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Abstract—IoT plays an important role in cellular networks,
and its need for global connectivity is driving the rise of Global
IoT Providers. These provide service by aggregating multiple mo-
bile providers through roaming, complicating the understanding
of the overall mobile ecosystem. This calls for lightweight moni-
toring solutions, which are crucial to meet the quality demanded
by IoT services, and of automatic means to analyze the data, with
the final goal to carry out economic and management activities.
This paper provides insights from the study of two commercial,
widespread IoT providers. We show how monitoring signaling
traffic between mobile networks offers a unique opportunity
to understand both the IoT customers’ characteristics and the
network functioning. Leveraging clustering, we offer the first
data-driven methodology to examine large IoT signaling datasets.
By analyzing over 1.3 billion signaling dialogues across two
providers, we identify common signaling profiles that depend
on the specific IoT vertical, likely misconfigured devices, and
sudden changes that indicate potential problems. This provides
actionable insights for network management decisions and service
improvements, and lays the groundwork for future research on
IoT traffic modeling.

Index Terms—IoT, Mobile Networks, Signaling Traffic, Traffic
Modeling

I. INTRODUCTION

Recently, we have witnessed a surge in demand for global,
ubiquitous cellular connectivity. Most of this comes from the
massive number of connected Internet of Things (IoT) devices
like smart meters, alarms, elevators, and fleet tracking devices,
all of which rely on low-throughput, energy-constrained con-
nectivity. While end-user services are currently migrating to
5G solutions, most massive IoT verticals still to this day rely
on 2G or 3G connectivity [1], due to cost constraints and the
long lifetime of devices.

With the surge in demand, commercial opportunities are
flourishing, and a new breed of service providers — commonly
called Managed IoT Connectivity Providers [2], or simply
IoT Providers — started offering seamless, worldwide coverage
and connectivity for IoT services. Similar to Mobile Virtual
Network Operators (MVNOs) [3], [4], IoT providers rely
on the cellular infrastructure of multiple Mobile Network
Operators (MNOs) to realize their service. There are two main
emerging models: IoT Platforms and Dedicated IoT Operators.
IoT Platforms, on the one hand, are managed services offered

by a telephone company, relying on its main base MNO,
its core functions, and roaming agreements. Dedicated IoT
Operators, on the other hand, manage their own core network
functions while aggregating multiple MNOs worldwide via
cellular roaming provided by international roaming hubs [5].
Both operational models thus overload the international mo-
bility function that the cellular ecosystem offers to end-
user devices [0]. This raises the challenge of managing the
relationship between the visited MNO (that owns the local
radio network), the IoT vertical (that uses the radio resource,
but depends on a different core network than the IoT Provider
offers), and the roaming interconnection hub. The division of
managed IoT connectivity service across different domains
within the mobile ecosystem makes network management,
device-level monitoring and anomaly detection a challenging,
still unsolved problem.

In this paper, we show that monitoring signaling traffic
between the radio network provider (i.e., the visited MNO)
and the core network operator (i.e., the home MNO that
the IoT Provider uses or operates) can provide fine-grained
insights into system health and device behavior. We build two
unique datasets, one for each of the two different operational
IoT provider models: an IoT platform based in Spain, and a
dedicated IoT operator based in Germany (Section 1V). These
two datasets include the control traffic that flows through the
corresponding roaming hubs these providers use, and allow
us to identify and characterize per-device communication
patterns. Though the two IoT providers support different
customers in different parts of the world, we show that the
emerging signaling patterns from the different populations
of devices are similar. The insights gained in this work
form the basic understanding required to inform the design
of anomaly detection approaches that are valid for different
entities, regardless of their customer base.

Monitoring signaling traffic allows for a much less intrusive
view than monitoring application traffic. In mobile networks in
particular, complex and diverse protocols let devices connect to
the radio network first, and then establish the data communica-
tion channel over which application traffic is carried in an en-
crypted fashion. Visibility is thus much more limited compared
to passive measurements in the traditional Internet. In the past,
researchers have provided simple aggregated analyses of such



signaling traffic for system-wide characterization [5], [7], [8].
We deepen this analysis in two ways. First, we define a rich
and detailed set of features to describe the signaling patterns
any IoT device produces. Second, we engineer an unsupervised
machine learning approach to identify homogeneous groups
of IoT devices and applications that exhibit similar signaling
characteristics. These groups give significant insights into
network usage and add great value to in-network management,
commercialization approaches, and issues IoT connectivity
providers face.

Specifically, we make the following contributions.

o We propose features to describe the fine-grained signal-
ing behavior of single devices, including overall statistics,
device activity, message types, signaling patterns, mobility
statistics, and longitudinal activity statistics (Section V).

« We design a clustering-based solution that enables common
patterns to emerge, and simplifies the analysis of the data
from the single device characterization to the identification
of macroscopic patterns (Section VI).

o We show that these patterns highlight common threats that
appear independently of the specific IoT vertical and IoT
provider, as well as specific aspects and anomalies that offer
the network administrator useful and actionable information
to improve the service they offer.

Based on data from two real-world operators, we believe our
study demonstrates the potential of analyzing signaling traffic
to untangle the operations of mobile broadband networks in
general. To allow other researchers to reproduce our work
and continue exploring the analysis of signaling patterns,
we provide the processed feature data we generated for the
dedicated IoT operator that allows the reproduction of our
clustering results.

The remainder of this paper is structured as follows. Sec-
tion II provides a primer on the current global signaling
landscape and mobile roaming. Related work regarding the
characterization of devices is summarized in Section III.
Section IV describes the two datasets obtained and evaluated
in this work, before we detail the feature engineering process
in Section V. Section VI details the results obtained from
classifying IoT devices by evaluating the results obtained
across the two independent datasets. We discuss the relevance
of the findings made in this work for MNOs in Section VII.
Finally, Section VIII concludes this work and outlines the need
for additional research in the area.

II. BACKGROUND AND MOTIVATION

In this section, we give an overview of the ecosystem
that offers managed connectivity to the massive number of
IoT devices operating worldwide with different connectivity
requirements. Support for “things” operating globally has
become critical for IoT verticals, from connected cars to
wearables [1], [9], [10]. IoT verticals require deploying their
devices world-wide, while keeping operational simplicity in
terms of managing the connectivity of their devices and
customers. IoT managed connectivity providers (such as IoT
platforms or dedicated IoT operators such as Twilio, EMnify,
or Truphone) answer to these needs by leveraging the roaming
functions within the cellular ecosystem [1], [5].

Recent work [1] showed that in 2019 approximately 20% of
the device population an operator connects represents inbound
roaming devices, out of which at least 75% are IoT devices.
Moreover, as many as 60% of these roaming IoT devices
were still only 2G/3G-capable in 2019 (e.g., smart meters,
fleet tracking), delaying the expected sunset of this legacy
technology.

In this paper, we focus exclusively on the 2G/3G archi-
tecture (which we show in Figure 1), and the associated
signaling traffic — as this is by far the dominant type of
signaling originating from real-world operational IoT devices
at the time of writing. Despite the rapid evolution in the
Radio Access Network (RAN) over the past years, with 5G
and next generation services now being deployed by vendors,
recent studies [1], [5] showed that different IoT verticals still
largely rely on 2G/3G legacy radio technologies, even as some
operators pledge to retire these technologies in some countries.
This is due to the low cost of the hardware that responds
efficiently to the demands of massive IoT deployments, as well
as the heterogeneous radio coverage penetration world-wide of
more recent 4G or 5G technologies. To help the reader, we list
all technical acronyms in the Glossary.

