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Abstract

With the growing popularity of wearable cameras, egocentric vision has become an increas-

ingly researched area. This perspective offers a direct view from the wearer’s perspective,

enabling a more direct study of human behavior. However, the introduction of these devices

also presents unique challenges not encountered with traditional stationary cameras.

The goal of this thesis is to explore how multi-sensory information can address the

complexities of egocentric videos. Wearable devices face significant changes in illumination,

perspective, and environment, causing action recognition models to depend heavily on their

training environments and struggle with generalization to new ones. In the first part of the

thesis, we explore solving auxiliary tasks across various information channels from videos

to enhance robustness across domains. By integrating RGB data with audio and motion

information from optical flow via an auxiliary loss to align feature norms, we demonstrate

that the resulting models are more generalizable and perform reliably in unseen environments.

We then introduce a method using cross-instance video reconstruction through language

to learn robust features against a scenario shift, where the same action occurs in different

activities, and a location shift, where videos are from varied geographical locations. To

this end, we curated ARGO1M, the largest dataset for action recognition generalization,

containing over 1 million video clips. Our findings indicate that textual guidance significantly

enhances model performance in unseen scenarios and locations.

In the second part of the thesis, we analyze previously unexplored modalities within

egocentric vision. Event cameras, with their high pixel bandwidth, dynamic range, low

latency, and low power consumption, effectively address challenges like fast camera motion

and background clutter. We introduce N-EPIC-Kitchens, the first dataset for studying

event-based data in this domain. Results demonstrate that event data perform competitively

compared to traditional RGB and optical flow modalities. Finally, we integrate 3D scene

information with appearance-based models to overcome the limitations of 2D images’ narrow

field of view and incomplete scene views. We introduce the task “Out of Sight, Not Out of

Mind”, which involves tracking object locations around the user over time, even when not



v

visible, using both frame-based images and 3D object positioning. Our findings show that

3D information significantly enhances the capability of egocentric vision systems to fully

capture and understand the surrounding context.

Throughout this thesis, we highlight the importance of utilizing information from multiple

channels and demonstrate that focusing on these aspects can significantly improve egocentric

video understanding.
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Chapter 1

Introduction

This thesis explores multi-modal egocentric video understanding, focusing on domain gen-

eralization in the first part and the adoption of new modalities in egocentric vision in the

second part. This chapter outlines the goals, motivations, and contributions of our work.

1.1 Goals

Creating tools that support human activities, enhance quality of life, and boost our ability to

achieve our desires has always been a fundamental goal for humanity. Among these inno-

vations, digital computing has profoundly transformed our history, with mobile technology

playing a pivotal role. Today, smartphones have become essential for outdoor navigation,

recording life’s moments, and connecting us with both old and new experiences. Yet, there is

a growing interest for the next evolution in mobile tech: wearable computing. This concept,

often depicted in movies, fiction, and pop culture, represents a significant step forward in

how we envision our interaction with technology1. Wearable cameras enable the collection

of visual information from a human perspective. Analyzing this data through egocentric

(first-person) vision offers a more direct approach to study human behavior. In egocentric

videos, camera movements are typically driven by the wearer’s intentions and activities, with

manipulated objects usually clearly visible in the frame. This direct correlation between the

camera wearers’ viewpoint and their interactions offers a unique, first-person perspective that

enhances the understanding of human behavior and task execution. Additionally, the clear

1Few examples: (1) Molly’s Vision-Enhancing Lenses from the Neuromancer novel, William Gibson, 1984.

(2) JVC Personal Video Glasses from the Back to the Future II movie, 1989. (3) Iron Man Suits with J.A.R.V.I.S.

AI system from Marvel movies 2008-2015. (4) AI Earbuds and smartphone in shirt pocket from the Her movie,

2013. (5) E.D.I.T.H. smart glasses from the Spider-Man: Far From Home movie, 2019.
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visibility of manipulated objects not only aids in studying human-object interactions but

also provides valuable context for interpreting the user’s immediate environment and actions.

This unique viewpoint has already found many applications in assistive technologies OhnBar

et al. (2018), robotics (Park et al., 2016), entertainment (Liang et al., 2015; Taylor et al.,

2020) and autonomous vehicles (Hirakawa et al., 2018).

However, the transition from traditional, stationary third-person cameras to the dynamic,

first-person perspective offered by wearable cameras introduces a range of challenges. The

rapid movement of the camera often results in videos affected by motion blur, and the user’s

hands or arms frequently occlude the camera’s view. Additionally, the camera’s narrow field

of view restricts it to capture only partial observations of the scene. Furthermore, as the

camera is worn by the user, wearable devices’ compute budget is limited by battery life.

One of the most common tasks in egocentric vision is egocentric action recognition,

which involves identifying and classifying the actions of a camera wearer based on the visual

data captured from her point of view. Critically, the recording equipment is worn by the

observer and it moves around with her. Hence, there is a far higher degree of changes in

illumination, viewpoint and environment compared to a fixed third person camera. This

variability leads to a notable drop in the performance of egocentric action recognition models

when tested in conditions not seen during training. In general, this problem is referred to

in the literature as domain shift, meaning that a model trained on a source labelled dataset

cannot generalize well on an unseen dataset, called target, due to a discrepancy between their

distributions. In egocentric vision, the domain shift is most commonly due to the so called

“environmental bias” (Torralba and Efros, 2011). Given that video sequences are captured

from a limited number of environments, training a model in one environment and deploying

it in another leads to a performance decline due to intrinsic visual differences among them.

Overcoming the environmental bias is essential to guarantee that models can operate reliably

under the complex and unpredictable real-world conditions.

Humans have the ability to perceive the world around them through signals received from

multiple sensory systems. Our perceptual experiences encompass visual, auditory, tactile,

olfactory, and gustatory senses. Similarly, in egocentric vision, multi-modal information is

crucial for understanding and disambiguating a user’s intent or action. For instance, a video

clip might display someone cutting tomatoes. While an activity recognition model based

solely on video might not be able to categorize this from pure visual information alone, audio

may provide a distinct sound that helps in recognizing the action (Morgado et al., 2021). The

importance of multi-modal data is further amplified in egocentric vision due to the proximity

of the device to where interactions occur. Audio data, in particular, becomes highly relevant
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D1 D2 D3

Fig. 1.1 Egocentric vision across domains. Data from RGB (top) and optical flow (bottom) across

different environments. As it can be seen, optical flow information, focusing on domain-invariant

information, is more robust to the domain shift.

as it captures interaction sounds that are crucial to accurately interpreting user’s interactions.

Moreover, different modalities are affected in different ways from the domain shift. For

example, optical flow, being invariant to appearance (Sevilla-Lara et al., 2019), disregards

domain-specific information such as the background, which can vary significantly across

different environments (see Figure 1.1).

In this thesis, we propose to leverage multi-sensory information to tackle the complexities

inherent in egocentric videos. In the first part of the thesis, we show how solving auxiliary

tasks across different channels can improve action recognition generalization and adaptation

to new domains. Specifically, we demonstrate how traditional modalities (RGB, audio, optical

flow) can be integrated through an auxiliary loss which aligns their feature norms during

training to improve performance on unseen environments. We then introduce a method based

on video reconstruction through language for learning more robust features in the presence

of a scenario shift, where the same action is performed as part of a different activity, and a

location shift, where videos are recorded in different geographical locations. To study those

domain shifts, we curated ARGO1M, the biggest dataset for action recognition generalization

so far, including more than 1 million video clips.

In the second part of the thesis, we explore modalities not yet utilized in egocentric

vision. We focus on the advantages of event-based data from event cameras, which excel in

modeling motion information with less computational and power demands. With their high

pixel bandwidth, dynamic range, low latency, and low power consumption, event cameras

effectively address challenges like fast camera motion and background clutter typical of

wearable devices (Gallego et al., 2020b). We introduce N-EPIC-Kitchens, the first dataset
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for studying event-based data in egocentric vision, which extends the EPIC-KITCHENS

dataset (Damen et al., 2018) to include event modality. Using this dataset, we benchmark

the event modality against traditional ones, such as RGB and optical flow, to highlight its

potential for egocentric action recognition.

Additionally, we explore the integration of 3D scene information as a new modality

to overcome the limitations of incomplete scene views and limited field of view in 2D

images. We introduce the task “Out of Sight, Not Out of Mind”, which involves tracking

object locations around the user over time, even when they are not visible, utilizing both

frame-based images and 3D object positioning. This integration is particularly valuable as

many modern wearable devices are equipped with SLAM (Simultaneous Localization and

Mapping) technology, providing robust 3D positional data at no additional cost (Pan et al.,

2023).

1.2 Research questions and motivations

Egocentric vision introduces several challenges not present in traditional third-person video

understanding, primarily because of its unique way of capturing data. Key among these

challenges is the so called “environmental bias”, which hinders egocentric action recognition

models’ ability to generalize across different environments. This problem is most commonly

known as domain shift. Tackling the challenge of domain shift is essential for enhancing the

performance of learned models when applied to novel or unfamiliar environments. Many

researchers in this field have addressed the problem of domain shift by reducing it to an

Unsupervised Domain Adaptation (UDA) setting (Chen et al., 2019; Kim et al., 2021b;

Munro and Damen, 2020a; Wei et al., 2022), where unlabeled samples from the target

domain are available during training. However, the UDA scenario is not always practical,

because the target domain might not be known in advance, or accessing target data at training

time might be costly (or even impossible). An open research question is how to learn a

representation capable of generalizing to any unseen domain, when it is not possible to access

target data during training. This approach is most commonly referred to as the Domain

Generalization (DG) setting. While this has been explored previously in image-based data

for object classification tasks, we aim to investigate its application to the egocentric activity

recognition task.

Moreover, it has been shown in the literature that certain modalities are inherently more

robust to the domain shift (Munro and Damen, 2020a). For instance, cutting boards may

differ in appearance (e.g., wooden vs. plastic), but optical flow overlooks this. Despite its
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potential benefits, Multi-Modal Learning (MML) presents some challenges, such as learning

how to summarize data while retaining their complementary information or understanding

how to effectively combine information from multiple modalities for making predictions.

Heterogeneity between modalities is another critical issue, as differences in their marginal

distributions may prevent the model from learning equally from all of them. An open research

question is how modalities that are different in nature, such as RGB and audio information,

can be combined effectively. Drawing inspiration from recent works on self-supervised

pretext tasks for learning representations from multi-modal content (Morgado et al., 2020;

Munro and Damen, 2020a), we investigate how to solve auxiliary tasks across various video

information channels in a manner that makes the solutions to such tasks consistent across

channels and gains robustness from it.

Although optical flow is the most widely used modality along with RGB information,

it demands high computational resources, limiting its application in real-time scenarios.

Furthermore, it may not be ideal in a wearable context where saving battery and processing

power is crucial. This opens a research question on whether event-based cameras, novel

bio-inspired sensors that asynchronously capture pixel-level intensity changes as “events”,

might offer a solution. Due to their high pixel bandwidth, high dynamic range, low latency,

and low power consumption, event cameras are well-suited for egocentric vision tasks,

addressing challenges like fast camera motion and background clutter typical of wearable

devices. Moreover, as they capture differential information, event sequences reveal more

about scene dynamics than appearance, making them a valuable alternative to optical flow.

We explore how those novel data behave in egocentric vision, assessing their effectiveness in

enhancing action recognition accuracy and computational efficiency.

Finally, a major challenge in egocentric vision is the camera’s limited field of view,

which captures only a portion of the broader scene, thereby significantly constraining a

comprehensive understanding of the environment. This challenge is compounded by the

dynamic nature of human interaction with their surroundings, as objects frequently move

in and out of the camera’s field of view. On the other side, recent advances in 3D scene

reconstruction (Tschernezki et al., 2024) unlock the possibility to represent in 3D coordinates

the environments in which the videos have been recorded. This introduces research questions

on how to merge 3D scene information (complete observation) with partial observations from

RGB images to enhance our perception of dynamic environments. We analyze the impact of

3D information about objects the user interacts with in the scene to enable the tracking of

multiple dynamic objects over time, providing a continuous understanding of the location of

all objects, even when they are not visible in the field of view.



6 Introduction

To summarize, this thesis aims to answer a number of questions that have yet to be

answered. In particular, how can we leverage the benefits of multi-modal learning to mitigate

domain differences and enhance the robustness of egocentric action recognition models

on unseen domains, particularly when we lack access to data from the test distribution?

What are the key challenges in integrating event-based cameras into traditional egocentric

vision models, and could this modality prove to be truly beneficial in enhancing the models’

performance and adaptability? Can comprehensive 3D information about the scene where

videos are recorded be integrated with partial 2D images from the camera’s limited field of

view to achieve a complete understanding of the user’s surroundings?

1.3 Outline and main contributions

In this thesis, we propose to address the research questions outlined above through the devel-

opment of two multi-modal Domain Generalization (DG) frameworks for egocentric action

recognition. The first one focuses on domain generalization across various environments by

aligning the feature norms of multiple modalities – RGB, optical flow, and audio – during

training, as detailed in Chapter 3. The second one aims at enhancing action recognition gen-

eralization across different scenarios and locations using textual information. To investigate

this problem, we introduce ARGO1M, the largest dataset created for action recognition gener-

alization. Subsequently, we propose a DG method based on a visual-language reconstruction

task designed to effectively address domain shifts (Chapter 4).

We then move our investigation on the introduction and analysis of new modalities within

egocentric vision. The use of event data is explored in Chapter 5. We introduce a new event-

based egocentric vision dataset obtained through event data simulation, and use it benchmark

event-data w.r.t. traditional modalities. We then show how domain adaptation techniques can

be employed to ensure strong performance on real event-based data, when training occurs

exclusively on simulated samples. Finally, we demonstrate how information about objects’

location in the 3D scene where videos have been recorded can mitigate problems associated

with the limited field of view in egocentric cameras (Chapter 6). The thesis is structured as

follows:

• Chapter 2 begins with a general overview of the potential applications and benefits

of egocentric vision. It then continues with a description of existing models for

egocentric action recognition, highlighting both seminal and state-of-the-art works,

and an overview of 3D egocentric scene understanding tasks. We then present a
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detailed overview of existing Domain Generalization (DG) and Unsupervised Domain

Adaptation (UDA) techniques, focusing specifically on those employed in this thesis.

Finally, we discuss the functioning of event-based cameras, outlining their advantages

over traditional vision devices.

The chapter contains part of the work in (Plizzari et al., 2023a), published at the

International Journal of Computer Vision in 2024 (IJCV).

• Chapter 3 introduces a multi-modal framework for DG in egocentric action recognition.

This chapter discusses the “imbalance” problem that arises when training multi-modal

networks, which often leads to the network favoring one modality over others, thereby

diminishing its generalization capabilities. To tackle this issue, we propose a novel

multi-modal loss designed to progressively align the relative feature norms of multiple

modalities (RGB, audio, and optical flow) during training. Our results demonstrate

that rebalancing the contribution of these modalities during training leads to improved

generalization performance. Additionally, we extend this method to operate under the

UDA setting, utilizing unlabeled target data, where we also confirm the effectiveness

of our approach in this context.

The chapter led to the publication of (Planamente et al., 2022b) at the Winter Con-

ference of Computer Vision in 2022 (WACV22) and of (Planamente et al., 2024) at

International Journal of Computer Vision in 2024 (IJCV). The proposed method also

achieved the third place in the EPIC-Kitchens Unsupervised Domain Adaptation

Challenge at the Computer Vision and Pattern Recognition conference in 2021.

