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Optimal intervention in transportation networks
Leonardo Cianfanelli, Giacomo Como, Asuman Ozdaglar, and Francesca Parise, Member, IEEE

Abstract— We study a network design problem (NDP)
where the planner aims at selecting the optimal single-link
intervention on a transportation network to minimize the
travel time under Wardrop equilibrium flows. Our first result
is that, if the delay functions are affine and the support
of the equilibrium is not modified with interventions, the
NDP may be formulated in terms of electrical quantities
computed on a related resistor network. In particular, we
show that the travel time variation corresponding to an
intervention on a given link depends on the effective re-
sistance between the endpoints of the link. We suggest
an approach to approximate such an effective resistance
by performing only local computation, and exploit it to
design an efficient algorithm to solve the NDP. We discuss
the optimality of this procedure in the limit of infinitely
large networks, and provide a sufficient condition for its
optimality. We then provide numerical simulations, showing
that our algorithm achieves good performance even if the
equilibrium support varies and the delay functions are non-
linear.

Index Terms— Transportation Networks, Network Design
Problems, Traffic Control, Network Analysis and Control.

I. INTRODUCTION

Due to increasing populations living in urban areas, many
cities are facing the problem of traffic congestion, which leads
to increasing levels of pollution and massive waste of time
and money [1]. The problem of mitigating congestion has
been tackled in the literature from two main perspectives. One
approach is to influence the user behaviour by incentive-design
mechanisms, for instance by road tolling [2]–[7], information
design [8]–[11] or lottery rewards [12], to minimize the
inefficiencies due to the autonomous uncoordinated decisions
of the agents. A second approach is to intervene on the
transportation network, by building new roads or enlarging the
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existing ones. The corresponding network design problem (i.e.,
the problem of optimizing the intervention on a transportation
network subject to some budget constraints, see e.g. [13]) is
very challenging because of its bi-level nature, i.e., it involves
a network intervention optimization problem given the flow
distribution for that particular network. We assume that each
link of the network is endowed with a delay function and the
flow distributes according to a Wardrop equilibrium, taking
paths with minimum cost, defined as the sum of the delay
functions of the links along the path (see [14], [15]). A char-
acterization of the Wardrop equilibrium is used to construct
the lower level of the bi-level network design problem.

In this work we define a network design problem (NDP),
and analyze in details a special instance of the problem, where
the delay functions are affine, and the planner can improve
the delay function of a single link. Our objective is to strike a
balance between a problem that is simple enough to guarantee
tractable analysis, yet rich enough to allow insights for more
general classes of NDPs. We then extend the validity of the
proposed method by a numerical analysis, showing that good
performance are achieved even if the delay functions are non-
linear. For single-link affine NDPs, our first theoretical result
provides an analytical characterization of the cost variation
(i.e., the total travel time at the equilibrium) corresponding
to an intervention on a particular link under a regularity
assumption, which states that the set of links carrying positive
flow remain unchanged with an intervention. This assumption,
which is not new in the traffic equilibrium literature (see e.g.
[16], [17]) leads to a characterization of Wardrop equilibria
using a system of linear equations and enables representing
single-link interventions as rank-1 perturbations of the system.
We show that this assumption is satisfied provided that the total
incoming flow to the network is large enough and the network
is series-parallel, which may be of independent interest. We
exploit the structure of our characterization and the linearity
of the delay functions to express the cost variation using
the effective resistance of a link (i.e., between the endpoints
of the link), defined with respect to a related resistor net-
work, obtained by making the directed transportation network
undirected, and assigning a conductance to each link based
on the delay function of the link. Computing the effective
resistance of a single link requires the solution of a linear
system whose dimension scales with the network size (we
indistinctly refer to the network size as the cardinality of the
node and the link sets, implicitly assuming that transportation
networks are sparse in a such a way that the average degree
of the nodes is independent of the number of nodes, inducing
then a proportionality between the number of nodes and links).
Hence, solving the NDP requires the solution of E of these
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problems, with E denoting the number of links. Since this can
be computationally intractable for large networks, our second
main result proposes a method based on Rayleigh’s mono-
tonicity laws to approximate the effective resistance of each
link with a number of iterations independent of the network
size, thus leading to a significant reduction of complexity. The
key idea is that the effective resistance between two adjacent
nodes i and j depends mainly on the local structure of the
network around the two nodes (i.e., the set of nodes N≤d
that are at distance no greater than a small constant d from
at least one of i and j), and may therefore be approximate
by performing only local computation. Since typically in
transportation networks the local structure of the network
is independent of the network size (think for instance of a
bidimensional square grid), the size ofN≤d does not scale with
the network size, thus we can guarantee that the approximation
error and computational complexity of our method also do not
scale. Our third main result establishes sufficient conditions
under which the approximation error vanishes asymptotically
in the limit of infinite networks, proving that if the related
resistor network is recurrent the approximation error tends to
vanish for large distance d. In the conclusive section we con-
duct a numerical analysis on synthetic and real transportation
networks, showing that a good approximation of the effective
resistance of a link can be achieved by looking at a small
portion of the network. Moreover, while several assumptions
are made to establish theoretical results (e.g., affine delay
functions, support of equilibrium flows not varying with the
intervention), we conduct a numerical analysis showing that
good performance are achieved even if some assumptions are
relaxed, i.e., if the delay functions are non-linear and the sup-
port of the equilibrium is allowed to vary with interventions.

In our work we consider a special case of NDPs. These
problems have been formalized in the last decades via many
different formulations. Both continuous network design prob-
lems [18]–[20], where the budget can be allocated continu-
ously among the links, and discrete formulations, in which
the decision variables include which new roads to build [21],
how many lanes to add to existing roads [22], or a mix
of those two problems [23], have been considered in the
literature, together with dynamical formulations [24], and
formulations where the optimum is achieved by removing,
instead of adding, links, because of Braess’ paradox [25], [26].
For comprehensive surveys on the literature on NDP we refer
to [27], [28]. We stress that most of the literature focuses
on finding polynomial algorithms to solve in approximation
NDPs in their most general form. Our main contribution is to
provide a tractable approach to solve a single-link network
design problem in quasi-linear time, as well as providing
intuition and a completely new formulation. For the future we
aim at extending our techniques to more general cases, like
the multiple interventions case. In the setting of affine delay
functions, our NDP formulation is also related to the literature
on marginal cost pricing. We assume that interventions modify
the linear coefficient of the delay function of link e from ae
to ãe, leading to τ̃e(fe) = τe(fe) − (ae − ãe)fe, which is
equivalent to adding a negative marginal cost toll on a link.
In the literature the problem of optimal toll design has been

widely explored, also dealing with the problem of the support
of the Wardrop equilibrium varying after the intervention, i.e.,
without imposing restrictive assumptions. However, most of
the toll literature aim at finding conditions under which a
general NP-hard problem may be solved in polynomial time.
The scope of our work is instead to provide a new formulation
to a more tractable problem. Moreover, to relax the regularity
assumption on the support of the equilibrium, in the toll
literature it is often assumed that the network has parallel
links, which is unrealistic for transportation networks (see,
e.g., [29], [30]. Our work is also related to [16], [17], where
the authors investigate the sign of total travel time variation
when a new path is added to a two-terminal network, under
similar assumptions to ours, providing sufficient conditions
under which the Braess’ paradox arises. In our work we instead
compute the total travel time variation with an intervention,
and suggest an efficient algorithm to select the optimal in-
tervention. As mentioned, the key step of our approach is to
reformulate the NDP in terms of a resistance problem, and also
exploits the parallelism between resistor networks and random
walks. From a methodological perspective it is worthwhile
mentioning that the relation between Wardrop equilibria and
resistor networks has been first investigated in [31], while the
parallelism between random walks and Wardrop equilibria has
been investigated in [32], although with different purposes.
The relation between random walks and resistor networks
is quite standard and well-known (see e.g. [33]). To sum-
marize, the contribution of this paper is two-fold. From a
methodological perspective, we provide a method to locally
approximate the effective resistance between adjacent nodes,
which may be of independent interest (effective resistance of
a link is related to spanning tree centrality [34]). From NDP
perspective, we provide a new formulation of the NDP in terms
of resistor networks, and exploit our methodological result to
approximate efficiently single-link NDPs.

The rest of the paper is organized as follows. In Section II
we define the model and formulate the NDP as a bi-level
program. In Section III we define single-link NDPs, rephrase
the problem in terms of resistor networks, and discuss the
regularity assumption. In Section IV we provide our method
to approximate the effective resistance of a link and exploit
such a method to construct an algorithm to solve the problem.
We then analyze the asymptotic performance of the proposed
method in the limit of infinite networks in Section V. In
Section VI we provide numerical simulations. Finally, in the
conclusive section, we summarize the work and discuss future
research lines.

