
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Learning with Partition of Unity-based Kriging Estimators / Cavoretto, R.; De Rossi, A.; Perracchione, E.. - In: APPLIED
MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - 448:(2023), pp. 1-14. [10.1016/j.amc.2023.127938]

Original

Learning with Partition of Unity-based Kriging Estimators

Publisher:

Published
DOI:10.1016/j.amc.2023.127938

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977112 since: 2023-06-04T10:42:39Z

Elsevier

Learning with Partition of Unity-based Kriging
Estimators

R. Cavoretto∗,⋄ , A. De Rossi∗,⋄ , E. Perracchione+,⋄

*Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, Italy
+Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino,

Italy
⋄Member of the INdAM Research group GNCS

Abstract

For supervised regression tasks we propose and study a new tool, namely Kriging
Estimator based on the Partition of Unity (KEPU) method. Its background
belongs to the framework of local kernel-based interpolation methods. Indeed,
even if the latter needs to be accurately tailored for Gaussian process regression,
the KEPU scheme provides a global estimator which is constructed by gluing
together the local Kriging predictors via compactly supported weights. The
added value of this investigation is twofold. On the one hand, our theoretical
studies about the propagation of the uncertainties from the local predictors to
the global one offer the opportunity to define the PU method in a stochastic
framework and hence to provide confidence intervals for the PU approximant.
On the other hand, as confirmed by extensive numerical experiments, when the
number of instances grows, such a method enables us to significantly reduce the
usually high complexity cost of fitting via Gaussian processes.

Keywords: Kernel-based interpolation, Partition of Unity, Gaussian processes,
uncertainty estimation
2010 MSC: 65D15, 41A05, 68Q32

1. Introduction1

Recently, many sophisticated algorithms for regression models, as random2

forests [9] and neural networks [21], have been developed. They are able to learn3

very elaborated tasks. However, because of their complex architecture, they are4

not easy to work with in practice. Therefore, kernel machines (refer to [17, 43]5

for a general overview), as Support Vector Regression (SVR) and Kriging or6

Gaussian process regression, are still rather popular. The main advantage of7

Email addresses: roberto.cavoretto@unito.it (R. Cavoretto∗,⋄),
alessandra.derossi@unito.it (A. De Rossi∗,⋄), emma.perracchione@polito.it (E.
Perracchione+,⋄)

Preprint submitted to Elsevier March 16, 2023

the Kriging model, which has been introduced by D.G. Krige in 1951 [29] and8

later has become renowned in the field of geosciences [16], is that it is able9

to provide not only the prediction at a query data, but also a measure of the10

related uncertainty, known as the Kriging variance.11

Without loosing generality, we might think of the Kriging method as a12

stochastic interpolation scheme, as well as regression models can be thought13

as interpolants of smoothed data. In view of this, it requires to solving a n × n14

linear system, where n denotes the number of measurements. Hence, when the15

number of examples grows, both the Kriging complexity costs and memory re-16

quirements (for the kernel matrix allocation) become prohibitive. To overcome17

such issues, which also arise in the context of Support Vector Machines (SVMs),18

several works deal with selecting (possibly randomly) a representative subset of19

measurements [31], as well as with approximating the usually full kernel matrix20

with a sparse one or via low-rank techniques [18, 27, 28, 32].21

Moreover, most of recent research focuses on local learning algorithms (see22

e.g. [7] for a general overview) that construct several local models which are23

then combined together via some weights. In this direction Bayesian committee24

machines [48] provide local Kriging estimators and use weights depending on25

the inverse covariance of the predictions. A second class of local schemes that26

is worth to mention, as it shows similarities with the method proposed in this27

paper, is the one of clustering Kriging schemes [39, 40, 41, 49], which exhibit as28

well some analogies with localized procedures proposed for SVMs [33, 37, 44].29

In [40] the predictors are pasted together using a distance metric, while in [41],30

after clustering data with k−means algorithms, the local Kriging predictors are31

combined together via weights selected so that the Kriging variance is mini-32

mized.33

In this paper we look for an efficient computation of the Kriging Estimator34

(KE) whose background lies in the context of approximation theory. Precisely,35

the so-called Partition of Unity (PU) scheme, first introduced in the mid 1990s36

in [3], is nowadays a well-established method for approximating large data sets37

and it is also rather popular for researchers working on collocation schemes or38

numerical solution of Partial Differential Equations (PDEs); refer e.g. to [2, 13,39

30, 38]. We then make use of such a partitioning scheme to compute both the40

Kriging predictions and uncertainties. The resulting method, namely KEPU,41

drastically reduces the computation complexity of global Gaussian processes, as42

numerically shown, and inherits properties from the local Kriging estimators.43

Indeed, we prove that it is unbiased and that the Kriging uncertainty of the44

KEPU is a squared weighted sum of the local Mean Squared Errors (MSEs).45

Hence, as a benefit of this study we are able to include the PU method in a46

machine learning and stochastic framework, providing predictions at query data47

and related Kriging variances.48

The paper is organized as follows. In Section 2 we briefly review the kernel-49

based PU method for interpolating scattered data, i.e. from a deterministic50

point of view. Section 3 presents the theoretical study about the proposed51

localized Gaussian process, whose complexity analysis and computational details52

are studied in Section 4. Numerical experiments are presented in Section 5, while53

2

conclusions are offered in Section 6.54

2. Preliminaries55

In this section we present the kernel-based PU method, and in doing so we56

focus on interpolation; any extension to regression schemes is straightforward57

and will be commented later.58

2.1. Kernel-based interpolation59

We consider a function f : Ω −→ R with Ω ⊂ Rd, i.e. a function depending60

on d features, and an associated set of function values F = {f(xi)}n
i=1 sampled61

at a data point set Xn = {xi}n
i=1 ⊂ Ω. Given the examples {(xi, f(xi))}n

i=1,62

our goal is to construct an approximation of the unknown function f , namely63

f̃ . Thus, in order to construct an interpolant we have to impose n interpolation64

constraints, i.e.65

f̃(xi) = f(xi), i = 1, . . . , n. (1)

Then, given a normed linear space of functions defined on Ω, and an associated66

basis {bj}n
j=1 ⊂ C(Ω), an interpolant f̃ : Ω −→ R may be defined as67

f̃(x) =
n∑

i=1
αibi(x), x ∈ Ω, (2)

where α1, . . . , αn need to be determined by imposing the interpolation condi-
tions (1). Such an interpolant is unique as long as {bi}n

i=1 forms a Haar system.
For d > 1 this condition holds true only for trivial Haar spaces, i.e. spaces
spanned by a single function (see e.g. [51, Theorem 2.3, p. 19]). Nevertheless,
if we consider data-dependent basis, as for kernel-based interpolation, the exis-
tence and uniqueness of the interpolant might be ensured. Precisely, let Hκ(Ω)
be a Hilbert space equipped with an inner product (·, ·)Hκ(Ω), we consider sym-
metric reproducing kernels κ : Ω × Ω −→ R for Hκ(Ω), i.e. so that (refer e.g. to
[23, Definition 2.6, p. 32]) κ(·,x) ∈ Hκ(Ω), κ(x, z) = κ(z,x) for all x, z ∈ Ω,
and

(f, κ(·,x))Hκ(Ω) = f(x), x ∈ Ω.