• Chapter 4 addresses the challenge of domain action recognition generalization across

various scenarios and locations. To support this research, we have curated the Action

Recognition Generalization dataset (ARGO1M). We then present a domain generaliza-

tion approach that incorporates Cross-Instance Reconstruction along with video-text

pairing. This strategy aims at learning representations that are robust and generalizable

across diverse conditions by enhancing the model’s capacity to comprehend and adapt

to new, unseen environments. Our results demonstrate that textual information is

instrumental in guiding the development of representations that are more robust on the

challenging ARGO1M dataset.

The chapter led the the publication of (Plizzari et al., 2023b) at the International

Conference of Computer Vision in 2023 (ICCV23).

• Chapter 5 delves into the utilization of event data in egocentric vision. Initially, we

introduce N-EPIC-Kitchens, the first event-based egocentric action recognition dataset,
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which enables the exploration of event data in this domain. We then propose two event-

based approaches, E2(GO) and E2(GO)MO, designed to exploit the motion information

captured by event data for egocentric action recognition. Our findings indicate that

event-based data achieves performance on par with RGB in seen environments and

even surpasses RGB in unseen ones. In the second part of the chapter, we demonstrate

how unsupervised domain adaptation methods can effectively bridge the simulated-to-

real (Sim-to-Real) gap for event cameras by aligning the feature distributions between

a simulated source domain and the real target domain.

The chapter led the the publication of three works. The first one (Plizzari et al., 2022)

is published at the Computer Vision and Pattern Recognition Conference in 2022

(CVPR22). The second one (Cannici et al., 2021) is published at the International

Workshop on Event-based Vision and Smart Cameras, held at the 2021 Conference on

Computer Vision and Pattern Recognition. The last one (Planamente et al., 2021) is

published at the Robotics and Automation Letter journal in 2022 (RA-L) and presented

at the 2021 International Conference on Intelligent Robots and Systems (IROS21).

• Chapter 6 explores the integration of 3D information about object locations as a new

modality, combined with partial 2D observations from egocentric videos, to achieve

a comprehensive understanding of the environment. This approach helps overcome

the limitations imposed by the camera’s narrow field of view. We introduce the “Out

of Sight, Not Out of Mind” task, which involves tracking multiple objects over time,

even when they temporarily leave the field of view. Our findings demonstrate that 3D

information plays a crucial role in accurately maintaining continuity and awareness of

where objects are, enhancing the overall effectiveness of egocentric vision systems.

This chapter is contained in a preprint article (Plizzari et al., 2024)

• Chapter 7 concludes the thesis with a summary of the work presented and outlines

potential future directions.
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Chapter 2

Preliminaries

This chapter provides an overview of existing tasks in egocentric vision, and discusses

potential applications of egocentric vision (Section 2.1). For a broader overview of egocentric

vision tasks, we direct the reader to the comprehensive survey in (Plizzari et al., 2023a).

Additionally, the chapter provides an overview of cross-domain challenges in Section 2.2,

and discusses methodologies developed for learning across domains. Finally, it offers a

detailed description of the working principles of event-based cameras and explores their

integration within deep learning architectures for computer vision, as detailed in Section 2.3.

2.1 Egocentric Vision

We offer an overview of existing tasks in egocentric vision, as well as a vision for the future,

through character-based stories and associated visuals (Section 2.1.1). In each narrative,

we explore various research tasks associated with egocentric vision applications. This

thesis specifically delves into two primary research tasks: action recognition and 3D scene

understanding. In Section 2.1.2 we describe existing seminal and state-of-the-art approaches

to action recognition, and in Section 2.1.3 we illustrate the advancements in 3D understanding.

For both tasks, we discuss datasets tailored to these objectives, alongside their limitations

and potential future applications.
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2.1.1 An Outlook into Egocentric Vision

We present two use cases, each rooted in specific locations or professions. For each use

case, we summarize the relevant existing technologies before presenting futuristic scenarios

through short, character-driven narratives, enhanced with illustrations drawn by an artist to

spark the readers’ imagination. The main figures in these stories utilize a wearable device

named EgoAI, which offers in-situ multi-modal sensing from the user’s perspective, providing

personalized, ego-centric assistance. We then explore more in-depth the connection between

these use cases and existing research tasks.

EGO-Worker

Current large-scale workshops and factories are increasingly incorporating vision-based

systems, yet these systems predominantly depend on stationary cameras. To cover various

areas, these cameras must be installed throughout the facility, but they offer only a limited

viewpoint, thus limiting their effectiveness. The process of training and supervising workers

typically relies on prerecorded materials or direct guidance from more experienced colleagues.

However, this method often results in a loss of expertise when an employee leaves for

another job. Moreover, the feedback provided to employees regarding their performance

usually comes from heuristic evaluations, either automated or manual, which may not

accurately reflect their true performance. Additionally, this feedback is often not effectively

linked with training or guidance on how to enhance their skills. Although technology’s

role in ensuring worker safety is growing, it has not met the expectations that come with

technological advancements, which tend to focus more on increasing productivity than

improving safety measures. EgoAI will bridge these gaps, aiming to improve workplace

safety and comfort, offering a more cohesive, effective, and comprehensive approach to

worker training, monitoring, and feedback.

Every morning, Marco starts his shift with a routine check in front of the mirror, allowing

EgoAI to confirm that he’s correctly wearing his Personal Protective Equipment (PPE) to

ensure his safety. Following this verification, Marco inquires with EgoAI about his assigned

location within the factory for the day. EgoAI accurately pinpoints Marco’s position and

guides him to his workstation, skillfully avoiding areas with overhead hazards and paths

designated for vehicle movement. Marco has complete faith in EgoAI’s navigation, recalling

a time when it efficiently directed him to the nearest fire extinguisher to prevent a fire from

spreading.
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Fig. 2.1 EGO-Worker. Illustration of the story

from Sec 2.1.1. EgoAI assists Marco from the

beginning to the end of his day. 1 Safety Com-

pliance Assessment. 2 5 Localization and

Navigation. 4 Messaging. 5 Hand-Object

Interaction. 6 Action Anticipation. 7 Skill

Assessment. 8 Visual Question Answering,

8 Summarization.

REC

Fig. 2.2 EGO-Tourist. Illustration of the

story from Sec 2.1.1. EgoAI accompa-

nies Claire throughout her itinerary in Turin.

1 2 8 9 10 11 Recommendation and Per-

sonalization. 2 3 4 5 6 3D Scene Under-

standing. 5 Gaze Prediction. 3 4 8 12

Localization and Navigation. 7 Messaging.

8 Visual Question Answering. 11 Action

Recognition and Retrieval. 13 Summarization.
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Upon arriving at his station, Marco receives a directive from his manager through EgoAI

to test a series of electrical boards. With the measuring tool being a new model, EgoAI

walks Marco through its essential functions to ensure the tests on the boards are conducted

accurately. However, Marco becomes momentarily distracted and nearly attempts to probe

an electrical board while it’s powered on. EgoAI immediately identifies the danger and

deactivates the IoT electrical socket connected to the board, simultaneously warning Marco.

Throughout the day, EgoAI oversees Marco’s activities, ensuring that all tasks are

performed correctly and safely. It provides assistance whenever Marco has questions,

monitors his stress levels, and prompts him to take necessary breaks.

As the day concludes, EgoAI expresses gratitude to Marco for his diligence, especially

with the new procedures, and seeks his input for improving training methods. EgoAI then

automatically incorporates Marco’s feedback and suggestions into the development of future

training sessions and plans, continuously enhancing the workplace environment and safety

protocols.

EGO-Tourist

Today, travelling for tourism and vacations has seen a remarkable increase, more than dou-

bling in frequency in the past 20 years1. In recent years, there has been a growing fusion

between technology and art, spanning from the ancient to the contemporary. This integra-

tion has enhanced the accessibility and interactive potential of art through technological

advancements. Digital audio guides and virtual tours are becoming the norm in museums

and tourist attractions, playing a vital role in engaging visitors and enriching their experience.

However, despite these advancements, the personal touch in the visitor experience is often

missing, requiring active participation from the users to truly benefit. EgoAI steps in to bridge

these gaps, transforming travel into an enjoyable and interactive adventure by providing

personalized experiences tailored to each user’s interests and preferences.

Arriving in Turin as the final destination of her Italian vacation, Claire is eager to

explore the city but lacks detailed knowledge about it. Fortunately, EgoAI is well attuned

to Claire’s preferences and has crafted a personalized and thrilling one-day itinerary just

for her. Knowing her keen interest in museums, EgoAI allocates half the day for a visit to

the renowned local Egyptian Museum. During her exploration, EgoAI enhances the experi-

ence by activating a 3D projection of Cleopatra to serve as Claire’s guide and interactive

companion, leading her through the museum and recommending the most intriguing path.

1https://ourworldindata.org/tourism
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Fig. 2.3 Connections between narratives and the research tasks. For each of the use cases presented

in Section 2.1.1, we show the corresponding research tasks, along with the specific part of the story

where the tasks are occurring, indicated by the numbers corresponding to those representing sub-

stories in Figures 2.1 and Figure 2.2 respectively.

While engaging with Cleopatra about a sarcophagus, Claire witnesses virtual elements

being integrated into her surroundings, bringing ancient artworks to life. This immersive

experience transports her back to the times of ancient Egypt, allowing her to interact with

and understand the historical artifacts in their intended context.

After the museum visit, Claire decides to keep Cleopatra as her augmented reality (AR)

guide for lunch, seeking recommendations for a great pizza spot. Over lunch, she continues

her conversation with Cleopatra, gaining deeper insights into the Italian monuments she

visited earlier in her trip, enhancing her understanding of their historical significance.

With the afternoon planned for relaxation at the thermal baths, and the next bus scheduled

in 20 minutes, EgoAI suggests Claire enjoy an authentic Italian coffee accompanied by a slice

of bunet, a famous dessert from Turin. Curious about the dessert’s recipe, EgoAI provides

Claire with a first-person tutorial from the chef who prepared it.

Following her time at the thermal baths, EgoAI inquires if Claire wishes to purchase

souvenirs for her family. It then locates the nearest souvenir shop that matches her relatives’

tastes and her budget.

Throughout her day in Turin, Claire was fully immersed in her experiences, free from

the concern of documenting the moments herself. EgoAI proactively captured significant

snapshots and videos of her favorite moments, ensuring that her memories of the trip are

preserved without her needing to lift a finger.

From Narratives to Research Tasks

Various research tasks can be identified in the above character-based narratives/stories. In this
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section, we link the above narratives to research challenges as recognized by the academic

community. Additionally, we assess if these challenges can be addressed with current

wearable technologies or if there is a need for newer, more sophisticated devices to surpass

the constraints of those presently in the market. The relationships between our use cases and

these research tasks are depicted in Figure 2.3.

For tasks that utilize augmented reality (AR) technology, a comprehensive understanding

of 3D scenes becomes essential. This requirement is highlighted in scenarios such as EGO-

Tourists’ immersive museum visits. The envisioned AR technology is further enhanced

with directional audio synthesis, adding auditory feedback to increase the realism of the

augmented surroundings.

Navigating through a 3D environment necessitates the tasks of localization and navigation,

which are pivotal, regardless of the space’s constraints. This requirement is evident in the

factory scenario presented in EGO-Worker. The capability of contemporary egocentric

devices to interpret 3D spaces is progressively advancing, thanks to the incorporation of

more recent cameras (e.g., Microsoft HoloLens 22, Xreal Light3, Magic Leap 24, Project

Aria Glasses5). These devices are capable of scanning the surrounding area to construct

a 3D model of the static environment, thereby facilitating the localization of the user and

simplifying navigation. However, dynamic scenes and outdoor environments continue to

pose significant challenges to these systems, making the realistic integration of 3D scene

understanding into practical applications an ongoing area of research.

Within the scene, the process of comprehensively understanding actions is executed

through tasks such as action recognition, which experiences a significant shift as the per-

spective changes from third-person to first-person views. In scenarios like EGO-Worker, the

device plays a crucial role in validating the user’s actions in a work environment. Notably,

the aspect of action anticipation stands out, as the device is equipped to quickly identify and

prevent potentially dangerous situations before they occur. Currently, the market lacks smart

glasses capable of robustly recognizing human actions in real-time.

EgoAI is enhanced with gaze prediction technology, allowing it to monitor the user’s eye

movements and smoothly align with the user’s gaze towards objects. This functionality is

evident in scenarios like EGO-Tourist, where users interact with museum artifacts. While

gaze tracking technology has reached a level of reliability, it still necessitates an initial

eye calibration and may experience accuracy drift over time. Wearable devices such as the

2https://www.microsoft.com/en-us/hololens
3https://www.xreal.com/light/
4https://www.magicleap.com/magic-leap-2
5https://about.meta.com/realitylabs/projectaria/
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Microsoft Hololens2, Magic Leap 2, Project Aria Glasses, and Apple Vision Pro have already

incorporated this feature6.

Hand-pose estimation and hand-object interactions are crucial for the effectiveness

of EgoAI. In EGO-Worker, EgoAI aids in the operation of unfamiliar measuring tools,

showcasing its ability to facilitate direct interaction with new equipment.

The success of the envisioned EgoAI device will also hinge on its ability to handle

a variety of supplementary tasks. The feature of messaging is a recurring theme in the

narratives. In EGO-Worker, messages from the manager about daily tasks are receive.

The convenience of hands-free operation is further augmented by the implementation of

voice commands, facilitating effortless interaction. This is evident in EGO-Tourist, where

the tourist requests further details about an artwork through voice queries. Modern wearable

glasses often incorporate voice assistants like Microsoft’s Cortana7, Apple’s Siri8, or Google

Assistant9. These assistants enhance user interaction by enabling them to open apps, capture

photos, send messages, and much more, significantly enriching the user experience.

Another crucial function of EgoAI is Safety Compliance Verification. In EGO-Worker, it

verifies whether the worker is properly outfitted with Personal Protection Equipment (PPE)

using advanced recognition and identification methods.

In this thesis, we investigate the task of action recognition across multiple modalities

(audio and optical flow - Chapter 3, language - Chapter 4) and domains. In Chapter 5 and

Chapter 6 we introduce event-based data and 3D information as new modalities for effective

video understanding. In the following, we delve into existing approaches for the task of

action recognition (Section 2.1.2) and 3D scene understanding (Section 2.1.3), which are the

most relevant for this work.

2.1.2 Egocentric Action Recognition

The goal of egocentric action recognition is to recognize actions from a first-person perspec-

tive. In contrast to third-person action recognition, where the camera observes the scene from

an external viewpoint, egocentric vision involves processing visual data captured from the

point of view of the participant. This means the camera is typically mounted on the person’s

body, often on the head or chest, capturing what the wearer sees. This is a relatively new

6https://www.apple.com/apple-vision-pro/
7https://www.microsoft.com/en-us/cortana
8https://www.apple.com/siri/
9https://assistant.google.com/
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task which has already found many applications in ambient assisted living (Meditskos et al.,

2018; Nakazawa and Honda, 2019; Zhan et al., 2014), augmented reality (AR) and virtual

reality (VR) technologies (Liang et al., 2015; Taylor et al., 2020), and social interaction

analysis (Aghaei et al., 2016; Alletto et al., 2014; Fathi et al., 2012a; Ryoo and Matthies,

2013). Recognizing actions from an egocentric viewpoint introduces a greater level of com-

plexity due to the camera’s movement, which is dynamic and often unpredictable, unlike the

static perspective offered by fixed, external cameras. An additional challenge is the camera

wearer’s presence in the visual field, which causes occlusions and an only partial visibility of

the action performed. To overcome these obstacles, one strategy involves utilizing additional

modalities alongside visual data. For instance, audio signals, the wearer’s gaze direction, and

motion patterns captured through optical flow can significantly enhance action recognition.

