
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multiply-And-Max/min Neurons at the Edge: Pruned Autoencoder Implementation / Bich, Philippe; Prono, Luciano;
Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - ELETTRONICO. - (2023), pp. 629-633. (Intervento
presentato al  convegno 2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS) tenutosi
a Tempe, AZ, USA nel August 6-9, 2023) [10.1109/MWSCAS57524.2023.10405867].

Original

Multiply-And-Max/min Neurons at the Edge: Pruned Autoencoder Implementation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MWSCAS57524.2023.10405867

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985907 since: 2024-02-12T22:32:08Z

IEEE



1

This is the author’s version of the article that has been presented at IEEE MWSCAS2023
The editorial version of the paper is available at http://dx.doi.org/10.1109/MWSCAS57524.2023.10405867

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2023 IEEE. Personal use is permitted.

Multiply-And-Max/min Neurons at the Edge:
Pruned Autoencoder Implementation

Philippe Bich ‡, Luciano Prono ‡, Mauro Mangia ∗, Fabio Pareschi ‡†, Riccardo Rovatti ∗† and Gianluca Setti §†
‡DET, Politecnico di Torino, Italy - Email: {philippe.bich, luciano.prono, fabio.pareschi}@polito.it
∗DEI, †ARCES, University of Bologna, Italy - Email: {mauro.mangia, riccardo.rovatti}@unibo.it

§CEMSE, King Abdullah University of Science and Technology (KAUST), Saudi Arabia - Email: gianluca.setti@kaust.edu.sa

Abstract—In response to the increasing interest in Internet of
Things (IoT) applications, several studies explore ways to reduce
the size of Deep Neural Networks (DNNs), to allow implemen-
tations on edge devices with strongly constrained resources. To
this aim, pruning allows removing redundant interconnections
between neurons, thus reducing a DNN memory footprint and
computational complexity, while also minimizing the performance
loss. Over the last years, many works presenting new pruning
techniques and prunable architectures have been proposed but
relatively little effort has been devoted to implementing and
validating their performance on hardware.

Recently, we introduced neurons based on the Multiply-
And-Max/min (MAM) map-reduce paradigm. When state-of-the-
art unstructured pruning techniques are applied, MAM-based
neurons have shown better pruning capabilities compared to
standard neurons based on the Multiply and Accumulate (MAC)
paradigm. In this work, we implement MAM on-device for the
first time to demonstrate the feasibility of MAM-based DNNs
at the Edge. In particular, as a case study, we implement an
autoencoder for electrocardiogram (ECG) signals on a low-end
microcontroller unit (MCU), namely the STM32F767ZI based
on ARM Cortex-M7. We show that the tail of a pruned MAM-
based autoencoder fits on the targeted device while keeping a
good reconstruction accuracy (Average Signal to Noise Ratio of
32.6 dB), where a standard MAC-based implementation with
the same accuracy would not. Furthermore, the implemented
MAM-based layer guarantees a lower energy consumption and
inference time compared to the MAC-based layer at the same
level of performance.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently attracted
unprecedented interest because of their ability to unravel
complex problems. The number of tasks these models can
solve is constantly growing, but at an increasing cost: very
large networks are necessary, running solely on clusters that
benefit from almost unlimited resources. Nonetheless, with the
rise of Internet of Things (IoT), machine learning on low-
power, low-end edge devices has become essential, propelling
the investigation of techniques able to reduce the size and
computational cost of DNN structures.

The implementation of DNNs on IoT devices unlocks many
possibilities in many domains such as Natural Language
Processing [1], Precision Agriculture [2], Computer Vision [3]
and many others. Moreover, on-device computing avoids the
constant dependency on an Internet connection since data is
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treated locally. This significantly reduces the need to transmit
information back and forth to the cloud, reducing latency and
energy consumption. Unfortunately, DNNs typically rely on
a massive number of parameters, making them impossible to
be stored on low-end, low memory footprint devices. In this
respect, pruning is of great help since it removes unnecessary
and highly redundant interconnections reducing the size of a
DNN while also minimizing the performance loss.

In literature, many pruning techniques have been pre-
sented [4], [5]. Pruning techniques can be divided in two
main categories, namely structured [6]–[9] and unstructured
pruning [10]–[12]. The former category focuses on the removal
of entire neurons, filters or channels, while the latter considers
also the removal of individual interconnections. In particular,
the general idea behind unstructured pruning is to give to all
interconnections a score which is then used as an indicator
to select whether an interconnection is to be removed or
not. For example, the magnitude of the weights associated to
the interconnections is a typically employed scoring method.
Finally, pruning can be performed in a one-shot fashion [13],
[14] or applied iteratively multiple times [15].

