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ABSTRACT 

 

Forests play a fundamental role in carbon stocking since about a third of the carbon dioxide produced by activities of human origin is 

absorbed by forests. Forest biomass is an essential indicator of carbon dioxide absorption, enabling an understanding the interaction 

between forest dynamics and climate change effects. However, biomass and wood material changes are challenging to quantify in 

forest stands. Nowadays, recent 3D remote sensing technologies, such as laser scanning systems, have allowed accurate measures of 

single trees. This study evaluates three approaches to classify wood and non-wood materials and quantify biomass based on LiDAR 

data, aiming at biomass change detection. Specifically, we propose an automated methodology for estimating the single tree-level 

biomass of a portion of forest monitored through a LiDAR oblique acquisition. The classification of wood and foliage points was 

performed with machine learning algorithms, while the tree modelling was conducted rigorously through a Quantitative Structure 

Model (QSM). The purpose of this study is to evaluate (1) two different unsupervised and one semi-supervised classification 

approaches for wood and foliage separation and (2) the accuracy of the biomass assessment performed on a QSM-based approach on 

innovative LiDAR acquisitions. The results are promising; the wood-leaf classification performs effectively in all 20 silver birches 

considered; as regards the biomass, when the noise is limited, it is estimated in a manner consistent with the reference values calculated 

using an appropriate allometric equation. Higher values are found mainly in dense undergrowth, which negatively affects the modelling 

of the tree. The research is ongoing, and further tests will be performed to generalize the methodology on different tree species, deepen 

the multitemporal variability, and improve the accuracy of the assessment. 

 

 

1. INTRODUCTION 

Forests play a fundamental role in tackling climate change, as 

they directly absorb large quantities of carbon dioxide through 

the photosynthesis of chlorophyll. It is estimated that about a 

third of the carbon dioxide produced by activities of human origin 

is absorbed by forests (Global Forest Resources Assessment 

2020, 2020). Traditionally, carbon stock capacity measures are 

based on the relationship between aboveground biomass (AGB) 

and stored carbon. To deal with climate change is necessary to 

safeguard biodiversity and protect the Earth’s natural ability to 

absorb CO2 from the atmosphere. For this reason, the scientific 

community is trying to propose a well-defined methodology to 

accurately monitor the forest biodiversity and estimate the 

biomass at the single tree level, mainly focusing on automatic, 

efficient and time-saving alternatives (Xu et al., 2021). 

 

Usually, biomass can be measured directly on a tree after 

harvesting it or by using allometric equations, which estimate the 

biomass as a function of more easily measurable parameters such 

as the tree's height and density and the trunk's diameter (Diameter 

at Breast Height). The former method is the most rigorous, but 

simultaneously, it is highly time-consuming, destructive, 

irreversible and with high ecosystem impact. Alternatively, 

methodologies involving allometric equations and non-

destructive measures are a faster and more ecological solution 

facilitating its repetition over time to monitor changes. Non-

destructive measures of the main tree parameters (e.g. DBH and 

height) can be taken through direct in-situ measurements (e.g. 

calipers) or, even more detailed, using remote sensing techniques 

such as MLS (Mobile Laser Scanning) or TLS (Terrestrial Laser 

Scanning). However, allometric equations are not helpful when 

the tree suffers minor damage (i.e., the loss of some smaller 

branches), as these usually do not change the DBH or the height 

(typically, allometric equations are expressed in functions of 

these quantities). Because of this, using an allometric equation to 

estimate the biomass and evaluate its evolution over time is not 

the optimal solution. 