A. IoT Global Connectivity Models

In Figure 1, we show how different networks in the cellular
ecosystem interconnect to offer managed connectivity to IoT
verticals. There are two main models for this.

IoT Platforms lease the core network function services
from (one or several) existing mobile network operators. For
this reason, several MNOs (and their sibling telco providers)
operate their own IoT platforms [1] that exploit their already
operational cellular infrastructure. IoT platforms usually rely
on a single (home) MNO to provision the global IoT SIM.
They then leverage the international roaming function of the
home MNO to provide IoT businesses with the global cellular
connectivity they require.

Dedicated IoT Operators (e.g., Twilio, EMnify) choose to
run (some) network core functions in their own premises to
be able to aggregate various arbitrary MNOs worldwide. They
leverage a hybrid way of operating, where they rely on mobile
roaming to use the radio networks of MNOs, while controlling
the core network functions required to manage, track, and
bill the global presence of their users. In this case, the IoT
connectivity provider builds a global footprint through the use
of one or several “roaming hubs” or IP Packet Exchange (IPX)
providers (Figure 1).

B. The Role of Roaming Hubs

Roaming hubs seamlessly enable IoT providers to expand
their international footprint. With a single agreement with
one roaming hub, IoT providers (represented in Figure 1 by
the "Home Network™) can deploy connectivity services by
configuring network routing to a designated point of a public
mobile network, regardless of how many roaming partners
they actually contract with (i.e., the ”Visited Network” in
Figure 1). The roaming hub peers (via private interconnects
or public peering) with other hubs to extend their footprint
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Fig. 1: Overview of the IoT cellular ecosystem and the role of
roaming for global IoT connectivity. We show the interfaces we
monitor to build the dataset of signaling traffic (MAP and GTP
signaling dialogues). In the lower part, we show an example of MAP
signaling dialogue between a VLR in Italy and an HLR in Germany
to authenticate the IoT device with the IMSI 262xx.

worldwide, and forming the IPX Network — a private network,
separate from the public Internet, that meshes together the
infrastructures of the hubs [6]. The resulting IPX network
enables the transport of global roaming data between mobile
networks, with inter-operability of different implementations
and standards.

Some international carriers (e.g., Syniverse, BICS) also
operate as major roaming hubs in the IoT ecosystem, providing
easy access to all MNOs that connect to their roaming hub. By
connecting to one (or multiple, for redundancy) roaming hub,
the IoT provider gains access to hundreds of MNOs worldwide
at the same time.

C. Signaling in Mobile Networks

After interconnecting the IoT provider (i.e., Home Network
in Figure 1) to roaming partners (i.e., Visited Network in
Figure 1) via the roaming hub, the cellular ecosystem allows
IoT devices to establish radio and data connectivity.

In this paper, we focus our analysis exclusively on the
2G/3G architecture (which we show in Figure 1), and we col-
lect statistics regarding signaling dialogues between the Visitor
Location Registry (VLR) and Home Location Registry (HLR),
as well as between Serving General Packet Radio Service
(GPRS) Support Node (SGSN) and Gateway General Packet
Radio Service (GPRS) Support Node (GGSN) regarding the
activity of the roaming IoT devices. The Signaling Connection
Control Part (SCCP) carrier function lets IoT devices attach
to the 2G/3G radio access network, while the General Packet
Radio Service (GPRS) Roaming eXchange (GRX) function
lets them establish the data communications.

Table I contains a summary of all Mobile Application
Part (MAP) and GPRS Tunneling Protocol (GTP) signaling
messages that are relevant to the analyses conducted in this
work.

1 - Network Access and Device Authentication. Signaling
between the VLR and HLR functions enables the authenti-
cation of the IoT devices when they connect to a network in
the visited country, thus allowing them to access the radio
resources of the visited network. We show an example in
Figure 1. When an IoT device with a German SIM card
visits Italy, it first tries to connect to a locally available radio
network. This prompts the VLR to authenticate the device
by querying the corresponding HLR of the home network
with a Send Authentication Information (SAI) request for the

International Mobile Subscriber Identity (IMSI) of the roaming
SIM. The HLR then replies with a SAI Response to allow/deny
the request. Other examples of dialogues between the VLR
and HLR functions include Update Location (UL) or Cancel
Location (CL) procedures, and are further specified in the
corresponding standards [ 1]. Further, similar messages are
exchanged between the SGSN and the HLR (cf. Table I).

2 - Data Channel Setup. Once a device has gained access
to the mobile network, it eventually establishes data tunnels
to use for Internet data connectivity. This is the result of a
signaling dialogue between the visited network SGSN and the
home network GGSN before IP packets can be routed towards
the open Internet using an encrypted GTP tunnel.

Dataset. Our datasets contain millions of 2G/3G signaling
dialogues for real-world IoT devices operating across the
world, corresponding to different verticals. We capture two
large-scale datasets, one for each operational IoT provider we
introduced in Section II-A. Though each IoT provider serves
different IoT customers, they all rely on the capability of
the supporting MNOs to use the same signaling protocols
in order to enable the IoT devices to connect globally. Our
work focuses on analyzing the patterns in these dialogues,
and look for emerging trends that transcend the immediate
characteristics of the IoT vertical application.

III. RELATED WORK

IoT device characterization and classification has been in-
vestigated with different approaches at different network loca-
tions. Table II provides a summary of the research discussed
in this section. Similar works leverage information available
from the data plane in home network or testbed scenarios,
such as MAC addresses, listening services, ports and protocols,
application layer responses or hostnames (e.g., [12], [13]).
Similarly, other approaches use detailed statistics to perform
the classification since packet level information or WiFi probes
are typically available for local networks (e.g., [14], [15], [8],
[16]). In contrast, another line of work uses statistics available
at higher network levels (e.g., ISP, Internet Exchange Point,
DNS servers) such as DNS or TLS-level information and
remote IP/port (e.g., [17], [18], [19]). Here, we take a different
approach, and are among the first to characterize IoT traffic
from the point of view of IoT providers — not by leveraging
the data packets — but the signaling information, which offers
a very different set of information than prior work.

Standardization bodies and working groups have been defin-
ing both network structure and services for IoT platforms [20],
[21], [22], [23]. Considering mobile networks, two trends
currently coexist, pushing towards re-purposing 2G/3G to
serve [oT, and adopting 4G/5G [24], [25], [26]. Differently
from this literature, we take a data-driven approach, focusing
on the technologies we see being used for IoT in live networks.