It is also possible to select special architectures that are
more resistant to the pruning process compared to standard
DNNs. In [16] we introduced neurons based on the Multiply-
And-Max/min (MAM) map-reduce paradigm that are naturally
prone to pruning. Indeed, neurons based on this paradigm per-
form better compared to standard Multiply-and-ACcumulate
(MAC) neurons when pruned with any unstructured pruning
technique already available in the literature. The functionality
of MAM neurons have been proven in a large variety of differ-
ent setups to solve classic computer vision tasks (CIFAR-10,
CIFAR-100, ImageNet) [16]. Despite this, no actual on-device
implementation of MAM has ever been tested. This is of
interest because i) MAM inevitably introduces a computational
overhead as the existing hardware is not optimized for this
map-reduce paradigm (unlike MAC) and ii) unstructured prun-
ing – despite typically resulting in good model compression
rates – introduces a memory overhead when a sparse represen-
tation of the weights matrices is used [17], [18], which may
be alleviated by the high pruning capabilities of MAM-based
structures.

In this paper, we employ a pruned MAM-based layer at the
Edge in order to ensure the feasibility of MAM-based imple-
mentation on actual resource-constrained devices. As a typical
case study, we chose an autoencoder for electrocardiogram
(ECG) signals and we implement its tail on an STM32F767ZI
ARM Cortex-M7 based microcontroller unit (MCU) to evalu-
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ate the actual memory footprint, energy consumption and the
inference time of MAM neurons. We employ both an efficient
sparse representation for the pruned weight matrices and an
8-bit quantized representation of the weights. This is the
first time the performance of MAM-based layers is measured
in terms of actual inference time, energy consumption and
memory footprint (i.e., considering the overhead due to the
representation of the sparse weight matrix).

The paper is structured as follows. In Section II, we present
a brief summary of the structure of MAM neurons. Then, in
Section III, we introduce the ECG autoencoder. In Section IV,
we choose an efficient representation for the pruned weight
matrices and the memory footprint and the inference time of
the MAM layer is measured. Finally, the conclusion is drawn.

II. MAM LAYER DESCRIPTION

The following is a brief summary of MAM-based layers.
Given the input column vector x ∈ RN and the output z ∈
RM the MAC operation in a standard fully connected (FC)
layer can be represented as

zj =

N∑

i=1

wjixi + bj for j = 1, . . . ,M (1)

where wji is the element at row j and column i of the weight
matrix W ∈ RM×N and bj is the j-th element of the bias
vector b ∈ RM .

The idea behind a MAM-based neuron is that the summation
in (1) may be very roughly approximated by taking into
consideration only the maximum and the minimum values,
which are typically two of the most significant contributes.
This increases pruning capabilities of neurons since they
intrinsically rely on less weights. We highlight that this is not
the trivial process of keeping only two interconnections per
neuron, as the maximum and minimum operations dynamically
select the interconnections, which are not necessarily the same
for different inputs. In this way, (1) becomes

yj = max
i∈{1,...,N}

wjixi+ min
i∈{1,...,N}

wjixi+bj for j = 1, . . . ,M (2)

which describes the behavior of a MAM-based layer. This new
type of layer has good pruning capabilities and, in some cases,
can be used in place of MAC-based layers with a very low
impact on the performance of the DNN.

In order to effectively train MAM layers, the vanishing con-
tributes method we described in [16] is employed, consisting
in a gradual transition of the layer from MAC to MAM.

III. CASE STUDY: AUTOENCODER FOR ECG SIGNALS

In this section we present the performance of a large
autoencoder (AE), exploiting a MAM-based layer (AE-MAM),
which is pruned in order to fit the network on devices with
limited resources.

A. Autoencoder architecture
The autoencoder we consider in this work is composed of

three one-dimensional convolutional layers followed by three
FC layers and three one-dimensional transposed convolutional
layers. This architecture has a latent space dimension equal
to 64 while both input and output have a dimension equal to
256. Fig. 1 shows the complete DNN.
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Fig. 1. Structure of the autoencoder. The first FC layer contains more than
98% of the total number of weights in the tail of the autoencoder and it is
implemented both as a MAC layer and as a MAM layer. All the layers use a
ReLU activation function.

In this work we focus on the tail of the autoencoder (i.e.,
the part of the model in which the signal is compressed, as
highlighted in Fig. 1). The tail of the autoencoder contains
more than 2 millions trainable parameters, of which more than
98% are contained in the first FC layer, which is the part of
the system that most benefits from pruning. We implement
on-device this layer both as a MAC layer and as a MAM
layer, and then we prune it to reduce the size of the DNN. We
refer to the structure containing the MAC layer as AE-MAC,
while we refer to the structure containing the MAM layer as
AE-MAM.