 

Laser scanner technology enables a full 3D representation of 

trees structure, providing an alternative to allometric equations 

for accurately estimating AGB in stand trees. Since AGB 

estimation needs to be performed at the tree level, in literature, 

several algorithms that perform Individual Tree Detection (ITD) 

are proposed (Luo et al., 2021; Shendryk et al., 2016; Xu et al., 

2023), differing according to the support (e.g., terrestrial, aerial), 

the type of data (e.g., photogrammetric, LiDAR point cloud) and 

the approach (e.g., voxel-based, raster-based, etc.). Furthermore, 

a correct calculation of the AGB requires that the points of the 

cloud are classified into woody and foliage classes to proceed 

with estimating the woody biomass only (Arseniou et al., 2023). 

In literature, several studies propose methodologies for wood-

leaf classification (Sun et al., 2021; Vicari et al., 2019; Wang et 

al., 2020). 

 

This study proposes a complete methodology for estimating tree 

biomass in forest environments. It starts from the acquisition and 

preprocessing of raw LiDAR point cloud acquired from a 

permanent laser scanning setup (Campos et al., 2021); it then 

continues with the segmentation at the single-tree level, the 

wood-leaf classification, and the biomass estimation based on a 

Quantitative Structure Model (QSM). More in detail, we tested 

three different approaches to classify wood and foliage points. 

We considered the point cloud's geometric and scanner-measured 
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radiometric features to perform the wood and leaf point cloud 

classification. 

 

The assessment was validated with reference values calculated 

with an allometric equation precisely calibrated for Finnish trees 

(Kangas et al., 2023), assuming that the area under investigation 

was not subject to major disastrous events that could have 

seriously affected the main structure of the trees. 

 

2. MATERIALS AND METHODS 

2.1 Dataset  

The study area is located in the Hyytiälä forest field station, a 

recognized forest educational and research center focused on 

long-term boreal forest zone monitoring in southern Finland. 

Hyytiälä forest is characterized by a predominance of coniferous 

boreal species, including Scots pine (Pinus sylvestris L.) and 

Norway spruce (Picea abies H. Karst), as well as deciduous trees, 

such as silver birch (Betula pentula Roth). Among the several 

data collections conducted in this research forest, long-term field 

measurement sites, soil and atmospheric sampling and 

continuous LiDAR time-series data collection can be 

highlighted. LiDAR data is acquired by a permanent laser 

scanning setup named LiDAR phenological station (LiPhe) 

(Campos et al., 2021). LiPhe consists of a RIEGL VZ-2000i laser 

scanner installed on the top of a 35-meter-high tower and tilted 

60 degrees. This setup provides an oblique and above-canopy 

view of the forest, enabling a high spatial-resolution 

reconstruction of the scanned trees. The point cloud resolution is 

at least 0.01 m spacing between two neighboring points at a 100 

m range. LiPhe point clouds attributes are point return number 

(scalar from 1 to 15), the number of returns (scalar from 1 to 15), 

the intensity (Amplitude in dB), the scan angles (theta and phi in 

degrees), the reflectance (dB), the return pulse deviation (a 

measure of pulse shape distortion) and the range (m). 

 

Figure 1. Study area (EPSG: 3067). 

 

Figure 1 shows the scanned area covered by LiPhe at Hyytiälä 

forest, along with the tower where LiPhe is installed and the 

position of the studied trees.  This study focuses on 20 silver birch 

trees within 60 m from the laser scanner system monitored at a 

one-time point in April 2020. In this period, the presence of snow 

occurring in the winter period was avoided, but at the same time 

the leaf-off season is still ongoing, resulting in a limited number 

of leaves; the wood detection is therefore facilitated. The data 

selection was performed considering only spatially scattered 

trees that were correctly and automatically identified. Silver 

birches were chosen among all the species since it is one of the 

most widespread species in the Finnish national territory and 

northern Europe; focusing on a single tree species allowed the 

validation of the workflow and the evaluation of its accuracy 

while avoiding species-specific discrepancies. 

 

2.2 Data processing 

Figure 2 shows a summary of the workflow performed in this 

work, which consists of data collection, pre-processing, data 

analysis and validation of the results. 

 

Figure 2. Workflow applied in this study. 