However, integrating multiple data types can be resource-intensive. Consequently, recent

progress in this area has been directed towards developing energy-efficient architectures that

also excel in interpreting complex actions at a higher level.

In the following, we describe the main methods architectures for addressing the action

recognition task. Given that egocentric action recognition models draw upon standard third-

person action recognition frameworks without being specifically tailored for a first-person

viewpoint, we also examine action recognition models developed for third-person vision. We

then introduce datasets for egocentric action recognition and discuss current limitations and

future works for this task.

Action recognition methods and architectures

Early works leveraged the egocentric perspective to improve action recognition for robots (John-

son and Demiris, 2005) and humans (Surie et al., 2007). In the pre-deep learning era,

approaches for egocentric action recognition mainly included the use of descriptors like

Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), Histogram of Oriented Gradients

(HOG) (Dalal and Triggs, 2005), and Histogram of Optical Flow (HOF) (Wang and Snoussi,

2013) to extract features. Among those, (Spriggs et al., 2009) explored action recognition

for egocentric vision accompanied with Inertial Measurement Units (IMUs), and (Kitani

et al., 2011) was the first to tackle action recognition from egocentric sports videos in an

unsupervised manner. (Kitani et al., 2011) used motion-based histograms recovered from

the optical flow of the scene to learn the action categories performed by the wearer. The

research field received significant attention following the release of a dataset featuring activi-

ties of daily living (ADL) (Pirsiavash and Ramanan, 2012), notably for its comprehensive

annotations covering activities, object trajectories, hand positions, and interaction incidents.
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(Fathi et al., 2012b) pioneered in demonstrating the importance of gaze by introducing a

probabilistic generative model that concurrently identifies daily activities and anticipates gaze

points in egocentric video footage. (Li et al., 2015) introduced an approach that integrates

hand posture, head movement, and gaze orientation features with those of motion and objects

to enhance the analysis of egocentric videos.

In recent years, deep learning has significantly reduced the need for manually extracting

features. The 2D Convolutional Neural Networks (CNNs) (Kazakos et al., 2019b; Poleg et al.,

2016; Ryoo et al., 2015; Singh et al., 2016), originally designed for image analysis, were

adopted for video processing, treating each video frame as an individual image. Approaches

employing recurrent neural networks like Long Short-Term Memory (LSTM) (Cao et al.,

2017; Verma et al., 2018) and Convolutional Long Short-Term Memory (ConvLSTM) (Sud-

hakaran and Lanz, 2017, 2018) have been developed to more effectively capture temporal

dynamics. To further modelling motion dynamics in videos, two-stream networks were intro-

duced, simultaneously processing the spatial and temporal streams of the video (Kazakos

et al., 2019b; Tang et al., 2017). 3D Convolutional Neural Networks (3D CNNs) (Carreira and

Zisserman, 2017; Feichtenhofer et al., 2019; Hara et al., 2017; Ji et al., 2012; Tran et al., 2015,

2018) were proposed to inherently capture both spatial and temporal features by extending

convolutions into the temporal domain. The advent of the Transformer architecture (Vaswani

et al., 2017) has inspired a series of studies utilizing transformers as a core framework for

video processing (Arnab et al., 2021; Patrick et al., 2021). These efforts expand upon the

Vision Transformer (Dosovitskiy et al., 2020), adapting it to handle sequences of frames.

In the following, we describe 2D CNN-based methods, as well as 3D CNN-based ones,

and recent Transformer-based architectures. An illustration of the distinction between 2D

CNN-based methods and 3D CNN-based ones is shown in Figure 2.4.

2D CNN-based methods. Convolutional Neural Networks (CNNs), particularly 2D CNNs,

are widely employed in image classification tasks due to their efficiency in learning hierarchi-

cal visual patterns. The adaptation of 2D-CNNs for video action recognition requires the

integration of temporal dynamics with the spatial feature extraction capabilities intrinsic to

2D-CNNs. A straightforward method involves sliding the convolutional kernel, having dimen-

sions k×k, across the complete set of video frames. An advanced approach to incorporate the

temporal aspect is represented by the Temporal Segment Network (TSN) framework (Wang

et al., 2016), a seminal method based on 2D-CNNs. TSN strives to comprehend both the

spatial attributes of individual frames, and the sequential arrangement of these frames. It

divides the video into multiple segments, retrieves a brief snippet from each segment, and
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Fig. 2.4 2D CNN-based vs 3D CNN-based methods. On the left, two different video clips, i and

j, are processed independently through a 2D CNN before classification. On the right, a 3D CNN

processes a stack of consecutive frames capturing both spatial and temporal information, which is

then fed into the classifier.

employs these snippets as inputs to the network. Subsequently, TSN combines the classifica-

tion output from each segment to formulate a video-level inference. The TSN methodology

employs a sparse sampling strategy in the temporal dimension to efficiently capture the

dynamics of motion. Several works have been designed to extend this approach (Wang

et al., 2017b; Zhou et al., 2018). Temporal Relation Network (TRN) (Zhou et al., 2018) has

been introduced to explicitly model the temporal relations among video frames. TRN has a

hierarchical structure endowing it with heightened sensitivity towards the sequential ordering

of frames, thereby equipping it with the capability to process and interpret more intricate

actions that necessitate a deeper understanding of temporal dynamics. (Kazakos et al., 2019b)

introduced an end-to-end trainable mid-level fusion model known as the Temporal Binding

Network (TBN), which is built upon a 2D convolutional network. This model is designed to

asynchronously integrate audio, RGB, and optical flow information across various temporal

windows.

2D CNNs are good in extracting spatial representations, yet their efficacy in temporal

dimension encoding is not as robust. In response, several approaches (Du et al., 2017; Meng

et al., 2020; Perrett and Damen, 2019; Sudhakaran and Lanz, 2017, 2018; Sudhakaran et al.,

2019; Sun et al., 2017) have incorporated Recurrent Neural Network (RNN) architectures,

notably Long-Short Term Memory (LSTM) (Memory, 2010), to model the long-range

temporal context of video sequences, building upon the spatial features obtained through

CNNs. An innovative recurrent module has been introduced by (Sudhakaran et al., 2019),
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enhancing LSTM with an inherent spatial attention mechanism and a modified output gate.

This facilitates focusing on relevant spatial regions and ensures seamless tracking of attention

throughout the video frames. However, action recognition methods utilizing RNNs often

overemphasise temporal aspects, potentially compromising their ability to extract distinctive

spatial features and leading to sub-optimal performance. Moreover, RNNs are prone to

vanishing and exploding gradient problems, especially when processing long sequences,

which can affect their efficiency in learning temporal dynamics.

Two-stream methods have been introduced to capture both spatial and temporal infor-

mation while effectively addressing long-term dependencies. They leverage both RGB and

optical flow information to capture appearance and motion cues respectively. (Simonyan

and Zisserman, 2014) proposed an innovative two-stream model utilizing two streams for

video analysis. The first, a spatial stream, applies a 2D CNN, like AlexNet (Krizhevsky

et al., 2012) or VGGNet (Simonyan and Zisserman, 2014), to single video frames, focusing

on the extraction of spatial attributes such as the appearance of objects, their shapes, and

the surrounding context. In contrast, the second stream, the temporal stream, processes

optical flow frames that depict movement between successive frames. Techniques such as

the Farneback method (Farnebäck, 2003) or the TV-L1 algorithm (Zach et al., 2007) are

employed to compute the optical flow. This stream leverages a CNN to distill features repre-

senting motion dynamics. The integration of the spatial and temporal features is achieved

through two primary fusion approaches, with late fusion combining the softmax probabilities

from both streams to output the final classifications, and early fusion directly combining

the features from both streams. Several works (Feichtenhofer et al., 2017; Girdhar et al.,

2017; Zong et al., 2021) have further developed the two-stream architecture to enhance the

comprehension of extensive video content. The main challenge in the two-stream model is the

optical flow computation, which is traditionally resource-intensive. To alleviate this, (Zhang

et al., 2016) suggested substituting motion vectors extracted from compressed video data in

place of optical flow. Although this significantly speeds up the computation, it comes with

a compromise, as motion vectors are generally less detailed and more susceptible to noise,

leading to a degradation in recognition accuracy.

3D CNN-based methods. Several studies have adopted 3D Convolutional Neural Networks

(CNNs) for feature extraction. Unlike 2D CNNs, the convolutional layers in a 3D CNN

extend their kernels across height, width, and depth – the latter representing time in video

analysis or the z-axis in 3D volumetric data. This architectural distinction enables 3D

CNNs to simultaneously process spatial and temporal information, making them particularly

effective for video analysis tasks. This section explores various methodologies that employ
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3D CNNs. A considerable number of works (Carreira and Zisserman, 2017; Feichtenhofer

et al., 2019; Hara et al., 2017; Ji et al., 2012; Tran et al., 2015, 2018) have expanded upon

the capabilities of 2D CNNs by integrating 3D CNNs to capture spatial-temporal features,

thereby achieving improved video comprehension.

(Tran et al., 2015) introduced 3D ConvNets, capturing both spatial and temporal aspects

of video data by performing convolution and pooling operations spatio-temporally. The 3D

ResNet (R3D) (Hara et al., 2017) adapts the robust ResNet (He et al., 2016) framework to a

3D context for video action recognition, offering a straightforward yet potent structure for

direct spatio-temporal feature extraction from videos. Inflated 3D ConvNets (I3D) (Carreira

and Zisserman, 2017) is based on 2D ConvNet inflation: filters and pooling kernels of very

deep image classification ConvNets are expanded into 3D, making it possible to learn spatio-

temporal feature extractors from video while leveraging successful ImageNet architecture

designs and even their parameters expand filters and pooling layers to 3D, optimizing the

use of C3D (Tran et al., 2015) for more efficient video analysis. The R(2+1)D model (Tran

et al., 2018) segments traditional 3D convolutions into a sequence of 2D spatial convolutions

followed by 1D temporal convolutions, based on the R3D framework (Hara et al., 2017). This

approach enables the network to separately learn spatial and temporal features, enhancing

efficiency. SlowFast (Feichtenhofer et al., 2019) introduces a dual-pathway architecture:

a “slow” path for capturing spatial semantics at a lower frame rate, and a “fast” path for

high-temporal-resolution motion detection. Either C3D (Tran et al., 2015) or R3D (Hara

et al., 2017) can be integrated within these pathways to extract spatio-temporal features

effectively. Conversely, several studies (Lin et al., 2019; Sudhakaran et al., 2020; Wang

et al., 2021a,b) have employed 2D CNNs coupled with advanced temporal modules to

mitigate the computational demands of 3D CNNs. Temporal Shift Module (TSM) (Lin

et al., 2019) introduces an efficient yet powerful mechanism, the shift operation, which

facilitates the analysis of temporal sequences at no extra computational cost. This operation

redistributes a portion of the channels across the temporal axis, thereby enhancing inter-

frame communication. Unlike TSM’s (Lin et al., 2019) parameter-free shift, the Gate-Shift

Network (GSM) (Sudhakaran et al., 2020) addresses the varying degrees of motion dynamics

within and across different action categories by adaptively modulating feature maps along

the temporal dimension.

Traditional 3D CNN approaches to video understanding typically employ window-based

convolutions that focus on short spatio-temporal segments, which constrains their capacity to

extract long-term dependencies. Transformer-based models have emerged as a prominent

solution in action recognition, thanks to their ability to directly process entire video sequences.

By utilizing a scalable self-attention mechanism (Vaswani et al., 2017), transformers excel at
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comprehending extensive spatio-temporal correlations, marking a significant advancement in

the field. The next section will review transformer-based methods.

Transformer-based methods. Transformer-based approaches have significantly revolution-

ized the domain of action recognition, offering an advanced framework for comprehending

long-range dependencies and global context within video sequences. Utilizing self-attention

mechanisms and positional encoding, transformers have been introduced to extract spatio-

temporal correlations, showcasing state-of-the-art performance across a range of tasks.

The Vision Transformer (ViT) (Dosovitskiy et al., 2020), marking the initial application

of Transformer self-attention (Vaswani et al., 2017) in the realm of computer vision, intro-

duces a novel approach by representing images as sequences of patches. This technique

uses the self-attention mechanism for capturing the global context and inter-patch depen-

dencies. Specifically, an input image is segmented into fixed-size patches, each of which is

linearly transformed into a sequence of tokens. These tokens are subsequently processed

by a traditional transformer encoder. The self-attention mechanism facilitates each token’s

interaction with others, enabling the modeling of long dependencies. Spatial information

regarding the positions of patches within the image is incorporated through positional en-

codings added to the token embeddings. For image classification tasks, ViT introduces a

classification token at the beginning of the sequence, which is processed by the transformer

encoder. The classification token’s output is fed to a classification head, such as a fully

connected layer, to generate final class predictions. ViT has demonstrated impressive results

on various image classification benchmarks, competing with traditional Convolutional Neural

Networks (CNNs) and inspiring subsequent research (Arnab et al., 2021; Neimark et al.,

2021) in video understanding. Building on the ViT model, the Video Vision Transformer

(ViViT) (Arnab et al., 2021) also represents videos as sequences of patches but differs from

frame-based methods in that it employs a temporal tokenization approach. ViViT segments

videos into fixed-length clips, representing each as a serie of temporal patches, which are

linearly projected and processed through the transformer encoder, offering a refined strategy

for analyzing video content. TimeSformer (Bertasius et al., 2021) also adapts the standard

Transformer architecture to video by enabling spatio-temporal feature learning directly from

a sequence of frame-level patches.

Applying standard self-attention mechanisms to video data, which involves comparing

image patches from all spatial locations and frames, can lead to redundant spatial information

at the expense of temporal dynamics. MotionFormer (Patrick et al., 2021) introduced a tra-

jectory attention block specifically designed to enhance video transformers. This innovation
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focuses on aggregating information along motion trajectories, effectively overcoming the

computational and memory constraints tied to processing large inputs, thereby enhancing

efficiency, especially with high-resolution content. (Wu et al., 2022a) introduced a memory-

centric methodology for enhancing long-term video comprehension. This approach leverages

the “keys” and “values” within a transformer’s architecture as a form of memory, allowing

queries to interact with an expanded dataset of keys and values sourced from both current

and past sequences. By enabling each layer to reach further back into past data, the model

achieves a significantly broader receptive field, using only half the parameters compared to

the model proposed by (Patrick et al., 2021).

In an effort to refine multi-modal integration techniques, recent studies aim to develop

models that perform consistently well across various modalities, rather than being excessively

fine-tuned for individual ones. (Girdhar et al., 2022) unveiled a transformer-based framework

that capitalizes on the adaptable nature of transformers. This model is simultaneously trained

on classification tasks from disparate modalities, including 2D images, 3D images, and

videos. (Yan et al., 2022) introduced a multi-view transformer tailored for multi-modal input,

generating multiple “views” or representations by tokenizing spectrograms, optical flow, and

RGB content using tubelets of varying dimensions. These tokens are processed through

distinct encoders, integrated via a fusion module, and ultimately consolidated by a global

encoder.

Another recent trend is to leverage over Large Language Models (LLMs), to obtain

stronger representations. (Kazakos et al., 2021b) proposed a transformer-based multi-modal

model that ingests video and audio as input modalities, with an explicit language model

providing action sequence context to enhance the predictions.

Datasets

The availability of large-scale datasets has been instrumental in propelling the field of

egocentric vision research forward. Given the relatively recent adoption of wearable cameras,

there is a scarcity of egocentric video data available online. This section provides an

overview of datasets employed for action recognition tasks, detailing their characteristics.