B. Dataset
The autoencoder is trained on a synthetic ECG dataset, gen-

erated as described in [19] with the same setup of [20], [21]. It
is composed of 100 000 ECG windows of size n = 256, with
80 000 windows used for training, 10 000 for validation and
10 000 for test. The ECG signal has been scaled in the interval
[0, 1]. The error on the decoded output of the autoencoder
is evaluated with the Reconstruction Signal to Noise Ratio
(RSNR), which is a typical metric for ECGs [20], [22], defined
as

RSNR = 20 log10
∥x∥2

∥x− x̂∥2
=

( ∥x∥2
∥x− x̂∥2

)

dB

(3)

where x is the input ECG signal on a window and x̂ is the
output of the autoencoder, i.e., the reconstructed signal. To
evaluate the average performance over a batch of inputs, we
use the Average RSNR (ARSNR), defined as the average value
of RSNR.

C. Quantization and training
When dealing with the implementation of DNNs at the

Edge, quantization of the parameters is fundamental in order
to minimize the memory footprint of the structure. In order to
minimize the effect of parameters quantization on the accuracy
of the network, we perform quantization-aware training. In
particular, we employ fake-quantization [23], i.e., we quantize
parameters and activations during the forward pass phase of
training in order to take into account the quantization error.

We train both the AE-MAC and the AE-MAM for 200
training epochs with full-precision parameters (i.e., 32-bit
floating point). Then we fine tune the models with additional
quantization-aware training using uniform quantization for
another 10 epochs. Weights are quantized to 8 bits in the range
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Fig. 2. ARSNR vs the percentage of remaining weights in the first FC layer
of the autoencoder. The mean performance over 10 trainings is shown, with
the maximum and minimum ARSNR indicated by the error bar.

[−1,+1] and inputs and outputs are quantized to 16 bits in the
range [−1,+1]. Biases are kept as-they-are and converted a-
posteriori to 32-bit fixed point to maximize accuracy, as their
influence on the memory footprint is almost negligible. The
Mean Squared Error (MSE) is selected as loss function and
Adam Optimizer [24] is used with a starting learning rate of
0.001 and a batch size of 128.

D. Pruning the autoencoder

In this work we focus on one-shot unstructured pruning,
i.e. the model is trained and then a set of selected weights is
removed without taking into account the spatial disposition
of the remaining interconnections. We prune the first FC
layer both in AE-MAC and AE-MAM, as its impact on
the memory footprint is dominant compared to the other
layers. We select the Magnitude Pruning technique (MP) as
pruning algorithm, consisting in scoring weights based on
their absolute magnitude. The idea behind this approach is
based on the assumption that the smaller the magnitude of
a weight, the less its influence on the output of the network.
Fig. 2 summarizes the resulting ARSNR vs the number of non-
zeroed weights, where the mean performance over 10 trained
autoencoders is shown.

Results show that AE-MAM is more robust to pruning
compared to AE-MAC. With 5% of remaining weights in the
first FC layer, the mean ARSNR over 10 trained models of
AE-MAM is still over 30 dB while it is only about 17 dB in
the case of AE-MAC. All the pruned weights are put to zero
and since we are using an unstructured pruning technique to
remove interconnections, the result is a sparse weight matrix.

IV. ON-DEVICE PERFORMANCE OF A PRUNED
MAM-BASED LAYER

In this section, we evaluate the actual performance of the
MAM-based layer implemented on an edge device. Firstly,
a representation for the sparse matrix (used for both the
MAC and the MAM layer) is to be defined, then the memory
footprint, the inference time and the energy consumption of
the layer are computed and finally the tails of the AE-MAC
and AE-MAM autoencoders are implemented on an ARM
Cortex-M7 based MCU, namely STM32F767ZI, and their
performance is compared.
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Fig. 3. Example of representation for the description of sparse weight
matrices.

A. Sparse Matrix Representation
It is important to notice that the sparsity represented in

Fig. 2 does not directly translate into an advantage in terms
of memory footprint since, in order to be exploited, it is
necessary to employ a sparse representation of the matrix
which inevitably introduces a computational and memory
overhead. Accordingly, in order to benefit from the sparsity
of the pruned weight matrix, we use the Compressed Sparse
Row (CSR) approach [25]. In particular, being W ∈ RM×N

the sparse weight matrix, we encode it with three vectors:
• w is the collection of wij ∈ W |wij ̸= 0, arranged row

after row;
• d indicates for each wij ̸= 0 the number of elements
wij = 0 separating it from the previous element wij ̸= 0
or from the beginning of the row;

• r contains the number of weights wij ̸= 0 in each row
of matrix W .

Note that we introduced a slight modification to standard CSR
– as d encodes offsets, and not directly the indexes. Fig. 3
shows an example of representation of a sparse matrix where
the remaining weights of matrix W are highlighted in orange.