A. Notation

We let δ(i), 1, 0 and I denote the unitary vector with 1 in
position i and 0 in all the other positions, the column vector of
all ones, the column vector of all zeros, and the identity matrix,
respectively, where the size of them may be deduced from the
context. AT and vT denote the transpose of matrix A and
vector v, respectively. Given a vector v, we let Iv denote the
matrix whose off-diagonal elements are zero and with diagonal
elements (Iv)ii = vi.
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II. MODEL AND PROBLEM FORMULATION

We model the transportation network as a directed multi-
graph G = (N , E), and denote by o,d ∈ N the origin and
the destination of the network. We assume for simplicity of
notation that N = {1, · · · ,N} and E = {1, · · · ,E}, and
assume that o and d are respectively the first and the last node
of the network. Every link e is endowed with a tail ξ(e) and a
head θ(e) inN . We allow multiple links between the same pair
of nodes, and assume that every link belongs to at least a path
from o to d, otherwise such a link may be removed without
loss of generality. Let m > 0 denote the throughput from the
origin o to the destination d, and ν = m(δ(o) − δ(d)) ∈ RN.
Let P = {1, · · · ,P} denote the set of paths from o to d. An
admissible path flow is a vector z ∈ RP

+ satisfying the mass
constraint

1T z = m. (1)

Let A ∈ RE×P denote the link-path incidence matrix, with
entries Aep = 1 if link e belongs to the path p or 0 otherwise.
The path flow induces a unique link flow f ∈ RE via

f = Az. (2)

Every link e is endowed with a non-negative and strictly
increasing delay function τe : R+ → R+. We assume that
the delay functions are in the form τe(fe) = τe(0) + ae(fe),
where τe(0) is the travel time of the link when there is no flow
on it, and ae(fe) describes congestion effects, with ae(0) = 0.
The cost of path p under flow distribution f is the sum of the
delay functions of the links belonging to p, i.e.,

cp(f) =
∑
e∈E

Aepτe(fe). (3)

Definition 2.1 (Routing game): A routing game is a triple
(G, τ, ν).

A Wardrop equilibrium is a flow distribution such that no
one has incentive in changing path. More precisely, we have
the following definition.

Definition 2.2 (Wardrop equilibrium): A path flow z∗, with
associated link flow f∗ = Az∗, is a Wardrop equilibrium if
for every path p

z∗p > 0 =⇒ cp(f
∗) ≤ cq(f∗), ∀q ∈ P.

Let B ∈ RN×E denote the node-link incidence matrix, with
entries Bne = 1 if n = ξ(e), Bne = −1 if n = θ(e), or
Bne = 0 otherwise. It is proved in [14] that a link flow f∗ is
a Wardrop equilibrium of a routing game if and only if

f∗ = arg min
f∈RE

+,Bf=ν

∑
e∈E

∫ fe

0

τe(s)ds, (4)

where Bf = ν is the projection of (1) on the link set. Since the
delay functions are assumed strictly increasing, the objective
function in (4) is strictly convex and the Wardrop equilibrium
f∗ is unique.

Definition 2.3 (Social cost): The social cost of a routing
game is the total travel time at the equilibrium, i.e.,

C(0) =
∑
e∈E

f∗e τe(f
∗
e ).

The social cost can be interpreted as a measure of performance
by a planner that aims at minimizing the overall congestion
on the transportation network. We now provide an equivalent
characterization of the social cost of a routing game. To this
end, let λ∗ and γ∗ denote the Lagrangian multipliers associated
to f∗ ≥ 0 and Bf = ν, respectively. The KKT conditions of
(4) read:

τe(f
∗
e ) + γ∗θ(e) − γ

∗
ξ(e) − λ

∗
e = 0 ∀e ∈ E ,∑

e∈E:θ(e)=i fe −
∑
e∈E:ξ(e)=i fe + νi = 0 ∀i ∈ N ,

λ∗ef
∗
e = 0 ∀e ∈ E ,

λ∗e ≥ 0 ∀e ∈ E ,
f∗e ≥ 0 ∀e ∈ E .

(5)

The third condition, known as complementary slackness, im-
plies that if λ∗e > 0, then f∗e = 0, i.e., link e is not used at
the equilibrium. We let E+ denote the set of the links e such
that λ∗e > 0. The next lemma shows that the social cost may
be characterized in terms of the Lagrangian multiplier γ∗.

Lemma 1: Let (G, τ, ν) denote a routing game. Then,

C(0) = m(γ∗o − γ∗d).

Proof: See Appendix II.
We consider a NDP where the planner can improve the delay

functions of the network with the goal of minimizing a combi-
nation of the social cost after the intervention and the cost of
the intervention itself. Specifically, let u ∈ (−1,+∞)E denote
the intervention vector, with corresponding delay functions

τ (ue)
e (fe) = τe(0) +

ae(fe)

1 + ue
.

This type of interventions may correspond for instance to
adding or removing lanes from some roads of the network.
We allow u to be negative to leverage Braess’ paradox, which
states that the social cost may decrease by worsening a link
of the network. We let he : (−1,+∞)→ [0,+∞) denote the
cost associated to the intervention on link e. The goal of the
planner is to minimize a combination of the social cost and the
intervention cost, where α ≥ 0 is the trade-off parameter. More
precisely, by letting f∗(u) denote the Wardrop equilibrium
corresponding to intervention u, the NDP reads as follows.

Problem 1: Let (G, τ, ν) be a routing game, and α ≥ 0 be
the trade-off parameter. The goal is to select u∗ such that

u∗ ∈ arg min
u∈RE

+

∑
e∈E

f∗e (u)τ (ue)
e (f∗e (u)) + αh(u), (6)

where h(u) =
∑
e he(ue), and

f∗(u) = arg min
f∈RE

+,Bf=ν

∑
e∈E

∫ fe

0

τ (ue)
e (s)ds. (7)

Remark 1: We stress the fact that Problem 1 is bi-level,
in the sense that the planner optimizes the intervention u
according to a cost function that depends on the Wardrop
equilibrium f∗(u), which in turn is the solution of the op-
timization problem (7), whose objective function depends on
the intervention u itself.

Remark 2: Problem 1 is not equivalent to the toll design
problem. The key difference between the two problems is that
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tolls modify the Wardrop equilibrium, but the performance of
tolls is evaluated with respect to the original delay functions
τe. On the contrary, in Problem 1 the intervention is evaluated
with respect to the new delay functions τ (ue)

e .
Problem 1 is in general non-convex, and hard to solve

because of its bi-level nature. For these reasons, in the next
section we shall study a simplified problem where the delay
functions are affine and the planner may intervene on one link
only. In this setting we are able to rephrase the problem as
a single-level optimization problem, and provide an electrical
network interpretation of the problem.

III. SINGLE-LINK INTERVENTIONS IN AFFINE NETWORKS

In this section we provide an electrical network formulation
of the NDP under some restrictive assumptions. In particular,
we provide a closed formula for the social cost variation in
terms of electrical quantities computed on a related resistor
network. To this end, we restrict our analysis to the space of
feasible interventions U , defined as

U := {u : ueδ
(e) for a link e ∈ E , ue ≥ 0}.

In other words, U represents the space of interventions on a
single link of the network. We also assume that the delay func-
tions are affine, i.e., τe(fe) = aefe+be for every e, and denote
by (G, a, b, ν) routing games with affine delay functions. For
an intervention u, let (G, a(u), b, ν) denote the corresponding
affine routing game, C(u) denote the corresponding social cost,
and ∆C(u) = C(0) − C(u) denote the social cost gain. Our
problem can be expressed as follows.

Problem 2: Let (G, a, b, ν) be an affine routing game and
α ≥ 0 be the trade-off parameter. Find

u∗ ∈ arg max
u∈U

(∆C(u) − αh(u)).

The next example shows that the problem cannot be decou-
pled by first selecting the optimal link e∗ and then the optimal
strength of the intervention u∗e .

Example 1: Consider the transportation network in Fig-
ure 1, with linear delay functions τe(fe) = aefe. By some
computation, one can prove that

∆C(u1δ
(1)) = m

a1a
2
2u1

(a1 + a2)((u1 + 1)a1 + a2)
,

∆C(u2δ
(2)) = m

a21a2u2
(a1 + a2)(a1 + (u2 + 1)a2)

,

∆C(u3δ
(3)) = m

u3
u3 + 1

.

In Figure 1 the social cost variation corresponding to interven-
tion on every link e is illustrated as functions of ue. Observe
that the link that maximizes the social cost gain depends on
ue. Thus, the problem cannot be decoupled by first selecting
the optimal link e∗ and then the optimal u∗e .

Our theoretical results rely on the following technical as-
sumption, stating that the support of the Wardrop equilibrium
is not modified with an intervention.

Assumption 1: Let E+(u) be the set of links e such that
for the routing game (G, a(u), b, ν) the Lagrangian multiplier
λ∗e(u) > 0. We assume that E+(u) = E+ for every u in U .

o

n

d

e1 e2

e3

0 1 2 3 4

Intervention u
e

0

1

2

3

C1

C2

C3

Fig. 1. Left : the graph of Example 1. Right : the social cost variation
corresponding to single link interventions, with assignment a1 =
3, a2 = 2, a3 = 1,m = 3.