It is important to note that the majority of these datasets are designed for general purposes,

making them applicable to a wide range of tasks beyond action recognition. In Table 2.1 we

conduct a comparative analysis of the most prominent publicly accessible egocentric datasets,

examining their domains, size, and available modalities.
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Dataset Settings Signals Hours Sequences AVG. video duration Participants

ADL (Pirsiavash and Ramanan, 2012) Daily activities RGB 10.0 20 30.00 min 20

UTE (Lee et al., 2012) Daily Activities RGB 37.0 10 222.00 min 4

EGTEA Gaze+† (Li et al., 2018e) Kitchen RGB, gaze 27.9 86 19.53 min 32

EPIC-KITCHENS-100 (Damen et al., 2022) Kitchens RGB, audio 100.0 700 8.57 min 37

MECCANO (Ragusa et al., 2023b) Industrial RGB, depth, gaze 6.9 20 20.79 min 20

Assembly101 (Sener et al., 2022) Industrial RGB, multi-view 167.0 1425 7.10 min 53

Ego4D⋆ (Grauman et al., 2022) Multi Domain RGB, Audio, 3D, gaze, IMU, multi 3670.0 9650 24.11 min 931

Table 2.1 General Egocentric Dataset - Collection Characteristics. †: For EGTEA, Audio was

collected but not made public. ⋆: For Ego4D, apart from RGB, the other modalities are present for

subsets of the data.

The Activity of Daily Living (ADL) dataset (Pirsiavash and Ramanan, 2012) emerged

as one of the initial egocentric datasets. It includes one million frames recorded within home

environments. Participants were given broad instructions to engage in everyday activities

like watching TV or doing laundry, making the dataset minimally scripted. It includes

annotations for object trajectories, hand positions, and interaction events. ADL has been

utilized in a variety of research tasks, including action (Vondrick et al., 2016) and region

anticipation (Furnari et al., 2017), action recognition (Pirsiavash and Ramanan, 2012), and

video summarization (Lu and Grauman, 2013). Similarly, the UTE dataset (Lee et al., 2012)

features video recordings from 4 participants engaged in diverse activities such as eating,

shopping, attending lectures, driving, and cooking. A distinct characteristic of UTE, in

comparison to ADL, is its video length; the average duration of a UTE video is 3.7 hours

(222 minutes), significantly longer than the 30-minute average of an ADL video.

Differing in domains and captured signals, the GTEA Gaze dataset (Fathi et al., 2012b)

and its extension EGTEA Gaze+ (Li et al., 2018e) both center around recipe preparation

within a single kitchen environment. The original GTEA Gaze dataset, introduced by (Fathi

et al., 2012b), emphasizes action recognition and gaze prediction. It involves the use of eye-

tracking glasses equipped with an inward-facing infrared gaze sensing camera to track the 2D

location of subjects’ eye gaze during meal preparation activities. The dataset comprises 17

sequences performed by 14 subjects following pre-specified meal recipes, annotated with 25

frequently occurring actions such as “take”, “pour”, and “spread” along with their respective

starting and ending frames. This dataset was subsequently extended as EGTEA Gaze+ by

(Li et al., 2018e), incorporating 28 hours of cooking activities. EGTEA Gaze+ includes

video footage, gaze tracking data, action annotations for 106 actions, and pixel-level hand

masks. It has been leveraged to address various tasks, including anticipation (Furnari and

Farinella, 2019; Girdhar and Grauman, 2021; Zhong et al., 2023), action recognition (Fathi

et al., 2012b; Kazakos et al., 2021b), procedural learning (Bansal et al., 2022), and future

hand mask prediction (Jia et al., 2022).
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Fig. 2.5 EPIC-KITCHENS dataset. Examples from the EPIC-KITCHENS dataset along with the

corresponding actions.

While existing egocentric datasets offer valuable insights into various aspects of vision,

their limited scale and focus on specific environments or individuals pose challenges when

training deep learning models. In response, the EPIC-KITCHENS dataset (Damen et al.,

2018) emerged in 2018 as a significantly larger egocentric video dataset, subsequently

extended to the latest version, EPIC-KITCHENS-100 (Damen et al., 2022).

Comprising 100 hours of unscripted video recordings from 37 participants across 4

countries within their own kitchens, EPIC-KITCHENS stands out for its unique participant

instructions. Participants are asked to perform recordings upon entering the kitchen and

cease upon leaving, allowing for an unscripted exploration of their environments and the

pursuit of personal goals. The dataset encompasses 90,000 action segments, 20,000 unique

narrations, 97 verb classes, and 300 noun classes.

Recently, EPIC-KITCHENS has been further augmented with three additional annota-

tions. Firstly, EPIC-KITCHENS Video Object Segmentations and Relations (VISOR) (Dark-

halil et al., 2022) offers pixel-level annotations focusing on hands, objects, and hand-object

interaction labels. VISOR includes 272,000 manual semantic masks of 257 object classes,

9.9 million interpolated dense masks, and 67,000 hand-object relations. Secondly, EPIC-

SOUNDS (Huh et al., 2023) annotates temporally distinguishable audio segments from the

video’s audio stream, encompassing 78.4 thousand categorized segments of audible events

and actions across 44 classes, along with 39.2 thousand uncategorized segments. Lastly,

EPIC-Fields (Tschernezki et al., 2024) successfully registers and provides camera poses for

99 out of the 100 hours of EPIC-KITCHENS data.

Since its introduction, EPIC-KITCHENS has emerged as the default dataset for a wide

range of egocentric vision tasks, including action recognition (Girdhar et al., 2022; Kazakos

et al., 2019b; Xiong et al., 2022; Yan et al., 2022), privacy concerns (Thapar et al., 2020), and

anticipation (Furnari and Farinella, 2019; Gu et al., 2021; Jia et al., 2022; Liu et al., 2020;

Pasca et al., 2023; Roy and Fernando, 2022; Zhong et al., 2023).

Additionally, new research avenues have been opened up by EPIC-KITCHENS, partic-

ularly in the realm of domain adaptation, due to its diverse capture locations and temporal
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Fig. 2.6 Ego4D dataset. Examples from the Ego4D dataset.

variability (Kim et al., 2021a; Munro and Damen, 2020a; Sahoo et al., 2021a), video re-

trieval (Lin et al., 2022; Zhao et al., 2023), manipulations (Shaw et al., 2023), as well as

specialized topics such as object-level reasoning (Baradel et al., 2018) and learning words in

other languages from visual representations (Surís et al., 2020).

A couple of datasets are tailored to industrial-like settings. MECCANO, introduced

by (Ragusa et al., 2021, 2023b), is an egocentric procedural dataset capturing subjects

assembling a toy motorbike model. This dataset includes synchronized gaze, depth, and

RGB data, covering 20 object classes encompassing components, tools, and an instructions

booklet. MECCANO has been leveraged for various tasks such as action recognition (Deng

et al., 2023), active object detection (Fu et al., 2022), hand-object interactions (Tango et al.,

2022), and procedural learning (Bansal et al., 2022).

Similarly, Assembly101 (Sener et al., 2022) is a procedural activity dataset featuring

4,321 videos of individuals assembling and disassembling 101 “take-apart” toy vehicles.

This dataset showcases diverse variations in action sequences, including mistakes and cor-

rections. It contains over 100K coarse and 1M fine-grained action segments, along with

18M 3D hand poses. Assembly101 has been applied in action recognition (Wen et al., 2023),

anticipation (Zatsarynna and Gall, 2023), and hand pose estimation (Ohkawa et al., 2023;

Zheng et al., 2023).

The most remarkable and extensive dataset to date is Ego4D (Grauman et al., 2022). It

comprises 3,670 hours of daily-life activity videos covering hundreds of unscripted scenarios,

including household, outdoor, workplace, and leisure activities. These videos were captured

by 931 unique camera wearers from 74 locations across 9 countries. Some examples from

Ego4D are shown in Figure 2.6. The dataset primarily consists of videos, with additional

subsets containing audio, eye gaze, and 3D meshes of the environment. Ego4D was released

with a comprehensive set of benchmarks and annotations for train/val/test splits, focusing

on past events (episodic memory queries), present activities (hand-object manipulation,
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audio-visual conversation, social interactions), and future activities (activity and trajectory

forecasting). Due to its massive scale and unconstrained nature, Ego4D has proven to be

valuable for various tasks, including action recognition (Lange et al., 2023; Liu et al., 2022),

action detection (Wang et al., 2023a), visual question answering (Bärmann and Waibel,

2022), active speaker detection (Wang et al., 2023b), natural language localization (Liu et al.,

2023), natural language queries (Ramakrishnan et al., 2023), gaze estimation (Lai et al.,

2022), persuasion modeling for conversational agents (Lai et al., 2023), audio-visual object

localization (Huang et al., 2023), hand-object segmentation (Zhang et al., 2022a), and action

anticipation (Mascaró et al., 2023; Pasca et al., 2023; Ragusa et al., 2023a). The diversity

of Ego4D has led to the introduction of new tasks, such as modality binding (Girdhar et al.,

2023), part-based segmentation (Ramanathan et al., 2023), long-term object tracking (Tang

et al., 2024), relational queries (Yang et al., 2023), and action generalization across sce-

narios (Plizzari et al., 2023b). Moreover, its unprecedented scale has facilitated training

robot models, leading to groundbreaking advancements in learning from demonstrations (Ma

et al., 2022; Nair et al., 2023; Radosavovic et al., 2023). The potential of the Ego4D dataset

is yet to be fully explored, and it continues to inspire research across multiple domains.

Recently, the authors of Ego4D also introduced Ego-Exo4D (Grauman et al., 2023). This

new dataset focuses on simultaneously captured egocentric and exocentric videos of skilled

human activities such as sports, music, dance, and bike repair. It involves more than 800

participants from 13 cities around the world, performing these activities in 131 different

natural scene contexts. This has resulted in long-form captures ranging from 1 to 42 minutes

each, accumulating a total of 1,422 hours of video. The multi-modal nature of the dataset is

unprecedented; it includes multi-channel audio, eye gaze, 3D point clouds, camera poses,

IMU data, and multiple paired language descriptions. This also introduces a novel feature:

“expert commentary” provided by coaches and teachers, specifically tailored to the domain

of skilled activities.

In this thesis, we extensively utilize the EPIC-KITCHENS in Chapter 3, Chapter 5 and

Chapter 6 and Ego4D dataset in Chapter 4. EPIC-KITCHENS has been collected in various

kitchens, each corresponding to a different environment. These exhibit a significant domain

shift, making them ideal for cross-domain analysis. In Ego4D, the shift is not limited to

the environment but also encompasses the various scenarios presented and the geographical

locations where activities are recorded. In Chapter 4, we introduce the Action Recognition

Generalization Over scenarios and locations dataset (ARGO1M), which contains 1.1M video

clips from the large-scale Ego4D dataset (Grauman et al., 2022), across 10 scenarios and 13

locations.
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Limitations and future works

Despite the increasing interest in action recognition for egocentric videos, there are several

areas that require attention from the computer vision community.

Firstly, there is a lack of approaches specifically tailored for egocentric vision. Many

existing architectures are adapted from those designed for third-person videos and may not

be optimized for the ego viewpoint or camera motion. Consequently, the ability to recognize

fine-grained actions in egocentric videos lags behind that of third-person videos. Even

with the utilization of transformer architectures and multiple modalities, state-of-the-art

methods currently achieve only modest activity classification accuracy (e.g., 51.0% on EPIC-

KITCHENS-100 by (Zhao et al., 2023)). It remains unclear whether this limitation stems

from dataset size, label ambiguity, or the need for novel architectures.

Secondly, although the integration of gaze has shown promise for egocentric action

recognition, subsequent datasets do not adequately capture the rich, albeit costly, egocentric

gaze data. While a few sequences in Ego4D (Grauman et al., 2022) include gaze information,

they are not specifically labeled with fine-grained actions. Gaze data can provide valuable

insights into attentional focus and action anticipation. However, the lack of large-scale

egocentric action recognition datasets with gaze information hinders further exploration in

this area.

Lastly, the heavy reliance on labeled datasets for training poses limitations on model

capabilities. Acquiring labeled data is not only costly but also subject to decisions regarding

the choice of action classes and granularity. Transitioning from a closed subset to open labels

remains a challenge in egocentric action recognition, as in many other machine learning tasks.

With the emergence of Large Language Models (LLMs), the future of action recognition may

lie in leveraging their capabilities, although metrics to assess success and monitor progress

in this direction are currently missing.

2.1.3 3D Scene Understanding

The goal of 3D scene understanding is to teach an AI agent to interpret the surrounding

environment and explore possible interactions with it. This involves understanding the

environment itself, interactions that the user can perform within it, as well as objects in the

scene and their locations. This field has attracted attention over the last few years, leading to

the introduction of several new tasks and datasets. In this section, we first review current tasks
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and methodologies for 3D scene understanding. We then introduce the datasets employed for

this purpose. Finally, we present limitations of current approaches and future works.

Tasks and methodologies

The first work to make use of 3D information in egocentric videos is that of (Damen et al.,

2014). Given a mapped environment, they used gaze estimation to cluster interaction regions

into task-relevant objects in 3D and their modes of interaction. To examine interactions

centred around humans within their surroundings, (Bertasius et al., 2015) suggested the use

of egocentric stereo cameras. This technique sets up an egocentric object prior within an

RGBD frame from a first-person perspective, which can be applied to detect 3D saliency. The

work by (Rhinehart and Kitani, 2016) focused on learning and predicting of “action maps”,

which encode the user’s capacity to carry out activities at different locations. This method

maps actions to distinct areas within a scene, thereby facilitating the comprehension and

anticipation of human activities within a particular environment. (Li et al., 2022b) focused

on predicting the intended destination of a person’s object manipulation action within a 3D

workspace. Although this is a specific instance of trajectory forecasting, traditional methods

are impractical in manipulation scenarios where the hands may not be visible in the camera’s

field of view. Consequently, focusing on the prediction of the 3D target location offers a

clearer insight into potential interactions with objects, which is beneficial for applications like

robotic planning and control. Recently, (Grauman et al., 2022) introduced the task of Visual

Queries with 3D Localization (VQ3D), which aims to retrieve the relative 3D position of a

queried object in relation to the current query frame. In this setting, different methods have

been proposed. (Xu et al., 2023) introduced a transformer-based module that enhances the

context of an object-proposal set by incorporating query information. Mai et al. (Mai et al.,

2022) developed a framework that effectively combines 3D multi-view geometry with 2D

object detection from egocentric videos, resulting in more accurate camera pose estimations

and significantly better VQ3D outcomes. This method operates in three key stages: initially, a

sparse 3D reconstruction is carried out using Structure from Motion (SfM) to extract 3D poses

and generate a sparse 3D model. Subsequently, an egocentric video alongside a visual crop

of the queried object is input into a model that detects relevant frames and their associated

2D bounding boxes. Finally, missing 3D poses in the identified frames are aligned with the

sparse 3D model, and the 3D centroid movements of the object are calculated. The work

of (Majumder et al., 2023) introduces another challenge: constructing a map of an unfamiliar

3D environment using the shared information found within the egocentric audio-visual

observations of participants engaged in a natural conversation. More recently, (Nagarajan
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and Grauman, 2020) proposed a reinforcement learning approach empowering an embodied

agent to independently identify the affordance landscape within unfamiliar, unmapped 3D

spaces, thereby facilitating the exploration of interactions. (Do et al., 2022) focused on

forecasting the depths and surface normals of the surrounding environment based on a

single-view egocentric image. They tackled the obstacles posed by wearable devices, like

inclined images and dynamic objects in the foreground, by introducing an image stabilization

technique. This method adjusts tilted images to a standard orientation, enhancing the learning

process. (Nagarajan et al., 2024) proposed to learn environment-aware video representations

that represent the surrounding physical space, aiming at facilitating the prediction of local

environment states at different time-steps. They defined the local environment state in an

egocentric video as the objects and their approximate distances in front, behind, to the left,

and to the right of the camera-wearer. These states serve as training data for a transformer-

based video encoder model, which gathers visual information across the entire video and

constructs an environment memory. This memory enables the prediction of the local state

at any designated point within the video. (Liu et al., 2022) introduced the challenge of

simultaneously recognizing and locating the actions of a user within a pre-mapped 3D

environment, using egocentric video footage. They designed an innovative deep probabilistic

framework that employs a Hierarchical Volumetric Representation (HVR) of the 3D space,

alongside the egocentric video, to infer the action’s 3D location and recognise the action by

leveraging contextual indicators. Finally, (Qian and Fouhey, 2023) tackled the challenge of

predicting the 3D location, physical characteristics, and affordances of objects from single

images. By processing a collection of query points, their method outputs predictions on

potential 3D interactions, detailing aspects such as movability, location, rigidity, articulation,

actions, and affordances. This is accomplished through a transformer-based model that

enhances a detection backbone, providing a comprehensive understanding of objects and

their potential interactions within a space.

