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Abstract 

This work regards the analysis of the seismic response of bridges isolated with single concave friction pendulum devices, 
including or neglecting the presence of the rigid abutment. Two six degree-of-freedom models are considered for the two cases, 
in order to represent the response of the elastic reinforced concrete pier and of the infinitely rigid reinforced concrete deck. The 
behavior of the friction pendulum isolators accounts for the non-linear dependency of the friction coefficient on the sliding 
velocity. The comparison is carried out by including the aleatory uncertainty in the seismic input (i.e., accounting for different 
natural records with different characteristics) and by varying the modelling properties within a parametric analysis. Finally, by 
solving the equations of motion in nondimensional form, the difference between the two models are deepened in terms of 
influence of the seismic isolation. 
© 2022 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
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1. Seismic isolation 

Seismic isolation in case of bridges has the purpose of reducing the accelerations induced in the superstructures 
and consequently transmitted to the piers. Many works have focused on demonstrating the effectiveness of seismic 
isolation, as discussed in Constantinou et al. (1992), Kartoum et al. (1992) and Jangid (2008). For instance, the 
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seismic performance of multi-span continuous deck bridges is studied in Kunde and Jangid (2006) with the adoption 
of simplified models to include the elastic behavior of the pier. A multi-span continuous deck bridge, isolated with 
elastomeric bearings, is investigated by Tongaonkar and Jangid (2003), with the purpose of analyzing the maximum 
displacement at the level of the device on the abutment. Among the widely spread bearings, the friction pendulum 
system (FPS) devices have the advantage of providing an isolation period independent from the mass of the deck, for 
their recentering ability as well as the capability to ensure high dissipation, as demonstrated in Su et al. (1989) and 
Wang et al. (1998). In particular, the concept of the existence of an optimum value for the friction coefficient of the 
FPS device able at minimizing the seismic response of the structure was first introduced by Jangid in Jangid (2000). 
In Castaldo and Amendola (2021a), the optimum friction coefficient is studied by changing many structural 
variables within a parametric analysis. Other parametric analyses have been elaborated in order to identify the 
influence on the seismic response of the design properties in case of isolated multi-span steel girder bridges, where 
FPS bearings were installed, as seen in Tubaldi et al. (2014) and Castaldo et al. (2018).  

This work has the objective of studying the influence of neglecting or including the pier-abutment-deck 
interaction for bridges isolated with single concave friction pendulum devices (FPS). For this purpose, two six-
degree-of-freedom (dofs) systems are modelled: one without the presence of the abutment and another considering 
its presence (i.e., single-column bent viaduct and multi-span continuous deck bridge respectively). Different problem 
parameters are varied within a parametric analysis and the uncertainty in the seismic input is included by means of a 
set of 30 natural ground motions. The equations of motion are solved for both the models in nondimensional form. 
The seismic response in terms of maximum normalized pier displacement is computed for both the structures and for 
all the seismic inputs. This has led to the computation of the optimum friction coefficient able to minimize the 
previously mentioned response and varying with the problem’s parameters (i.e., deck and pier fundamental periods 
and mass ratio) allowing to compare the two systems. 

2. Non dimensional form of the equations of motion 

The two structures (i.e., single-column bent viaduct and multi-span continuous deck bridge) have been modelled 
by means of two six-degree-of-freedom (dof) systems, as shown in Fig. 1a and Fig. 1b respectively. In particular, 1 
dof is used for the infinitely rigid reinforced concrete (RC) deck and 5 additional dofs are adopted for the lumped 
masses of RC pier, whose behavior is assumed elastic as discussed in Castaldo and Amendola (2021b). In addition, 
when the presence of the abutment is included, the latter is modelled as rigid and fixed. 

 

   

md 

mp1 

mp2 

mp3 

mp4 

mp5 

kp1, cp1 

kp2, cp2 

kp3, cp3 

kp4, cp4 

kp5, cp5 

a DECK 

PIER 

FPS 

up1 

up2 

up3 

up4 

ug 

up5 

ud 

 

md 

up1 

up2 

up3 

up4 

ug 

up5 

ud 

FPSa FPSp 

mp5 

mp4 

mp3 

mp2 

mp1 

kp1, cp1 

kp2, cp2 

kp3, cp3 

kp4, cp4 

kp5, cp5 

 DECK 

PIER 

ABUTMENT 

   b 

 

Fig. 1 Multi degree-of-freedom system for: (a) single-column bent viaduct (i.e., neglecting the presence of the rigid abutment); (b) multi-span 
continuous deck bridge (i.e., including the presence of the rigid abutment). 