As a consequence, we have that each reproducing kernel is identified by an inner68

product, i.e.69

(κ(·,x), κ(·, z))Hκ(Ω) = κ(x, z), x, z ∈ Ω. (3)

Equivalently, κ : Ω × Ω −→ R is a reproducing kernel if there exists a mapping70

Φ : Ω −→ Hκ(Ω), usually referred to as feature map [46, §5], so that:71

κ(x, z) = (Φx, Φz)Hκ(Ω) , x, z ∈ Ω. (4)

In what follows we focus on radial kernels; refer to [22] for a general overview.72

They are kernels for whom there exists a Radial Basis Function (RBF) φ :73

R+ −→ R, where R+ = [0, ∞), and (possibly) two parameters ℓ > 0 and74

3

σ > 0 (known in machine learning literature as length scale and process variance,75

respectively) such that, for all x, z ∈ Ω,76

κ(x, z) = σ2κℓ(x, z) = σ2φℓ(||x − z||2) = σ2φ(r), (5)

where r = ||x−z||2. Scaling the kernel with σ2 will not change the interpolation77

setting, but here, we need to incorporate it into the kernel for defining later the78

Kriging variance.79

With these preliminaries, from the expansion (2) we may derive the following
representation

f̃(x) =
n∑

i=1
αiκ(x,xi), x ∈ Ω,

where κ : Ω×Ω −→ R is a positive definite radial kernel. Indeed for those kernels80

the solution of the interpolation problem is unique (refer e.g. to [23, Definition81

2.2, p. 18]). Precisely, letting f = (f(x1), . . . , f(xn))⊺ and α = (α1, . . . , αn)⊺,82

the scattered data interpolation problem reduces to solving the linear system of83

the form:84

Kα = f , (6)
where the matrix K with entries Kik = κ(xi,xk) is non-singular.85

2.2. Partition of unity method86

Since the interpolation matrix in (6) is typically full, such a meshfree ap-
proach works efficiently as long as we have a reduced number of data. Con-
versely, when the number of examples grows, local methods, as the PU ones,
might be helpful. We thus consider a partition of the open and bounded do-
main Ω into m subdomains Ωj , such that Ω ⊆ ∪m

j=1Ωj , with some mild overlap
among them [52]. Associated with this partition, we take a family of compactly
supported, non-negative, continuous functions wj , j = 1, . . . , m, which form a
partition of unity, i.e.

m∑
j=1

wj(x) = 1, x ∈ Ω.

One possible solution is to consider the so-called Shepard’s weights [45],
which are defined as

wj(x) = w̄j(x)
m∑

k=1
w̄k(x)

, j = 1, . . . , m, x ∈ Ω,

where w̄j are compactly supported functions with support on Ωj , as Wendland’s87

functions [53].88

With these ingredients, we can define the PU interpolant as

f̄ (x) =
m∑

j=1
f̃j (x) wj (x) , x ∈ Ω,

4

where f̃j denotes a kernel-based approximant defined on a subdomain Ωj of the
form

f̃j(x) =
nj∑

k=1
αj

kκ(x,xj
k), x ∈ Ω,

being nj the number of data points belonging to Ωj and xj
k ∈ Xj = Xn ∩ Ωj ,89

with k = 1, . . . , nj .90

Then, the construction of the PU interpolant consists in solving m (invert-91

ible) linear systems of the form:92

Kjαj = fj , (7)

where αj = (αj
1, . . . , αj

nj
)⊺, fj = (f(xj

1), . . . , f(xj
nj

))⊺ and Kj is the local inter-
polation matrix whose entries are given by

(Kj)ik = κ(xj
i ,xj

k), i, k = 1, . . . , nj .

Note that, if we formally solve the above system, we get αj = K−1
j fj and93

thus the nodal values are given by94

f̄ (x) =
m∑

j=1
f̃j(x)wj(x) =

m∑
j=1

kj(x)⊺K−1
j fjwj(x), x ∈ Ω, (8)

where kj(x) = (κ(x,xj
1), . . . , κ(x,xj

nj
)).95

For the PU scheme, only deterministic error bounds (see [51, Theorem 5])96

are available and there are no studies on the uncertainty associated to the PU97

approximation. This might limit the popularity of such method in other settings,98

as in machine learning and statistics literature.99

In the remaining part of this work, therefore, we will investigate how the100

PU method can be efficiently built for Gaussian process or simple Kriging. To101

introduce and study in the next section the Kriging predictors in a local context,102

we will mainly follow the exposition line provided in [23, §5].103

3. Kriging estimator based on partition of unity104

For a fixed x ∈ Ω, the main requirement in the Kriging prediction is the
one of assuming that the value f(x) is a realisation of a random variable Fx

belonging to a zero-mean Gaussian random field F . We first note that, letting
HF (Ω) be the Hilbert space generated by F , the following representation holds
true (see e.g. [4, §2])

(Fx, Fz)HF (Ω) = E (Fx, Fz) = κ(x, z) = (κ(·,x), κ(·, z))Hκ(Ω) , x, z ∈ Ω.