Datasets

General-purpose egocentric datasets like Ego4D (Grauman et al., 2022) or Ego-Exo4D (Grau-

man et al., 2023), discussed in Section 2.1.2, serve as valuable resources for scene under-

standing tasks. However, there are also task-specific datasets designed to address specific

challenges of 3D scene understanding in egocentric vision.

The Egocentric Depth on everyday INdoor Activities (EDINA) dataset introduced

by (Do et al., 2022) aims to advance the understanding of dynamic egocentric scenes. It



2.1 Egocentric Vision 33

Fig. 2.7 EPIC-Fields dataset. The EPIC-Fields dataset (Tschernezki et al., 2024) provides 3D point

clouds of the environments from EPIC-Kitchens recordings, along with the corresponding camera

pose for each video frame. Image from https://epic-kitchens.github.io/epic-fields

comprises over 500K synchronised RGBD frames and gravity directions, covering a wide

range of daily activities across 16 hours of RGBD recordings.

EgoPAT3D (Li et al., 2022b) provides a multi-modal dataset with over a million frames

of RGB-D and IMU data. It is specifically designed for predicting the 3D target locations of

object manipulation actions. This dataset includes 150 recordings, 15 household scene point

clouds, 15,000 hand-object interactions, and 600 minutes of RGB-D/IMU footage, totaling

0.9 million hand-object action frames and 1 million RGB-D frames.

(Qian and Fouhey, 2023) introduced the 3D Object Interaction Dataset (3DOI), which

incorporates internet videos, egocentric footage, and indoor images. It comprises 2K egocen-

tric images selected from EPIC-KITCHENS (Damen et al., 2022) and annotated with 3D

ground truths such as depth, surface normals, and interactable points on objects. The annota-

tions include information about object movability, location, rigidity, articulation, potential

actions, and affordances.

The Aria Digital Twin dataset (Pan et al., 2023), captured using Aria glasses, contains

200 sequences of real-world activities conducted by Aria wearers in two indoor scenes. It

includes various data modalities such as raw camera streams, IMU streams, sensor calibra-
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tion, ground truth data on device and object poses, eye gaze vectors, human poses, image

segmentations, depth maps, and synthetic renderings.

(Ravi et al., 2023) proposed ODIN (the OmniDirectional INdoor dataset), a large-scale

dataset comprising over 300K omnidirectional images capturing diverse activities of daily

living. It includes scans of the recording environments from a 3D scanner and camera-frame

3D human pose estimates, facilitating scene understanding tasks.

Recently, (Tschernezki et al., 2024) released EPIC-Fields, an extension of EPIC-

KITCHENS with 3D camera poses. Covering 99 hours of recordings in 45 kitchens,

EPIC-Fields reconstructs 96% of videos from EPIC-KITCHENS, offering opportunities

to integrate 3D geometry into egocentric video understanding.

In this thesis, we leverage EPIC-Fields to enhance egocentric video models with 3D

information (Chapter 6).

Limitations and future works

Egocentric video footage, by directly linking the actions of the camera wearer to their

immediate 3D spatial surroundings, offers a distinct perspective in the field of egocentric

vision. The integration of 3D scene models into this domain has been propelled forward by

recent advances in 3D scanning technologies and the proliferation of head-mounted displays,

facilitating the creation of rich datasets aimed at addressing 3D-centric research questions.

However, challenges such as motion blur and unconventional captured angles, inherent to the

nature of egocentric videos, pose obstacles to the 3D reconstruction process, especially for

scenes with dynamic elements. This results in a notable gap in thoroughly comprehending

3D dynamics of movements and interactions within these environments. An intriguing

direction for future investigation is the synthesis of egocentric (first-person) and exocentric

(third-person) perspectives. Merging these viewpoints could unlock a more comprehensive

understanding of intricate environments and human behaviors.

2.2 Learning across Domains

Despite the advancements in video analysis tasks, a common assumption in many existing

methods is that training and test data share the same distribution. However, this assumption

often fails in real-world settings, where the distribution of publicly available training data and

real-world data frequently differs, leading to a domain shift between the training (source) and
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testing (target) domains. This discrepancy results in the diminished effectiveness of video

models in the target domain, despite the advanced capabilities of deep neural networks. To

address the drop in model performance due to domain shifts, a variety of domain adaptation

techniques have been developed. Unsupervised Domain Adaptation (UDA) focuses on

adapting models from a labeled source domain to an unlabeled target domain by mitigating the

impact of domain shifts without incurring high annotation expenses. Domain Generalization

(DG), on the other hand, aims to build models that can generalize well across any unseen

domain without requiring any access to data from these domains during the training phase.

This section explores the methods developed for learning across domains, with a specific

focus on UDA (Section 2.2.2) and DG (Section 2.2.3).

2.2.1 Problem Formulation
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characterized by the underlying probability distribution p
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associated with the label space
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T
that contains |C

j
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| classes, such as |Ck

S
|=|C

j

T
|. The goal of UDA is to design a target

model which is capable of learning transferable features from the labeled source domains and

minimize the empirical target risk ϵT across all target domains performed on certain tasks.

Domain generalization. Domain Generalization (DG) aims to learn a model from one or

multiple source domains that can generalize well to unseen target domains without accessing

any data from them. In other words, the goal of DG is to learn a model using only the

data from the source domains Dk
S

so that the model performs well on any target domain

Dk
T

. The model should be capable of learning domain-invariant features from the labeled

source domains in order to minimize the empirical target risk ϵT on the target domain. DG is

primarily explored in two frameworks: multi-source DG and single-source DG. Multi-source

DG operates on the assumption that multiple distinct domains are available for training (i.e.,

Nk
s>1), with the aim of leveraging this variety to learn domain-invariant representations. This

approach is crucial, especially since models lack direct access to target domain data, which

poses a challenge for generalization. By utilizing multiple domains, models can find stable

patterns that are more likely to generalize effectively to new, unseen domains. On the other
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hand, single-source DG assumes a homogeneous training set derived from a single domain

(i.e., Nk
s=1). This problem is closely related to the topic of Out-of-Distribution (OOD)

robustness (Hendrycks and Dietterich, 2018), which investigates model robustness under

image corruptions. Despite this distinction, most methods do not explicitly align themselves

with either single-source or multi-source DG, opting instead for a broader approach to

generalization, and are tested across datasets that include both single- and multi-source

environments.

2.2.2 Unsupervised Domain Adaptation

As for Unsupervised Domain Adaptation (UDA) methods, which leverage unlabeled target

data during training, they can be broadly categorized into two main categories.

Discrepancy-based methods aim to minimize a distance metric between the source

and target distributions (Long et al., 2015; Saito et al., 2018; Xu et al., 2019a). Those

are the Maximum Mean Discrepancy (MMD) (Long et al., 2015), Correlation Alignment

(CORAL) (Sun and Saenko, 2016), Kullback-Leibler (KL) divergence (Kullback and Leibler,

1951), and Contrastive Domain Discrepancy (CDD) (Kang et al., 2019). Adversarial-based

methods use adversarial training to align source and target distributions (Deng et al., 2019;

Tang and Jia, 2020). The basic idea of these methods is to incorporate a domain classifier

trained to predict the domain of the input data, i.e., whether they come from the source or

the target domain. A key component of these methods is the use of a Gradient Reversal

Layer (GRL), which reverses the gradients flowing from a domain classifier to the feature

extractor (Ganin and Lempitsky, 2015a) so that the feature extractor can learn domain-

invariant features (see Figure 2.8). Other works exploit batch normalization layers to

normalize source and target statistics (Chang et al., 2019; Li et al., 2017c, 2018d). Authors of

AdaBN (Li et al., 2018d) show that domain-related knowledge is represented by the statistics

of the Batch Normalization (BN) (Ioffe and Szegedy, 2015) layers. Therefore, they achieve

transfer of the trained model to a new domain by modulating the statistics in the BN layer.

An alternative research direction incorporates self-supervised learning as an auxiliary task to

improve feature learning, as in (Bucci et al., 2021).

While the approaches mentioned above have primarily been utilized for standard image

classification tasks, there has also been a substantial amount of research focused on Unsuper-

vised Domain Adaptation (UDA) for video-related tasks, such as action detection (Agarwal

et al., 2020), segmentation (Chen et al., 2020), and classification (Chen et al., 2019; Choi

et al., 2020b; Jamal et al., 2018; Munro and Damen, 2020a; Pan et al., 2020; Song et al.,
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Fig. 2.8 DANN architecture. The architecture proposed in (Ganin and Lempitsky, 2015a) includes

a deep feature extractor (green) and a label predictor (blue), which together form a standard feed-

forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red)

connected to the feature extractor via a gradient reversal layer that multiplies the gradient by a certain

negative constant during the backpropagation-based training. Training is performed by minimizing

the label prediction loss (for source examples) and the domain classification loss (for both source

and target samples). Gradient reversal ensures that the feature distributions over the two domains

are made similar (as indistinguishable as possible for the domain classifier), thus resulting in the

domain-invariant features. Image from (Ganin and Lempitsky, 2015a).

2021b). In video classification, numerous Video Unsupervised Domain Adaptation (VUDA)

methods have been introduced to align the temporal dynamics of the feature space. An

overview of existing VUDA methods is provided in the following. We also summarize them

in Table 2.2. We refer to the survey in (Xu et al., 2022) for a more detailed overview of

VUDA methods.

Adversarial-based VUDA methods. Methods under this category leverage domain dis-

criminators to identify whether videos come from the source or the target domain. Through

adversarial objectives, the discrepancy between source and target domains is minimized

impliciteply. Deep Adversarial Action Adaptation (DAAA) (Jamal et al., 2018) extends the

original image-based DANN (Ganin and Lempitsky, 2015a) to videos, adapting both spatial

and temporal features. Temporal Attentive Adversarial Adaptation Network (TA3N) (Chen

et al., 2019) uses a multi-level adversarial framework with temporal relation and attention

mechanisms to achieve transfer from the source to the target domain. It leverages a Tempo-

ral Relation Network (TRN) (Zhou et al., 2018) to obtain more explicit temporal features,

and align videos with both spatial and temporal features. Temporal Co-attention Network

(TCoN) (Pan et al., 2020) adapts target video features to the source ones by constructing
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Categories Brief Descriptions Methods

Adversarial-based

Domain discriminators to encourage do-

main confusion through adversarial objec-

tives across video domain.

DAAA (Jamal et al., 2018),

TA3N (Chen et al., 2019),

TCoN (Pan et al., 2020), MM-

SADA (Munro and Damen,

2020a), CIA (Yang et al., 2022a)

Discrepancy-based

Discrepancy between domains are explicitly

computed, align domains by applying metric

learning approaches.

AMLS (Jamal et al., 2018)

Semantic-based

Domain-invariant features are obtained by

exploiting the shared semantics across do-

mains.

STCDA (Song et al., 2021b),

CMCo (Sahoo et al., 2021b),

CoMix (Sahoo et al., 2021b),

CO2A (da Costa et al., 2022),

A3R (Zhang et al., 2022d)

Reconstruction-based

Domain-invariant features from encoder-

decoder networks with data-reconstruction

objectives.

TranSVAE (Wei et al., 2022)

Composite
Exploit a composite of approaches to capi-

talise on the strength of each approach.

NEC-Drone (Choi et al., 2020a),

SAVA (Choi et al., 2020c)

Table 2.2 Different categories of methods for closed-set VUDA. Methods are listed in chronological

order.

target-aligned source features via transforming the original source video features through a

cross-domain co-attention matrix. Besides spatial and temporal features which are generally

obtained from the RGB modality, videos also contain information about other modalities,

such as optical flow and audio modalities. The multi-modal nature of videos can improve

VUDA methods as domain shift affects each modality differently. Methods have therefore

been proposed to align source and target videos leveraging on multi-modal information.

Among these, MM-SADA (Munro and Damen, 2020a) leverages the RGB and optical flow

modalities, and applies adversarial alignment to each modality separately. MM-SADA further

adopts self-supervised learning across different modalities to learn the temporal correspon-

dence between them. Cross-modal Interactive Alignment (CIA) (Yang et al., 2022a) aligns

video features with RGB, optical flow, and audio modalities. CIA further observes that

cross-modal alignment could conflict with cross-domain alignment in VUDA, therefore it

enhances the transferability of each modality by cross-modal interaction through a Mutual

Complementarity (MC) module. The different modalities are therefore refined by absorbing

the transferable knowledge from other modalities before they are aligned across source and

target domains.

Discrepancy-based VUDA methods. Methods under this category tackle VUDA by com-

puting and minimizing the domain discrepancy between source and target domains explicitly.
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An early method is AMLS (Jamal et al., 2018) where the target videos are modeled as

a sequence of points on the Grassmann manifold (Turaga et al., 2008) with each point

corresponding to a collection of clips aligned temporally, and the source videos are mod-

eled as a single point on the manifold. VUDA is tackled by minimizing the Frobenius

norm (Huckle and Kallischko, 2007) between the source point and the series of target points

on the Grassmann manifold.

Semantic-based VUDA methods. These methods rely on the shared semantics across

the source and target domains to obtain domain-invariant features. Under this category is

Spatio-Temporal Contrastive Domain Adaptation (STCDA) (Song et al., 2021b), which

extracts video representations from both RGB and optical flow modalities by employing

a contrastive loss at both clip and video levels, ensuring that frames and clips are aligned

both spatially and temporally. STCDA further addresses the domain shift between source

and target videos through a Video-based Contrastive Alignment (VCA) loss, which reduces

the distance between intra-class features of source and target while increasing the distance

between inter-class features. The labels for target videos are assigned through a pseudo-

labeling process, which involves clustering based on the features of the labeled source videos.

Contrastive learning has also been applied in CMCo (Sahoo et al., 2021b) to extract video

features with modality correspondence across RGB and optical flow modalities. Similarly,

CO2A (da Costa et al., 2022) trains video feature extractors with the goal of achieving

feature clustering through contrastive learning, applied at both clip and video levels. CO2A

further integrates supervised contrastive learning (Khosla et al., 2020) into the learning

process for source video features. CoMix (Sahoo et al., 2021b) uses contrastive learning to

enforce temporal speed invariance in videos by encouraging features extracted from the same

video yet sampled with different temporal speeds to be similar. The authors of A3R (Zhang

et al., 2022d) note that the sounds produced by actions can serve as natural cues that are

invariant across domains. They introduce a mechanism for learning about activities that

are not present, utilizing audio-based predictions to identify actions that are inaudible in a

video. Concurrently, they encourage visual predictions to assign low probabilities to these

“pseudo-absent” actions. A3R also implements an audio-balanced learning strategy, utilizing

audio from the source domain to cluster samples.