Assumption 1 is not new in the literature [16], [17]. We
will get back to the assumption in Section III-A. With a slight
abuse of notation, from now on let E denote E \ E+. We now
define a mapping from the transportation network G to an
associated resistor network GR.

Definition 3.1 (Associated resistor network): Given the
transportation network G = (N , E), the associated resistor
network GR = (N ,L,W ) is constructed as follows:
• the node set N is the same.
• W ∈ RN×N is the conductance matrix, with elements

Wij =


∑

e∈E:
ξ(e)=i,θ(e)=j, or
ξ(e)=j,θ(e)=i

1
ae

if i 6= j

0 if i = j.

(8)

Note that W is symmetric, thus GR is undirected. The
element Wij has to be interpreted as the conductance
between nodes i and j.

• Multiple links connecting the same pair of nodes are not
allowed, hence every link l in L can be identified by a
unordered pair of nodes {i, j}, and the set L is uniquely
determined by W . Let L denote the cardinality of L.
The mapping M : E → L associates to every link e
of the transportation network the corresponding link l =
M(e) = {ξ(e), θ(e)} of the resistor network. Note by (8)
that M(e) belongs to L for every e in E .

Note that the coefficients ae correspond to resistances in
the resistor networks. We let w = W1 denote the degree
distribution of the resistor network, and w∗ = maxi∈N wi
denote the maximal degree. Before establishing our first main
result, we define two relevant quantities.

Definition 3.2: Let v ∈ RN be the voltage vector on GR
when a net electrical current m is injected from o to d, i.e., v
is the unique solution of∑

k∈N

Whk(vh − vk) = m(δ(o) − δ(d)) ∀h ∈ N . (9)

For a link e in E , let ye denote the electrical current flowing
from ξ(e) to θ(e) on link M(e) of GR, and let ∆ve = vξ(e)−
vθ(e). By Ohm’s law, ∆ve = aeye.

Definition 3.3: Let v ∈ RN be the voltage vector on GR
when a unitary current is injected from i to j, i.e.,∑

k∈N

Whk(vh − vk) = δ(i) − δ(j) ∀h ∈ N . (10)
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The effective resistance rl of link l = {i, j} in L is the
effective resistance between i and j, i.e., rl = vi − vj . Given
a link e in E , we denote by re the effective resistance of link
M(e) of the associated resistor network.

The next theorem establishes a relation between the social
cost gain with a single-link intervention and the associated
resistor network.

Theorem 1: Let (G, a, b, ν) be an affine routing game, and
let Assumption 1 hold. Then,

∆C(ueδ
(e)) = aef

∗
e

ye
1
ue

+ re
ae

. (11)

Proof: See Appendix II.
The ratio re/ae belongs to (0, 1] and is also known as span-

ning tree centrality, which measures the fraction of spanning
trees including link M(e) among all spanning trees of the
undirected network GR [34]. The spanning tree centrality of
a link is maximized when removing the link disconnects the
network. Theorem 1 states that the social cost variation due
to intervention on link e is:

• proportional to aef
∗
e , which measures the delay at the

equilibrium due to congestion on link e;
• decreasing in the spanning tree centrality. Intuitively

speaking, the benefits of intervention on link e is larger
when the intervention modifies the equilibrium flows so
that agents can move from paths not including e to
paths including e, namely when f∗e increases after the
intervention. This phenomenon does not occur if e is a
bridge, i.e., if re/ae = 1, and occurs largely when many
paths from ξ(e) to θ(e) exist, i.e., when re/ae is small;

• proportional to the current ye. The role of this term is
more clear in the special case of linear delay functions.
In this case ye = f∗e for all links e in E \ E+, hence
aef
∗
e y
∗
e = ae(f

∗
e )2, which is the total travel time on link

e before the intervention.

The idea behind the proof is that with affine delay functions
the KKT conditions of the Wardrop equilibrium are linear, and
under Assumption 1 single-link interventions are equivalent to
rank-1 perturbations of the system. Thus, by Lemma 1 we can
compute the cost variation by looking at Lagrangian multiplier
γ∗o , and then express such a variation in terms of electrical
quantities. In order to solve Problem 2 by the electrical
formulation, we need to compute (11) for every link e in E .
The Wardrop equilibrium f∗ is assumed to be observable and
therefore given. The voltage v (and thus y) can be derived
by solving the linear system (9) and has to be computed only
once. On the contrary, the computation of re must be repeated
for every link, hence it requires to solve L sparse linear
systems. To reduce the computational effort, in Section IV we
shall propose a method to approximate the effective resistance
of a link that, under a suitable assumption on the sparseness of
the network, does not scale with the network size, allowing for
a more efficient solution to Problem 2. The next result shows
how to compute the derivative of the social cost variation for
small interventions.

Corollary 1: Let (G, a, b, ν) be a routing game, and assume

o d

e1

e2

Fig. 2. A directed series-parallel network. If the throughput is not
sufficiently large, Assumption 1 is not guaranteed to hold.

that for every i in E it holds either f∗i > 0 or λ∗i > 0. Then,

∂∆C(u)

∂ue

∣∣∣
u=0

=

{
aef
∗
e ye if λ∗e = 0,

0 if λ∗e > 0.

Proof: The fact that for every link i it holds either f∗i >
0 or λ∗i > 0 implies that for infinitesimal interventions the
support of f∗ is not modified. If λ∗e = 0, then f∗e and we
can derive the social cost variation in (11) with respect to
ue. The case λ∗e > 0 follows from continuity arguments and
from the complementary slackness condition, which implies
that f∗e (u) = 0 in a neighborhood of u = 0.

Remark 3: Observe that the derivative of the social cost
does not depend on the effective resistance of the link.

A. On the validity of Assumption 1

In this section we discuss Assumption 1. In particular,
we show that the assumption is without loss of generality
on series-parallel networks, if the throughput is sufficiently
large. We first recall the definition of directed series-parallel
networks, and then present the result in Proposition 1.

Definition 3.4: A directed network G is series-parallel if
and only if (i) it is composed of two nodes only (o and d),
connected by single link from o to d, or (ii) it is the result of
connecting two directed series-parallel networks G1 and G2 in
parallel, by merging o1 with o2 and d1 with d2, or (iii) it is
the result of connecting two directed series-parallel networks
G1 and G2 in series, by merging d1 with o2.

Proposition 1: Let (G, a, b, ν) be a routing game. If G is
series-parallel, there exists m such that for every m ≥ m,
E+ = ∅. Furthermore, if b = 0, E+ = ∅ for every m > 0.

Proof: See Appendix II.
Remark 4: Proposition 1 implies that Assumption 1 is with-

out loss of generality on series-parallel networks if m ≥ m.
The next example shows that, if the throughput is not

sufficiently large, Assumption 1 may be violated.
Example 2: Consider the series-parallel network in Fig-

ure 2. Let m = 1, and consider affine delay functions τ1(f1) =
f1 + 1, τ2(f2) = f2 + 3/2. One can verify that

f∗1 = 3/4, f∗2 = 1/4, λ∗1 = λ∗2 = 0.

Modifying a1 from 1 to 1/3 (i.e., with u = 2δ(1)), we get:

f∗1 (u) = 1, f∗2 (u) = 0, λ∗1(u) = 0, λ∗2(u) = 1/6,

violating Assumption 1. Proposition 1 proves that this does
not occur if m is sufficiently large.
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IV. AN APPROXIMATE SOLUTION TO PROBLEM 1
As shown in the previous section, Problem 2 may be

rephrased in terms of electrical quantities over a related resistor
network. Solving the NDP problem in this formulation requires
to solve L linear systems whose dimension scales linearly
with N. Since the voltage v may be computed in quasi-
linear time by solving the sparse linear system (9) (see [35]
for more details), the computational bottleneck is given by
the computation of the effective resistance of every link of
the resistor network. The main idea of our method is that,
although the effective resistance of a link depends on the entire
network, it can be approximate by looking at a local portion
of the network only. We then formulate an algorithm to solve
Problem 2 by exploiting our approximation method.

A. Approximating the effective resistance
We introduce the following operations on resistor networks.
Definition 4.1 (Cutting at distance d): A resistor network

GR is cut at distance d from link l = {i, j} in L if every
node at distance greater than d from link l (i.e., from both i
and j) is removed, and every link with at least one endpoint
in the set of the removed nodes is removed. Let GUd

l and rUd

l

denote such a network and the effective resistance of link l on
it, respectively.

Definition 4.2 (Shorting at distance d): A resistor network
GR is shorted at distance d from l in L if all the nodes at
distance greater than d from link l are shorted together, i.e., an
infinite conductance is added between each pair of such nodes.
Let GLd

l and rLd

l denote such a network and the effective
resistance of link l on it, respectively.

We refer to Figure 3 for an example of these techniques
applied to a regular grid. We next prove that rUd

l and rLd

l

are respectively an upper and a lower bound for the effective
resistance rl for every link l. To this end, let us introduce
Rayleigh’s monotonicity laws.