The above equation, together with (3) and (4), shows the analogies between the105

deterministic, the machine learning and the stochastic point of view; we also106

refer the reader to [10, 25, 26, 34].107

5

3.1. Localized Gaussian fitting108

When many examples are given, the main drawback of the classical, i.e.109

global, Kriging prediction is the allocation of the kernel matrix K as in (6)110

and the solution of the associated linear system. Therefore, thanks to the PU111

method, we define Gaussian processes that are weighted sums of local Kriging112

estimators.113

For the localized approach we think of f(xj
i), i = 1, . . . , n, as realisations114

of random variables Fxj
i
, i = 1, . . . , nj , with the property that for any given115

distinct data point set Xj = {xj
1, . . . ,xj

nj
} ⊂ Ωj , Fj = (Fxj

1
, . . . , Fxj

nj
)⊺ has a116

multivariate normal distribution with mean vector µj = E(Fj) and covariance117

matrix Kj . For clarity in the exposition and without loosing generality, we118

now fix µj = 0, j = 1, . . . , m. With such assumptions, we define the localized119

Kriging predictor as120

F̄x =
m∑

j=1
F̃ j
xwj(x) =

m∑
j=1

(
kj(x)⊺K−1

j Fj

)
wj(x), x ∈ Ω, (9)

whose realizations provide us the Kriging predictions as in (8). To study such
a localized Gaussian process, we introduce the following random variables:

Y j
x = (Fx|Fj = fj) , j = 1, . . . , m,

whose distributions are given by (see e.g. [23, Equation (5.18), p. 103]):

Y j
x ∼ N

(
kj(x)⊺K−1

j fj , κ(x,x) − kj(x)⊺K−1
j kj(x)

)
. (10)

Given such variables, we are able to characterize the KEPU as follows.121

Proposition 3.1 For a given x ∈ Ω, letting122

Yx =
m∑

j=1
Y j
xwj(x) =

m∑
j=1

(Fx|Fj = fj) wj(x), (11)

the KEPU defined in (9) is the expected value of Yx, i.e.

E(Yx) = F̄x.

Proof: Because of the linearity of the expectation, given x ∈ Ω, we have that
that:

E(Yx) = E

 m∑
j=1

(Fx|Fj = fj) wj(x)

 =
m∑

j=1
E (Fx|Fj = fj) wj(x)

=
m∑

j=1
(kj(x)⊺K−1

j fj)wj(x) =
m∑

j=1
F̃ j
xwj(x).

Then, Equation (9) concludes the proof.123

6

The global PU predictor is then a weighted sum of m local Kriging estimators124

of Fx. A similar idea is presented in [41], indeed the authors use weights that125

form a partition of unity and they are selected so that the Kriging variance is126

minimized.127

We further note that each of the local estimators is unbiased, i.e., E(Fx) =128

E(F j
x), j = 1, . . . , m, and such a property is inherited by the PU scheme, as129

shown in the following result.130

Proposition 3.2 Let x ∈ Ω, the KEPU F̄x, defined in (9), is unbiased.131

Proof: We have that:

E(F̄x) = E

 m∑
j=1

F̃ j
xwj(x)

 =
m∑

j=1
E(F̃ j

x)wj(x) =
m∑

j=1
E(Fx)wj(x).

Then, since for x ∈ Ω,
∑m

j=1 wj(x) = 1, the thesis follows. Indeed,

E(F̄x) =
m∑

j=1
E(Fx)wj(x) = E(Fx)

m∑
j=1

wj(x) = E(Fx).

132

Note that, until this moment, we just recovered the classical PU interpolant,133

seen in a stochastic setting. Now, we introduce the associated Kriging variance134

that represents the main difference between the stochastic and the deterministic135

point of view.136

3.2. Localized Gaussian uncertainties137

We then have to investigate how the local uncertainties propagate towards138

the global KEPU. To this aim, we assume that the variables Y j
x , j = 1, . . . , m,139

are uncorrelated. This is not so restrictive, because all the local Kriging pre-140

dictors are constructed independently of each other. Then, as a consequence of141

Proposition 3.1, we have the following result which makes use of the so-called142

power function; see [51, Definition 11.2, p. 174] and [20].143

Corollary 3.2.1 If Cov(Y j
x , Y k

x) = 0, for j ̸= k, j, k = 1, . . . , m, then

Yx ∼ N

F̄x,

m∑
j=1

P2
j (x)w2

j (x)

 ,

where Yx is defined as in (11) and

Pj(x) =
√

κ(x,x) − kj(x)⊺K−1
j kj(x), x ∈ Ω,

is the power function (computed on Ωj).144

7

Proof: Given x ∈ Ω, since for each subdomain Equation (10) holds true and
because the random variables Y j

x , j = 1, . . . , m, are uncorrelated their sum
follows a normal distribution whose mean is provided by Proposition 3.1 and
whose variance is given by

Var(Yx) =
m∑

j=1

(
κ(x,x) − kj(x)⊺K−1

j kj(x)
)

w2
j (x) =

m∑
j=1

P2
j (x)w2

j (x).

145

For each x ∈ Ω, being F̄x an estimator of Fx, we now have to compute its146

MSE. To reach such scope, we refer the reader to [23, p. 97] and we assume147

that Cov(Fx − F̃ j
x, Fx − F̃ k

x) = 0 for j ̸= k and j, k = 1, . . . , m. Again, being148

the local predictors constructed independently of each other, this requirement149

is not too demanding.150

Proposition 3.3 For a given x ∈ Ω, if Cov((Fx − F̃ j
x), (Fx − F̃ k

x)) = 0 for
j ̸= k and j, k = 1, . . . , m, the MSE of the KEPU is so that

MSE(F̄x) =
m∑

j=1

(
κ(x,x) − kj(x)⊺K−1

j kj(x)
)

w2
j (x).

151

Proof: Since {wj}m
j=1 form a partition of unity, for x ∈ Ω, we note that

MSE(F̄x) = E
(
(Fx − F̄x)2)

= E

Fx

m∑
j=1

wj(x) −
m∑

j=1
F̃ j
xwj(x)

2

= E

 m∑

j=1

(
Fx − F̃ j

x

)
wj(x)

2

= E

 m∑
j=1

(
Fx − F̃ j

x

)2
w2

j (x)

+

+ 2E

∑
j<k

(
Fx − F̃ j

x

) (
Fx − F̃ k

x

)
wj(x)wk(x)

 .

8

Then, thanks to the local properties of the Kriging predictor we observe that:

E

 m∑
j=1

(
Fx − F̃ j

x

)2
w2

j (x)

 =
m∑

j=1
E
((

Fx − F̃ j
x

)2)
w2

j (x)

=
m∑

j=1

(
κ(x,x) − kj(x)⊺K−1

j kj(x)
)

w2
j (x).