Reconstruction-based VUDA methods. These methods address VUDA by extracting

domain-invariant features using an encoder-decoder network, which is trained with data-

reconstruction objectives. Several image-based domain adaptation studies have been using

the reconstruction-based approach (Deng et al., 2021; Ghifary et al., 2016; Yang et al.,
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2020), benefiting from its resilience to noise. However, there have been limited efforts in

adapting reconstruction-based methods for videos, due to the challenges associated with

video reconstruction. TranSVAE (Wei et al., 2022) is a recent attempt in leveraging data-

reconstruction objectives for VUDA. It aims to disentangle domain-specific information from

domain-invariant information during adaptation by generating cross-domain videos from two

sets of latent factors, one encoding the static information and another encoding the dynamic

information. This is done through a Variational AutoEncoder (VAE) (Kingma et al., 2019).

Composite of approaches. To exploit the strength of each approach for a more effective

VUDA, various VUDA methods exploit a composite of approaches. For example, (Choi

et al., 2020a) proposed to combine an adversarial-based approach with a semantic-based

approach in a challenging setting where the label sets from source and target domains are

different. SAVA (Choi et al., 2020c) aligns source and target video domains adversarially

while encouraging temporal association in videos through an auxiliary clip order prediction

task.

2.2.3 Domain Generalization

Previous approaches for Domain Generalization (DG) are mostly designed around image

data (Bucci et al., 2021; Carlucci et al., 2019; Dou et al., 2019; Li et al., 2018b,c; Volpi

et al., 2018). Most existing image-based DG approaches fall into the category of domain

alignment (Ganin et al., 2016; Li et al., 2018b; Sun and Saenko, 2016; Yang et al., 2022b),

where the core idea is to minimize the differences among source domains to learn domain-

invariant representations. The rationale is straightforward: features that are invariant to the

source domain shift should also be robust against any unseen target domain shift. This can be

achieved by minimizing distances such as Maximum Mean Descrepancy (MMD) (Gretton

et al., 2012; Li et al., 2018b). Utilizing an autoencoder architecture, (Li et al., 2018b)

minimized the MMD distance between source domain distributions for hidden-layer features.

As a commonly used distribution divergence measure, the Kullback-Leibler (KL) divergence

has also been employed for domain alignment (Li et al., 2020; Wang et al., 2021c). Different

from explicit distance measures like the MMD and KL divergence, adversarial learning (Jia

et al., 2020; Li et al., 2018c; Matsuura and Harada, 2020; Rahman et al., 2020) formulates the

distribution minimization problem through an adversarial discriminator (Ganin et al., 2016).

In DG, adversarial learning is performed between source domains to learn source domain-

agnostic features that are expected to work in novel domains (Li et al., 2018c; Rahman

et al., 2020). Simply speaking, the learning objective is to make features confuse a domain
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discriminator, which can be implemented as a multi-class domain discriminator (Matsuura

and Harada, 2020), or a binary domain discriminator in a per-domain basis (Jia et al., 2020;

Li et al., 2018c; Shao et al., 2019).

Data augmentation has been a common practice to regularize the training of machine

learning models to avoid overfitting and improve generalization, which is particularly impor-

tant for over-parameterized deep neural networks (Chen et al., 2022a,b; Nam et al., 2021;

Volpi and Murino, 2019; Volpi et al., 2018; Wang et al., 2020c; Xu et al., 2020; Zhang et al.,

2022b; Zhou et al., 2022). In doing so, the original data distribution is expanded, allowing the

model to learn more generalizable features. Inspired by adversarial attacks (Goodfellow et al.,

2014; Szegedy et al., 2013), several data augmentation methods use adversarial gradients

obtained from the task classifier to perturb the input images (Qiao et al., 2020; Volpi et al.,

2018). In (Mancini et al., 2020), Mixup (Zhang et al., 2018) is applied to mix instances

of different domains in both pixel and feature space. MixStyle (Zhou et al., 2022, 2023)

achieves style augmentation by mixing CNN feature statistics between instances of different

domains.

Meta-learning aims to learn from episodes sampled from related tasks to benefit future

learning (see (Hospedales et al., 2021) for a comprehensive survey on meta-learning). The

motivation behind applying meta-learning to DG is to expose a model to domain shift

during training with the hope that the model can better deal with domain shift in unseen

domains (Balaji et al., 2018; Dou et al., 2019; Li et al., 2018a, 2019a,b) Existing meta-

learning DG methods can only be applied to multi-source DG where domain labels are

provided. The meta-learning paper most related to DG is MAML (Finn et al., 2017), which

divides training data into meta-train and meta-test sets, and trains a model using the meta-

train set in such a way to improve the performance on the meta-test set. In (Finn et al., 2017),

MAML was used for parameter initialization, i.e., to learn an initialization state that is only a

few gradient steps away from the solution to the target task.

Self-supervised learning is often referred to as learning with free labels generated from

data itself (see (Jing and Tian, 2020) for a comprehensive survey on self-supervised learning).

This can be achieved by teaching a model to predict the transformations applied to the image

data, such as the shuffling order of patch-shuffled images (Bucci et al., 2021; Carlucci et al.,

2019) or rotation degrees (Gidaris et al., 2018). An intuitive explanation is that solving

pretext tasks allows a model to learn generic features regardless of the target task, and hence

less over-fitting to domain-specific biases (Bucci et al., 2021).

Another recent trend is to learn domain prompts from visual (Shu et al., 2022; Zheng

et al., 2022) or text information (Niu et al., 2022; Zhang et al., 2021), or utilize cross-modal
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supervision (Min et al., 2022). For example, DoPrompt (Zheng et al., 2022) learns domain-

specific prompts and trains a prompt adapter to generate a combination of these for each

training image. The adapter is then used at test time to integrate knowledge from the source

domains for each target image.

There are limited works on video domain generalization. VideoDG (Yao et al., 2021)

highlights importance of striking a balance between generalization and discrimination,

emphasizing the need for relationships between frames in the source domain to extend

in a manner that facilitates generalization to potential target domains while preserving

discriminative capabilities. To achieve this objective, an Adversarial Pyramid Network

(APN) is employed, trained with adversarial data augmentation.

In this thesis, we introduce an approach for enhancing multi-modal video domain gener-

alization by utilizing multi-modal features (Chapter 3). Recognizing that simple fusion of

multi-modal data may not suffice for improving generalizability, we develop a unique cross-

modal Relative Norm Alignment (RNA) loss. This loss function aligns the relative norms

from multiple modalities and from various source domains, facilitating the generation of

domain-invariant representations. We also propose a new method for domain generalization

that represents each video as a weighted combination of other videos in the batch, potentially

from different domains (Chapter 4). We name this method Cross-Instance Reconstruction

(CIR), which is regulated by both a classification loss and a video-text association loss,

paving the way for more robust and generalizable multi-modal learning.

2.3 Event-Based Cameras

This section introduces event-based cameras, a class of neuromorphic vision devices inspired

by the efficient and asynchronous information processing observed in biological systems.

Unlike traditional cameras that capture images at fixed intervals, often leading to redundant

information, event-based cameras operate on a different principle. They mimic the human

retina’s behavior of responding only to changes in light intensity, thereby generating data in

a sparse and energy-efficient manner. Each pixel in these cameras functions independently,

detecting changes in brightness and triggering signals only when a significant brightness

variation occurs. This approach not only reduces redundancy but also allows for real-

time processing, capturing dynamic scenes with high temporal resolution. By adopting the

biological retina’s asynchronous signaling mechanism, event-based cameras offer a promising

avenue towards developing vision systems that closely resemble the efficiency and precision

of their human-like counterparts.
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In Section 2.3.1, we delve into the foundational principles of neuromorphic vision

devices, exploring the technological and biological inspirations behind their design and

functionality. Section 2.3.2 discusses the methodologies for representing event-based data in

a format that can be effectively processed by conventional deep learning neural networks.

Finally, in Section 2.3.3, we introduce the primary datasets available for event-based vision

research, providing a comprehensive overview of the resources that fuel advancements in

this cutting-edge field.

2.3.1 Neuromorphic Vision Devices

Situated at the back of the ocular globe, the retina is an intricate network of neurons which

is the foundation of humans’ biological visual system. This multilayered structure contains

specialized cells that transform light into neural signals. In the innermost membrane layer,

pigment molecules capture incoming light, initiating the visual process. These molecules are

sensitive to various light wavelengths, giving us the perception of a spectrum of colors. The

interaction of light with these molecules induces a cascade of chemical reactions, altering

the membrane potential of the photoreceptors known as rods and cones, which reside in the

retina’s inner layer. Bipolar cells act as intermediaries between these photoreceptors and the

ganglion cells in the external synaptic layer. The latter generate action potentials that travel

along the optic nerve. The structural design of the human retina is depicted in Figure 2.9.

The retina’s ganglion cells encode visual information into patterns of action potentials,

referred to as spike-trains. Contrary to common belief, these patterns do not directly represent

the intensity of light or color. Rather, they are associated with the presence of motion and

variations in brightness. Specifically, as changes in light intensity become more pronounced,

the frequency of the ganglion cells’ spikes also rises, and conversely, it diminishes in the

absence of visual changes. These spikes are then transformed into continuous signals within

the initial stages of the visual cortex, paving the way for advanced visual comprehension.

Inspired by the operational efficiency of natural neural systems, researchers have started

to develop innovative architectures and algorithms. These designs emulate neurobiological

processes, inherenting computational and communicative efficiencies of biological systems,

and are referred to as neuromorphic devices or event-based cameras. Analogous to the

neural layers in the biological retina that generate spikes in response to brightness changes,

event-based devices produce an “event” in response to changes in light. These sensors consist

of a pixel matrix that independently track the brightness level hitting on their photodiodes.

Whenever the logarithmic intensity L = log(I) at pixel location (xi,yi) changes of a quantity
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Fig. 2.9 Cross section of the human eye’s retina. The light striking the retina travels through all

the neural layers before reaching and activating the innermost rods and cones. These photoreceptors

initiate communication back toward the ganglion cells and eventually through the optic nerve. Image

taken from https://hdl.handle.net/10589/187047

above or below a predefined logarithmic threshold C > 0, an event

ei = {xi,yi, ti, pi} (2.1)

is triggered, capturing the pixel’s position (xi,yi), the time ti at which the change is detected,

and a polarity bit pi ∈ {−1,1} indicating whether the intensity decreased or increased. Two

consecutive events ei and e j originating from the same pixel (x,y) adhere to the relation:

∆L(ei,e j) = L(x,y, ti)−L(x,y, t j) = pi ·C, with ∆ti j = ti− t j > 0, (2.2)

where ∆ti j represents the temporal interval between events, and L denotes the logarithmic

brightness intensity. The output from these sensors is a sequence of asynchronous events

E = {ei|ti > t j ∀i > j}. The frequency of these events is intrinsically correlated to the dynamics

within the scene; high rates of events are indicative of rapid movements, whereas fewer events

are produced in more static scenarios. A comparison between the output of a traditional

camera and that of an event-based camera is shown in Figure 2.11.

The Dynamic Vision Sensor (DVS) was first introduced by (Lichtsteiner et al., 2008) and

then later improved by (Serrano-Gotarredona and Linares-Barranco, 2013), who increased the

sensitivity of the pixels and reduced their size at the expense of higher power consumption.

It operates by simulating the components of a biological retina, such as photoreceptors
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Fig. 2.10 Three-layer model of a human retina and corresponding Dynamic Vision Sensor (DVS)

pixel circuitry are depicted on the left. The typical signal waveforms of the pixel circuit are illustrated

in the top right panel. The upper trace shows a voltage waveform at the node Vlog, which tracks the

photocurrent through the photoreceptor. The bipolar cell circuit generates spike events (Vdi f f ) of

different polarities in response to both positive and negative changes in photocurrent. These spikes are

then monitored by the ganglion cell circuit, which also transmits the spikes to subsequent processing

stages. The magnitude of log-intensity change is encoded in the number of events, and the rate

of change is indicated by the intervals between events. The bottom right image demonstrates the

response of a DVS pixel array to a natural scene (a person moving within the sensor’s field of view).

Events, collected over tens of milliseconds, are displayed as an event map image, with ON events

(increases in brightness) and OFF events (decreases in brightness) represented as white and black

dots, respectively. Image taken from (Posch et al., 2014).

and bipolar and ganglion cells, through specialized hardware circuits. These circuits are

responsible for the replication of the retina’s processing capabilities. The sensor reacts to

changes in brightness through a voltage signal Vlog, which is proportional to the logarithm of

the incident light intensity. This signal is then amplified to a differential signal Vdiff, which,

when exceeding a certain threshold, generates an “event”. An overview of the sensor is

provided in Figure 2.10.

More advanced event-based camera designs propose combining brightness change detec-

tion with the direct measurement of pixels’ intensity values, thus exploiting the benefits of

both vision paradigms and more faithfully reproducing information available in the primary

visual cortex. The Asynchronous Time-Based Image Sensor (ATIS) developed by (Posch

et al., 2010) is the first device to provide this sort of combined visual information. This

extends a traditional DVS pixel with an additional exposure measurement circuit, enabling
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Fig. 2.11 Standard camera vs event-based camera. Comparison between the output of a standard

camera and that of an event-based camera capturing a rotating disk. While a standard camera captures

full-frame images at predefined intervals, an event camera only records changes in the scene. As

a result, the background of the disk is not captured since its intensity does not change, thereby

significantly reducing information redundancy. Similarly, no event is generated when the disk stops.

Additionally, the high temporal resolution of an event camera eliminates motion blur effects, which

would otherwise affect standard devices in scenarios involving high-speed motion. Image taken from

https://hdl.handle.net/10589/187047

the recording of additional events encoding exposure measurements (EM events) analogous

to that conveyed by grayscale images.

The integration of asynchronous DVS readouts with intensity measurements allows

ATIS sensors to achieve high video compression rates and exceptional temporal resolution.

However, the encoding time is inversely related to the intensity, potentially leading to artifacts

with dark objects and disruptions by new events. Additionally, the pixel size imposes a

fundamental limit on the resolution. A novel hybrid solution presented in the Dynamic and

Active pixel Vision Sensor (DAVIS) offers a significant step forward. (Berner et al., 2013)

developed DAVIS to provide both asynchronous and synchronous information, unlike the

ATIS sensor. DAVIS uniquely fuses frame-based intensity readings with asynchronous events,

enabling full-frame grayscale images and detecting brightness changes with high efficiency.

It utilizes a single pixel for both operations, with traditional shutter mechanisms and event

detection capabilities.

Event-based cameras provide several advantages over traditional cameras. Those are:

• Low latency and temporal resolution: DVS sensors are equipped with high-speed

analog circuits capable of identifying changes in brightness with microsecond pre-
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cision. As they operate asynchronously, they transmit data with minimal delay, in

contrast to traditional cameras that require a global exposure time. This characteristic

enables event-based cameras to record fast movements clearly, avoiding the motion

blur typically associated with traditional frame-based cameras.

• High Dynamic Range (HDR): event-based cameras, unlike standard cameras that

operate with a predetermined exposure time, do not adhere to a single exposure level.