Regarding the scope of prior research, literature on cellu-
lar network traffic has mainly focused on either human-to-
human communication, or machine-to-machine communica-
tion within a single MNO [27], [28], [29], [9]. Studies in-
cluding mobile roaming also often focus on specific operators
without global perspective [30], [31], [32]. All these works



TABLE I: Overview of 2G/3G signaling dialogues relevant to this work.

| Dialogue [ Abbr. [ Protocol [ Src. | Dest. | Description
L VLR SAI is sent to get encryption triplets so a visited network
sendAuthenticationInfo SAI MAP SGSN HLR can authenticate the SIM card that tries to connect.
UL is sent whenever a subscriber migrates to another VLR.
updateLocation UL MAP VLR HLR | This may for example occur due to mobility or switching
operators.
UL_GPRS is sent whenever a subscriber migrates to an-
updateGprsLocation UL_GPRS MAP SGSN HLR | other SGSN. This may for example occur due to mobility
or switching operators.
VLR CL is sent to the old VLR or SGSN after and UL has
cancelLocation CL MAP HLR SGSN occurred to notify that the subscriber has migrated to a
new location.
createPdpContext PDP_CREATE GTPv1 SGSN | GGSN PDP_CREATE is sent to establish a new PDP tunnel for
data transmission.
updatePdpContext PDP_UPDATE | GTPvl | SGSN | GGSN ggﬁ—ggﬁ?ﬁ is sent to update parameters of an existing
deletePdpContext PDP_DELETE | GTPvl SGSN | GGSN | PDP_DELETE is sent to close an existing PDP tunnel.

measure the “Internet data plane” of mobile deployments. Only
recently, Lutu et al. [6], [5] analyze the IP eXchange (IPX)
ecosystem and an operational IPX provider by measuring the
“signaling plane” of 3G/4G networks. Moreover, these past
efforts have mostly focused on roaming on traditional human
communication, while the authors of [I] present the only
characterization of an IoT platform, and analyze the traffic
of different verticals.

In this work, for the first time to the best of our knowledge,
we provide a detailed analysis of signaling traffic correspond-
ing to two separate production, large-scale IoT deployments
that serve devices all over the globe. Though the IoT verticals
connecting to these IoT providers differ (both in terms of
geographical placement and application), we show that similar
signaling behavior emerges. We are thus able to generalize
signaling traffic patterns for IoT devices by comparing results
across these two independent providers.

IV. 10T SIGNALING TRAFFIC

We provide a first characterization of the datasets we collect
from two different providers serving [oT verticals with differ-
ent approaches: an IoT platform and a dedicated IoT operator.
Our work is unique in contributing measurements and opera-
tional insights on IoT signaling traffic from commercial live
deployments of cellular core networks from two independent
real-world systems. We argue that our analysis helps shed light
on the complexities of the systems, and motivates the need for
automatic processing pipelines to provide actionable findings
to network administrators and network design architects.

A. Datasets

Though both providers operate systems based on the struc-
ture in Figure 1, and address the same global customer base
(i.e., IoT verticals), we note that the underlying infrastructure
and the general approach for providing services differ (cf. Sec-
tion II).

In this work, we capture signaling traffic corresponding to
the IoT devices each provider manages at their respective mo-
bile core ingress. We identify each IoT device via its encrypted

unique identifier and capture the traffic corresponding to two
signaling services, namely SCCP signaling and GTP signaling.

Table III summarizes the two datasets we build in this work.
The dataset for the IoT platform (DAT1) was captured during
February 2021 and contains approximately 310000 unique
devices. The dataset for the dedicated IoT operator (DAT2)
was collected in January 2020 and includes approximately
270000 unique devices. In total, the dataset contains more than
one billion signaling interactions that we analyze using Apache
Spark. Note that each such interaction, called a dialogue,
consists of one or multiple request-response pairs. Note further
that due to the selected measurement points, as depicted in
Figure 1, the datasets contain only information regarding the
signaling plane, and no information about the lower layers (i.e.
the physical layer) has been collected.

Figure | shows schematically where and on which interfaces
we collect the data. For both providers, we capture the raw sig-
naling traffic and process it to re-build the signaling dialogues
between core network functions in the home network and those
in the visited network whose RAN is used by devices. There
are no ethical concerns regarding the datasets we analyze, as
no identifying information is processed.

Considering SCCP signaling, we monitor the MAP proto-
col that supports end-user mobility and allows network ele-
ments (e.g., the HLR, VLR, Mobile-services Switching Centre
(MSC)) to communicate. We collect traffic corresponding to
the procedures of each device: i) authentication and security,
and ii) location management (update/cancel location).

For the GTP-c, we monitor dialogues required to manage
data tunnels between roaming partners. Here we capture
the create, update, and delete Packet Data Protocol (PDP)
context procedures that devices trigger before and after a data
communication. Specifically, we generate one record for each
create session exchange and retain basic information such as
the tunnel ID, which enables mapping of create and delete
procedures.

Due to the high amount of traffic and processing involved
in collecting and creating these statistics, we only collect
information for IoT platform customers connecting to Point
of Presences (PoPs) in a few locations relevant for operations



TABLE II: Taxonomy of related work.

Ref Scope Setup Information Used Goal
MAC addresses, ports,
[12] 83M home devices from 16M Home and lab deployment protocols, application IoT device classification, security issues
households layer responses,
hostnames
. . MAC addresses from un- . . . .
[13] 285K unique devices Campus deployment encrypted 802.11 traffic IoT device classification via MAC addresses
[14] 33 unique devices Lab deployment Packet-level traces IoT device classification
[15] 81 unique devices deployed in the Lab deployment Packet-level traces Identification of information exposure
US and UK
[8] 28 unique devices Lab deployment Statistical _attributes  of IoT device classification
packet level traces
3 measurements with between 32 | Environment with static - . -
[16] and 108 devices device number WiFi probes Crowd density estimation
[17] 254k unique devices Campus deployment, IPX | DNS or TLS-level infor- | 'y 7 4o ice identification
transit network mation
[18] US—baseq ISP hosting more- than ISP deployment DNS information IoT device identification
40M devices
[19] 1.4 days of captures, appr. 1M de- ISP and IXP deployment Sparsely  sampled  flow IoT device identification
vices headers
21 days of captures, approx. 140M | MNO and IPX deploy- . L . Analysis of IP eXchange QPX) ecosystem,
[61, [51, [1] X Signaling information IoT platform characterization, global per-
devices ment i
spective
Two datasets with 580k unique de- . Detailed analysis of signaling traffic for IoT
. . . Ingress and egress of two | 143 features based on sig- . o > .
This Work | vices across two global mobile de- . L X devices, generalization of signaling traffic
commercial deployments naling information . .
ployments patterns across different IoT providers
TABLE III: Dataset overview: managed connectivity for IoT devices.
[ Dataset | Infrastructure | Procedures captured | Scope ]

DAT1: IoT Platform
Spanish MNO (the home MNO).

Telco-owned platform operating via in-
ternational roaming, using the core of a

310k devices

MAP signali ffic; locati -
signaling traffic; location man February 2021

agement, authentication and security.

DAT2: Dedicated IoT
Operator

IoT-focused independent provider, de-
ploying own cloud-based virtual mobile
core, and aggregating RANs worldwide.

GTP-c control data; Create/Delete PDP

Context/Session, Timeout Procedure. 270k devices

January 2020

(including Spain, US, Brazil, Argentina, Colombia, Peru,
Costa Rica, Uruguay, Ecuador). Conversely, for the dedicated
IoT operator we capture the entire IoT device customer base,
located in 195 countries, with a focus on the US, Germany,
and Mexico.

Naturally, due to the origins of the two independent datasets,
there are certain limitations we need to keep in mind when
working with the data.

Missing Information. Due to the source of both datasets being
live, productive environments, information regarding detailed
use cases of specific devices is usually not available as
operators do not keep track of customers’ applications within
the aggregated traffic mix.

Independent Deployments. Although the evaluated datasets
are obtained from IloT-focused platforms, the two systems
operate independently and serve different customers. Each
have their own bias due to the providers’ operating models.
While target customers operate in similar areas, differences
regarding physically deployed devices need to be considered.