 

Figure 2 graphs the workflow of this study described in the 

following subsections. 

 

2.2.1 Pre-processing  

 

The initial step involved in the data pre-processing workflow was 

rectifying and georeferencing the raw oblique point cloud, which 

comprised approximately 608 million points within an area of 

41,500 m2. LiPhe point clouds have the origin at the scanner 

position, resulting in the original point cloud tilted with respect 

to the ground. Therefore, an initial rectification is required to 

normalize the point cloud local reference system to the ground. 

Subsequentially, a Helmert 3D transformation was applied to 

transform the point clouds from a local to a georeferenced 

reference system, ensuring the correspondence of the point cloud 

data with the real-world coordinates and other reference data. 

Here, we focus on the LiPhe monitoring area with higher spatial 

resolution comprising 60 m from the scanner. The interested area 

is a subset of LiPhe total field of view and it covers 4800 m2, 256 

trees and 86 million points (Figure 3). 

 

To normalize the point cloud resolution and reduce the 

computational cost, the point cloud was subsampled by a 

voxelization approach that selected the closest point to the voxel 

centroid, considering one cm-sized voxel. The selection of the 

voxel size was carefully performed to balance computational 

efficiency while simultaneously preserving a high level of detail 

necessary for the in-depth analysis of tree biomass. Finally, the 

commercial Cloud Compare software was used to add geometric 

features (density, verticality, anisotropy, linearity) to the point 

cloud. 

 

2.2.2 Individual Tree Detection 

 

ITD was performed with the PyCrown algorithm (Zörner et al., 

2018), which was assessed in previous studies (Spadavecchia et 

al., 2022; Spiekermann et al., 2021). This method is based on the 

location of local maxima which is labelled as an ‘initial region’ 

around which a tree crown can grow; the heights of the four 

neighboring pixels are extracted from the CHM and these pixels 

are added to the region if (1) their vertical distance from the local 

maximum is less than some user-defined percentage of the local 

maximum height, and (2) less than some user-defined maximum 
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difference (Dalponte and Coomes, 2016). The tuning of the user-

defined parameters was done iteratively according to the tree 

species and their dimensions; the threshold (1) was set equal to 

0.45 and the threshold (2) equal to 0.55. The algorithm also 

requires the setting of a threshold (3) below which a pixel cannot 

be a tree (set equal to 2) and a threshold (4) which defines the 

maximum value of the crown diameter of a detected tree (set to 

15 pixels). The main output of the algorithm is a segmented point 

cloud in which a unique label identifies every single tree. A single 

point cloud for each tree has been generated to simplify 

subsequent analyses. 

 

After segmenting the point cloud at a single tree level, its 

accuracy was evaluated according to the procedure described in 

the validation process subsection. Among the trees that were 

correctly identified, for the study, it was decided to focus on 

estimating the biomass of 20 silver birches. These were randomly 

selected but in such a way as to be spatially scattered within the 

study area. 

 

2.2.3 Wood-leaf classification 

 

Table 1 summarizes the experiments performed testing two 

unsupervised and one semi-supervised machine learning 

classification approaches for wood and foliage separation with 

different point cloud features.  

 

Experiment Method Features 

1 (1) K-means 

Intensity, 

reflectance, 

density 

2 (1) K-means 

Intensity, 

reflectance, 

density, deviation 

3 (2) Threshold+K-means 

Intensity, 

reflectance, 

density 

4 (2) Threshold+K-means 

Intensity, 

reflectance, 

density, deviation 

5 (3) kNN+ADASYN 

Anisotropy, 

linearity, 

verticality 

Table 1. Summary of the experiments carried on in this study. 

 

The first method relies on the K-means clustering algorithm. It 

starts with a random selection of k clusters and calculates their 

centroids; then, it performs iterative calculations to optimize the 

clusters concerning the positions of the centroids. 