For the second term, being Cov(Fx − F̃ j
x, Fx − F̃ k

x) = 0, for j ̸= k and j, k =
1, . . . , m, we have that

E

∑
j<k

(
Fx − F̃ j

x

) (
Fx − F̃ k

x

)
wj(x)wk(x)

=
∑
j<k

E
((

Fx − F̃ j
x

) (
Fx − F̃ k

x

))
wj(x)wk(x)

=
∑
j<k

E
(
Fx − F̃ j

x

)
E
(
Fx − F̃ k

x

)
wj(x)wk(x) = 0,

where the last equality follows from the fact that all the local estimators are152

unbiased.153

Being the localized Kriging predictor unbiased (see Proposition 3.2), Propo-154

sition 3.3 tells us how to compute the variance of F̄ , i.e. Var(F̄x) = MSE(F̄x).155

Then, we are able to introduce confidence intervals. Precisely, given δ ∈ [0, 1],156

we obtain157

P

Fx ∈ F̄x ± zδ

√√√√ m∑
j=1

P2
j (x)w2

j (x)

 = 1 − δ, (12)

where zδ is the quantile location of the normal distribution. Note that, the158

above equation allows us to understand how the local uncertainties propagate159

via the PU scheme. We conclude this section with a few remarks.160

Remark 3.1 (Zero-mean) In our presentation we have supposed to deal with
zero-mean Gaussian random fields. Such hypothesis might appear restrictive.
However, with some pre-processing on the data one can always consider the
proposed simple Kriging approach. As an alternative, for x ∈ Ω, letting µj the
local mean on Ωj, one can define the local predictors as (see e.g. [23, Remark
5.5, p. 101])

F̃ j
x = µj + kj(x)⊺K−1

j (Fj − µj), j = 1, . . . , m, x ∈ Ω.

Remark 3.2 (Noise) Kriging predictions are frequently associated to noisy
data. In this study we deliberately focused (without any restrictions) only on

9

interpolation. Precisely, tools known as smooting splines, ridge regression and
Tikhonov regularization, which are typically used for Kriging regression, are
based on solving for each subdomain [24, 47, 50]

(Kj + λI)αj = fj , j = 1, . . . , m,

instead of (7), where λ ∈ R+ and I is the nj × nj identity matrix. Nevertheless,
this is equivalent to interpolating the smoothed data f̂j = (Kj + λI)−1Kjfj with
the method previously described. Indeed, given x ∈ Ω, and by applying the push-
through the identity [5, Fact 2.16.16] for matrix inverses we can define the local
estimators as

f̃j(x) = κ(x)⊺(Kj + λI)−1fj = κ(x)⊺K−1
j (Kj + λI)−1Kjfj = κ(x)⊺K−1

j f̂j ,

with j = 1, . . . , m.161

4. Complexity analysis and implementation162

In the following we point out some computational details and we briefly163

analyze the complexity of the proposed KEPU method.164

4.1. Complexity costs165

For the proposed localized algorithm, we use Wendland’s C2 functions as
PU weights and balls in Rd as patches whose radii are constant and fixed as
ρ/m, with ρ =

√
2. Note that, if the subdomains centres are grid data then, to

ensure that they form a covering of Ω, any ρ ≥ 1 can be used. Once the PU
structure is set, the first step of the proposed localized Kriging method consists
in distributing the scattered data among the different subdomains. To this end,
we consider the well-established data structure and sorting routine introduced
in [11], further developed in [1, 14] for Shepard-type methods and used for other
kernel bases in [19]. They respectively require

O

(
n log n +

d−1∑
k=1

d − k

d
n log n

)
,

and O(n) operations. Once this issue is accomplished, the problem reduces to166

solving m linear systems whose size is nj × nj . Since usually nj ≪ n this leads167

to a saving in terms of computational times with respect to the classical Kriging168

implementation. Of course, since the localized Kriging prediction involves a pre-169

processing step for organizing the instances among the subdomains, we expect170

improvements in terms of computational complexity when n is sufficiently large.171

10

4.2. Implementation details172

For the KEPU implementation, we have to solve (7) and then compute the173

uncertainty via Corollary 3.2.1. This is compared in terms of efficiency and174

accuracy with the Global Kriging Estimator (GKE). Aside this kind of imple-175

mentation, called in what follows canonical, we will make use of the Matlab176

function fitrgp.m that belongs to the Statistics and Machine Learning tool-177

box [35]. Indeed, such a routine already offers an ad hoc implementation for178

huge values of n. Precisely, when n > 10000, it does not allocate the kernel179

matrix as in (6) (which, being a n × n matrix whose entries are in double-180

precision floating-point format, would require 8 × n × n bytes), but it takes181

advantage of a block coordinate descent algorithm. Nevertheless, such a strat-182

egy is not completely satisfying. Indeed, when n > 10000, fitrgp.m does not183

return the Kriging variance, which plays an important role in the stochastic184

predictions. On the opposite, with our KEPU, we are able to allocate the local185

matrices and hence compute the Kriging uncertainties also for large data sets186

(using the fitrgp.m on each subdomain). This is a consequence of the fact187

that the largest matrix that the algorithm needs to store has size ns ×ns, where188

ns = maxj=1,...,m card(Ωj) and it is so that ns ≪ n.189

As far as the kernels are concerned, we consider the Gaussian (GA) function,
which is also known as Squared Exponential, and the family of Matérn functions
[36]. The former is defined as

κGA
ℓ (x, z) = exp

(
− 1

2ℓ2 ||x − z||22
)

, x, z ∈ Ω,

and it is infinitely smooth. The Matérn kernels are instead characterized by a190

finite regularity. Indeed, for x, z ∈ Ω, such functions are given by191

κM
ℓ (x, z) = 1

Γ(ν)2ν−1

(√
2ν

ℓ
||x − z||2

)ν

Bν

(√
2ν

ℓ
||x − z||2

)
, (13)

where Bν is a modified Bessel function and Γ is the gamma function (see e.g.
[51] for further details). Among this family, we take the Matérn C2 (M2) and
C4 (M4) kernels that, for x, z ∈ Ω, are respectively given by:

κM2
ℓ (x, z) =

(
1 +

√
3

ℓ
||x − z||2

)
exp

(√
3

ℓ
||x − z||2

)
,

and

κM4
ℓ (x, z) =

(
1 +

√
5

ℓ
||x − z||2 +

√
5

3ℓ
||x − z||22

)
exp

(√
5

ℓ
||x − z||2

)
,

which are recovered from (13) by fixing ν = 3/2 and ν = 5/2.192

In our setting, aside the length scale kernel parameter ℓ ∈ R+, we further193

consider the process variance σ ∈ R+. Indeed, even if the latter is irrelevant for194

computing the deterministic interpolant, it plays a role in defining the Kriging195