Geographical Bias. As a result of investigating two distinct
platforms, their customer bases exhibit geographical tenden-
cies that may impact the observed behavior. The dedicated IoT
operator (DAT2) services devices deployed in 180 countries,
with a strong bias towards the US and Germany. The traffic
investigated for the IoT platform (DAT1) contains mostly
devices deployed in Central and South America.

B. Signaling Timeseries

Figure 2a shows the timeseries of total number of dialogues
per hour for both datasets.'

For both DAT1 and DAT2, we note that MAP dialogues
account for a larger volume than GTP dialogues (Figure 2a).
This is expected because the MAP protocol must allow the
RAN operator to authenticate the end-user with the home
network before setting up data communications.

Starting from MAP, we note that both providers show an
increase in the volume of signaling messages at the end of
the period of analysis. To check if this growth is due to
an increase of active devices, Figure 2b reports the number
of active devices per hour. We observe little to no increase
here. Furthermore, we note that — even if the timeseries of
the number of active devices follows weekly patterns for
both providers — the corresponding trends differ. Namely, in
the weekly cycle, the number of active IoT devices varies
much more irregularly throughout the week for DAT2 than
DAT1. Curiously, for DAT1, we note the clear drop during
the weekend (especially on Sundays), with an otherwise stable
number of active devices during the week. We conjecture that
these differences stem from the disparity in IoT verticals and
geographical regions that the two providers serve.

'We show normalized values to the corresponding maximum value per data
feed, for confidentiality reasons.
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Fig. 2: Timeseries of aggregated MAP and GTP signaling traffic volume (dialogues) per hour (a), and number of active IoT devices per

hour (b), for each of the two datasets (Table III).

Regarding the GTP signaling trend in Figure 2a, the two
operators show once again different patterns. The IoT platform
exhibits a consistent periodic trend with daily and weekly sea-
sonality, while the dedicated IoT provider shows an increasing
trend. This comes as an effect of the different manner in which
these two providers operate. Specifically, the dedicated IoT
provider enforces strict monthly data quota limits. These come
into play toward the end of the month, where the number of
failed create PDP context requests increases.
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Fig. 3: MAP and GTP signaling breakdown per type of procedure.
We show DAT1, results are consistent across datasets.

C. Signaling Procedures

Figure 3 shows the breakdown of dialogue types in a)
MAP and b) GTP. We only show the timeseries for DAT1
in Figure 3, as the patterns are similar for DAT2. We show on
the y-axis the fraction of a type of dialogues from the entire
volume of dialogues across all dialogue types. Hence, a value
of 0.01 means that 1% of all observed dialogs have occurred
in the form of this respective dialogue type.

Specifically, we show the timeseries of signaling traffic for
the SAI, UL, Update General Packet Radio Service (GPRS)
Location (UL-GPRS), and CL dialogue types for MAP traffic.
Overall, the MAP signaling accounts for 3-4% of the total vol-
ume of traffic signaling traffic in DAT1. The trend throughout

the month follows the daily and weekly patterns we observe
in the number of active devices in DAT1 (Figure 2b).

The IoT devices generate twice as many SAI dialogues
compared to UL or CL dialogues. As expected, the majority
of MAP dialogues (45%) are authentication requests (SAI pro-
cedures). Interestingly, the volumes of UL and CL dialogues
are comparable, while the UL-GPRS corresponding to data
communications are less than 1% of all signaling traffic.

For GTP signaling traffic, we show the distribution of create
PDP context, delete PDP context, and timeout messages. We
note that most dialogues are requests for bringing up the PDP
context for data communications (i.e., PDP_CREATE). These
usually appear in pairs with the requests to tear down these
tunnels (i.e., PDP_DELETE) once the data communication
finalizes. Yet, due to possible failures, a terminal may issue
more create than delete messages (e.g., to re-establish a tunnel
once it has failed). We also observe a constant fraction of
timeout messages, likely due to device or connectivity issues.

Takeaway: The complexity of the mobile IoT ecosystem is
reflected in the signaling patterns that IoT devices generate.
In particular, different IoT provider models exhibit different
patterns. Both the IoT verticals and the different contract op-
tions (such as monthly quotas) affect signaling. Even if domain
knowledge helps to explain the complexity and intertwining of
the system, an automatic and detailed characterization of each
IoT device would allow the network operator to better address
the needs of its customers’ applications.

V. FEATURE ENGINEERING

To enable the automatic extraction of actionable information
from raw data, we design a machine learning pipeline. Our
goal is to automatically group devices that exhibit similar
behavior. We obtain these by analyzing the combined MAP
and GTP signaling traffic of each device.

In total, we include 143 features encompassing i) overall
statistics, ii) message types and signaling patterns, iii) device
activity, iv) mobility statistics, and v) longitudinal activity
statistics. The features cover different levels and directions to
describe devices as holistically as possible. In the following,
we outline each feature group and highlight their respective
importance in differentiating signaling traffic patterns. Ta-
ble IV provides a concise overview of the identified feature
groups, showing the number of features in each group as
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Fig. 4: Empirical CDFs of selected features from overall statistics
and message type statistics.

well as feature examples. For all features, we consider the
period of time of interest (one month in our case), extract
the timeseries of all records for each device and compute the
statistical features. Our intent is to characterize the overall
device behavior, and avoid sudden changes and anomalies that
may occur on short timescales. For the sake of brevity, we
provide the full list of features on GitHub.? For the interested
reader, we offer a detailed listing with discussion of the
features, which we will continuously update with the help of
community feedback.

TABLE IV: Overview of identified feature groups.

[ Group [ No. | Example Feature(s) ]

Percentage of SIGTRAN and GTP
messages, errors, and successes
Contribution of individual message

types
Percentage of time slots with activity

Overall Stats 7

Message Types | 104

Device Activity 5

Mobility Stats 15 No. of operator changes, cell
changes

Long. Activity 2 Int_er—arrlval times, mean context du-
ration

A. Overall Statistics

These features aim at capturing the general signaling be-
havior of IoT devices. We include here i) the total number
of signaling dialogues and ii) the percentage of MAP and
GTP dialogues, breaking down by the number of successful,
erroneous and rejected dialogues. Errors indicate technical
inconsistencies such as missing replies, out of order packets,
invalid packet contents. Rejects represent actively rejected
signaling requests and do not indicate faulty behavior by
devices, carriers, or the core network, but problems with the
device Service Layer Agreement (SLA, e.g., misconfiguration,
data quota violations, attempts to access forbidden MNO).

Intuitively, these features provide general information, and
allow for macroscopic differentiation of devices (e.g., those
that rely on circuit switched connectivity from those that use
data connectivity). They also allow us to identify heavy hitters.
Finally, the error and reject features enable us to identify
anomalous and/or misconfigured devices that fail to complete
successful signaling.

Figure 4 shows the empirical Cummulative Distribution
Function (CDF) over all devices for the percentage of GTP,

Zhttps://github.com/Isinfo3/IoT_clustering_features

MAP, rejected, erroneous dialogues for each dataset. We
generate these metrics over the entire period of analysis. In
a nutshell, there is a significant variation of each of these
features, with some exhibiting a mostly uniform trend, coupled
with a portion of possibly anomalous devices (in the tail of
some distributions). Note how the distributions differ between
the two datasets, but exhibit similar trends.