 

The second method is based on two steps. Initially, a 

classification is made according to a threshold defined as the 

median of the best-fitting distribution of the point cloud selected 

features. The Logistic distribution, the Normal distribution, and 

the Laplacian distribution were considered, and the features on 

which these distributions have been fitted are the radiometric 

ones (intensity and reflectance). The second step coincides with 

the first method, and a K-means clustering algorithm has been 

applied. 

 

The third method is kNN-based, for which two features were 

calculated: (1) anisotropy and (2) linearity at different scales. At 

each scale corresponding to different kNN values, points with 

anisotropy greater than 0.95 and linearity exceeding 0.75 as 

wooden parts were labelled as wooden parts. Simultaneously, 

using the radius-based neighborhood approach, also all points 

with verticality over 0.99 were labelled as wooden parts. 

Regarding kNN-based linearity, the main branches of various 

sizes and some secondary branches were separated. In the case of 

anisotropy and verticality, the focus was on separating stem parts, 

fragments of upper branches, and branch segments tightly 

attached to the stem. It is worth noting that verticality proved to 

be a powerful feature for efficiently detecting the bottom parts of 

the stems (Wang et al., 2020). After the initial separation, the 

wooden component typically contained more points than the 

foliage component. This could pose a class imbalance issue in 

supervised classification based on automatically generated 

training data, often resulting in poor model predictions. To 

address this,  the adaptive minority oversampling method 

ADASYN (Haibo He et al., 2008) was applied. It is commonly 

used to handle class imbalance in binary classification problems. 

This method artificially generates more wooden parts in 3D space 

(x,y, and z coordinates) from the point cloud, based on a kNN 

classifier and the relative positions of the wooden and foliage 

clusters. Essentially, ADASYN retrieves additional parts of 

branches and stems misclassified by the kNN-based method. It 

aims to complement instances of the minority class located close 

to the boundaries separating the two classes, where the minority 

class is more mixed with the majority class and frequently 

misclassified. The artificially generated samples are used in a 

label transfer procedure, where their labels are assigned to the 

original points in the point cloud that are neighbors with them. 

ADASYN is applied over multiple iterations, incrementally 

increasing the wooden component. However, it should be noted 

that there is no predefined stopping criterion for this process. The 

method was tested with manually labelled TLS data to determine 

the optimal number of iterations. It was found that 7-10 iterations 

yielded the best results, with maximum producer accuracy (the 

percentage of successfully retrieved wooden components) over 

85%, and user accuracy (the percentage of correctly detected 

wooden parts) over 80%. 10 iterations were applied to the present 

dataset of 20 trees. 

 

Following these elaborations, five classified clouds were 

obtained for each tree. 

 

2.2.4 Aboveground biomass assessment and validation 

  

The points describing the woody part of the tree have been 

transformed into local coordinates. This procedure was necessary 

to lighten the subsequent processing. The biomass calculation 

was performed using the TreeQSM algorithm (Raumonen and 

Åkerblom, 2022) written in MATLAB environment, which 

reconstructs Quantitative Structure Models for trees from point 

clouds. Specifically, QSM is a hierarchical geometric primitive 

model accurately approximating the tree branching structure, 

geometry, and volume (Åkerblom et al., 2017). As described in 

the algorithm help documentation, different results can be 

obtained by running the model several times due to random 

elements in the reconstructive process. Therefore, it was decided 

to consider the average of 10 results thus obtained. For more 

information about the model, please refer to the reference article 

(Raumonen and Åkerblom, 2022). Although the algorithm allows 

getting several outputs, we only considered the wood volume and 

biomass in this study. 

 

To validate the results obtained exhaustively, it was decided to 

carry out a validation that considers both the segmentation 

procedure and the biomass estimation. 