This flexibility allows them to function efficiently across a broad dynamic range of over

120 dB. As a result, they are capable of adjusting to different lighting environments,

maintaining steady performance through their logarithmic reaction to changes in light

intensity.

• Low power consumption: event-based cameras utilize power solely upon detecting

changes, resulting in substantial energy efficiency. This means their power consumption

can be remarkably low, often just around 100 mW for many models, which makes

them especially ideal for use in wearable technology and mobile robots.

2.3.2 Deep Learning Approaches to Event Cameras

While event-based cameras offer several advantages, developing algorithms for effectively

processing them poses some challenges. Events are asynchronous and spatially sparse, in

contrast to the dense and rich information formats required by traditional vision algorithms.

The two main approaches for tackling these challenges are: (i) event-by-event computation,

leveraging the temporal dynamics of event data, and (ii) grid-based representations, which

adapts event data for compatibility with conventional deep learning frameworks. The section

offers an overview of current methods in both categories, highlighting how they address the

unique properties of event data.

Event-by-event Computation

Event-driven processing techniques handle each event individually, updating the system’s

output progressively and asynchronously as events come in, thus ensuring minimum response

times. Such algorithms typically maintain an evolving internal state, which is refreshed with

each new event. Spiking Neural Networks (SNNs) (Maass, 1997b) are the leading approach

of asynchronous, spike-based neural computation. These networks consist of neuron-like

entities that process incoming spike events in an independent manner, firing when they

have gathered sufficient relevant data. The membrane potential of these neurons forms
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the SNNs’ internal memory, which is dynamically updated with the arrival of new events.

SNNs have been employed in various event-driven tasks, including edge detection (Meftah

et al., 2010; Wu et al., 2007), object classification (Diehl et al., 2015; Lee et al., 2016),

and gesture recognition (Botzheim et al., 2012). While they are traditionally trained using

unsupervised biologically inspired learning rules (Hao et al., 2020; Rathi et al., 2018), they

often exhibit enhanced performance with the incorporation of conventional gradient-based

learning techniques. Several works use Artificial Neural Networks (ANNs) as intermediaries

to learn synaptic weights to overcome SNNs’ inherent non-differentiability (Diehl et al., 2015;

Pérez-Carrasco et al., 2013; Rueckauer et al., 2017). Filtering algorithms constitute another

principal category of event-driven computation methods. These algorithms are designed to

work with partial and potentially noisy data, continuously updating a defined state with each

new observation. This makes them a natural fit for asynchronous event-driven computation.

Consequently, numerous event-driven filtering algorithms, both deterministic and probabilis-

tic, have been developed, with applications ranging from Simultaneous Localization and

Mapping (SLAM) (Gallego et al., 2017; Kim et al., 2008; Reinbacher et al., 2017) to noise

filtering (Czech and Orchard, 2016; Khodamoradi and Kastner, 2018) and image ad video

reconstruction (Munda et al., 2018; Scheerlinck et al., 2018), transforming the outputs of

event cameras into more traditional visual formats. For event-based artificial neural networks,

deterministic filters have been introduced to execute asynchronous convolution, facilitating

feature extraction with high efficiency (Pérez-Carrasco et al., 2013; Scheerlinck et al., 2019).

They exploit event cameras’ sparse representation to conduct rapid computations on local

areas triggered by events, avoiding the need to process entire images.

Grid-like Event Representations

Consider a sequence of asynchronous events defined by E = {ei = (xi,yi, ti, pi)}
N
i=1

covering

a time span ∆T . The procedure to derive a grid-based representation can be represented as

a function ΦR, which transforms E into a three-dimensional structure Rc within RH×W×F ,

where each pixel is characterized by F features. Over the past years, several methodologies

for extracting these representations have been introduced. Typically, these grid-like represen-

tations are hand-crafted, which means the mapping function that converts the event stream

to Rc is independent of the specific task. More recent developments (Cannici et al., 2020a;

Deng et al., 2020a; Gehrig et al., 2019b) suggested the integration of neural network layers

within ΦR to be trained together with the entire network, aiming to extract representations

that are task-specific. We provide an overview of the most popular representations in the
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Representation Dimensions Description Characteristics

Event frame H×W Image of event polarities Discards temporal and polarity information

Event count image 2×H×W Image of event counts Discards time stamps

SAE 2×H×W Image of most recent time stamp Discards earlier time stamps

Voxel grid B×H×W Voxel grid summing event polarities Discards event polarity

HATS 2×H×W Histogram of average time surfaces Discards temporal information

EST 2×B×H×W Sample event point-set into a grid Discards the least amount of information

Table 2.3 Event-based representations. Comparison of grid-based event representations used in

prior work on event-based deep learning. H and W denote the image height and width dimensions,

respectively, and B the number of temporal bins.

following, focusing on those that have been used in previous works as the input of deep

neural networks. Those are summarized in Table 2.3.

Simple aggregation methods. Early deep neural network applications to event-based

cameras have utilized elementary aggregation methods to process event data. Within such

frameworks, a set of events E(x,y, p) = {ei ∈ E | xi = x,yi = y, pi = p}, categorized by polarity p

and pixel location (x,y), is typically condensed into a single pixel matrix via basic aggregation

techniques. The event counts model (Maqueda et al., 2018; Zhu et al., 2018) employs

the cardinality | · | of E(x,y, p) to aggregate sequences of events, discarding any temporal

information:

Rcount
E

(x,y, p) = |E(x,y, p)|.

Other representations use the event polarities and aggregate them into a two-dimensional

Event Frame (Rebecq et al., 2017). In contrast, the Surface of Active Events (SAE) (Benosman

et al., 2013; Zhu et al., 2018) retains only the most recent temporal information by recording

the of the timestamp ti of the last event received at each pixel:

RS AE
E

(x,y, p) = max
i∈E(x,y,p)

ti,

where, for simplicity, we denote by i ∈ E(x,y, p) the indices of the events ei in the sequence.

Voxel-grid based representations. A voxel grid representation (Zhu et al., 2019b) seg-

ments the event stream into a spatio-temporal grid H ×W ×B by maintaining the original

spatial resolution but dividing time into B consecutive bins. Two principal methodologies

have been suggested (Wang et al., 2019a; Zhu et al., 2019b) to define the bins. The first

method divides the time frame ∆T into B equally-sized sub-windows for which the represen-

tations Rb are derived, with each aggregating the subset Eb = {ei ∈ E | ti ∈ [(b−1)∆T
B
,b∆T

B
]},
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which corresponds to a singular H ×W slice of the voxel grid. The alternative approach

is analogous but constrains the quantity of events in each bin to a predetermined number

Ne, thus partitioning the sequence into Eb = {ei ∈ E | i ∈ [(b− 1)Ne,bNe]} intervals. An

example of a voxel grid representation is shown in Figure 2.12b. In this thesis, we use

voxel-images from (Zhu et al., 2019b), obtained through an interpolation strategy that gives

more importance to recent events,

Rvox
E

(x,y,b) =

N
∑

i=1

pikb(x− xi)kb(y− yi)kb(b− t∗i ), with t∗i = (B−1)
ti− t1

tN − t1
, (2.3)

where t∗
i

are the event timestamps rescaled into [0,B−1], and kb(a) =max(0,1− |a|) is the

bilinear sampling kernel proposed by (Jaderberg et al., 2015).

Histograms of Time Surfaces (HATS). Histograms of Time Surfaces (HATS) (Sironi et al.,

2018b) present a dual-channel representation that advances the concept of time surfaces with

a robust memory mechanism for noise mitigation. HATS are constructed by segmenting the

event stream into C distinct cells, each encompassing a K ×K pixel area. Within each cell c,

a grid of (2ρ+1)× (2ρ+1) histograms hc,p is built, one for each polarity p. These histograms

are computed by aggregating time surfaces Tei
(p), defined as:

Tei
(p) =



















∑

j∈Nei
(p) e−

t j−ti
τ if pi = p,

0 otherwise,

where Nei
(p) is the cell’s memory providing the set of events preceding ei in a [−ρ,ρ] spatial

neighborhood. The resulting two-channel representation is an combination of normalized

time surface histograms, ordered by the originating cells’ locations:

RHATS
E

= {hc j,p}
C
j=1, hc j,p =

1

|c j|

∑

ei∈c j

Tei
(p).

The ρ parameter is often such that 2ρ+1 < K, thus reducing the initial grid resolution. Tem-

poral resolution is also lost, as the entire temporal window is condensed into a single frame

with no bins retaining temporal resolution. For these reasons, other event representations

are usually preferred in deep learning applications. An example of a HATS representation is

shown in Figure 2.12c.
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(a) RGB (b) Voxel Grid (c) HATS (d) EST

Fig. 2.12 Event representations. Comparison between different event representations using the

last 100ms (third saccade) of the butterfly_0006 N-Caltech101 [116] sample. Image taken from

https://hdl.handle.net/10589/187047

Event Spike Tensor (EST). The Event Spike Tensor (EST) was proposed by Gehrig et

al. (Gehrig et al., 2019b) as the first end-to-end trainable grid-like representation. Unlike a

voxel-grid image, EST utilizes event timestamps as pixel features, with the significance of

each event’s contribution being determined by a Multi Layer Perceptron (MLP) network,

rather than being pre-set. Events are categorized by polarity to form a dual-channel repre-

sentation for each bin. EST significantly enhances event representation by incorporating

components within the transformation that can be learned, thereby automating the tuning

process for a specific task. It has been successfully applied to object recognition (Gehrig

et al., 2019b, 2020), optical flow prediction (Gehrig et al., 2019b), and semantic segmenta-

tion (Gehrig et al., 2020). An example of an EST representation is shown in Figure 2.12d.

2.3.3 Datasets and Simulators

Event-based cameras, being a relatively novel technology, initially had a scarcity of associated

datasets. This trend is rapidly changing as the number of event-based vision datasets has seen

a significant rise. These datasets can be broadly categorized into two types: those designed

for motion estimation or image reconstruction (regression) tasks, and those introduced for

recognition (classification) tasks. The first type includes datasets essential for developing

algorithms for optical flow estimation (Rueckauer and Delbruck, 2016; Zhu et al., 2018),

Simultaneous Localization and Mapping (SLAM) (Barranco et al., 2016; Delmerico et al.,

2019; Weikersdorfer et al., 2014), object tracking (Hu et al., 2016), and segmentation (Alonso

and Murillo, 2019; Diehl et al., 2015; O’Connor et al., 2013). The second type involves

datasets tailored for recognizing objects and actions. Our focus within this section is on

the datasets for object and action classification, as they are most pertinent to our research

objectives. Despite the growing number of event-based datasets, as exemplified by the

recent introduction of N-ImageNet (Kim et al., 2021c), there remains a significant gap when
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Dataset Task Acquisition # Classes # Labels Total time (h)

Poker-DVS [128] Classification real-world, still cam 4 131 2.1 sec

N-MNIST [116] Classification LCD, still image, moving cam 10 70,000 5.83

MNIST-DVS [71] Classification LCD, moving image, still cam 10 30,000 16.67

CIFAR10-DVS [129] Classification LCD, moving image, still cam 10 10,000 3.33

N-Caltech101 [116] Classification LCD, still image, moving cam 101 9,146 0.76

DVS-Caltech256 [130] Classification LCD, moving image, still cam 257 30,607 8.58

N-Cars [85] Classification real-world, moving cam 2 24,029 0.68

N-ImageNet [112] Classification LCD, still image, moving cam 1,000 1,781,167 24.74

N-ROD [4] Classification LCD, still image, moving cam 51 41,877 3.49

ASL-DVS [89] Gesture Recog. real-world, still cam 24 100,800 2.80

DVS128 Gesture [133] Gesture Recog. real-world, still cam 11 1,342 2.24

DVS-UCF-50 [130] Action Recog. LCD, moving image, still cam 50 6,676 13.81

Table 2.4 Event-based datasets. Comparison between available datasets for classification, gesture

and action recognition, detection, optical flow prediction, and segmentation.

compared to the abundance of standard image-based datasets. To overcome these challenges,

simulation and unsupervised learning stand as the primary strategies for training deep neural

networks in absence of large-scale event-based vision tasks.

In the following, we delve into the existing event-based datasets for object and action

classification tasks. Next, we explore how event-based data simulators function and contribute

to this field of study.

Datasets

We summarize the main object and action classification datasets in Table 2.4.

The Poker-DVS datasets (Serrano-Gotarredona and Linares-Barranco, 2015) is one of

the very first classification datasets to be introduced and is obtained by first quick brows-

ing (Pérez-Carrasco et al., 2013) a deck in front of an event camera and then extracting

motion-compensated pictures with a tracking algorithm. (Serrano-Gotarredona and Linares-

Barranco, 2015) proposed to convert existing image-based datasets into their event-based

version by artificially moving image samples on an LCD monitor and recording them with an

event-based camera. The MNIST-DVS dataset (Pérez-Carrasco et al., 2013) is an event-based

derived version of the well-known MNIST dataset (LeCun et al., 1998). It comprises 10,000

samples across 10 digit classes, with each digit captured at three distinct resolutions. These

recordings, made by displaying moving images on a monitor, exhibit non-continuous motion

due to the dependence on the refresh rate of the LCD screen. To address this, (Orchard et al.,

2015b) introduced an alternative approach by fixing the image position and instead moving

the camera. Mimicking the saccadic eye movements found in humans, they utilized a pan-tilt

mechanism to create the N-MNIST (Orchard et al., 2015b) and the N-Caltech101 (Orchard

et al., 2015b) datasets, with the latter being a conversion of the Caltech101 (Fei-Fei et al.,
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2006) dataset. N-MNIST preserves the original dataset’s structure, with 60,000 training and

10,000 test samples, each at a resolution of 34×34 pixels. N-Caltech101 consists of 9,146

variable-sized images distributed across 101 categories. Subsequent conversions of well-

established image datasets followed similar methodologies. The CIFAR10-DVS dataset by Li

et al. (Li et al., 2017b) converts the CIFAR-10 benchmark (Krizhevsky, 2009) into 10,000

samples of 128×128 resolution for event-based vision. (Hu et al., 2016) transformed several

frame-based collections, including the Caltech-256 (Griffin et al., 2007), with its 30,607

images across 257 classes, and the UCF-50 (Reddy and Shah, 2013) Action Recognition

Dataset, which contains 6,676 samples categorised into 50 action classes, averaging 6.64

seconds each. More recently, (Kim et al., 2021c) presented the N-ImageNet, an event camera

adaptation of the large-scale ImageNet (Deng et al., 2009). N-ImageNet is currently the most

extensive object recognition dataset for event-based vision in terms of class and sample size.

It includes 1,781,167 event recordings distributed over 1,000 classes, with each recording

lasting 50ms.

To avoid artifacts due to their conversion procedures, researches have also introduced

more realistic datasets. For instance, the N-Cars dataset (Sironi et al., 2018b) comprises

urban scene recordings, each lasting 100ms, and categorises objects into cars and urban

backgrounds. The ASL-DVS dataset (Bi et al., 2019), contains recordings of handshapes

for American Sign Language (ASL) classification, offering 24 classes that represent ASL

letters (A to Z, excluding J). Each class has 4,200 samples, approximately 100ms in duration,

captured under natural conditions. The DVS-128 Gesture dataset (Amir et al., 2017) presents

the first benchmark for gesture recognition with event-based sensors. It features 1,342

samples of 11 unique hand and arm gestures, recorded from 29 individuals across 122 trials

under three different lighting scenarios.

In this thesis, we follow the procedure outlined in (Orchard et al., 2015b) to create N-

EPIC-Kitchens, the first event-based dataset from an egocentric perspective (Section 5.2), and

N-ROD, the first dataset designed to study the Synthetic-to-Real domain shift in event-based

data (Section 5.3.3).