Lemma 2 (Rayleigh’s monotonicity laws [36]): If the re-
sistances of one or more links are increased, the effective
resistance between two arbitrary nodes cannot decrease. If the
resistances of one or more links are decreased, the effective
resistance cannot increase.

Proposition 2: Let GR be a resistor network. For every link
l = {i, j} in L,

r
Ud1

l ≥ rUd2

l ≥ rl ≥ r
Ld2

l ≥ rLd1

l , ∀d2 ≥ d1 ≥ 1.

Moreover,

1/w∗ ≤ rLd

l ≤ r
Ud

l ≤ 1/Wij , ∀d ≥ 1. (12)

Proof: Cutting a network at distance d is equivalent to
setting to infinity the resistance of all the links with at least
one endpoint at distance greater than d. Shorting a network
at distance d is equivalent to setting to zero the resistance
between any pair of nodes at distance greater than d. Then,
by Rayleigh’s monotonicity laws, it follows rUd

l ≥ rl ≥ rLd

l .
Similar arguments may be used to show that, if d1 < d2,
then r

Ud1

l ≥ r
Ud2

l and r
Ld1

l ≤ r
Ld2

l . The right inequality in
(12) follows from Rayleigh’s monotonicity laws, by noticing
that the effective resistance computed in the network with only

l

GU1

l GL1

l

l

s

l

Fig. 3. Square grid. Above: the yellow, orange and red nodes are at
distance 1, 2 and 3, respectively from the green nodes. Bottom-left :
the grid cut at distance 1 from link l. Bottom-right : the grid shorted at
distance 1 from link l. Note that in the bottom right network the links
connecting yellow nodes with node s do not have unitary weights.

nodes i and j (which is equal to 1/Wij) is an upper bound for
rU1

l . The left inequality follows from noticing that the effective
resistance on the network in which every node except i is
shorted with j, which results in a network with only two nodes
and a conductance between i and j not greater than w∗ (hence,
resistance no less than 1/w∗) is a lower bound of rL1

l .
Proposition 2 states that cutting and shorting a network

provides upper and lower bound for the effective resistance
of a link. Moreover, the bound gap is a monotone function of
the distance d.

B. Our algorithm
We here propose an algorithm to solve in approximation

Problem 2 based on our method for approximating the effec-
tive resistance. Our approach is detailed in Algorithm 1. Notice
that the performance of Algorithm 1 depends on the choice of
the parameter d. Specifically, the higher d is the better is the
approximation of the social cost variation.

Theorem 2: Let ∆C(u) be the social cost gain correspond-
ing to intervention u = ueδ

(e) as given in Theorem 1, and

∆C
(u)
d = aef

∗
e

ye
1
ue

+ r
Ud
e +r

Ld
e

2ae

be the social cost gain estimated by Algorithm 1 for a given
distance d ≥ 1. Then,∣∣∣∣∆C(u) −∆C

(u)
d

∆C(u)

∣∣∣∣ ≤ εed

2
(

1
ue

+ r
Ud
e +r

Ld
e

2ae

)
≤ εed

2
(

1
ue

+ 1
w∗·ae

) ,
where

εed :=
rUd
e − rLd

e

ae
.
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Algorithm 1:
Input: The affine routing game (G, a, b, ν), the cost

functions {he}e∈E , and the distance d ≥ 1 for
effective resistance approximation.

Output: The optimal intervention u∗d.
Construct the associated resistor network GR.
Compute v and y by solving (9).
for every l in L do

Construct GUd

l and GLd

l .
Compute rUd

l and rLd

l on GUd

l and GLd

l .
end
for every e in E do

Find u∗de such that

u∗de ∈ arg max
ue≥0

aef
∗
e

ye
1
ue

+ r
Ud
e +r

Ld
e

2ae

− αhe(ue).

(13)
end
Find e∗d such that

e∗d ∈ arg max
e∈E

aef
∗
e

ye
1
u∗de

+ r
Ud
e +r

Ld
e

2ae

− αhe(u∗de ).

(14)
The optimal intervention is u∗d = u∗de δ

(e∗d).

Furthermore,
∆C(u) ≥ aef∗e

ye
1
ue

+ r
Ud
e

ae

. (15)

Proof: See Appendix II.
In the next section we provide sufficient conditions for εed

to vanish for large distance d in the limit of infinite networks.
In the rest of this section we show that the bound gap (and
therefore εed) and the computational complexity of the bounds
(for a fixed d) depend only on the local structure around
link M(e) of the resistor network, and do not scale with the
network size, under the following assumption.

Assumption 2: Let GR be the resistor network correspond-
ing to the transportation network G. Let l ∈ L be an arbitrary
link of GR, andN≤d denote the set of nodes that are at distance
no greater than d from link l. We assume that the network G
is sparse in such a way that the cardinality of N≤d does not
depend on N for any d.

Assumption 2 is suitable for transportation networks, be-
cause of physical constraints not allowing for the degree of the
nodes to grow unlimitedly (think for instance of planar grids,
where the degree of the nodes is given no matter what the
size of the network is, and the local structure of the network
around an arbitrary node does not depend on the network
size N). Notice also that, under Assumption 2, N and L are
proportional.

Proposition 3: Let GR = (N ,L,W ) be a resistor network,
l = {i, j} in L, and d ≥ 1. Then, rUd

l and rLd

l , and their
computational complexity, depend only on the structure of GR
within distance d + 1 from i and j only. Furthermore, under
Assumption 2 they do not depend on N.

Proof: See Appendix II.
Remark 5: To the best of our knowledge, the complexity

of the most efficient algorithm to compute the spanning tree
centrality (or effective resistance) of a link in large networks
scales with the number of links [34]. On the contrary, Proposi-
tion 3 states that under Assumption 2 the computational time
for approximating a single effective resistance does not scale
with N. Therefore, approximating all the effective resistances
requires a computational time linear in N. Observe that v (and
thus y) is computed via a diagonally dominant, symmetric and
positive definite linear systems. The design of fast algorithms
to solve this class of problem is an active field of research
in the last years. To the best of our knowledge, the best
algorithm has been provided in [35] and has complexity
O(M logk N log 1/ε), where ε is the tolerance error, k is a
constant, and M is the number of non-zero elements in the
matrix of the linear system. Since in our case M scales with L,
and since L scales with N under Assumption 2, Algorithm 1 is
quasilinear in N. Step (13) consists in maximizing a function
of one variable. Finally, step (14) consists in taking the
maximum of E numbers.

V. BOUND ANALYSIS

In this section we characterize the gap between the bounds
on the effective resistance of a link in terms of random walks
over the resistor networks GR, GUd

l and GLd

l . We then leverage
this characterization to provide a sufficient condition on the
network under which the bound gap vanishes asymptotically
for large distance d. To this end, we interpret the conductance
matrix W of the resistor network as the transition rates of
continuous-time Markov chain whose state space is the node
set of the network, and introduce the following notation. Let:
• TS and T+

S denote the hitting time (i.e., the first time
t ≥ 0 such that the random walk hits the set S ∈ N ),
and the return time (i.e., the first time t > 0 such that the
random walk hits the set S), respectively.

• Nd denote the set of the nodes that are at distance d
from link l = {i, j}, i.e., at distance d from i (or j) and
at distance greater or equal than d from j (or i). Index l
is omitted for simplicity of notation.

• pk(X), pUd

k (X) and pLd

k (X), denote the probability that
event X occurs, conditioned on the fact that the random
walk starts in k at time 0 and evolves over the resistor
networks GR, GUd

l and GLd

l , respectively.
The next result provides a characterization of the bound gap
in terms of random walks over GR, GUd

l and GLd

l .
Proposition 4: Let GR = (N ,L,W ) be a resistor network.

For every link l = {i, j} in L,

rUd

l − r
Ld

l ≤
wi

(Wij)2
pi(TNd

< Tj)︸ ︷︷ ︸
Term 1

·

· max
g∈Nd

(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)︸ ︷︷ ︸

Term 2

,
(16)

where the quantities in (16) are computed with respect to the
continuous-time Markov chain with transition rates W .

Proof: See Appendix II.
In the next sections we shall use this result to analyze the

asymptotic behaviour of the bound gap for an arbitrary link l
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TABLE I
ALL THE FOUR CASES ARE POSSIBLE, AS SHOWN IN SECTION V-B.

TERM 1 → 0 UNDER THE ASSUMPTION THAT THE NETWORK IS

RECURRENT, AS PROVED IN SECTION V-A.

Term 2 → 0 Term 2 9 0
Term 1 → 0 2d grid Ring
Term 1 9 0 3d grid Double tree

in L as d → +∞, for networks whose node set is infinite
and countable. In particular, we show in Section V-A that
this error vanishes asymptotically for the class of recurrent
networks. The core idea to prove this result is to show that
Term 1 vanishes. To generalize our analysis beyond recurrent
networks, in Section V-B we study both Term 1 and 2 and
provide examples showing that all combinations in Table I
are possible. In particular, it is possible that the bound gap
vanishes asymptotically for non-recurrent networks (for which
Term 1 9 0, see [36, Section 21.2]) if Term 2 → 0.