Regarding the case in which the abutment is modelled (Fig. 1b), the equation of motion under a horizontal 
seismic input are: 
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where ud represents the displacement of the deck with respect to the pier, upi is the relative displacement of the i-th 
pier lumped mass with respect to the successive, md and mpi are their respective masses, as well as cd and cpi are their 
respective viscous damping coefficients, kpi stands for the stiffness of the pier lumped masses, t is the time, the dots 
indicate differentiation over time, Fa(t) and Fp(t) are the forces of the FPS isolators located, respectively, on top of 
the abutment and on the pier, computed as suggested by Zayas et al. (1990): 
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where / /d dk W R m g R   is the stiffness of the deck and is divided in two: half for the isolator on the abutment 

and half for the pier. The radii of curvature of the FPS devices on the abutment and on the pier, respectively, are Ra 
and Rp,   is the sliding friction coefficient of the bearings, g is the gravity constant. It is noteworthy that the 

resistant forces of the bearings are given by the sum of an elastic component and a viscous component. In addition, 
the two forces differ only in terms of displacement since Fa(t) depends on the displacement of the deck relative to 
the ground while Fp(t) is function of the displacement of the deck with respect to the pier top. The fundamental 

period of the deck given by 2 / 2 / gd d dT m k R    only depends on the geometry of the isolator and it is 

independent from the deck mass (Zayas et al., 1990).  
The sliding friction coefficient is given by a non-linear relationship with the sliding velocity as follows Mokha et 

al. (1990): 
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where maxf  and  minf  are the sliding friction parameters at large and zero velocity, the parameter  governs the 

transition from low to large velocities. In this study, it is assumed   equal to 30 and max min3f f .  

To obtain the nondimensional expression of the equations of motion, an application of the Buckingham’s Π-
theorem is adopted Makris and Black (2003). A time scale and a length scale are introduce as, respectively, 1/ d  
(where d indicates the circular frequency of the isolation system) and 2

0 / da   (where 0a  is an intensity measure for 
the seismic input). In particular, the former is used to pass from the time t  to dt  , implying that the ground 
motion input of equation (1) is given by 0 0( ) ( ) ( )gu t a l t a    , where ( )l t  is the seismic input time-history over 
time t , while ( )  is the same information but in the new time  ; the latter is introduced to divide all the members 
of equations (1) for 2

0 / da   . Then, the nondimensional equations are given by: 
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where 2
0d d du a    and  2

0pi pi du a  are the nondimensional expressions for the displacement of the deck and 

of the pier respectively, d d dk m     and  pi pi pik m   are the respective circular vibration frequencies,  

2d d d dc m   and 2pi pi pi pic m   are the respective damping factors and pi dm m   is the mass ratio of the i-

th lumped mass (equal for all the lumped masses). Then, the expression (4) is in terms of the following non 
dimensional parameters: 
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More precisely, to avoid the dependency of the nondimensional parameter   from the velocity, its expression 

is substituted by 
*

max 0/f g a  . 
All the previous considerations are valid for the case of a single-column bent viaduct (Fig. 1a). The only 

difference is that the term Fa(t) is not present in both equations (1) and (4) since the abutment is not modelled.  

3. Parametric analysis  

In the following, the assumptions and considerations regarding the parametric analysis (valid, without distinction, 
for the two models) are presented.  
Starting with the structural properties, the pier period Tp varies from 0.10s to 0.20s,  the damping ratios are assumed 

equal to 0%
d d      and 5%

p p     , the deck period Td varies from 2s to 4s, the mass ratio varies in the 

range 0.1, 0.15, 0.2 and the normalized friction coefficient 
*
   ranges between 0 and 2.  

For what concerns the seismic input, both the structures are subjected to 30 different seismic natural ground 
motions, selected from 19 different seismic events, coming from PEER, ITACA and ISESD databases. The main 
characteristics varies in the following ranges: the magnitude from 6.3 to 7.5, the peak ground acceleration from 0.13 
to 0.82 g. the source-to-site distance from 13 km to 98 km. Regarding the seismic intensity 0a , also indicated as 
intensity measure in line with the Performance Based Earthquake Engineering (PBEE) approach Aslani and Miranda 
(2005), Porter (2003), is herein equal to the spectral pseudo-acceleration  ,A d dS T  . In line with Ryan and Chopra 
(2004), the damping ratio d  is set equal to zero, implying that the spectral pseudo-acceleration becomes only 
function of the deck fundamental period. 

Starting from these assumptions, the equation of motions as shown in Equations (4) are numerically solved for 
each of the 30 natural ground motions and for both the two structural systems. The software that has been adopted is 
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Matlab Simulink, Math Works Inc (1997), and the algorithm used is the Runge-Kutta-Fehlberg integration 
algorithm. The output is in terms of maximum non dimensional displacement of the pier top, calculated as: 
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The response parameter is subsequently probabilistically analyzed in order to obtain its statistics. In particular, 

the response is assumed to be lognormally distributed, in line with the results of Ryan and Chopra (1997) and 
Castaldo and Ripani (2016), having geometric mean  GM D  and standard deviation  D  as follows: 
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where di is the i-th sample realization of D, D is the response parameter herein assumed coincident with 

pu  and N 

represents the total number of samples (i.e., seismic inputs). 