11

variance. For this reason, in (5) we defined κ(x, z) = σ2κℓ(x, z), x, z ∈ Ω. Both196

the parameters σ and ℓ affect the accuracy of the approximation and associated197

uncertainty. In the following tests we might employ the same default parameters198

used by fitrgp.m, i.e.199

ℓ = mean (std({xi}n
i=1)) , σ = std({fi}n

i=1)√
2

, (14)

where the mean is along the dimensions. Then, for the KEPU implementation200

with default parameters we select201

ℓ =
∑m

j=1 ℓj

m
, σ =

∑m
j=1 σj

m
, (15)

where ℓj and σj , j = 1, . . . , m, are computed as in (14) on each Ωj .202

Nevertheless, one could optimize the length scale and the process variance203

on each patch. In that case, following [23, §14], we minimize a profile likelihood204

function, where σj = σj(ℓj), j = 1, . . . , m, and this immediately gives the205

optimal process standard deviation as:206

σ∗
j =

√
1
nj

f⊺
j K−1

j fj , (16)

while the optimal local length scale is the minimum of207

nj log(f⊺
j K−1

j fj) + log det Kj , j = 1, . . . , m. (17)

The above minimum problem is computationally addressed via the fminbnd.m208

function that belongs to the Matlab Optimization toolbox. An application209

can also be found in [12].210

To conclude this section, we point out that the fitrgp.m routine offers the211

opportunity to tune both the kernel parameters, and the default way to achieve212

this is based on cross-validation strategies and quasi-Newton optimization tech-213

niques. Hence, in the numerical experiments that follow, we will consider this214

option as well and carry out some comparisons.215

5. Numerical experiments216

The key feature of our KEPU is that the Kriging approximant and its vari-217

ance can be computed for large data sets on standard calculators. Hence, tests218

are carried out on an Intel(R) Core(TM) i5-6400 CPU 2.70GHz processor (64219

bit); 8 GB RAM. Referring to the previous section, in the following experiments,220

we make use of both the canonical implementation and of the one based on the221

fitrgp.m routine. The former Matlab software is available at:222

https://github.com/emmaA89/KEPU.223

12

https://github.com/emmaA89/KEPU

Such a free code could be further speed up by running the KEPU method in224

parallel; to achieve this we refer the reader to [15].225

In the incoming experiments, we play with different kernels with default226

and/or optimized parameters. In doing so, we take both univariate and bivariate227

data sets (with and without noise), and to test the efficiency we let n vary.228

Specifically, n Halton, grid and random training data on Ω, with
√

n = 2p +229

1, p = 3, . . . , 9, are considered. We point out that for huge values of n we230

stop the computation of the global Kriging estimator when either the software231

returns an out-of-memory message or when it requires more than eight hours of232

calculations.233

To check the accuracy, the KEPU is evaluated on grid test sets Ξ = {ξi, i =234

1, . . . , v} ⊆ Ω. Then, letting f̄ be the KEPU approximant of a function f , we235

might compute the following quantities:236

• Root Mean Squared Error:

RMSE =

√√√√1
v

v∑
i=1

(
f̄(ξi) − f(ξi)

)2;

• Absolute Error:

AE =
(∣∣f̄(ξ1) − f(ξ1)

∣∣ , . . . ,
∣∣f̄(ξv) − f(ξv)

∣∣) ;

• Mean of the Kriging Variance:

MKV = 1
v

v∑
i=1

 m∑
j=1

P2
j (ξi)w2

j (ξi)

;

• Absolute Kriging Variance:

AKV =

 m∑
j=1

P2
j (ξ1)w2

j (ξ1), . . . ,
m∑

j=1
P2

j (ξv)w2
j (ξv)

 .

5.1. Test 1d: canonical implementation without noise237

We consider noise-free samples on Halton data of the following test function

f1(x1) = sin(10π(x1 + 0.1)), x1 ∈ Ω = [0, 1].

The KEPU interpolant is constructed by taking m =
√

n equispaced subdomain238

centres and is then evaluated on v = 100 equispaced points. The experiments are239

performed using a canonical implementation for the KEPU interpolant with the240

M2 kernel and the parameters are set as in (15). The results are compared with241

the global Kriging method. For the latter, the memory requirement becomes242

prohibitive when n is greater than about 10000. In Figure 1 (top left) we report243

13

the CPU times and, since the samples are not affected by noise, the RMSEs244

in Figure 1 (bottom left). We observe that, while the RMSEs returned by245

the global and local Kriging estimators are comparable, the CPU times are246

significantly different. Precisely, consistently with what observed in Section 4,247

when n is larger than about 4000 data, the KEPU leads to a significant saving in248

terms of computational complexity and memory needs (the global interpolation249

matrix cannot be allocated for huge values of n).250

As second test, we repeat this experiment by optimizing both the process251

variance and length scale parameters as in (16) and (17). The results are shown252

in Figure 1 (right). The CPU times are then the sum of the tuning and fitting253

phases. We note that the saving in terms of computational time offered by254

the KEPU scheme becomes even more evident, and that, as expected, for both255

methods the RMSEs are lower than the ones computed in the previous test.256

10
2

10
4

10
6

n

10
-3

10
-2

10
-1

10
0

10
1

10
2

C
P

U
 t
im

e

10
2

10
4

10
6

n

10
-2

10
-1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e

10
2

10
4

10
6

n

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
M

S
E

10
2

10
4

10
6

n

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
M

S
E

Figure 1: Results for the test function f1 sampled without noise at Halton data: CPU times
(top) and RMSEs (bottom) for the KEPU (magenta dots and solid line) and GKE (blue stars
and dashed line). Left: both methods are computed with default parameters. Right: both
methods are computed with optimized process variance and length scale parameters. Plots
are in logarithmic scale.