A. Recurrent networks

We start by introducing the class of recurrent networks.
Definition 5.1 (Recurrent random walk): A random walk is

recurrent if, for every starting point, it visits its starting node
infinitely often with probability one [36, Section 21.1].

Definition 5.2 (Recurrent network): An infinite resistor
network GR = (N ,L,W ) is recurrent if the random walk on
the network is recurrent.

The next theorem states that the bound gap vanishes asymp-
totically on recurrent networks if the degree of every node is
finite. Note that the boundedness of the degree of all the nodes
is guaranteed under Assumption 2.

Theorem 3: Let GR = (N ,L,W ) be an infinite recurrent
resistor network, and let w∗ < +∞. Then, for every l in L,

lim
d→+∞

(rUd

l − r
Ld

l ) = 0,

Proof: It is proved in [36, Proposition 21.3] that a
network is recurrent if and only if

lim
d→+∞

pi(TNd
< Tj) = 0 ∀l = {i, j} ∈ L. (17)

Observe that, to hit any node in Nd+1, the random walk
starting from i has to hit at least one node in Nd. Hence,
the sequence

{
pi(TNd

< Tj)
}∞
d=1

is non-increasing in d and
the limit in (17) is well defined. Then, from (16), (17), from
the fact that 0 ≤ pUd

g (Ti < Tj)− pLd
g (Ti < Tj) ≤ 1 for every

node g, and from the assumptions w∗ < +∞ and Wij > 0
(recall that i and j are adjacent nodes), it follows

lim
d→+∞

rUd

l − r
Ld

l ≤
w∗

(Wij)2
lim

d→+∞
pi(TNd

< Tj) = 0,

which completes the proof.
Corollary 2: Let G be a transportation network with recur-

rent associated resistor network GR. Then, for every u in U ,

lim
d→+∞

∣∣∣∣∆C(u) −∆C
(u)
d

∆C(u)

∣∣∣∣ = 0.

Proof: The proof follows from Theorem 2 and Theo-
rem 3, which imply limd→+∞ εed = 0 for every e in E .

Recurrence is a sufficient condition for the approximation
error of a link effective resistance to vanish asymptotically,
but is not necessary, as discussed in the next section.

B. Beyond recurrence
We here provide examples of infinite resistor networks

for all of the cases in Table I. Observe that, for every link
l = {i, j} in L, the network cut at distance d from l and
the network shorted at distance d from l differ for one node
only (denoted by s), which is the result of shorting in a unique
node all the nodes at distance greater than d from l. Intuitively
speaking, our conjecture is that Term 2 in (16) is small when
the network has many short paths. In this case, adding the
node s leads to a small variation of the probability, starting
from any node in Nd, of hitting i before j, thus making Term
2 small. This intuition can be clarified with the next examples.

1) 2d grid: Consider an infinite unweighted bidimensional
grid as in Figure 4. This network is very relevant for NDPs,
since many transportation networks have similar topologies.
The network is known to be recurrent [36, Example 21.8],
hence Theorem 3 guarantees that Term 1 vanishes asymptot-
ically for every link l = {i, j}. Our conjecture, confirmed by
numerical simulations, is that for every node g in Nd,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd
g (Ti < Tj) = 1/2.

Hence, this is recurrent network for which also Term 2
vanishes asymptotically.

2) 3d grid: Consider an infinite unweighted tridimensional
grid. This network is not recurrent [36, Example 21.9], there-
fore Term 1 does not vanish asymptotically, and we cannot
conclude from Theorem 3 that for every l = {i, j} the
bound gap vanishes asymptotically. Nonetheless, numerical
simulations show that, similarly to the bidimensional grid, for
every node g in Nd,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd
g (Ti < Tj) = 1/2.

Hence, this is a non-recurrent network for which Term 2 (and
therefore the bound gap rUd

l − r
Ld

l ) vanishes asymptotically
in the limit of infinite distance d.

3) Ring: Consider an infinite unweighted ring network, and
let us focus on nodes 5 and 6 in Figure 5. Then,

pUd
5 (T1 < T2) = 1, pUd

6 (T1 < T2) = 0.

for each d (even d→ +∞), whereas,

pLd
5 (T1 < T2) =

d

2d+ 1
−−−−−→
d→+∞

1

2
,

pLd
5 (T1 < T2) =

d+ 1

2d+ 1
−−−−−→
d→+∞

1

2
,

since this case is equivalent to the gambler’s ruin problem (see
[36, Proposition 2.1]). Hence, Term 2 does not vanish for the
ring. This is due to the fact that all the paths from 5 to 2 in
GL2

l not including node 1 include the node s. Still, Term 1
(and thus the bound gap rUd

l − r
Ld

l ) vanishes asymptotically
by Theorem 3, because the ring network is recurrent.
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i j

Fig. 4. Bidimensional square grid, cut at distance d = 3 from l =
{i, j}. The red nodes belong to Nd. As d increases, pg(T1 < T2)
approaches 1/2 for every node g in Nd.

GU2

l GL2

l

1 2

3 4

5 6

l
1 2

3 4

5 6

s

l

Fig. 5. Left : ring cut at distance d = 2 from l. Right : ring shorted at
distance d = 2 from link l = {1, 2}.

4) Double tree network: The last examples illustrates an
infinitely large network in which the bound gap does not
vanish asymptotically. This network is not relevant for traffic
applications, since it admits one path only between every
pair of nodes, but provides an interesting counterexample
where the bound gap does not converge asymptotically. The
network is composed of two infinite trees starting from node
i and j, connected by a link l = {i, j} (see Figure 6), and
is unweighted. It can be shown that on this network the
probability that a random walk, starting from i, returns on
i is equal to the same quantity computed on a biased random
walk over an infinite line (for more details see Appendix III).
Since the biased random walk on a line is not recurrent [36,
Example 21.2], then the double tree network is non-recurrent,
and Term 1 9 0. Moreover, we show in Appendix III that

lim
d→+∞

rUd

l − r
Ld

l =
1

3
,

thus implying that Term 2 9 0.

VI. NUMERICAL SIMULATIONS

This section is devoted to numerical simulations. In Sec-
tion VI-A we analyze the bound gap for finite distance d,
both on real and synthetic transportation networks. Then, we
discuss in Section VI-B how to adapt our method to more

i j
l

Fig. 6. The double tree is an infinite non-recurrent network.

TABLE II
TABLE OF UPPER AND LOWER BOUND IN INFINITE SQUARE GRID.

d = 1 d = 2 d = 3 d = 4 d = 5

(r
Ud
l − rl)/rl 1/5 0.0804 0.0426 0.0262 0.0178

(rl − r
Ld
l )/rl 1/5 0.0804 0.0426 0.0262 0.0178

2 4 6 8 10

Distance

0

0.05

0.1

0.15

0.2

0.25

B
o

u
n

d
 g

a
p

Fig. 7. Average relative gap of the bounds on Oldenburg network as a
function of distance d.

general NDPs with non-linear delay functions, and provide
numerical simulations showing that our algorithm may be
applied in real scenarios even if the regularity assumption on
the Wardrop equilibrium (i.e., Assumption 1) is violated.

A. Effective resistance approximation

1) Infinite grids: Infinite regular grids are relevant networks
to test the performance of the bounds on the effective resis-
tance, since they are good proxy for transportation networks.
In Table II the bound gap in a square grid network with unitary
conductances is shown. Similar results are obtained in any
regular infinite grid. Numerical simulations show that for every
link l in L,

rUd

l − rl
rl

=
rl − rLd

l

rl
= O(1/d2).

We emphasize that, despite the network being infinitely large,
even at d = 5 the bounds are close to the true value effective
resistance, which is 1/2 [37].

2) Oldenburg transportation network: In this section we
illustrate the performance of our bounds on the effective
resistance of links of the resistor network associated to the
transportation network of Oldenburg [38]. The transportation
network is composed of 6105 nodes and 7035 links, and the
diameter of the associated resistor network (i.e., maximum
distance between pair of nodes) is 104. We assume for
simplicity ae = 1 for every link e ∈ E , but numerical results
prove to be robust with respect to some variability in those
parameters. The average relative bound gap on the associated
resistor network, defined as

∆Rd :=
1

L

∑
l∈L

rUd

l − r
Ld

l

rl

is shown in Table III and Figure 7. We observe that also in
this network the bound gap decreases quickly compared to the
diameter of the network.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3247542

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on March 08,2023 at 10:49:03 UTC from IEEE Xplore.  Restrictions apply. 