In order to minimize the memory footprint, both the values
in w and d are encoded with 8 bits. This means that the
maximum distance between two non-pruned weights is 255,
i.e., the maximum value that can be represented with d. If the
distance between two non pruned weights is bigger, one or
more dummy-elements with weight value zero are introduced
in the list in convenient positions. On the contrary, vector r
contains 16-bit integer values. This is typically not a problem
since the overhead caused by this vector is normally negligible
compared to the size of w and d.

Fig. 4 shows the actual memory footprint of the MAC-
based and MAM-based FC layer vs the ARSNR. Compared
to the curves in Fig. 3, memory footprint is about twice as
expected due to the sparse representation. Being the overhead
proportional to the number of weights kept, the advantage
of MAM over MAC is accentuated. The maximum available
memory on the device for the first FC layer is also shown and
it is computed taking into account the size of the weights of
the other layers that are implemented and the 32.8 kB of the
SRAM that must remain free for the output buffer with the
highest size (i.e., the input of the first FC layer). We highlight
that the size of the original non-pruned autoencoders (both
AE-MAC and AE-MAM) is almost 2.2 MB (with 8-bit weights
and 32-bit biases) which is more than the size of the SRAM
of the employed device.

With standard MAC neurons, considering the memory over-
head caused by the sparse matrix representation, the benefit
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Fig. 5. ARSNR, inference time and energy consumption of the MAC and
the MAM layers implemented on-device containing an increasing number of
weights. For large layers who could not fit on device, an estimate is made
and it is shown with a dashed line.

introduced by unstructured pruning is very limited. Conversely,
MAM neurons offer a higher pruning rate that makes unstruc-
tured methods a viable option.

B. On-device implementation

The tail of the autoencoders is implemented on an ARM
Cortex-M7 based MCU, namely STM32F767ZI. The device
is characterized by an SRAM of 512 kB and a maximum
operative frequency of 216 MHz. Custom C code is used to
implement the different layers of the network, compiled with
gcc with optimization options -Ofast and -loop-unroll. AXI
interface, instruction cache and memory cache are enabled.
The first FC layer, originally containing most of the weights,
is pruned as in Section III-D and encoded as in Section IV-A.
We take the best AE-MAC and AE-MAM model in terms of
accuracy obtained over the 10 trainings and we implement
them with the MAC and the MAM layers containing the
number of remaining weights shown in Figure 4, where the
available memory allowed it.

For all these models, we compute the accuracy as well
as the execution time and the energy consumption of the
first FC layer. Energy consumption is estimated as power
multiplied by execution time, where power is evaluated from
typical electrical characteristics of STM32F767ZI indicated
on datasheet, with a clock frequency of 180 MHz and a
supply voltage of 1.7 V, resulting in a typical power value
of 99.5 mW.
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1
Fig. 6. Example of the original ECG signal and of the reconstructed signal
at the output of AE-MAC (top) and AE-MAM (bottom).

In Figure 5, we show the energy consumption and the
inference time of the MAC and MAM layers implemented on
device. For models with a large number of weights that could
not fit on the device, we make an estimate, shown in the plot
with a dashed line, assuming that the inference time increases
linearly with the number of weights – as this is the trend
observed with measured data. This estimate does not take into
account that an increase in the maximum available memory of
a computational system might also result in a higher energy
consumption.

It must be noted that the implementation of MAM-based
neurons introduces a computational overhead, mainly due to
a branch structure (i.e., an “if” structure) required for the
evaluation of both the maximum and the minimum values
in a neuron while MAC-based layers sequentially accumulate
all the values. However, since MAM-based layers can be
aggressively pruned and still achieve good results with few
parameters, the inference time and the energy consumption of
MAM layers are lower than those of a MAC layer at the same
level of performance.

As an example, the accuracy of the reconstructed ECG
sample by AE-MAM is of 32.6 dB with the MAM layer having
an inference time of 2.97 ms and consuming 295 µJ while the
accuracy of the largest AE-MAC model that can be imple-
mented on the device is only 17.6 dB with an inference time
for the MAC layer of 7.85 ms and an energy consumption of
781 µJ. Fig. 6 visually illustrates the quality of reconstruction
of an ECG sample by these two models.

V. CONCLUSION

In this work we have analyzed the performance of
Multiply-And-Max/min neurons on hardware through the im-
plementation of a DNN-based autoencoder for ECG signals
whose largest layer has been substituted with a MAM-based
layer. The tail of the DNN has been implemented on an
ARM Cortex-M7 based MCU. The network, trained with
a quantization-aware approach, has been quantized and the
MAM-based layer has been pruned. The pruned structure has
been encoded by means of a sparse matrix representation and
fit on the MCU device, where the actual memory footprint,
inference time and energy consumption of the pruned layer
have been evaluated. The MAM-based pruned layer guarantees
a far better ECG reconstruction quality compared to the
one with the MAC layer, while also having lower energy
consumption and inference time.
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