 

The segmentation procedure was validated using the F1 score 

parameter, widely considered in this kind of analysis (Belcore et 

al., 2020; Spadavecchia et al., 2022). This parameter relates the 
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number of correctly segmented trees (Number of Matches, NM) 

to the total number of segmented trees (Defined Trees, DT) and 

the total number of trees actually present in the study area 

(Reference Trees, RT) as follows: 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝐴) =
𝑁𝑀

𝑅𝑇
, (1) 

 

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑈𝐴) =  
𝑁𝑀

𝐷𝑇
, (2) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝐴 ∗ 𝑈𝐴

𝑃𝐴 + 𝑈𝐴
,  (3) 

 

The F1 score can have values between 0 and 1, and higher values 

correspond to better segmentation. 

 

The reference values through which the accuracy of the biomass 

estimate was evaluated were calculated using an allometric 

equation. Equation (4) has been fine-tuned to best fit the main 

tree species in Finland (Kangas et al., 2023): 

 

𝐴𝐺𝐵 =  𝑙𝑜𝑔𝑖𝑡−1 (𝑎 + 𝑏 ∗ 𝐷𝐵𝐻 + 𝑐 ∗ ℎ + 𝑑 ∗
1

ℎ
+ 𝑒 ∗ 𝐷𝐵𝐻 ∗

ℎ + 𝑓 ∗
1

𝐷𝐻𝐵∗ℎ
+ εcluster + εplot) ∗

𝜋∗𝐷𝑆𝐻2∗ℎ

40
+ εtrees  (4) 

 

Where DBH [cm] is the Diameter at the Breast Height (1.30 m), 

the DSH [cm] is the Diameter at the Stump Height, and h is the 

tree height [m]. Parameters a-f were tuned from a Finland-wide 

tree dataset; parameters a-c depend on the temperature sum, 

while d-f differ for each tree species. εcluster, εplot, and εtree are, 

respectively, the zero-mean cluster-, plot- and tree-level random 

effects that follow the standard assumption of mixed-effects 

models (Mehtätalo and Lappi, 2020). More details about the 

parameters are described in (Kangas et al., 2023). The tree height 

has been manually measured from the CHM, while the DBH has 

been calculated as the diameter of a cylinder that best fits the 

points of the trunk between 1.1 m and 1.5 m above the ground. 

Finally, the DSH has been estimated as follows: 

 

𝐷𝑆𝐻 =
ℎ

ℎ−1.3
∗ 𝐷𝐵𝐻  (5) 

 

 

3. RESULTS 

 

3.1 Individual Tree Detection 

The segmentation procedure identified a total of 240 trees. Of 

these, 150 were identified correctly, i.e., free of under-

segmentation or over-segmentation errors. Under-segmentation 

errors occur when two or more trees are segmented as a single 

tree; on the opposite, over-segmentation is when a single tree is 

segmented as two or more trees. In this case, 47 trees were under-

segmented, while 40 trees were over-segmented. Figure 3 shows 

the resulting point cloud. The resulting F1 score value is equal to 

0.60. 

 

Figure 3. Individual trees. 

 

The trees selected for subsequent analysis are shown in Figure 

4. They are uniquely silver birches and are spatially distributed 

within the study area. 

 

Figure 4. 20 individual silver birches selected. 

 

3.2 Wood-leaf classification 

Figure 5 shows the result of the classification of a tree which has 

been taken as an example for visualization. Based on visual 

inspection, all the experiments return an excellent classification. 

The radiometric feature of the deviation only partially affects the 

final result. Experiments 1-2, and experiments 3-4 do not show 

significant differences. Among them, it can be observed that the 

woody points are correctly identified in greater numbers in the 

second approach. Instead, with the third method, almost all the 

woody points are identified in the lower part of the tree. All 

methods show greater difficulty locating and correctly detecting 

the smaller trunks at the top of the tree. However, even if there is 

noise, with the first and second approaches, it is possible to 

identify some branches that are not detected with the third 

approach. 
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Figure 5. Classified tree: Experiment 1-5 from left to right. 