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE III
TABLE OF AVERAGE RELATIVE ERROR BOUND GAP AT DISTANCE d ON

THE OLDENBURG NETWORK.

d=1 d=2 d=3 d=4 d=5 d=6 d=7
∆Rd 0.21 0.12 0.079 0.056 0.041 0.031 0.024

B. Relaxing assumptions

The goal of this section is two-fold. We first show how
to adapt Theorem 1 when the delay functions are non-affine,
and validate by numerical analysis the proposed method. We
then show that violating Assumption 1 is not a practical issue
in real case scenarios. The numerical example is based on
the highway network of Los Angeles (see Figure 8 [39]). To
handle non-linear delay functions, the main idea is to adapt
Theorem 1 by constructing a resistor network and then follow
same steps as in Algorithm 1. To this end, let us write the
KKT conditions of (4) as follows:[

diag
({

τe(f
∗
e )

f∗e

}
e∈E

)
−(B−)T

−B− 0

] [
f∗

γ∗−

]
= −

[
τe(0)
ν−

]
,

where f∗ and γ∗ denote the Wardrop equilibrium and the
optimal Lagrangian multipliers before the intervention. The
KKT conditions suggest that in non-affine routing games the
term τe(f

∗
e )/f∗e plays the role of ae in affine routing games

(see the proof of Theorem 1 in Appendix II for more details).
Hence, by following similar steps as in affine routing games,
we construct a resistor network with conductance matrix

Wij =


∑

e∈E:
ξ(e)=i,θ(e)=j, or
ξ(e)=j,θ(e)=i

f∗e
τe(f∗e )

if i 6= j

0 if i = j.

(18)

The social cost variation for single-link interventions is then
computed by using Theorem 1 with respect to the new
resistor network with conductance matrix (18). Observe that,
in contrast with the affine case, this method is not exact for
non-linear delay functions, since the Wardrop equilibrium (and
thus the elements of W ) are modified by interventions, not
allowing to leverage Sherman-Morrison theorem to compute
the social cost variation.

To validate our method we assume that delay functions are
in the form τe(fe) = ae(fe)

4 + be, and consider interven-
tions in the form u = 3δ(e) for every e in E . Numerical
parameters are not reported in the paper due to limited space,
but the obtained results are robust with respect to a change
of numerical values. For every intervention, we compare the
social cost variation computed by two methods: (i) by solving
the convex optimization (7) and plugging the new equilibrium
f∗(u) into the social cost function (exact); (ii) via the electrical
formulation, i.e., by leveraging Theorem 1 with conductance
matrix (18) and ignoring the fact that Assumption 1 may
be violated (approximated). Figure 9 illustrates the social
cost variation computed by the two methods corresponding
to interventions on the five links of the network that yield
the largest cost variation. The numerical simulations show
that support of the equilibrium varies with the intervention.
Nonetheless, the proposed method approximates quite well

1 2 3 4

5

6 7 8
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13 14
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l27
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Fig. 8. Top: the highway network in Los Angeles. Bottom: a graph
representation of the network, where node 1 (Santa Monica) and 17
(Santa Ana) are respectively the origin and the destination.

the social cost variation and selects the optimal link for the
intervention. The implication of combining the results of this
section and Section VI-A is that Algorithm 1 should manage
to select optimal (or weakly suboptimal) interventions in large
transportation networks also when the delay functions are non-
linear, Assumption 1 is violated, and effective resistances are
computed at small distance d.

VII. CONCLUSION

In this work we study a network design problem where
a single link can be improved. Under the assumption that
the support of the Wardrop equilibrium is not modified with
an intervention, we reformulate the problem in terms of
electrical quantities computed on a related resistor network,
in particular in terms of the effective resistance of a link.
We then provide a method to approximate such an effective
resistance by performing only local computation, which may
be of separate interest. Based on the electrical formulation
and our approximation method for the effective resistance we
propose an efficient algorithm to solve efficiently the network
design problem. We then show by numerical examples that
our method can be adapted to routing games with non-linear
delay functions, and achieves good performance even if the
support of the equilibrium is modified by the intervention.

An interesting direction for the future is a deeper analysis
on tightness of the bounds on effective resistance for finite
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Social cost variation
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Link

0

0.1

0.2

0.3

0.4

0.5

Exact

Approximated

Fig. 9. Top: Social cost variation for interventions in the form u =
3δ(e) for a routing game on the graph of Figure 8 with delay functions
in the form τe(fe) = ae(fe)4 + be. The cost variation is computed
by solving convex optimization (exact) and by adapting Theorem 1 to
the case of non-linear delay functions (approximated), as explained in
Section VI-B. The plot illustrates the social cost variation for the five links
that maximize the cost variation.

distance d. Future research lines also include extending the
analysis to the case of multiple interventions. Indeed, the
general problem is not submodular, thus guarantees on the
performance of greedy algorithm are not given. A possible
direction is to exploit the closed formula for the social cost
derivative to implement gradient descents algorithms. Other
directions include extending the theoretical framework to the
case of multiple origin-destination pairs and heterogeneous
preferences [40], [41].

APPENDIX I
PRELIMINARIES ON CONNECTION BETWEEN GREEN’S

FUNCTION, RANDOM WALKS AND EFFECTIVE RESISTANCE

Let GR = (N ,L,W ) denote a connected resistor network
(this is without loss of generality for resistor network associ-
ated to transportation networks), and P = I−1w W the transition
probability matrix of the jump chain of the continuous-time
Markov chain with rates W . We denote by kP the matrix
obtained by deleting from P the row and the column referring
to the node k. kP can be thought of as the transition matrix
of a killed random walk obtained by creating a cemetery in
the node k. We then define the Green’s function as

kG :=

∞∑
t=0

(kP )t = (I− kP )−1. (19)

The last inequality in (19) follows from the connectedness of
GR, which implies that kP is substochastic and irreducible.
Hence, it has spectral radius and the inversion is well defined
[42]. Since ((kP )t)ij is the probability that the killed random
walk starting from i is in j after t steps, kGij indicates the
expected number of times that the killed random walk visits j
starting from i before being absorbed in k [43]. It is known that
the Green’s function of the random walk on a resistor network
can be related to electrical quantities [43]. In particular, with
the convention that

kGik = kGki = kGkk = 0 ∀i ∈ N , (20)

it is known that for any node k and link l = {i, j} in L,

rl =
kGii − kGji

wi
+

kGjj − kGij
wj

=
1

wipi(Tj < T+
i )

=
jGii
wi

,

(21)

where pi(Tj < T+
i ) is defined in Section V, and rl is the

effective resistance of link l as defined in Definition 3.3.

APPENDIX II
PROOF OF LEMMA 1

From (5), for all the used links e in E ,

γ∗ξ(e) − γ
∗
θ(e) = τe(f

∗
e ).

Consider a path p = (e1, e2, ...es), with ξ(e1) = o, θ(es) = d,
and θ(ei) = ξ(ei+1) for every 1 ≤ i < s. Thus, from (3),

cp(f
∗) =

s∑
i=1

τei(f
∗
ei) =

s∑
i=1

(γ∗ξ(ei) − γ
∗
θ(ei)

) = γ∗o − γ∗d.

Hence, all the used paths at the equilibrium have the same
cost γ∗o − γ∗d. Then, the social cost is

C(0) =
∑
e∈E

f∗e τe(f
∗
e ) =

∑
e∈E

τe(f
∗
e )
∑
p∈P

Aepz
∗
p

=
∑
p∈P

z∗p
∑
e∈E

Aepτe(f
∗
e ) =

∑
p∈P

z∗pcp(f
∗)

= (γ∗o − γ∗d)
∑
p∈P

z∗p = m(γ∗o − γ∗d),

where the second equivalence follows from (2), the fourth one
from (3), and the last one from (1).

PROOF OF THEOREM 1

Consider the KKT conditions (5), and let us remove the
links in E+. Thus, the last three conditions of (5) can be
ignored without affecting the solution. With a slight abuse of
notation, from now on let E denote E \E+. Using the fact that
the delay functions are affine, the KKT conditions become:{

aef
∗
e + be + γ∗θ(e) − γ

∗
ξ(e) = 0 ∀e ∈ E ,∑

e∈E:θ(e)=i f
∗
e −

∑
e∈E:ξ(e)=i f

∗
e + νi = 0 ∀i ∈ N ,

where the constraint f∗e ≥ 0 can now be removed since the
solution of the new KKT conditions gives f∗e ≥ 0 for every
link e not in E+. Observe that the optimal flow f∗e depends on
γ∗ only via the difference γ∗ξ(e) − γ

∗
θ(e), so that γ∗ remains a

solution if a constant vector is added to it. This is due to the
fact that the matrix B is not full rank. Observe that removing
the last row of B is equivalent to imposing γ∗d = 0. We let
γ− and ν− denote respectively γ and ν where the last element
of both vectors is removed, and let B− ∈ R(N−1)×E denote
the node-link incidence matrix where the last row is removed.
Finally, we define H ∈ R(N+E−1)×(N+E−1) as

H :=

[
Ia −(B−)T

−B− 0

]
.
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With this notation in mind, and assuming γ∗d = 0, the KKT
conditions may be written in compact form as

H

[
f∗

γ∗−

]
= −

[
b
ν−

]
. (22)

Since we take γ∗d = 0, the system has unique solution, i.e.,[
f∗

γ∗−

]
=

[
KQ−1KT − I−1a KQ−1

Q−1KT Q−1

] [
b
ν−

]
, (23)

where K := I−1a BT− ∈ RE×(N−1) and Q := B−I
−1
a BT− ∈

R(N−1)×(N−1). The invertibility of H follows from the in-
vertibility of Ia (the delays are strictly increasing) and from
the invertibility of Q (see [42]), which will be proved in a
few lines. From the definitions of B− and a, it follows that
for every link e,

Ke: =
(δ(ξ(e)))T − (δ(θ(e)))T

ae
, (24)

with the convention that δ(d) = 0 · 1 (since we removed the
destination in B−). Moreover,

Qij =


−
∑

e∈E:
ξ(e)=i,θ(e)=j, or
ξ(e)=j,θ(e)=i

1
ae

if i 6= j

∑
l∈∂i

1
ae

if i = j.