B. Message Type and Session Statistics

To respect the devices’ communication traffic flows, we
evaluate what kind of signaling methods IoT devices trigger
with their chronological sequence. We generate these features
based on the observations of our exploration in Section IV-C.
These features indicate what fraction of the signaling traffic
corresponds to the MAP dialogues: SAI, UL, UL-GPRS, and
CL; and the GTP-related create, update, and delete mes-
sages. We also differentiate between successful, erroneous and
rejected dialogues, as before. We next assemble messages
occurring in proximity to each other to identify sessions.

Figure 5 shows two sessions consisting of multiple dia-
logues each. Ag represents the interarrival time between two
MAP or one MAP and one GTP dialog. Dgrp describes the
PDP tunnel duration as determined by the time between a
PDP_CREATE and PDP_DELETE.

SAl PDP_CREATE PDP_DELETE SAl JL PDP_CREATE SAl PDP_DELETE

As

As Dgrp As | As Dgrp

y A y >

Fig. 5: Two examples of signaling sessions consisting of MAP and
GTP dialogues.

The identification of each session requires domain knowl-
edge. We rely on a set of rules developed during data analysis
in combination with discussions with experts and the admin-
istrators of the dedicated IoT operator:

« MAP dialogues are attached to their successor if the

interarrival time Ag is smaller than 30 seconds

« The PDP_CREATE, PDP_UPDATE and PDP_DELETE

dialogues of a PDP tunnel always belong to the same
session

« A PDP_DELETE dialogue always terminates the current

session

These sessions capture the activity of devices corresponding
to specific network activity, e.g. a smart meter uploading
hourly measurements to the application server, or a connected
car retrieving navigation instructions upon a driver’s request.
For each IoT device, we compute features that indicate the
number of unique dialogue sequences required to describe
90% and 99% of the sessions we derive from its data. These
features allow further differentiation regarding both devices’
overall signaling behavior with respect to which signaling
messages are used, and how variable the signaling patterns of
each device are by evaluating the number of uniquely observed
signaling sessions.

Figure 6 shows the cumulative distribution of the percentage
of signaling sessions per IoT devices during the period of
analysis. We differentiate three types of sessions, namely
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Fig. 7: Empirical CDFs of device activity features.

sessions with a SAI dialogue, sessions with PDP and without
PDP signaling. We find that in DAT1, devices have on average
70% of sessions with SAI, which is similar in DAT2. However,
in DAT2, the percentage of sessions with PDP signaling is
larger than for DAT1.

C. Device Activity

We aim at capturing device activity levels, both when idle or
in presence of an active data connection. For this, we include
two metrics: the overall time in minutes between the first
and last signaling dialogue observed in each of the datasets
(i.e., the total active time), and the number of minutes with
actual signaling activity (i.e., one signaling dialogue occurs
in that respective one minute slot), regardless of the type
of signaling (i.e., active minutes). For GTP-specific activity
(i.e., active PDP minutes), we only count the slots with GTP-
specific dialogues. We compute the relative activity as the ratio
between the active minutes (i.e., minutes with any signaling
activity) and the total active time. Analogously, we compute
relative PDP activity.

These features act as an indicator of device verbosity. For
instance, they let us differentiate between long-running devices
that generate traffic continuously and devices with spurious
activity that only trigger signaling traffic occasionally.

Figure 7 shows the CDFs for three activity features gener-
ated for each of the two datasets. Note that the total active
time per device is consistent with the corresponding entire
period of analysis for more than 90% of devices in each
dataset that are alive for almost the whole time period (green
curve). For both datasets, the active PDP time per device is
on average one order of magnitude smaller than the active
time. This is expected, since the MAP signaling accounts for
a higher volume of traffic than GTP signaling. We also find
that the difference on average between the active minutes and
the active PDP minutes for DAT1 is higher than for DAT?2.
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Fig. 8: Empirical CDFs of mobility statistics features.

This is a side effect of the way the two groups of devices
operate on average (i.e., DAT1 devices have longer-lived and
more seldom data connections than DAT2 devices).

D. Mobility Statistics

To characterize the mobility of IoT devices, we introduce
features that capture the number of unique visited networks
as well as the number of times devices switch between
using specific mobile network entities (i.e., radio cells, visited
MNOs, SGSNs, and VLRs in the visited MNOs).

These features allow us to differentiate between stationary
and mobile devices, i.e., those exhibiting a small or large
number of changes in mobility related values, respectively. In
addition, we can distinguish devices that alternate between a
few operators (e.g., due to coverage issues) from devices that
visit a large number of different operators, indicating higher
(international) mobility.

Figure 8 shows the empirical CDFs for the mobility features.
In this case, the distribution of the number of MNO switches
recorded by a single device is very different for the two
datasets: In DATI1, more than 90% of devices show zero
changes in the visited MNOs (blue curve), i.e., they always
rely on the same visited MNO; in DAT2, this percentage
is below 50%. In fact, approximately 20% of IoT devices
register more than 1,000 MNO changes during the time of
one month of analysis. This striking dissimilarity is due to
(1) the different approaches of the two providers to operate
their platform (i.e., the IoT platform honors their underlying
MNO as the preferred roaming partners), and (ii) the mobility
profiles of the IoT verticals relying on each provider (e.g., fleet
tracking IoT solutions have different mobility patterns than
smart meters). In terms of the number of radio cells devices
use in DAT1, 60% of devices never change the radio cell to
which they initially connect to. This percentage decreases to
35% in DAT?2, hinting for a larger proportion of highly mobile
devices.

E. Longitudinal Activity Statistics

The last set of quantitative features encompasses infor-
mation regarding various stochastic processes such as the
interarrival times of sessions that we characterize by the mean
and standard deviation for each of the following features:

o Interarrival time between sessions: we define separate
features for the time between sessions containing GTP
dialogs, sessions containing only MAP dialogues, and any
two consecutive sessions, irrespective of session content.



« Interarrival time between dialogues within sessions, and
separately between GTP update messages.

e Context duration, i.e., the time between PDP tunnel
creation and deletion.

These features allow us to identify devices that exhibit
low variability (e.g., indicating periodic behavior), or high
variability (e.g., alarms or user triggered actions). Furthermore,
the context duration enables us to separate the devices that
establish many short-lived data tunnels from the ones that
establish few long-lasting tunnels.
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Fig. 9: Empirical CDFs of longitudinal features.

Figure 9 shows the empirical CDF of three longitudinal
features. We show the CDFs of the average PDP context
duration, the interarrival times between sessions (regardless
the type of session, MAP or GTP) and, finally, the interarrival
time only for GTP sessions. Looking at the two datasets,
devices in DAT1 have longer interarrival times between GTP
sessions than devices in DAT?2. Also, the GTP session duration
is longer for DAT1 devices than DAT2 devices. Indeed, in
DAT2, GTP dialogues have the highest frequency among
dialogue types, explaining the short interarrival times of the
GTP sessions, and their short duration. We conjecture that
this is a consequence either of the IoT device programming
for the specific vertical (some device may require periodic and
frequent data communication with the application server), or of
the configuration of the IoT provider itself (e.g., the provider
has a maximum number of data connection that it can sustain
for each gateway).

For DATI1, we note that there is an order of magnitude
difference between the interarrival time of all sessions (GTP or
MAP sessions) and the interarrival time for GTP sessions, in
particular. This is consistent with the fact that MAP dialogues
have higher frequency than GTP dialogues for devices in
DAT1. Again, this might be a direct consequence of the
application these devices serve (e.g., energy smart meters
only trigger one data connectivity per day to upload their
measurements, while vehicle tracking devices require much
more frequent connections).

