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Stabilization of EFIE-IBC by Spatial Filtering
Margaux Bruliard and Giuseppe Vecchi

Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, ITALY

Abstract—Impedance Boundary Condition (IBC) is a widely
used approximation in the analysis of metasurfaces, and it
greatly simplifies the design process. However, for some ranges
of impedance values of practical interest in metasurface applica-
tions, the Integral Equation formulation has shown instabilities.
This contribution proposes a way to improve that shortcoming;
the method is based on the property of the involved operators
and the nature of the IBC approximation.

Index Terms—Metasurfaces, Integral Equations, Impedance
Boundary Conditions

I. INTRODUCTION

The design and prototyping of electromagnetic metasur-
faces often entails complex multiscale mathematical models
to accurately represent unit cells (sub-wavelength details)
and the associated macro-scale structure, with the related
computational challenges. To simplify these complex models,
Surface Impedance Boundary Conditions (IBC) are widely
used at the macroscopic design level, and incorporated into
the Maxwell boundary-value problem.

The addition of the IBC into the Integral Equation (IE)
formulation has been shown to have problems for certain
ranges of impedance values, though [1]; in particular, it suffers
from poor conditioning under specific impedance conditions.
This happens when the body under examination is considered
impenetrable, and the IBC one-sided (a.k.a. opaque). Literature
suggests using a stabilized CFIE-IBC [2] for finite-sized vol-
umes, but leaving the EFIE-IBC formulation problematic for
thin, flat structures. The problematic values are unfortunately
those that support guided surface wave in metamaterials. This
is somewhat obviated in [1], that proposes employing IBC
only on thin, penetrable sheets and describing the rest as it
is (e.g., a grounded dielectric substrate), of course increasing
the computational complexity. This covers a large swat of
metamaterial applications, but still leaves out IBC ranges
that would enlarge the flexibility in design; also, it does
not solve the problem for stand-alone thin screens without
backing, and for cases (e.g., all-metal pillars) where a one-
sided (impenetrable) description would be preferable,

This work focuses on addressing the above instabilities.
Preliminary accounts of this endeavor were presented in the
conference paper [3].

II. BACKGROUND

In the following, we will restrict our study to a thin open
planar structure (denoted Σ) surrounded by vacuum; a layered
and possibly grounded medium can be added at the only
cost of employing the appropriate Green’s function in the
integral equation listed in the following. The IBC (1) is used
to represent the effect of the metasurface patterning in the

homogenization approximation,

n̂×E(r) = n̂×
(
ZsI(n̂×H)

)
(r) r ∈ Σ (1)

and for the sake of simplicity here we will restrict our analysis
to scalar (isotropic) impedance; this results in the EFIE-IBC
integral equation

ηn̂× L(J)(r) + Zsn̂× J(r) = n̂×Einc(r) r ∈ Σ (2)

for the unknown equivalent current density J ; in the above

L(X)(r) = jk0
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G0(r, r

′) ·X(r′)dr′ (3)

G0(r, r
′) =

e−jk0R

4πR
(4)

It is noted that the Magnetic Field Integral operator is not
involved as the surface is planar.

The Method of Moments approach, with a discretization of
the current J into a linear combination of Rao-Wilton-Glisson
(RWG) functions [4], with the classical Galerkin test method
yields to a matrix problem[

L+ zsG
Λ
]
· JΛ =

1

η
V E (5)

where, L is the tested EFIE operator, GΛ is the Gram matrix
associated to the RWG basis, and V E denotes the right-hand
vector of the linear system.

As seen in Fig. 1b, the inclusion of the IBC term substan-
tially impacts the EFIE-IBC system stability, specifically when
dealing with inductive IBC values.

III. SPATIAL FILTER RE-CONDITIONING

To elaborate on the ill-conditioning, consider a Perfect Elec-
tric Conductor (PEC). The issue with PEC is represented by
the EFIE (corresponding to Z = 0 in (2)), a first-kind equation.
In this case, the singularity within the EFIE operator ensures
that the problem is well-posed. Unfortunately, when introduc-
ing the EFIE-IBC, we add an identity operator weighted by
the impedance value Zs. This alteration significantly affects
the diagonal terms of the EFIE, leading to ill-conditioning for
specific surface impedance ranges.

Thinking of the identity operator in terms of an integral
operator, it is apparent that its kernel is a Dirac delta; in
turn, this means that its spectral representation is totally flat.
Here and in the following, we will use the term “spectral” to
mean the Fourier (Plane-Wave) spectrum. This is a 0-th order
approximation of the homogenization implied in the IBC, and
it appears to be justified only in a subset of cases.