We conclude this subsection pointing out that in our canonical implemen-257

14

tation, if the samples are noisy, one might compute the Kriging coefficients as258

in Remark 3.2, and an effective choice for the regression parameter is to set it259

as λ = 1/ SNR(f), where the Signal to Noise Ratio (SNR) can be computed260

via the snr.m Matlab function that belongs to the Signal Processing Toolbox.261

As an alternative for regression purposes, one could use the more sophisticated262

fitrgp.m routine, as done in the next subsection.263

5.2. Test 1d: fitrgp.m implementation with noise264

We consider equispaced samples with, for instance, Gaussian withe noise of
the following test function

f2(x1) = cos(14π(x1 + 0.5))
2x1 + 0.5 + (x1 − 0.5)4, x1 ∈ Ω = [0, 1],

i.e.265

fi = f2(xi) + 0.1ϵi, i = 1, . . . , n, (18)
where ϵi are random perturbations obtained with the Matlab randn.m routine.266

As in the previous case, the KEPU interpolant is constructed by taking m =
√

n267

equispaced subdomain centres and is then evaluated on v = 100 equispaced268

points.269

The first experiment for the KEPU is carried out by using the implementa-270

tion offered by the fitrgp.m function with the GA kernel and the parameters271

set as in (15). The results are compared with the global Kriging algorithm (im-272

plemented with fitrgp.m as well) and are shown in Figure 2 (left) and in Table273

1, where respectively the CPU times and the MKVs are reported. With the274

help of the fitrgp.m routine, since the global matrix is not explicitly stored,275

we observe that the global Kriging estimator is computed for about 60000 data.276

However, the same does not hold true for the Kriging variance. Indeed, the277

routine does not return the confidence intervals for n > 10000.278

As further test (see Figures 2 (right) and Table 1), we repeat this experiment279

with the M4 kernel and random samples. Moreover, we optimize for the KEPU280

both the process variance and length scale parameters as in (16) and (17). This281

is compared with a global implementation of the Kriging estimator, where the282

optimal parameters are approximated by the fitrgp.m routine itself. In this283

case the computational effort for the global method becomes for n larger than284

about 5000 data. Moreover, the saving in terms of computational time offered285

by the KEPU implementation are meaningful also for relatively small data sets.286

We further observe that the MKVs of the two methods are comparable and are287

essentially dictated by the noise of data. For a graphical feedback, we refer the288

reader to Figure 3.289

5.3. Test 2d: applications to finance290

In this subsection we test the proposed tool in higher dimensions. We con-291

sider bivariate data that simulate the second derivative of an option price with292

respect to the stock price γ of an option. The example is directly taken by293

the Matlab Financial toolbox. The following test shows how γ changes with294

15

10
2

10
4

10
6

n

10
-1

10
0

10
1

10
2

10
3

10
4

C
P

U
 t

im
e

10
2

10
4

10
6

n

10
-1

10
0

10
1

10
2

10
3

10
4

C
P

U
 t

im
e

Figure 2: Results for the test function f2 sampled (with noise) at equispaced (left) and
random (right) data: CPU times for the KEPU (magenta dots and solid line) and for the
GKE (blue stars and dashed line). Left: both methods are computed with default parameters
for the GA kernel. Right: the KEPU is computed via the M4 kernel with optimized process
variance and length scale parameters as in (16) and (17), while the GKE is computed with
the process variance and length scale parameters optimized via the fitrgp.m itself. Plots are
in logarithmic scale.

Table 1: MKVs for the test function f2 sampled (with noise) at equispaced and random data.
Second and third column: both methods are computed with default parameters for the GA
kernel. Fourth and fifth column: the KEPU is computed via the M4 kernel with optimized
process variance and length scale parameters as in (16) and (17), while the GKE is computed
with process variance and length scale parameters optimized via the fitrgp.m itself.

Non-optimized (GA) Optimized (M4)

n KEPU GKE KEPU GKE

81 8.97e − 03 9.83e − 01 8.84e − 02 6.63e − 03
289 1.44e − 02 1.14e + 00 1.37e − 02 2.03e − 02
1089 2.13e − 02 3.52e − 02 2.08e − 02 3.64e − 02
4225 2.39e − 02 3.77e − 02 2.39e − 02 3.57e − 02
16641 2.75e − 02 – 2.79e − 02 –
66049 3.16e − 02 – 3.13e − 02 –
263169 3.40e − 02 – 3.45e − 02 –

respect to the value of a price for a Black-Scholes option in time, see e.g. [6, 42].295

The considered price (x1-axis) varies from 10$ to 70$ and the time (x2-axis) is296

one year, i.e. Ω = [10, 70] × [1, 12]. As training data we consider grids and we297

let n vary as in the previous tests. Then, the sampling data f (obtained via the298

blsgamma.m Matlab routine) represent the value of γ, i.e. the gamma function,299

that is calculated by fixing the exercise price to 40$, the risk-free interest rate300

to 10%, and the volatility to 0.35 for all prices and periods.301

In the first test, we sample without noise the gamma-function on n grid302

points, with
√

n = 2p + 1, p = 3, . . . , 9, and to check the accuracy, the KEPU303

16

Figure 3: Graphical results (n = 4225) for the test function f2 sampled (with noise) at
equispaced (top) and random (bottom) data. Left: the KEPU. Right: the GKE. Top: both
methods are computed with default parameters for the GA kernel. Bottom: the KEPU is
computed via the M4 kernel with optimized process variance and length scale parameters
as in (16) and (17), while the GKE is computed with process variance and length scale
parameters optimized via the fitrgp.m itself. Training data are represented by black dots,
the approximant by blue line and the shade magenta area denotes two times the Kriging
standard deviation, i.e. the confidence intervals as in (12).

(constructed by fixing the default kernel parameters for the M4 function, by304

taking m =
√

n/2 patch centres and by using the fitrgp.m routine) is evaluated305

on grid test sets Ξ = {ξi, i = 1, . . . , v} ⊆ Ω, with v = 402. The CPU times and306

RMSEs are depicted in Figure 4. We note that the RMSEs of the KEPU and307

of the GKE are comparable. This is also confirmed by Figure 5 (top), where308

the reconstructed surfaces, false-colored with the AE, are reported. As far as309

the CPU times are concerned, we note that, since the selected subdomains are310

less than in the 1d test case and hence contain more points, the KEPU saving311

in terms of computational time is only apparently less evident. Indeed, for the312

bivariate case, the complexity of the global method is already for about 10000313

data.314

As second test, we repeat this experiment by perturbing the samples as in315

(18) with ϵi = 0.001. The AKVs are reported in Table 2 and we observe that316

17

the results obtained with the KEPU are comparable with the ones returned317

by the GKE. Moreover, for a graphical feedback, refer to Figure 5 (bottom),318

where we show the reconstructed surfaces false-colored with the AKV. From319

that figure we further note that, both the AE and the AKV computed with320

the GKE are more uniformly distributed on Ω, while in the local case appear321

to vary more. This is a typical consequence of local computations, but the322

accuracy scales are comparable.323

10
2

10
4

10
6

n

10
-1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e

10
2

10
4

10
6

n

10
-6

10
-5

10
-4

10
-3

10
-2

R
M

S
E

Figure 4: Results for the gamma function sampled without noise at grid data: CPU times
(left) and RMSEs (right) for the KEPU (magenta dots and solid line) and GKE (blue stars
and dashed line). Plots are in logarithmic scale.