Takeaway. The characterization of IoT devices requires mul-
tiple features that project each device in a multidimensional
space. We design 143 features that cover different aspects and
dimensions to describe devices as holistically as possible. We
expect similar devices to exhibit similar features. This calls
for an automatic approach to highlight clusters of devices
exhibiting similar patters, which can explain major signaling
patterns in the data and let operators understand the footprint
of each group of devices.

VI. DEVICE CLASSIFICATION

In Section V, we have shown that the two deployments
present similar but different characteristics. This is due to a
multitude of factors, e.g., different data connectivity, different
IoT verticals the two providers serve, and different business
models and systems the operators run. We now investigate if
it is possible to identify common behaviors, e.g., groups of
devices that exhibit similar signaling traffic patterns. Next, we
are interested if there exist generic patterns that emerge in both
deployments.

For this, we rely on unsupervised machine learning ap-
proaches. First, we generate the full set of features for each
device in each dataset. Then we run dimensionality reduction
with Principal Component Analysis (PCA) on the feature set.
This significantly reduces the dimensionality of the feature
space to a number of principal components that retain at
least 80% of the variability of the initial input data. We next
perform k-means clustering on this reduced feature set. We
identify k = 8 as the optimal number of clusters based on
the Dunn index [33] in both cases. Similarly, the Silhouette-
Score suggests to use k between 7 and 8. For consistency,
we opt to set £ = 8. All operations are performed using the
R statistical language (machine learning) and Apache Spark
(feature extraction).’

A. Clustering results

Following the same methodology on DAT1 and DAT2, we
separately extract eight main clusters that represent the eight
main signaling profiles. Interestingly, we verify that these
eight profiles are consistent for both providers, and that they
group devices with similar communication patterns (e.g., high
mobility devices, stationary devices such as smart sensors). In
the following, we analyze the results.

1) DATI Profiles — IoT Platform: We provide an overview
of the clustering results for the IoT platform in Table V.
We show the mean values for the subset of features with
the highest feature importance to distinguish and characterize
clusters from one another. For this, we consider four groups
of characteristics, which we map to the sets of features we
previously introduced (Section V). The first group includes
overall statistics that allow us to distinguish between the use
of pure phone connections or phone plus data connections
(i.e., percentage of GTP/MAP Dialogues). The second group
includes overall statistics regarding the errors and rejects in the
signaling procedures. The third group includes features related
to the mobility of devices. The fourth group includes message
type statistics, which breaks down the use of specific signaling
procedures. For example, some clusters only contain devices
that are characterized by the low use of GTP messages, thus
little signaling related to data traffic.

All percentage values we include in Table V indicate the
ratio between the one feature value to the total number of
dialogues triggered by a device. We show the average values
of the features over all the devices that are included in a given
cluster. To help the reader, we color cells according to the

33 nodes with 2xAMD EPYC 7513 32-Core Processor, 1TB memory



baseline range of the entire dataset: blue — if the values are
above the 80%, and red — if the values are below the 20%
quantile. This highlights outliers in both directions.

Cluster 1 has a high percentage of UL_GRPS messages,
with an average of 15.3% of the total messages per device.
This indicates a high signaling volume originating from the
SGSN, which we further corroborate with the occurrence of
SAI messages originating at the SGSNs (not included in the
table). Mobility and error features show no irregularities. Thus,
we attribute cluster 1 to a device profile with regular behavior,
but a high volume of signaling originating from SGSNs.

TABLE V: Mean values for features that distinguish clusters in
DAT1. Blue and red indicate if values are globally above the 80% or
below the 20% quantile.

[ Device Cluster [ 1] 2] 3] 4] 5] 6] 7] 8]
Overall Statistics: Phone & Data Usage
MAP Dialogues [%] 834 | 778 87.2 89.2 | 669 922 250 | 717
GTP Dialogues [%] 16.6 | 222 12.8 10.8 | 33.1 7.8 ‘ 75.0 223 ‘
Overall Statistics: Errors & Rejects
‘ Errors [%] ‘ 0.46 | 020 | 0.46 0.08 | 0.14 ‘ 0.36 0.67 ‘ 0.16
Rejects [%] 0.43 | 0.68 | 55.71 046 | 1.15 | 1.14 0.21 0.58
Selected Mobility Features
Cell ID Changes 21.96 | 0.08 023 | 128.13 | 920 546 | 54.53 | 51.34
‘ Operator Changes ‘ 3.08 | 0.01 0.03 77.58 | 038 0.28 1.49 1.14 ‘
Message Type Statistics: Protocol Usage
SAI [%] 30.6 | 21.8 154 325 | 29.7  46.6 10.1 395
UL [%] 13.0 | 11.1 5.5 19.8 | 152 20.0 5.4 14.9
UL_GPRS [%] 153 4.0 4.0 19.1 59| 6.6 1.6 6.0
PDP_CREATE [%] 92 | 113 6.4 6.6 | 169 42 38.2 11.8
PDP_DELETE [%] 74 | 10.7 6.3 4.1 | 16.2 3.6 36.2 10.4
PDP_UPDATE [%] 83 | 11.1 6.4 48 | 16.6 3.9 37.5 11.1

Moving on, cluster 2 captures devices that are likely sta-
tionary, with an average of 0.08 radio cell changes and 0.01
operator changes over the 30-day period. This is also con-
sistent with the low ratio of UL_GPRS messages, indicating
the lack of mobility-related HLR updates. Devices in cluster
2 are also characterized by an error rate of only 0.2%, and
low reject rate of 0.68%. We conjecture that, due to their
lack of mobility, these devices have good signal strength to
successfully complete signaling procedures most of the time.
Furthermore, we find that devices in this cluster exhibit long
GTP tunnel durations, indicating long-lived data connections.

Focusing on cluster 3, we see it is mainly characterized by
a high reject rate (55.71% per device), indicating it contains
devices that tend to fail to complete the signaling procedures.
These may include, for example, devices trying to establish
connections to invalid roaming partners, devices that are using
deactivated SIM cards, or devices that attempt to connect in
poor coverage areas.

Cluster 4 clearly contains devices that exhibit a very high
degree of mobility. They frequently change the cell and the
operator, and have a high percentage of UL and UL_GPRS
messages that support this observation. Devices in this cluster
also exhibit low GTP signaling ratios, indicating limited use
of data connectivity.

Clusters 5 and 8 do not exhibit extreme characteristics aside
from their low error and reject rates. The difference between
the two clusters is the higher mobility indicator (cell changes)
of cluster 8. Hence, we categorize both clusters 5 and 8 as
containing devices with no exceptional properties.

Clusters 6 and 7, on the other hand, exhibit mainly opposing
properties regarding the type of signaling procedures they

TABLE VI: Mean value of relevant features in each cluster of DAT2.
Blue and red indicate if values are globally above the 80% or below
the 20% quantile.