 

In Figure 6, only the wood points of the cloud are shown. It is 

seen more clearly that more filtering is performed with the second 

and third method; in particular, with the third one, some woody 

parts disconnected from the rest of the tree structure are 

identified. However, experiment 5 identifies a denser wood 

structure: this helps the tree modelling algorithm to obtain more 

reliable biomass estimates. 

 

Figure 6. Wood points: Experiment 1-5 from left to right. 

 

3.3 Aboveground biomass assessment 

Table 2 summarizes each tree's measured (DBH and height) and 

estimated (DSH, AGB) allometric parameters. 

 

The biomass estimation through the quantitative structure model 

algorithm shows promising results for about half of the trees 

considered. In contrast, in the case of the remaining half, the 

values are entirely different from the reference ones (Table 3). 

 

Tree DBH [cm] h [m] DSH [cm] AGB [L] 

1 17.7 22.95 18.7 280 

2 27.7 21.21 29.5 614 

3 29.4 26.11 30.9 808 

4 28.8 20.59 30.8 646 

5 25.8 21.03 27.6 536 

6 22.0 21.85 23.4 408 

7 24.1 23.07 25.6 508 

8 22.8 20.79 24.3 418 

9 19.9 18.38 21.5 293 

10 21.5 20.93 22.9 376 

11 15.2 19.71 16.3 184 

12 28.7 16.5 31.2 538 

13 32.7 17.5 35.3 720 

14 19.0 17 20.6 249 

15 25.3 16.5 27.4 421 

16 18.8 19 20.2 269 

17 20.2 20 21.6 321 

18 21.0 20.35 22.4 350 

19 15.7 16.52 17.0 168 

20 15.7 16.63 17.0 169 

Table 2. Reference each tree's allometric parameters (DBH, h, 

DSH, AGB). 

 

Tree 
Exp 1 

[L] 

Exp 2 

[L] 

Exp 3 

[L] 

Exp 4 

[L] 

Exp 5 

[L] 

Allometric 

model [L] 

1 25352 22907   170 280 

2 810 789 780 750 111 614 

3 885 890 921 870 897 808 

4 31102 37831 1663 1791 926 646 

5 8938 10036 2255 1976 344 536 

6 17105 5212 1215 1878 292 408 

7 1295 1467 2120 2016 564 508 

8 14433 12733 2459 3124 604 418 

9 1994 1026 847 756 716 293 

10 1696 1718 541 581 440 376 

11 243 240 230 250 101 184 

12 16902 18726 32805 6719 66 538 

13 1160 1110 1093 1112 

 

720 

14 2034 1560 9692 10645 

 

249 

15 1509 1151   116 421 

16 318 319 228 212 217 269 

17 1119 1043 24105 8345 455 321 

18 369 384 296 295 248 350 

19 
  120 140 30 168 

20 258 230 190 201 180 169 

Table 3. Aboveground biomass [litres] for each experiment 

compared with the reference values. 

 

As can be seen from Table 4, for trees whose biomass has been 

estimated appropriately, the percentage errors obtained are 
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consistent with the allometric equation results. Most estimates 

differ from the AGB calculated with allometric equations by 

about ± 25%, while some outliers reach differences equal to a 

maximum 60%. Furthermore, similar results are observed 

between methods 1 and 2; this is also true when comparing 

experiments 1-2 and 3-4. Unfortunately, in some cases the 

algorithm cannot reconstruct a model at all. Therefore, a biomass 

estimate is not available in these cases. Trees whose biomass was 

not correctly estimated are always greatly overestimated due to 

incorrect tree modelling due to undergrowth or other noisy 

points. 