∀i, j ∈ N \ d,

where ∂i denotes the in and out neighborhood links of i, i.e.,

∂i := {e ∈ E : Bie 6= 0}.

Let L = Iw − W denote the Laplacian of the associated
resistor network GR, and dL denote its restriction to N \d. We
remark that ∂i includes also links pointing to the destination.
This allows to observe that Q = dL, which implies the
invertibility of Q. Let I(u)a , H(u), Q(u) and K(u) denote the
matrix Ia, H,Q and K corresponding to the intervention u.
Note that an intervention on link e corresponds to a rank-1
perturbation of Q. In particular,

Q(ueδ
(e)) = Q+

ue
ae
Be−(Be−)T ,

where Be− denotes the e−th column of B−. Thus, by Sherman-
Morrison formula,

(Q(ueδ
(e)))−1 = Q−1 −

Q−1Be−(Be−)TQ−1

ae
ue

+ (Be−)TQ−1Be−
. (25)

Let for simplicity of notation assume ξ(e) = i, θ(e) = j. Then,

K(ueδ
(e))−K =

ue
ae
δ(e)(δ(i)− δ(j))T =

ue
ae
δ(e)(Be−)T . (26)

By (22), (25), and (26), we thus get

γ∗o − γ∗o (ueδ
(e)) = −ue

ae
Q−1Be−(δ(e))T b+

+
Q−1Be−(Be−)TQ−1

ae
ue

+ (Be−)TQ−1Be−
×

×
(
KT b+

ue
ae
Be−(δ(e))T b+ ν−

)
.

(27)

We now give an interpretation to the terms in equation (27).
Let Ĩw and W̃ denote the restriction of Iw and W over N \d,
respectively. Note that dP = Ĩ−1w W̃ , where dP is defined as

in Section I. Note also that is dP is sub-stochastic, since the
rows referring to nodes pointing to the destination sum to less
than one. The inverse of Q may be written as follows.

Q−1 = (Ĩw − W̃ )−1 = (Ĩw(I− dP ))−1 = (I− dP )−1Ĩ−1w

=

∞∑
t=0

(dP )tĨ−1w = dGĨ
−1
w ,

where the first equivalence follows from Q = dL, and the
penultimate one follows from connectedness of GR and (19).
We now construct Q̂−1 ∈ RN×N and dĜ ∈ RN×N by adding
a zero column and a zero row to Q−1 and dG, and construct
K̂ ∈ RE×N by adding a zero column to K corresponding
to the destination. By construction, Q̂−1 = dĜĨ

−1
w . Consider

now a link e with ξ(e) = i, θ(e) = j. It follows

(Be−)TQ−1Be− = (Be)T Q̂−1Be

=
(
δ(i) − δ(j)

)T
dĜĨ

−1
w (δ(i) − δ(j))

=
dĜii − dĜji

wi
+

dĜjj − dĜij
wj

= re,

(28)

where we recall that re denotes the effective resistance of link
M(e) = {i, j} in L, and the last equivalence follows from (21)
and from noticing that the definition of dĜ is coherent with
(20). Let v− denote the restriction of v on N \{d}. Definition
3.2 and Q = dL imply that

v− = mQ−1δ(o). (29)

Plugging this equivalence and (28) in (27), we get

γ∗o − γ∗o(ueδ
(e)) = −ue

ae
(δ(o))TQ−1Be−(δ(e))T b+

+
(δ(o))TQ−1Be−(Be−)TQ−1

ae
ue

+ (Be−)TQ−1Be−
·

·
(
KT b+

ue
ae
Be−(δ(e))T b+ ν−

)
= −ue

m

be
ae

(vi − vj)+

+
1

m

vi − vj
ae
ue

+ re

(
(Be−)T γ∗− + ue

be
ae
re
)

=
1

m

vi − vj
ae
ue

+ re

(
−be + γ∗i − γ∗j

)
=

1

m

vi − vj
1
ue

+ re
ae

f∗e

(30)

where the second equivalence follows from KKT conditions
Q−1(KT b+ν−) = γ∗−, the last one from γ∗i −γ∗j = aef

∗
e +be,

and v is used instead of v−, coherently with the convention
δ(d) = 0 · 1. The statement then follows from Lemma 1 from
γd = 0, and from Ohm’s law, i.e., vi − vj = aeye.

PROOF OF PROPOSITION 1
A sufficient condition under which E+ = ∅ is that the first E

components of (23), corresponding to equilibrium link flows,
are nonnegative. Indeed, since (4) is strictly convex, if the
flow f∗ obtained by (23) is non-negative, then f∗ is feasible
and is the unique Wardrop equilibrium, with λ∗ = 0. Links
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e with λ∗e > 0 are those such that f∗e computed by (23) is
strictly negative. Hence, we aim at finding conditions under
which f∗e ≥ 0 for every e in E according to (23). Let us define
ṽ = v/m. From (23), (29), and ν− = mδ(o), it follows that
for every link e,

f∗e = − be
ae

+ [KQ−1KT ]e:b+ [KQ−1]e:(ν−)

= − be
ae

+ [KQ−1KT ]e:b+m
ṽξ(e) − ṽθ(e)

ae
.

Let me = (be− ae[KQ−1KT ]e:b)/∆ṽe. If ∆ṽe > 0, then for
every m ≥ me it holds f∗e ≥ 0, which in turn implies that if
m ≥ m := {me}Ee=1, then E+ = ∅. Moreover, if the delays are
linear, ∆ṽe ≥ 0 implies f∗e ≥ 0 and E+ = ∅ for every m ≥ 0,
because b = 0. We have now to prove that ∆ṽe > 0. Note by
Ohm’s law that ∆ṽe · ae = ỹe, where ỹe denotes the current
flowing on GR from node ξ(e) to node θ(e) when unitary
current is injected from o to d. Then, it suffices to show that
ỹe > 0. To this end, observe that if the transportation network
is series-parallel, it has single link e : ξ(e) = o, θ(e) = d,
or it can obtained by connecting in series or in parallel two
series-parallel networks. Thus, a series-parallel network can be
reduced to a single link from o to d by recursively i) merging
two links e1 and e2 connected in series (i.e., ξ(e2) = θ(e1))
into a single link e3, or ii) merging two links e1 and e2
connected in parallel, i.e., with same head and tail, into a single
link e3. The transformation (i) results in an associated resistor
network where the links M(e1) and M(e2) are replaced by
their series composition M(e3) = {ξ(e1), θ(e2)} with current
ỹe3 = ỹe1 = ỹe2 . Instead, the transformation (ii) results in an
associated resistor network where the links M(e1) and M(e2)
are replaced by their parallel composition M(e3), with ỹe3 > 0
if and only if ỹe1 , ỹe2 > 0. Thus, in both the cases (i) and (ii),
ỹe3 > 0 if and only if ỹe1 > 0 and ỹe2 > 0. Obviously,
when the transportation network is reduced to a single link
from o to d, the flow on the unique link is positive because
m > 0. Then, by applying those arguments recursively, for
every link e in E , we get ỹe > 0, which implies by Ohm’s
law that ∆ṽe > 0. Thus, if m ≥ m then f∗e ≥ 0 and E+ = ∅,
concluding the proof.

PROOF OF THEOREM 2

Consider an intervention u = ueδ
(e). Then,

|∆C(u) −∆C
(u)
d | = aef

∗
e

∣∣∣∣∣ ye
1
ue

+ re
ae

− ye
1
ue

+ r
Ud
e +r

Ld
e

2ae

∣∣∣∣∣
=

∣∣∣∣∣ aef∗e ye1
ue

+ re
ae

∣∣∣∣∣ ·
∣∣∣∣∣
r
Ud
e +r

Ld
e −2re

2ae

1
ue

+ r
Ud
e +r

Ld
e

2ae

∣∣∣∣∣,
Notice also that

|rUd
e + rLd

e − 2re|
ae

≤ |r
Ud
e − re|+ |re − rLd

e |
ae

=
rUd
e − re + re − rLd

e

ae
=
rUd
e − rLd

e

ae
= εed.

Putting those two together, and using (11), we get∣∣∣∣∆C(u) −∆C
(u)
d

∆C(u)

∣∣∣∣ ≤ εed

2
(

1
ue

+ r
Ud
e +r

Ld
e

2ae

)
≤ εed

2
(

1
ue

+ 1
w∗·ae

) ,
where the last inequality follows from (12). Finally, (15)
follows from Theorem 1 and rUd

e ≥ rLd
e , concluding the proof.