Table 2: MKVs for the gamma function sampled with noise at grid data. Both methods are
computed with default parameters for the M4 kernel.

n KEPU GKE

81 7.79e − 06 1.26e − 05
289 1.10e − 06 2.37e − 06
1089 8.39e − 07 4.28e − 06
4225 9.83e − 07 3.44e − 06
16641 1.03e − 06 –
66049 1.02e − 06 –
263169 1.14e − 06 –

6. Conclusions and work in progress324

We have presented an efficient domain-decomposition algorithm for comput-325

ing the Kriging estimator, namely the KEPU. The theoretical results show that326

the KEPU inherits many properties of the global Kriging predictor. As a con-327

sequence, its accuracy is comparable to the one of the global method. However,328

18

Figure 5: Graphical results (n = 4225) for the gamma function sampled without noise (top)
and with noise (bottom) at grid data. Left: the KEPU. Right: the GKE. The reconstructed
surfaces are false-colored with the AE (top) and AKV (bottom).

the main feature of the KEPU is that it is not so computationally demanding329

and hence fast.330

Future work consists in extending the proposed idea to other kinds of kernel331

bases, as the variably scaled kernels (see [8]), and to use it for approximating332

surfaces defined by point cloud data.333

Statements & Declarations334

Funding & Acknowledgments335

The work of the first and second author has been supported by the INdAM–336

GNCS 2022 Project “Computational methods for kernel-based approximation337

and its applications”, code CUP_E55F22000270001. Moreover, the first author338

has been supported by the 2020 Project “Mathematical methods in computa-339

tional sciences” funded by the Department of Mathematics “Giuseppe Peano” of340

the University of Torino, while the work of the second author has also been sup-341

ported by the Spoke 1 “FutureHPC & BigData” of the Italian Research Center342

on High-Performance Computing, Big Data and Quantum Computing (ICSC)343

funded by MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento344

strutture di ricerca e creazione di “campioni nazionali di R&S (M4C2-19)” –345

Next Generation EU (NGEU). This research has been accomplished within the346

19

RITA “Research ITalian network on Approximation” and the UMI Group TAA347

“Approximation Theory and Applications”. We sincerely thank the reviewers348

for helping us to significantly improve the paper.349

Competing Interests350

The authors have no relevant financial or non-financial interests to disclose.351

Author Contributions352

All authors contributed to the study conception and design. Material prepa-353

ration, data collection and analysis were performed by Emma Perracchione,354

Roberto Cavoretto and Alessandra De Rossi. The first draft and experiments355

was carried out by Emma Perracchione and all authors commented on previous356

versions of the manuscript. All authors read and approved the final manuscript.357

Data Availability358

The datasets generated during and/or analysed during the current study are359

publicly available and details are provided in the manuscripts.360

References361

[1] G. Allasia, R. Cavoretto, A. De Rossi, Hermite-Birkhoff interpolation362

on scattered data on the sphere and other manifolds, Appl. Math. Comput.363

318 (2018), 35–50.364

[2] S. Arefian, D. Mirzaei, A compact radial basis function partition of unity365

method, Comput. Math. Appl. 127 (2022), 1–11.366

[3] I. Babuška, J.M. Melenk, The partition of unity method, Int. J. Numer.367

Meth. Eng. 40 (1997), 727–758.368

[4] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in369

Probability and Statistics, Kluwer, Dordrecht, 2004.370

[5] D.S. Bernstein Matrix Mathematics: Theory, Facts, and Formulas, 2nd371

edn., Princeton University Press, Princeton, N.J., 2009.372

[6] F. Black, M. Scholes, The pricing of options and corporate liabilities, J.373

Polit. Econ. 81 (1973), 637–654.374

[7] L. Bottou, V. Vapnik, Local learning algorithms, Neural Computation 4375

(1992), 888–900.376

[8] M. Bozzini, L. Lenarduzzi, M. Rossini, R. Schaback, Interpolation377

with variably scaled kernels, IMA J. Numer. Anal. 35 (2015), 199–219.378

[9] L. Breiman, Random forests, Mach. Learn. 45 (2001), 5–32.379

20

[10] C. Campi, F. Marchetti, E. Perracchione, Learning via variably380

scaled kernels, Adv. Comput. Math. 47 (2021), 51.381

[11] R. Cavoretto, A. De Rossi, A meshless interpolation algorithm using382

a cell-based searching procedure, Comput. Math. Appl. 67 (2014), 1024–1038.383

[12] R. Cavoretto, A. De Rossi, An adaptive residual sub-sampling algo-384

rithm for kernel interpolation based on maximum likelihood estimations, J.385

Comput. Appl. Math. 418 (2023), 114658.386

[13] R. Cavoretto, A. De Rossi, Error indicators and refinement strategies387

for solving Poisson problems through a RBF partition of unity collocation388

scheme, Appl. Math. Comput. 369 (2020), 124824.389

[14] R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso, An ef-390

ficient trivariate algorithm for tetrahedral Shepard interpolation, J. Sci. Com-391

put. 82 (2020), 57.392

[15] R. Cavoretto, T. Schneider, P. Zulian, OpenCL based parallel algo-393

rithm for RBF-PUM interpolation, J. Sci. Comput. 74 (2018), 267–289.394

[16] J.P. Chilès, N. Desassis, Fifty years of Kriging. In: B. Daya Sagar395

et al. (eds), Handbook of Mathematical Geosciences, Springer, Cham, 2018,396

589–612.397

[17] C. Cortes, V.N. Vladimir, Support-vector networks, Machine Learning398

20 (1995), 273–297.399

[18] L. Csató, M. Opper, Sparse On-Line Gaussian Processes, Neural Com-400

put. 14 (2002), 641–668.401

[19] S. De Marchi, A. Martínez, E. Perracchione, Fast and stable ratio-402

nal RBF-based partition of unity interpolation, J. Comput. Appl. Math. 349403

(2019), 331–343.404

[20] S. De Marchi, R. Schaback, H. Wendland, Near-optimal data-405

independent point locations for radial basis function interpolation, Adv. Com-406