 

Tree 
Exp 1 

[%] 

Exp 2 

[%] 

Exp 3 

[%] 

Exp 4 

[%] 

Exp 5 

[%] 

1 8954 8081   -39 

2 32 28 27 22 -82 

3 10 10 14 8 11 

4 157 177 4712 5753 43 

5 1568 1773 321 269 -36 

6 197 360 4089 1176 -28 

7 155 189 317 297 11 

8 489 648 3357 2950 45 

9 581 251 189 159 145 

10 351 357 44 55 17 

11 32 30 25 36 -45 

12 3041 3380 5996 1148 -88 

13 61 54 52 55  

14 716 526 3788 4171  

15 258 173   -72 

16 18 19 -15 -21 -19 

17 249 225 7416 2502 42 

18 5 10 -16 -16 -29 

19     -28 -16 -82 

20 52 36 12 19 7 

Table 4. Error percentage of the estimated aboveground 

biomass compared to the reference values. The cells highlighted 

in green refer to correct estimations. 

 

4. DISCUSSION 

The automatic biomass estimation over a large area conducted in 

this study highlights the potential and weaknesses of this 

approach. The innovative methodology of acquisition allows 

monitoring an extended portion of the forest over time, in a time-

efficient manner and without the need for the presence of an 

operator during data collection. The need to use artificial 

intelligence algorithms for data processing is primary; in this 

way, it is possible to fully exploit the acquired data and extract 

additional information effectively and automatically. On the 

other hand, this approach requires a suitable structure; it is 

essential to use or possibly build adequate support positioned in 

a study area of particular interest. Moreover, by its nature, this 

methodology only allows a partial description of the scenario; 

due to a single observation point, the number of obstacles (trunks 

and branches) blocking the laser increases as the distance from 

the station point increases. This aspect is partially limited by the 

high density of the point cloud, facilitating the interpolation of 

missing data. 

 

The automatic segmentation method chosen allowed individual 

trees to be identified with a percentage of success consistent with 

those described in previous studies (Ma et al., 2022; Qiu et al., 

2020). Since the oblique acquisition of point cloud is an 

innovative methodology, to the best of our knowledge, no single 

tree-level segmentation algorithm in the literature was developed 

specifically for this type of data. The PyCrown algorithm was 

developed for segmenting aerial point clouds; however, since it 

associates the local maxima of the CHM (Canopy Height Model, 

calculated as the difference of the DSM with the DTM) with the 

treetops, it was supposed that it could be equally effective in this 

case study as well. As a matter of fact, the position of the laser 

scanner allows a view of the treetops, but at the same time, it can 

acquire points of the terrain for the generation of the DTM. It has 

also been observed that the segmentation errors are mainly 

localized in higher-density areas (in which trees are closest to 

each other, whose crown intersects each other, and in which 

shorter trees are dominated by surrounding trees) and distant 

from the LiDAR. In fact, the more you move away from the laser 

scanner, the more the angle of incidence of the beam decreases, 

and the density of points that describes the upper part of the trees 

decreases as well. 

 

The classification of forest point clouds into wood and is an open 

topic. In this study it was decided to apply different approaches 

to evaluate their efficiency and identify the most suitable one to 

allow an accurate biomass estimation. The features were selected 

iteratively, identifying the best ones in density, intensity, 

reflectance, and deviation. Contrary to experiment 5, based on 

approach 3, deviation does not play a significant role in the first 

two approaches. With all the methodologies, the results were 

validated according to visual interpretation. Experiment 5 returns 

the most stringent classification, so a more accurate biomass 

estimation is expected when considering these point clouds. Very 

similar results are obtained through the first two methodologies; 

in experiments 3-4 the woody element receives fewer points at 

the expense of the foliage; however, it is still possible to visually 

locate the trunks and the larger branches. 