[ Device Cluster I 1] 2] 3] 4] 5] 6 7] 8]
Overall Statistics: Phone & Data Usage
MAP Dialogues [%] 39 | 994 63 86 81 81 54| 99.1
GTP Dialogues [%] 61 0.7 ‘ 37 14 19 ‘ 19 ‘ 46 ‘ 0.9 ’
Overall Statistics: Errors & Rejects

Errors [%] 54 1.9 5.1 2.6 2.6 28 2] 034
Rejects [%] 051 | 0.24 1.5 0.72 1.7 | 0.76 0.67 97
Unclassified [%] 1.7 35 32 3.1 2.6 2.6 2] 027

Select Mobility Features

Cell ID Changes 12942 | 0.19 | 567.43 | 18.03 | 43.38 | 6.04 | 317.93 | 830
Operator Changes ‘ 4.41 ‘ 420 | 11451 ‘ 15.29 ‘ 5.76 ‘ 0.63 ‘ 45.30 ‘ 0.51 ‘
Message Type Statistics: Protocol Usage
SAI [%] 272 53 41.8 | 404 | 537 | 443 32.8 | 945
UL [%] 6.0 | 384 57 12.7 19.7 | 19.8 9.6 4.0
UL_GPRS [%] 2.5 0.6 4.0 18.5 23 6.7 33 0.1
PDP_CREATE [%] 325 0.3 15.3 6.5 9.2 | 103 15.1 0.5
PDP_DELETE [%] 27.0 0.1 11.0 4.1 73 3.8 13.6 0.3
PDP_UPDATE [%] 1.7 0.2 10.4 29 22 52 16.9 0.1

trigger. Cluster 6 devices trigger on average a high percentage
of MAP signaling messages (92.2% of signaling dialogues
are MAP), whereas cluster 7 devices trigger mostly GTP
signaling (with 75.0% GTP-related signaling per device). The
per-message-type breakdown ratios further support this sepa-
ration of the two clusters. Cluster 6 devices use then circuit-
switched technologies, while cluster 7 devices use mostly data
connectivity.

2) DAT?2 Profiles — Dedicated IoT Operator: Following the
same clustering methodology, we extract signaling profiles
from DAT?2. In Table VI we show the results.

Here, cluster 1 exhibits two major characteristics: devices
show a high ratio of data-related signaling, which both the
high percentage of GTP dialogues and the high percentages
of PDP_CREATE and PDP_DELETE messages confirm. The
low ratio of PDP_UPDATE messages indicates that devices
use short-lived GTP tunnels, instead of relying on the update
mechanism. We infer that this might be an artifact of the
manufacturer settings (e.g., due to quota limits). Devices also
exhibit a significantly high number of radio cell changes, but
a low number of network operator changes. This indicates
that these are mobile devices that largely remain attached to
the same operator. We infer that these devices have regional
mobility, over a relatively small geographical area.

Cluster 2 aggregates devices that mainly trigger MAP
signaling. Devices in this cluster also exhibit a large ratio of
unclassified dialogues indicating the use of non-data related
communication, like SMS*. The mobility features show that
devices are mostly stationary. These devices may thus reflect
very old IoT devices that connect via SMS.

Clusters 3 and 7 both contain devices that exhibit a large
degree of mobility, as indicated by the high numbers for both
cell changes and operator changes. This occurs if devices move
over large geographical distances, traversing regions covered
by multiple operators, or for devices that frequently alternate
between two operators in areas with coverage of more than

4Here we also include the percentage of unclassified dialogues. This group
of dialogues contains every type of MAP signaling that is not related to
authentication or mobility handling. These include mainly signaling dialogues
related to SMS transmission, which are beyond the scope of the analysis we
expose in this work.
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one operator. Both types of mobility result in the same pattern
when it comes to the observed signaling traffic.

Clusters 4 and 5 exhibit largely similar characteristics and
contain mainly nondescript devices. The major difference
between the two clusters is the degree of mobility these devices
exhibit. While cluster 4 shows a low average number of cell
changes, the number of operator changes is almost three times
higher compared to cluster 5. We assume that this is an artifact
of the radio deployments available to the devices in the areas
where they operate (i.e., per country or region differences in
radio deployment).

Cluster 6 aggregates devices that exhibit a very high error
rate. This means that observed signaling interactions violate
the signaling standardization through unexpected data, out of
order or missing messages, or invalid signaling attempts.

Finally, cluster 8 contains devices that fail to perform suc-
cessful signaling, with a very high ratio of rejected dialogues
(i.e., 97%). Similar to DATI, this occurs if devices try to
roam with operators without valid roaming agreements or if
deployed sim cards are either not yet or no longer activated.
Takeaway: The analysis of device signaling characteristics
allows identifying macroscopic patterns that are explainable.
The unsupervised learning approach greatly simplifies the
analysis of the administrators, who can further use their
domain knowledge to interpret the results. In addition, some
clusters clearly pinpoint groups of devices that have problems,
e.g., generating large amounts of errors, or are using old
technology. This information is instrumental for the network
operator for both management and business actions.

B. Comparison of Clustering Results

While the operations and customer bases of these two
providers are different, we found that the datasets contain
similar profiles, but at different granularity. We provide a direct
comparison of the results for the two independent datasets.

We condense the identified descriptions into four profiles
and assign qualitative indicators according to the values
in Table V and Table VI. This simplifies the comparison of

signaling patterns. Table VII presents this mapping between
signaling profiles and clusters in each of the datasets.

Mobility. In both datasets, we identify clusters (cluster 4 in
DAT1, and clusters 3 and 7 in DAT?2) that exhibit significant
mobility (high number of operator and cell changes). When
looking at the specific feature values for these clusters, we
observe that devices — while exhibiting strong mobility in both
datasets — differ in the way they use data connectivity. On
average, only around 11% of signaling traffic consists of GTP
dialogues in DAT1, while devices in DAT2 exhibit 37% and
46% GTP dialogues on average, with DAT1 having more IoT
devices that do not rely on data connectivity (e.g., shipment
tracking) than DAT?2.

Data Usage. Data usage characteristics represent our second
behavioral profile. Differentiation by data usage shows that our
clustering approach on both datasets is able to isolate devices
that either exhibit excessive data usage (cluster 7 in DATI,
cluster 1 in DAT?2), or very limited data usage (clusters 4
and 6 in DATI, cluster 2 in DAT2). Note that cluster 8 in
DAT?2 also shows very low data-related signaling. However,
this is due to the fact that devices in this cluster largely fail to
perform successful signaling and hence never get the chance
to establish data connectivity. This is again due to the different
configurations of the two providers (e.g., quota limits). These
clusters may suggest the IoT operators to adapt their plans.

Reject Behavior. The reject behavior of devices maps to
cluster 3 for DAT1 and cluster 8 for DAT2. With a mean reject
rate of 55% and 97%, respectively, both exhibit significantly
higher reject rates than all other clusters. This profile points
to the fact that these devices largely fail to perform any
meaningful signaling, likely due to deactivated SIMs, or buggy
implementations. They bring unnecessary cost for operators
and carriers, and justify the need for network management
decisions to alleviate the issues they pose.

Protocol Usage. Finally, we were able to identify clusters
showing distinct protocol usage patterns in both datasets.
Namely, clusters 1 and 4 in DAT1 as well as cluster 4 in DAT2
show high amounts of signaling messages originating from
the SGSN (UL_GPRS) while at the same time only showing
low to moderate data usage, indicating irregular signaling
behavior. Conversely, clusters 1 and 7 in DAT?2 exhibit low and
high usage of PDP_UPDATE dialogues despite showing low
and moderate data usage, respectively. This indicates irregular
device behavior, such as excessive creation and deletion of data
tunnels for cluster 1 or abnormally high data tunnel duration
in the case of cluster 7. This suggests possible implementation
issues.

Takeaway. The profiles we identify through clustering gener-
alize to both deployments for our datasets. We expect this to
be applicable to other networks and datasets as well. We see
this as a step towards creating common profiles for IoT devices
based on mobile signaling that researchers can use as a starting
point, and network operators can leverage to simplify their
actions. We achieve this thanks to the generality of the features
that characterize device behavior, thus allowing common and
macroscopic patterns to emerge.



