the computation of ΛGLS;skew can be found in 
Griffis and Stedinger (2007b) and in the User’s Guide to the Weighted- 
Multiple Linear Regression Program (WREG) (Eng et al. 2009), which is 
the software used by the US Geological Survey for estimating streamflow 
characteristics at ungauged basins in the United States.

GLS also provides estimates of the model error variance, σ2
δ. In parti

cular, the average variance of prediction, AVP, can be computed as 
follows (Tasker and Stedinger 1986): 

AVP ¼ σ2
δ þ

1
n

Xn

p ¼1
xp XTΛ� 1

GLSX
� �� 1xp

T (A8) 

where xp is a vector containing the values of the independent variables of 
the p-th gauge augmented by a value of 1 (see also Eng et al. 2009).

A.2 Top-kriging

Topological kriging (or top-kriging) is a geostatistical procedure devel
oped by Skøien et al. (2006) for the prediction of hydrological variables, 
accounting for catchment area and catchment nestedness (which are not 
taken into account by ordinary kriging). Top-kriging produces predic
tions of hydrological variables at ungauged sites with a linear combination 
of the empirical information collected at neighbouring gauging stations. 
Using this method, the unknown value of the streamflow index of interest 
at prediction location x0, Zðx0Þ, can be estimated as a weighted average of 
the variable measured at other sites within a neighbourhood: 

Z x0ð Þ ¼
Xn

i¼1
λiZ xið Þ (A9) 

where λi is the kriging weight for the empirical value ZðxiÞ at location xi, 
and n is the number of neighbouring stations used for interpolation. 
Kriging weights λi can be found by solving the typical ordinary kriging 
linear system with the constraint of unbiased estimation: 

Pn

j¼1
γi;jλj þ ϕ ¼ γ0;i i ¼ 1; . . . ; n

Pn

j¼1
λj ¼ 1

8
>><

>>:

(A10) 

where ϕ is the Lagrange parameter and γi;j is the semi-variance between 
catchments i and j (Isaaks and Srivastava 1990). The relationship between 
semi-variance and distance is represented by the semi-variogram (here
inafter referred to as variogram), which represents the spatial variability of 
the regionalized variable Z.

Top-kriging is based on block kriging (see e.g. Journel and Huijbregts 
1978), which considers the variable defined over a non-zero support S; in 
top-kriging, S coincides with the catchment drainage area A (Cressie 
1993, Skøien et al. 2006). In particular, the point variable ZðxÞ is averaged 
over the drainge area A to obtain the spatially averaged variable ZrðxÞ: 

Zr xð Þ ¼
1
A

ò
A

Z xð Þdx (A11) 

In this way, the kriging system of Equation (A10) remains the same, but 
the semi-variances between the measurements need to be obtained by 
regularization, i.e. smoothing the point variogram over the support area. 
In particular, considering two measurements with catchment area Ai and 
Aj, respectively, the regularization consists of assuming the existence of a 
point variogram γpðhÞ, where h ¼ jxi � xjj represents the Euclidean dis
tance (evaluated on a horizontal plane) between two generic position 
vectors xi and xj within the corresponding catchments, and evaluating 
the semi-variance γr

i;j between the two measurements as: 
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γr
i;j ¼

1
AiAj

ò
Ai

ò
Aj

γp xi � xj
�
�

�
�

� �
dxidxj

�
1
2

1
A2

i
ò

Ai

ò
Ai

γp xi � xj
�
�

�
�

� �
dxidxj þ

1
A2

j
ò

Aj

ò
Aj

γp xi � xj
�
�

�
�

� �
dxidxj

( )

(A12) 

where the first part integrates all the variance between the two catch
ments, while the second one (in curly brackets) subtracts the averaged 
variance within the catchments (i.e. representing the smoothing effect of 
the support, which indicates that the variance of the averaged variable 
decreases as the support area increases; Skøien et al. 2006). In this way, 
Equation (A12) can be used to evaluate the variogram of the averaged 
variable from the point variogram. Then, γr

i;j can be inserted into the 
kriging matrix of Equation (A10) and the kriging system can be solved to 
compute the weights λj. The integration shown in Equation (A12) is 
performed over the catchment area that drains to a particular location 
on the stream network (i.e. the outlet of the target catchment). 
Computationally, the catchment area is discretized by a grid and the 
integrals in Equation (A12) are replaced by sums (Skøien 2014).

Top-kriging also accounts for the possible presence of a nugget 
effect in the point variogram, i.e. a discontinuity close to the origin of 
the variogram (at a distance infinitesimally larger than zero), caused 
by measurement errors and variability at scales much smaller than the 
distance between measurements. Many variables of interest in hydro
logical applications, such as streamflow data, are likely to have a 
nugget effect. As the direct regularization with Equation (A12) 
would make the nugget vanish (even for small catchments), Skøien 
et al. (2006) suggest regularizing the nugget separately by considering 
the nugget variance as the variance of a spatially independent random 
variable and adding the regularized nugget effect to the regularized 
variogram of Equation (A12). In particular, the regularized nugget 
variance for two catchments of different size, C0ðAi;AjÞ, is computed 
as follows: 

C0 Ai;Aj
� �

¼
1
2

C0p

Ai
þ

C0p

Aj
�

2 C0p Meas Ai \Aj
� �

AiAj

� �

(A13) 

where C0p is the nugget variance of the point variogram, and 
MeasðAi \ AjÞ, representing the area shared by the two catchments 

with areas Ai and Aj, accounts for the nestedness of the two: if the 
catchments are nested then MeasðAi \ AjÞ ¼ minðAi;AjÞ, otherwise 
MeasðAi \ AjÞ ¼ 0. In other words, the effect of the point nugget var
iance C0p is dependent on the catchment size and degree of overlapping (i. 
e. nestedness). More details about the regularization of the nugget effect 
can be found in Skøien et al. (2006).

In practice, the application of top-kriging requires the preliminary 
estimation of a point variogram γpðhÞ. To this aim, the sample point 
variogram is computed by using the binned variogram technique (for 
details, see Skøien 2014), which aggregates sample points in distance 
and area classes or bins under the hypothesis of isotropy (i.e. the 
variogram does not vary with direction). The sample point variogram 
can then be modelled through a suitable theoretical model (e.g. 
exponential, fractal, Gaussian, spherical, etc.).

Like any other kriging method, top-kriging provides an estimate of the 
kriging variance σ2

R (see e.g. Skøien et al. 2006), which represents the 
uncertainty of the estimates at any location: 

σ2
R ¼

Xn

j¼1
γj;0λj þ ϕ (A14) 

where γj;0 is the gamma value between the target catchment and the 
neighbouring catchments, and ϕ is the Lagrange parameter.

Thanks to its structure, top-kriging has the merit (over traditional 
kriging methods, i.e. ordinary kriging) to account for the influence of 
catchment area and the nested structure of catchments on the evalua
tion of the weights λj. Indeed, while ordinary kriging would assign the 
same weights λj for all the neighbouring catchments having the same 
centre-to-centre distance to the target one, top-kriging weighs them 
differently. In particular, top-kriging assigns larger weights to larger 
catchments (which are regarded as the most certain, or as having the 
least uncertain measurements in comparison to the mean). Moreover, 
for identical catchment areas and centre-to-centre distances, a sub- 
catchment of the target catchment is given a larger weight than a 
non-nested catchment; on the other hand, given two neighbours with 
same area and same centre-to-centre distances to the target catch
ment, more weight is attached to the catchment into which the target 
catchment drains (Skøien et al. 2006).
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