 

The estimation of biomass through non-invasive techniques is 

currently intensely debated. One of the most common techniques 

used in this study is based on modelling the tree through a 

Quantitative Structure Model, which allows calculating its 

volume with a good approximation. Its limitation lies in 

providing an optimally segmented point cloud at the single tree 

level as input data. When the point cloud has too many points 

considered noise, such as dense undergrowth, this causes errors 

in the generation of the model, which very often leads to a 

significant overestimation of the volume. In fact, the 

undergrowth is seen as part of the trunk, which in this way is 

modelled with a diameter that is more incorrect the larger and 

more spatially distributed the undergrowth is. Nevertheless, 

when this phenomenon does not occur the biomass is estimated 

as consistent with the values calculated through the allometric 

equation. Through approaches 1 and 2, the biomass estimation is 

correctly performed for 8 trees out of 20; when approach 3 

(experiment 5) is considered, there are 14 trees for which an 

estimate consistent with the reference is obtained. The first two 

approaches tend to overestimate the biomass, probably due to 

some points related to the foliage that have not been classified as 

such; in experiment 5, on the other hand, both overestimation (up 

to 45%) and underestimation (up to -45%) occur. In some cases 

(4 trees in different experiments) it was not possible to estimate 

the biomass due to errors in the generation of the tree structural 

model; this is probably due both to the presence of noise and to a 

wood point cloud which sometimes (particularly in the upper part 

of the tree) lacks the necessary continuity. The biomass of the 
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remaining trees has been misestimated, especially in experiments 

1 and 2 it needs to be more accurately estimated. In these cases 

the algorithms failed to exclude the undergrowth, which in this 

way was modelled causing the generation of trees whose main 

trunk had an unrealistic diameter. In general, since the 

classification carried out in experiment 5 is the most rigorous, 

better results are obtained. Additionally, experiment 5 could be 

potentially improved by the initial separation of the point clouds 

based on flexible threshold values selected as infliction points of 

the fitted geometric feature distributions (such as linearity, 

anisotropy, and verticality at multiple spatial scales). Also the 

choice of the relevant neighborhood scales can be optimized 

more efficiently to reflect the point cloud geometry. Finally, it 

must also be remembered that allometric equations are not error-

free. Even if an equation developed explicitly for the forest 

typology under examination is considered (as in this study), these 

do not consider specific conditions (e.g., falling branches due to 

weather conditions), which are fundamental for this analysis. For 

this reason the reference values only provide us with reference 

values, but more precise values are expected to be obtained 

through proper tree modelling. 

 

This first application of a complete workflow for individual tree 

detection, wood and foliage classification, and biomass 

estimation with LiPhe shows that it performs outstandingly. This 

analysis is a first step of a more extensive study. More rigorous 

and in-depth investigations are needed to compare different 

segmentation and parameter estimation methods in other 

experiments based on various data. However, further 

investigations are required and are currently ongoing. Suggested 

future works include the improvement of the segmentation 

procedure to obtain a point cloud such as to allow plausible 

modeling of the tree. Subsequently, it is necessary to extend the 

study to different tree species to generalize the model and apply 

it in every scenario; finally, it is essential to analyze the 

multitemporal variation, to evaluate the interaction of the forest 

ecosystem concerning climate change. 

 

5. CONCLUSION 

Forest monitoring and biomass assessment are heatedly debated 

topics by the scientific community and public opinion. 

Traditional methodologies are often inadequate due to the 

difficulty of acquiring information about biomass in an extensive 

but at the same time efficient way. However, modern instruments 

such as the laser scanner and the implementation of automatic 

processing algorithms make these analyses easier. This study 

addresses using oblique point clouds in forestry environments for 

precision forestry purposes. In particular, a methodology has 

been developed that, starting from the raw point cloud, makes it 

possible to identify single trees, perform a wood-leaf 

classification, and estimate the biomass of each tree. 

Segmentation and classification results were validated through 

visual interpretation, while biomass was validated with reference 

values calculated with allometric equations. The results are 

promising, and when the workflow is efficient in all its parts, 

limited percentage errors are obtained on the biomass estimation 

of silver birches. 

  

Nevertheless, further tests are needed to improve the entire 

procedure, generalize it to all tree species and different scenarios, 

and implement a multitemporal methodology; finally, it is 

essential to relate biomass to the amount of carbon it captures and 

stores. 
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