put. Math. 23 (2005), 317–330.407

[21] K.L. Du, M.N.S Swamy, Neural Networks and Statistical Learning,408

Springer, London, 2010.409

[22] G.E. Fasshauer, Meshfree Approximations Methods with Matlab, World410

Scientific, Singapore, 2007.411

[23] G.E. Fasshauer, M.J. McCourt, Kernel-based Approximation Methods412

Using Matlab, World Scientific, Singapore, 2015.413

[24] M. Fuhry, L. Reichel, A new Tikhonov regularization method, Numer.414

Algorithms 59 (2012), 433–445.415

21

[25] S. Guastavino, F. Benvenuto, Convergence Rates of Spectral Regu-416

larization Methods: A Comparison between Ill-Posed Inverse Problems and417

Statistical Kernel Learning, SIAM J. Num. Anal. 58 (2020), 3504–3529.418

[26] S. Guastavino, F. Benvenuto, A consistent and numerically efficient419

variable selection method for sparse Poisson regression with applications to420

learning and signal recovery, Stat. Comput. 29 (2019), 501–516.421

[27] L. Hartman, O. Hössjer, Fast Kriging of large datasets with Gaussian422

Markov random fields, Comput. Stat. Data Anal. 52 (2008), 2331–2349.423

[28] T. Joachims, C.N.J. Yu, Sparse kernel SVMs via cutting-plane training,424

Machine Learning 76 (2009), 179–193.425

[29] D.G. Krige, A statistical approach to some basic mine valuation problems426

on the Witwatersrand, J. Chem. Met. & Mining Soc., S. Africa 52 (1951),427

119–139.428

[30] E. Larsson, V. Shcherbakov, A. Heryudono, A least squares radial429

basis function partition of unity method for solving PDEs, SIAM J. Sci. Com-430

put. 39 (2017), A2538–A2563.431

[31] N.D. Lawrence, Gaussian process latent variable models for visualisation432

of high dimensional data, Adv. Neural. Inf. Proces. Syst. 16 (2004), 329–336.433

[32] S. Maji, A.C. Berg, J. Malik, Efficient classification for additive kernel434

SVMs, in IEEE PAMI, vol. 35, 2013, 66–77.435

[33] F. Marchetti, E. Perracchione, Local-to-Global Support Vector Ma-436

chines (LGSVMs), Pattern Recognit. 132 (2022), 108920.437

[34] P. Massa, S. Garbarino, F. Benvenuto, Approximation of discontinu-438

ous inverse operators with neural networks, Inverse Probl. 38 (2022), 105001.439

[35] Matlab R2021b and Statistics and Machine Learning Toolbox, The Math-440

Works, Inc., Natick, Massachusetts, USA.441

[36] B. Matérn, Spatial Variation, Lecture Notes in Statistics, Springer-442

Verlag, vol. 36, 1986.443

[37] A.K. Menon, Large-scale support vector machines: Algorithms and theory,444

technical report, University of California San Diego (2009).445

[38] D. Mirzaei, The direct radial basis function partition of unity (D-RBF-446

PU) method for solving PDEs, SIAM J. Sci. Comput. 43 (2021), A54–A83.447

[39] A. Naish-Guzman, S. Holden, The generalized FITC approximation In:448

J. Platt et al. (eds), Advances in neural information processing systems, vol.449

4, 2008, 1057–1064.450

22

[40] D. Nguyen-Tuong, M. Seeger, J. Peters, Model learning with local451

Gaussian process regression, Adv. Robot. 23 (2009), 2015–2034.452

[41] D. Rullière, N. Durrande, F. Bachoc, C. Chevalier, Nested kriging453

predictions for datasets with a large number of observations, Stat. Comput.454

28 (2018), 849–867.455

[42] A. Safdari-Vaighani, A. Heryudono, E. Larsson, A radial basis func-456

tion partition of unity collocation method for convection-diffusion equations,457

J. Sci. Comput. 64 (2015), 341–367.458

[43] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Ma-459

chines, Regularization, Optimization, and Beyond, MIT Press, Cambridge,460

MA, USA, 2002.461

[44] N. Segata, E. Blanzieri, Fast local support vector machines for large462

datasets, In: P. Perner P. (eds) Machine Learning and Data Mining in Pattern463

Recognition. MLDM 2009. Lecture Notes in Computer Science, vol. 5632,464

2009, 295–310.465

[45] D. Shepard, A two-dimensional interpolation function for irregularly466

spaced data, in: Proceedings of 23-rd National Conference, Brandon/Systems467

Press, Princeton, 1968, 517–524.468

[46] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,469

Cambridge Univ. Press, 2004.470

[47] A.N. Tikhonov, Solution of incorrectly formulated problems and the reg-471

ularization method, Sov. Math. Dokl. 4 (1963), 1035–1038.472

[48] V. Tresp, A Bayesian Committee Machine, Neural Comput. 12 (2000),473

2719–2741.474

[49] B. van Stein, H. Wang, W. Kowalczyk, M. Emmerich, Thomas475

Bäck, Cluster-based Kriging approximation algorithms for complexity reduc-476

tion, Appl. Intell. 50 (2020), 778–791.477

[50] G. Wahba Spline Models for Observational Data, Society for Industrial478

and Applied Mathematics, Philadelphia, PA, 1990.479

[51] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl.480

Comput. Math., vol. 17, Cambridge Univ. Press, Cambridge, 2005.481

[52] H. Wendland, Fast evaluation of radial basis functions: Methods based482

on partition of unity, in: C.K. Chui et al. (eds), Approximation Theory X:483

Wavelets, Splines, and Applications, Vanderbilt Univ. Press, Nashville, 2002,484

473–483.485

[53] H. Wendland, Piecewise polynomial, positive definite and compactly sup-486

ported radial functions of minimal degree, Adv. Comput. Math. 4 (1995),487

389–396.488

23

	Introduction
	Preliminaries
	Kernel-based interpolation
	Partition of unity method

	Kriging estimator based on partition of unity
	Localized Gaussian fitting
	Localized Gaussian uncertainties

	Complexity analysis and implementation
	Complexity costs
	Implementation details

	Numerical experiments
	Test 1d: canonical implementation without noise
	Test 1d: fitrgp.m implementation with noise
	Test 2d: applications to finance

	Conclusions and work in progress