VII. DISCUSSION

Understanding the signaling behavior of IoT devices is
crucial for network optimization in modern mobile networks,
specifically when it comes to the current complex roaming
landscape. Administrators benefit from detailed traffic analy-
ses, gaining insights into peak usage times, similarities, and
differences between regions, operators, and device types, and
a deeper understanding of how devices react to issues in the
network, such as congestion. Specifically, this knowledge can
directly be applied to many aspects of the current mobile
network landscape, as outlined in the following.

Network Optimization and Resource Usage. By improv-
ing the usage of the available resources, reducing congestion,
and improving overall network performance in the signaling
plane, administrators are able to improve the Quality of
Service (QoS) for devices. Specifically, administrators can im-
plement effective load balancing strategies based on signaling
patterns, preventing congestion in specific network areas, and
optimize resource utilization. By identifying and minimizing
unnecessary signaling overhead, network efficiency can be
improved, leading to a more sustainable and cost-effective
operation. Dynamic resource allocation, guided by real-time
signaling behavior analysis, enables the network to adapt to
changing conditions, while the identification and mitigation of
latency issues contribute to a responsive and reliable network.

Security and Diagnostics. Establishing a general baseline
for the signaling patterns observed in mobile networks is a crit-
ical requirement in both security related and troubleshooting
tasks. Anomalies, specifically deviations from the previously
established baseline, in signaling behavior can indicate po-
tential security threats or attacks on the network. Monitoring
and analyzing signaling patterns enable the early detection of
unusual activities, allowing for prompt security measures to
be implemented. Similarly, signaling insights are invaluable
for troubleshooting network issues. By analyzing signaling
data, administrators can quickly identify and resolve problems,
reducing downtime and improving the overall reliability of the
network.

Planning and Migration. A deep understanding of the
signaling behavior across the entire network is crucial for
effective network planning and expansion. As IoT deployments
grow, understanding how devices communicate, and thereby
generate load for the network, helps administrators design
scalable and resilient networks. This ensures that the infras-
tructure can accommodate the increasing number of devices
while maintaining optimal performance and reliability. This
is especially relevant as networks progress from the current
2G/3G/LTE landscape towards 5G and 6G deployments. Un-
derstanding the signaling behavior is essential to successfully
transition towards novel technologies, as it is important to un-
derstand the workload generated by devices after the transition
towards a novel network paradigm. The insights obtained in
this work facilitates this migration processes, ensuring that
existing IoT devices remain connected and operational during
network upgrades.

Sustainability. Finally, in the recent advent of sustainable
networking, understanding the behavior of devices is cru-

cial when it comes to optimizing networks regarding energy
consumption and sustainability. IoT devices often operate on
limited battery power, making efficient energy management
crucial. Analyzing signaling behavior allows administrators to
implement strategies that minimize the frequency and duration
of signaling events. This proactive approach can be leveraged
to extend the battery life of connected devices, a critical factor
for many IoT applications and a crucial Key Performance
Indicator (KPI) for operators going forward.

VIII. CONCLUSIONS

In this work, we performed a first-of-its-kind characteriza-
tion of IoT signaling traffic in mobile networks. We showed
how measuring the signaling plane of IoT providers can illu-
minate the characteristics of the network, the device footprint,
and how unsupervised machine learning allows the identifi-
cation of groups of devices with similar behavior. Our work
provides the basis for network operations teams to improve
their management and general service delivery, by highlighting
groups of devices with critical signaling characteristics that
need to be taken into account for the correct management of
the IoT ecosystem in general. In addition, we lay the ground-
work for future research activities in the areas of anomaly
detection, device classification, and traffic modeling in general.
Our results showed the need for device-level characterization
to improve both our understanding of specific IoT verticals and
the network load generated by deployments. In a privacy-aware
system, where the network operator is blind to the end-user
application, this knowledge allows the IoT provider to deploy
a proactive approach when running their service.

Interestingly, after separately processing two independent,
large-scale datasets, we found that similar signaling character-
istics are well-suited to identify groups of devices across both
datasets. Here, domain knowledge is paramount in building
a meaningful set of features, while enabling a generalizable
approach. We believe this is key to enabling interpretability of
results, that we prove with our dataset for two IoT providers.

Further, the data work builds the base for future research
and applications, building more complex machine learning
models to apply in production. We presented features that were
crucial for distinguishing clusters of devices, as highlighted in
Tables V and VI. Specifically, we identified device mobility,
errors, and the ratio of GTP and MAP dialogues to be the
most relevant factors when explaining the clusters. Intuitively,
these groups of features explain three key characteristics of
devices: mobility, anomalous behavior, and data usage.

To enable researchers and practitioners to benefit from our
findings, to compare future datasets to our results and to
validate and reproduce our findings, we provide the aggre-
gated feature values for the dedicated IoT operator (DAT2).
The included dataset contains all feature values for 270,000
unique IoT devices. This, in addition to the provided insights
presented in this paper and the engineered feature set, allows
operators to reproduce our findings in their respective deploy-
ments. By comparing aggregated results across device clus-
ters or detailed device characteristics within specific clusters,
e.g., highly mobile devices, network technicians can leverage



our findings to identify anomalous devices. By applying our
proposed methodology and resulting models, operators can
identify and optimize a wide range of aspects of their deploy-
ments, by tailoring system configurations to the behavioral
characteristics observed in real world data.

As global connectivity becomes more important, and over-
the-top providers (e.g., Twilio, EMnify, Truphone, Google Fi)
penetrate deeper into the market, we argue that scrutinizing
mobile signaling traffic between different entities involved in
the end-to-end communication solution is crucial for monitor-
ing the health of the ecosystem.

ACKNOWLEDGEMENT

This work was partially supported by the Smart Networks
and Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation program
under grant agreement no.101139270 ("ORIGAMI”), and by
the European Union’s Horizon 2020 research and innovation
program under grant agreement no.101017109 ("DAEMON™).

GLOSSARY

CDF Cummulative Distribution Function. 7

CL Cancel Location. 3, 6, 7

GGSN Gateway General Packet Radio Service (GPRS) Sup-
port Node. 3

GRX General Packet Radio Service (GPRS) Roaming eX-
change. 3

GTP GPRS Tunneling Protocol. 3, 4, 9

HLR Home Location Registry. 3, 4, 10

IMSI International Mobile Subscriber Identity. 3

IoT Internet of Things. 1-4, 9

IPX IP Packet Exchange. 2, 3

KPI Key Performance Indicator. 12

MAP Mobile Application Part. 3-6, 9

MNO Mobile Network Operator. 1-3, 7, 8

MSC Mobile-services Switching Centre. 4

MVNO Mobile Virtual Network Operator. 1

PCA Principal Component Analysis. 9

PDP Packet Data Protocol. 4, 6, 8

PoP Point of Presence. 4

QoS Quality of Service. 12

RAN Radio Access Network. 2, 4, 5

SAI Send Authentication Information. 3, 6-8

SCCP Signaling Connection Control Part. 3, 4

SGSN Serving General Packet Radio Service (GPRS) Support
Node. 3, 8, 10

UL Update Location. 3, 6, 7, 10

UL-GPRS Update General Packet Radio Service (GPRS)
Location. 6, 7

VLR Visitor Location Registry. 3, 4, 8
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