PROOF OF PROPOSITION 3
The cut and shorted networks are obtained by finding the

neighbors within distance d and d+ 1 from i, j, respectively.
The neighbors of a node i can be found by checking the non-
zero elements of W (i, :). The neighbors within distance d
can be found by iterating such operation d times. Hence, the
time to construct the cut and the shorted network depends
on the local structure, which, under Assumption 2, does
not depend on the network size. Since the bounds of the
effective resistance are computed on these subnetwork, their
time complexity and tightness depends on local structure,
which, under Assumption 2, is independent of the network
size.

PROOF OF PROPOSITION 4
We introduce the following notation:
• The index Ud and Ld indicate that the random walk takes

place over GUd

l and GLd

l , respectively. So, for instance,
kG

Ud
ij denotes the expected number of times that the

random walk on the network GUd

l , starting from i, hits j
before hitting k.

• pi(Tj = TS), with j in S, denotes the probability that the
random walk starting from i hits the node j in S before
hitting any other node in S.

By applying (21) to the effective resistance of link l = {i, j}
in the shorted and the cut network, it follows

rUd

l =
jG

Ud
ii

wi
, rLd

l =
jG

Ld
ii

wi
,

where we recall that jGUd
ii and jG

Ld
ii are the expected number

of visits on i, before hitting j, starting from i, of the random
walk defined on GUd

l and GLd

l respectively. The visits on i
before hitting j can be divided in two disjoint sets: the visits
before hitting j and before visiting any node in Nd, and the
visits before hitting j but after at least a node in Nd has been
visited. Let G<Nd

ii denote the expected number of visits to
i, starting from i, before hitting any node in Nd and before
hitting the absorbing node j (for simplicity of notation we
omit the index j from now on). Note that GUd

l and GLd

l differ
only in the node s, which is the node obtained by shorting
all the nodes at distance greater than d from i and j. Since s
cannot be reached before hitting nodes in Nd before, G<Nd

ii

is equivalent when computed on GUd

l and GLd

l . Thus, we can
write the following decomposition,

GUd
ii = G<Nd

ii +GU>Nd
ii ,

GLd
ii = G<Nd

ii +GL>Nd
ii ,
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where GU>Nd
ii and GL>Nd

ii indicate respectively the expected
visits in i, starting from i, before hitting j and after hitting
any node in Nd, on GUd

l and GLd

l respectively. This implies
by (21)

rUd

l − r
Ld

l =
GU>Nd
ii −GL>Nd

ii

wi
. (31)

Notice that GU>Nd
ii can be written as the sum over the nodes

g in Nd of the probability, starting from i, of hitting g and
going back to i without hitting j, multiplied by the expected
number of visits on i starting from i, before hitting j, which
is the derivative of a geometric sum. Therefore,

GU>Nd
ii =

∑
g∈Nd

pi(Tg = Tj∪Nd
)︸ ︷︷ ︸

(1)

pUd
g (Ti < Tj)︸ ︷︷ ︸

(2)

·

·
∞∑
k=1

k
(
pUd
i (T+

i < Tj)
)k−1︸ ︷︷ ︸

(3)

(
1− pUd

i (T+
i < Tj)

)︸ ︷︷ ︸
(4)

=

∑
g∈Nd

pi(Tg = Tj∪Nd
)pUd
g (Ti < Tj)

1− pUd
i (T+

i < Tj)
,

where:

1) probability of hitting g before hitting j and any other
node in Nd starting from i;

2) probability of hitting i before j starting from g;
3) probability of hitting k − 1 times i before hitting j

starting from i;
4) probability of hitting j before returning in i starting from

i.

Similarly,

GL>Nd
ii =

∑
g∈Nd

pi(Tg = Tj∪Nd
)pLd
g (Ti < Tj)·

·
∞∑
k=1

k
(
pLd
i (T+

i < Tj)
)k−1(

1− pLd
i (T+

i < Tj)
)

=

∑
g∈Nd

pi(Tg = Tj∪Nd
)pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)
.

Substituting in (31), we get

rUd

l − r
Ld

l =
1

wi

∑
g∈Nd

pi(Tg = Tj∪Nd
)·

·
(

pUd
g (Ti < Tj)

1− pUd
i (T+

i < Tj)
−

pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)

)
.

From (21), it follows

rUd

l =
1

wip
Ud
i (Tj < T+

i )
=

1

wi
(
1− pUd

i (T+
i < Tj)

) ,
rLd

l =
1

wip
Ld
i (Tj < T+

i )
=

1

wi
(
1− pLd

i (T+
i < Tj)

) .

i j
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Fig. 10. The double tree network is equivalent to a biased random walk
like this.

Therefore, rUd

l − r
Ld

l reads∑
g∈Nd

pi(Tg = Tj∪Nd
)
(
pUd
g (Ti < Tj)r

Ud

l − p
Ld
g (Ti < Tj)r

Ld

l

)
=
∑
g∈Nd

pi(Tg = Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

l +

+
∑
g∈Nd

pi(Tg = Tj∪Nd
)pLd
g (Ti < Tj)(r

Ud

l − r
Ld

l )

≤
∑
g∈Nd

pi(Tg = Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

l +

+
∑
g∈Nd

pi(Tg = Tj∪Nd
)(rUd

l − r
Ld

l )

=
∑
g∈Nd

pi(Tg = Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

l +

+pi(TNd
< Tj)(r

Ud

l − r
Ld

l ),

where the last inequality follows from pLg (Ti < Tj) ≤ 1
and the last equality from the fact that pi(TNd

< Tj) =∑
g∈Nd

pi(Tg = Tj∪Nd
). It thus follows

rUd

l − r
Ld

l ≤
∑

g∈Nd
pi(Tg=Tj∪Nd

)(pUg (Ti<Tj)−pLg (Ti<Tj))r
Ud
l

1−pi(TNd
<Tj)

≤
∑

g∈Nd
pi(Tg=Tj∪Nd

)
(
pUg (Ti<Tj)−pLg (Ti<Tj)

)
r
Ud
l

wi
Wij

≤pi(TNd
<Tj) max

g∈Nd

(
pUg (Ti<Tj)−pLg (Ti<Tj)

)
wi

(Wij)
2 .

where the second inequality follows from 1−pi(TNd
< Tj) =

pi(Tj < TNd
) ≥ Pij = Wij/wi, and the last one from

rUd
ij ≤ 1/Wij (as shown in (12)) and from pi(TNd

< Tj) =∑
g∈Nd

pi(Tg = Tj∪Nd
).

APPENDIX III
MORE DETAILS ON SECTION V-B.4

We prove that the double tree network is not recurrent
by showing that pi(Ti < TNd

) is the same as in a biased
random walk. Indeed, from any d the probability of going
from a node at distance d from i to a node at distance d+ 1
and d − 1 are 2/3 and 1/3, respectively. Hence, the double
tree is equivalent to a biased random walk on a line as in
Figure 10, which is not recurrent [36, Example 21.2]. Since
in the actual network and in the cut network there are no paths
between i and j except link l = {i, j} (see Figure 11 (a) and
(b)), rl = rUd

l = 1. Computing rLd

l is more involved. First,
referring to Figure 11, we note that, because of the symmetry
of the network, the effective resistance between i and j in the
shorted network (c), which is rLd

l , is equivalent to the effective
resistance in (d). Indeed, if we set voltage vi = 1 and vj = 0,
because of symmetry every yellow node has voltage 1/2.
Thus, adding infinite conductance between all of them, i.e.,
shorting them, does not affect the current in the network (this
procedure is also known in literature as gluing, see [36, Section
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(a) i j

(b) i j

(c) i j

s

(d) i j

Fig. 11. From above to below: (a) the double tree network; (b) the
network cut at distance 2 from l = {i, j}; (c) the network shorted at
distance 2 from l = {i, j}; (d) a network equivalent to the shorted
one. In red, the nodes at distance 2.

i j

i j

Fig. 12. The network in Figure 11(d) is series-parallel. Then, it can
be obtained by recursively making parallel and series compositions of
series-parallel networks as shown in this figure.

9.4]), and therefore the effective resistance. The network (d) is
series-parallel, so that the effective resistance can be computed
iteratively. Specifically, we refer to Figure 12 to illustrate the
recursion that leads to rLd

l . From top to bottom, one can see
that the first network has effective resistance between the two
blue nodes equal to 3. The second network is the parallel
composition of two of these, in series with two single links.
This procedure is iteratively repeated d−1 times (in Figure 12
only once, since d = 2), leading to a network that, composed
in parallel with a copy of itself and with a single link, is GLd

l .
Hence, rLd

l is the result of the following recursion.
r(0) = 3,

r(n) = 2 + r(n−1)
2 , d > n ≥ 1,

rLd

l = (1 + 2
r(d−1) )

−1,

which has solution{
r(n) = (2d+2 − 1)/2d, d > n ≥ 1,

rLd

l = 2d+1−1
2d+1+2d−1 −−−−−→d→+∞

2
3 .
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