4. Comparison of the seismic response for the two structural systems 

By solving the nondimensional equations of motion, the response in terms of nondimensional maximum 
displacement of the pier top is computed. Then, the geometric mean, calculated with respect to the results under the 
30 natural ground motions, is calculated and shown in Fig.s 2-3. In particular, the two figures contains a comparison 
between the two structural systems as function of the deck periods Td, the simplified nondimensional friction 
coefficient 

*
 , and for fixed values of Tp and /p dm m . For both the structural systems, the response decreases for 

lower values of the pier period and for larger values assumed by the deck period and the mass ratio. These results 
also suggest the existence of an optimal value for the friction coefficient able to minimize the seismic response of 
the substructure.  
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Fig. 2. Median value of the maximum normalized pier displacement as function of Td and П*μ, for mp/md =0.1,0.15,0.3 and Tp =0.1s: (a) single-
column bent viaduct; (b) multi-span continuous deck bridge. 

Fig.s 4-5 contains the dispersion of the normalized maximum pier displacement. The dispersion is larger when 
the previously mentioned optimal value is reached and no other dependencies are recognized. Furthermore, for the 
case of the multi-span continuous deck bridge (i.e., modelling the pier-abutment-deck interaction) the dispersion is 
larger than the case of single-column bent viaduct.  
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It is noteworthy that the value of the optimal friction coefficient does not only depend on the variables of the 
problems (i.e., pier and deck fundamental periods and mass ratio), but it is also function of the structural system that 
is considered (i.e., if single-column bent viaduct or multi-span continuous deck bridge). Regarding this aspect, the 
sagging zones of the response in Fig.s 2-3 as function of 

*
  are more pronounced when the pier-deck-abutment 

interaction is neglected. This is explained by the larger sliding velocity of the bearing on top of the abutment than 
for the isolator on the pier.  
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Fig. 3. Median value of the maximum normalized pier displacement as function of Td and П*μ, for mp/md=0.1,0.15,0.3 and Tp=0.2s: (a) single-
column bent viaduct; (b) multi span continuous deck bridge. 
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Fig. 4. Dispersion of the maximum normalized pier displacement as function of Td and П*μ, for mp/md =0.1,0.15,0.3 and Tp =0.1s: (a) single-
column bent viaduct; (b) multi-span continuous deck bridge. 
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Fig. 5. Dispersion of the maximum normalized pier displacement as function of Td and П*μ, for mp/md =0.1,0.15,0.3 and Tp =0.2s: (a) single-
column bent viaduct; (b) multi span continuous deck bridge. 
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Fig. 6. Optimal friction coefficient as function of Tp, mp/md and for Td =2s: (a) single-column bent viaduct; (b) multi span continuous deck bridge. 
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Fig. 7. Optimal friction coefficient as function of Tp, mp/md and for Td =4s: (a) single-column bent viaduct; (b) multi span continuous deck bridge. 
 

The existence of an optimal friction coefficient has suggested to calculate its value as function of the other 
parameters involved in the problem. In Fig.s 6-7 this optimum is illustrated and indicated as 

*
,opt  for deck periods 

equal to 2s and 4s respectively. The interesting result is that when all the structural parameters (i.e., /p dm m  dT  and

pT ) are larger, an higher optimum friction coefficient is required to minimize the pier response. 

5. Conclusions 

This study is focused on the evaluation of the seismic response of isolated bridges, comparing the case in which 
the pier-abutment-deck interaction is neglected or not. The first case is representative of a single-column bent 
viaduct and the second case regards a multi-span continuous deck bridge. The isolation is given by the presence of 
single concave friction pendulum devices placed on top of the pier (for the first case) and on top of both the pier and 
the abutment (for the other case). Two six-degree-of-freedom structural systems are modelled to solve the equations 
of motion, defined in a nondimensional form. Furthermore, different assumptions for the main structural parameters 
(i.e., pier and deck fundamental period, mass ratio and normalized friction coefficient) are included while the 
uncertainty in the seismic input is considered by means of 30 seismic inputs. The outputs in terms of geometric 
mean of the normalized maximum pier displacement indicate the existence of an optimum friction coefficient able to 
minimize the response of the substructure. This minimum of the response is more pronounced when the presence of 
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the abutment is neglected, since the bearing on the abutment (which is not present in the case of single-column bent 
viaduct) tends to slide faster than the one on the pier. The computation of the optimal friction coefficient as function 
of the other parameters involved (i.e., deck and pier fundamental periods and mass ratio) have shown how in general 
a larger optimal value is required when these parameters are larger and when the deck-abutment interaction is 
included. 
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