Instructed by the above considerations, we undertake to
control the spectrum of the solution, to avoid the spectral
region associated with instabilities.



This is naturally done in the (Fourier, Plane-Wave) spectral
domain; to keep the complexity at a minimum in this study,
though, we resort to a set of basis functions that possess
spectral resolution, i.e., mimicking a Fourier series. This
is conveniently done on a rectangular domain, where basis
functions with this spectral property, and the necessary div-
conforming property are easily found as the vector eigenfunc-
tions (modes) of the 2D Helmholtz eigenproblem (waveguide
cross-section) [5] to build this second set. As already shown in
[6] these entire-domain can be effectively expressed in terms
of the underlying RWG discretization,

Φk(r) =

N∑
n=1

ψnkΛn(r) (6)

which induces the dual spatial-spectral representation of the
current

JΛ(r) =

N∑
n=1

jΛn Λn(r) JΦ(r) =

K∑
k=1

ȷΦk Φk(r) (7)

The latter is algebraically equivalent to basis change transfor-
mation (8),

Φk(r) =

N∑
n=1

ψnkΛn(r) −→ jΦk =

N∑
n=1

ψnkj
Λ
n (8)

explicit as in terms of the basis change matrix ψ on (5) leads
to the filtering EFIE-IBC matrix problem formulation

ψH ·
[
L+ zsG

Λ
]
· ψ · JΦ =

1

η0
ψH · V E , (9)

with ψH indicating the conjugate transpose of matrix ψ.
We notice that the same operations can be executed using

Fast Fourier Transform (FFT), ensuring compatibility with fast
methods. However, here we aim at assessing the effect of the
spectral filtering, the detailed implementation of this aspect
extending beyond the scope of our present work.

IV. NUMERICAL RESULTS

To illustrate our filtering model, we will consider a XY plate
of size 3λ0 × 2.5λ0 without thickness, centered at the origin
and surrounded by vacuum. The plate is illuminated by a 10
GHz incident plane wave, with incident wave-vector kinc =
[kincx , kincy , kincz ]. This simplified model is used to approximate
a thin planar structure once the isotropic IBC is applied.

A first approach, is to verify that our filter offers a “non-
invasive” solution for non-problematic IBC values: as an
example, we can select, from 1b, the capacitive value Zc

s =
−j2.5η0. In this case, the solution is stable and accurate, so we
can consider the difference between this reference solution and
the obtained with the filtered equation. The condition number
of the filtered problem remains very low, and the error with
respect to the reference solution remains very low; it decreases
for increasing spectral occupation of the basis, as expected.

Then, we consider a problematic case, viz. the inductive
Zs = j2.5η0, with a clear bad conditioning, κi = 37094 (Fig.
1b).
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(a) Scheme of the model
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(b) Condition number of the EFIE-IBC on
the model according to Zs = jXs

Fig. 1: XY plate of size 3λ0 × 2.5λ0 meshed with Ne = 1334 triangular
cells (NΛ = 1953 RWG basis functions)
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Fig. 2: Evolution of the relative error depending on the size of the filter for
the capacitive example Zs = −j2.5η0

The behavior of the filtering on the EFIE-IBC for the new
case is summarized in Figure 3. Since the standard formulation
(5) is ill-conditioned, we cannot measure the distance between
the original and filtered solution; hence we measure the
distance between the original model and the filtered one via
the residue of (5)

r = ||L+ zsG
Λ · JΛ − 1

η
V E ||2 (10)

Hence, Fig. 3 reports on the same graph the condition number
and and the (normalized) residue r.
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Fig. 3: Evolution of the residue and condition number depending on the size
of the filter for the degenerative inductive example Zs = j2.5η0



We notice here encouraging results since the condition
number, even if getting higher with the size of the filter, stays
considerably lower than the one of the standard EFIE-IBC
(≈ 102 order instead of the original 104 conditioning). In the
same time, the residue keeps relatively flat along the evolution
of the filter size, showing the stability of the solution obtained.

Moreover, a comparison between the two electric currents
can be done, with a suitable choice of spatial range; we choose
here to fix it to NΦ = 500 based on the knowledge from figure
3. The figure 4 illustrates the advantage of the filtering method,
by removing the “noise” of the solution JΛ in figure 4a, to
get the new solution JΦ (in figure 4b).
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(a) Solution obtained using the standard EFIE-IBC (NΛ = 1953
unknowns).
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(b) Solution obtained with the EFIE-IBC filtering model for
kmax/k0 = 2.39

Fig. 4: Surface Current of the XY plate for an inductive Zs = j2.5η0
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