Simulators

Although several event-based datasets are being proposed, there is still a lack of available

large-scale datasets to unlock the potential of event-based data. To address this problem,

event simulators have been proposed that emulate DVS sensors’ output. These systems

operate by analyzing a video stream and monitoring the logarithmic brightness at each pixel.
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A new ON/OFF event is triggered whenever there is a change in brightness at a pixel that

exceeds a pre-determined threshold compared to the last recorded event at that location. A

common practice among these methods involves capturing video at extremely high frame

rates to accurately capture the visual signals. (Rebecq et al., 2018) proposed the ESIM

simulator, which enhanced these techniques by adaptively adjusting the video’s frame rate,

thereby minimizing the need for processing and evaluating numerous frames. Additionally,

Vid2E (Gehrig et al., 2020) transforms standard 30−60 f ps videos by using a slow-motion

technique to interpolate frames at a variable frame rate before simulating events.

In this thesis, we conduct an in-depth analysis of the impact of the gap between simulated

and real data (Sim-to-Real domain shift) on event-based data (Section 5.3). After ensuring

this domain gap can be overcome with standard domain adaptation techniques, we use

simulation to introduce two new datasets to unlock the potential of event-based data, namely

N-EPIC-Kitchens (Section 5.2) and N-ROD (Section 5.3.3).



Chapter 3

Multi-Modal Relative Norm Alignment

for Tackling the Domain Shift

A well-known problem in the literature is the so-called “domain shift”, i.e., a model trained on

a labeled source dataset does not generalize well to an unseen target dataset that comes from

a different distribution than the source. Recent egocentric video understanding models use

information from multiple modalities, such as complementary audio-visual (Zhu et al., 2021)

and appearance-motion information (Munro and Damen, 2020a; Ng et al., 2018; Sevilla-

Lara et al., 2019; Sun et al., 2018b), to improve accuracy and generalization performance.

Despite its advantages, Multi-Modal Learning (MML) also comes with some challenges.

These include figuring out how to summarize data while preserving its complementary

information (Wang et al., 2020a) and understanding how to effectively combine information

from multiple modalities for accurate predictions (Baltrušaitis et al., 2019). Moreover,

different modalities may be impacted differently by domain shift (Lv et al., 2021), making it

even more challenging to learn from them in cross-domain scenarios.

In this chapter, we propose a method to address both the cross-modal and cross-domain

challenges in MML. We propose a simple loss called Relative Norm Alignment (RNA) loss

which attempts to align the average feature norms of the different modalities to a common

value. Through extensive experiments on multiple modalities (RGB, audio, optical flow), we

show that this loss leads to successful generalization across domains.

The work presented in this chapter led to three publications:

• Planamente, M., Plizzari, C., Peirone, S. A., Caputo, B., & Bottino, A. (2024). Relative

Norm Alignment for Tackling Domain Shift in Deep Multi-modal Classification.
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International Journal of Computer Vision, 1-21.

Online Resources: [Paper]

• Planamente*, M., Plizzari*, C., Alberti, E., & Caputo, B. (2022). Domain generaliza-

tion through audio-visual relative norm alignment in first person action recognition. In

Proceedings of the IEEE/CVF winter conference on applications of computer vision

(pp. 1807-1818).

Online Resources: [Paper]

• Plizzari*, C., Planamente*, M., Alberti, E., Caputo, B., PoliTO-IIT Submission to

the EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action

Recognition.

Third Place at the EPIC-Kitchens Unsupervised Domain Adaptation Challenge at

CVPR 2021. (technical report)

Online Resources: [Paper]
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3.1 Introduction

In egocentric vision, the recording device is worn by the observer and moves with her. As

a result, there are significantly more variations in lighting, perspective, and surroundings

than with a fixed third-person camera. Despite numerous publications in the field, egocentric

action recognition still has a major unresolved flaw known as “environmental bias” (Torralba

and Efros, 2011). This problem arises from the network’s heavy reliance on the environment

in which the activities are recorded, which hinders the network’s ability to recognize the same

actions when they are performed in unfamiliar (unseen) surroundings. To illustrate its impact,

we show in Figure 3.1 the relative drop in model performance from the seen to the unseen test

set for the top-3 methods of the 2019 and 2020 EPIC-KITCHENS challenges (Damen et al.,

2020). Generally, this issue is referred to in the literature as “domain shift”, meaning that a

model trained on a source labeled dataset cannot generalize well to an unseen dataset, referred

to as the target. Several studies have addressed this issue by framing it as an Unsupervised

Domain Adaptation (UDA) setting, where an unlabeled set of samples from the target domain

is available during training (Munro and Damen, 2020b). However, the UDA scenario is not

always realistic because the target domain might not be known in advance, or accessing

target data at training time might be costly or simply impossible.

We argue that the true challenge lies in learning a representation that can generalize

to any unseen domain, regardless of the ability to access target data during training. This

approach is most commonly known as the Domain Generalization (DG) setting. Inspired by

the concept of exploiting the multi-modal nature of videos (Kazakos et al., 2019a; Munro

and Damen, 2020b), we utilize multi-sensory information to tackle the challenges inherent in

this setting.

Although multiple modalities could potentially offer additional information, the capability

of CNNs to effectively extract useful knowledge from them is somehow limited (Alamri

et al., 2019; Goyal et al., 2017; Poliak et al., 2018; Wang et al., 2020a; Weston et al., 2011).

We identified that a significant challenge in learning from multiple modalities stems from the

tendency to prioritize one modality over others during training. To address this imbalance,

we introduce a straightforward technique known as the Relative Norm Alignment (RNA) loss.

In the context of Domain Generalization (DG) — where the model is trained without access

to the target data — this loss aims to equalize the average norms of different modalities,

facilitating a more balanced learning process. This ultimately leads to better generalization

on unseen domains.
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Fig. 3.1 Seen vs unseen performance. Top-3 results of the 2019 (Damen et al., 2019) and 2020

(Damen et al., 2020) EPIC-KITCHENS challenges, when testing on “Seen” and “Unseen” kitchens.

We then extend the loss to operate in the traditional UDA setting. Under the UDA setting,

RNA is defined as the sum of two domain-specific terms that aim to achieve a cross-modality

norm balance on both source and target domains. To further push the network to focus

on features that are more transferable between domains (Xu et al., 2019a), we then extend

the loss to re-balance the feature norms across domains independently for each modality.

Additionally, we include in the definition of RNA an additional component to enforce similar

feature norms between classes intra- and inter-domain, which ultimately helps to improve

overall accuracy.

In summary, the main contributions of this section are the following:

• we bring to light the “imbalance” problem that emerges when training multi-modal

networks, which leads to the network “favoring” one modality over the others during

training, thereby limiting its ability to generalize (Section 3.2.1).

• we propose a new multi-modal loss, the Relative Norm Alignment (RNA) loss, de-

signed to progressively align the relative feature norms of multiple modalities during

training, thereby resulting in domain-invariant features (Section 3.2).

• we present an extensive analysis and ablation of our approach in both DG and UDA

settings, showing state-of-the-art or competitive performances on all benchmarks

(Section 3.3).
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3.2 RNA: Relative Norm Alignment

Next, we describe some preliminary intuitions and motivations behind the proposed approach

in Section 3.2.1. We then describe the proposed Relative Norm Alignment (RNA) loss,

designed to reduce domain shift in Multi-Modal Learning (MML) by aligning the average

feature norms across different modalities (cross-modal alignment) and different domains

(cross-domain alignment), both globally and at the class level. We adapt RNA to operate

both in the Domain Generalization (DG) setting and the Unsupervised Domain Adaptation

(UDA) setting. We detail RNA implementation in both settings in the following.

3.2.1 Intuition and motivation

A widely adopted method for addressing the task of first-person action recognition in research

is the utilization of multi-modal approaches (Cartas et al., 2019; Kazakos et al., 2019a, 2021a;

Lin et al., 2019; Munro and Damen, 2020b; Wang et al., 2016). Despite the richer information

multi-modal systems offer compared to single-modal ones, their advantages in performance

are often marginal and inconsistent (Alamri et al., 2019; Goyal et al., 2017; Poliak et al.,

2018; Wang et al., 2020a; Weston et al., 2011). The issue of limited performance gains has

been linked to overfitting by (Wang et al., 2020a), who proposed mitigating this by adjusting

the loss value for each input type using distinct hyperparameters. However, this solution

requires an intricate step of fine-tuning that is heavily dependent on both the specific task and

the dataset used. We propose to tackle the challenges associated with multi-modal learning

from an alternative perspective.

Norm imbalance. We hypothesize that an imbalance between different modalities during

training hinders the network’s ability to learn from them equally. This theory is supported by

the observation that the hyperparameters identified in (Wang et al., 2020a) vary considerably

based on the modality. To verify this theory, we conducted a simple experiment on RGB

and audio data, whose results are shown in Figure 3.2-a. Independently trained RGB and

audio streams perform comparably well during testing. Yet, when trained jointly but tested

separately, RGB’s performance drops in comparison to audio’s, indicating that multi-modal

training negatively affects RGB stream optimization.

This led us to consider whether the imbalance observed between modalities during

training could also be present in a multi-source scenario. Could one source disproportionately

influence another, thereby diminishing the overall model’s effectiveness? With these questions
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in mind, we sought a method to measure the information each modality’s final embedding

carries, hoping to shed light on the reason for such an imbalance.

The mean feature norms. Several works highlighted that there exists a strong correlation

between the mean feature norms and the amount of “valuable” information for classification

(Ranjan et al., 2017; Wang et al., 2017a; Zheng et al., 2018). Notably, cross-entropy loss

tends to favor features that are well-differentiated and possess high norm values, as noted

by (Wang et al., 2017a). Additionally, the principle proposed by (Ye et al., 2018) suggests

that a modality’s representation is less informative during inference if it has a lower norm,

which is summarized as the Smaller-Norm-Less-Informative hypothesis. Taken together,

these findings indicate that the L2-norm of features can reflect their informational value,

serving as a useful metric for detecting imbalances between training modalities. Our analysis

of feature norms revealed that the average norms of audio features (approximately 32) were

significantly higher than those for RGB (approximately 10) in the training set. This disparity

is reflected on the test set, as shown in Figure 3.2 on the left, where the modality with the

lower norm exhibits lower performance.

Motivated by these results, we propose a simple but effective loss whose goal is to re-

balance the mean feature norms during training across multiple sources, so that the network

can fully leverage the benefits of joint training, particularly in scenarios involving cross-

domain data. The process of norm re-balancing results in improved performance for both

modalities, as demonstrated in Figure 3.2, right. It is important to clarify that using the

concept of smaller norms being less informative primarily highlights the network’s bias

towards the audio modality due to its higher norm relative to RGB. However, this observation

does not mean that RGB is inherently less valuable for the task. After the norms are re-

balanced, their range more closely approximates that of the original RGB norms, indicating

that both modalities are equally important.

3.2.2 Relative Norm Alignment loss

Problem Definition. Let us consider data XS = {(xs,i,ys,i)}
ns

i=1
from a source distribution

S, where ns represents the total number of samples, and each sample xs,i is associated

with a label ys,i from the label space Ys. Each sample xs,i contains multiple modalities, i.e.,

xs,i = {x
1
s,i
, . . . , xM

s,i
}, where xm

s,i
indicates the mth modality of the ith sample and M is the number

of modalities. The target domain T includes nt annotated target samples XT = {xt,i}
nt

i=1
, each

characterized by the same M modalities of the source samples, i.e., xt,i = {x
1
t,i
, . . . , xM

t,i
}.
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Fig. 3.2 Norm imbalance. By jointly training, and testing on separate streams, the RGB performance

drop (a). “imbalance” at feature-norm level which, when mitigated, leads to better performance (b).

We assume that the distributions of all domains involved are distinct, denoted as D
j

d1
,

Dk
d2

, where d1 and d2 refer to the domains (source or target) and j and k indicate different

modalities within the same domain or the same or different modalities across different

domains. We assume that the label space Ys is identical to Yt, indicating a shared label

space between the source and target domains.

Relative Norm Alignment loss. In the following, we consider for simplicity a single-

source single-target setting in which only two modalities are available. In Section 3.2.2 we

detail how the approach can be extended to work with any number of modalities.

Each input sample is denoted as xi = (xu
i
, xv

i
), where v and a represent the two modalities,

e.g., visual and audio modality. As illustrated in Figure 3.3, each input modality m is passed

through a dedicated feature extractor Fm. The resulting features f m = Fm(xm
i

) are then

processed by a classifier Gm, which produces score predictions for the mth modality of the ith

sample. Finally, the prediction scores from all modalities are combined using a late fusion

approach to derive the final classification. It is important to note that in UDA settings, the

Fm feature extractors are shared between the source and target domains.
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Fig. 3.3 Method architecture. Labeled source samples and unlabeled target samples from modalities

u (e.g., visual) and v (e.g., audio) are fed to their corresponding feature extractors. LRNA is designed

to maintain a balance between the relative feature norms of the two modalities, achieved through a

combination of domain-specific cross-modal components (L
g

RNA
and Lc

RNA
) and cross-domain compo-

nents (Lmod
RNA

) for each fu and fv modality feature. In Domain Generalization, only the components

computed on the source domain are utilized. Finally, a classification loss LC is applied on the output

of the modality classifiers Gu and Gv.

The main idea behind the proposed loss is the concept of mean feature norm distance.

We denote with h(xm
i

) = (∥·∥2 ◦ f m)(xm
i

) the L2-norm of the features f m of the m-th modality,

and compute the mean-feature-norm distance (δ) between the two modality norms f u and f v

as

δ(h(xu
i ),h(xv

i )) = |E[h(xu
i )]−E[h(xv

i )]| (3.1)

where E[h(xm
i

)] corresponds to the mean features norm for each modality. Figure 3.4

illustrates the norm h(xu
i
) of the i-th visual sample and h(xv

i
) of the i-th audio sample, by

means of segments of different lengths arranged in a radial pattern. The mean feature norm of

the k-th modality is represented by the radius of the two circumferences, and δ is represented

as their difference. The goal is to minimize the δ distance through a loss function that aims to

align the mean feature norms of the two modalities. In other words, this means constraining

the features from both modalities to reside on a hypersphere with a predetermined radius.

We propose a Relative Norm Alignment (RNA) loss, which is defined as:

L
g

RNA
(u,v) = λg

(

E[h(Xu)]

E[h(Xv)]
−
E[h(Xu)]

E[h(Xv)]

)2

(3.2)
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Fig. 3.4 Relative norm alignment. The norm h(xv
i
) of the i-th visual sample (left) and h(xa

i
) of

the i-th audio sample (right) are represented by segments of different lengths.The radius of the two

circles represents the mean feature norm of the two modalities, and δ signifies their discrepancy. By

minimizing δ, we encourage the audio and visual feature norms to align.

where h(xm
i

) = (∥·∥2 ◦ f m)(xm
i

) is the L2-norm of mth modality features of the ith sample,

E[h(Xm)] = 1/B
∑

xm
i
∈Xm h(xm

i
) is the mean feature norm for the mth modality, computed over

the B samples composing the batch, and λg weights L
g

RNA
. This dividend/divisor structure is

designed to promote an alignment of the norms between the two modalities, aiming for an

optimal balance between the embeddings of the two. Additionally, squaring the difference

pushes the network to make more substantial adjustments when the ratio of the norms of the

two modalities significantly deviates from unity, thereby accelerating convergence.

Conceptually, aligning the norms of the two modalities is similar to applying a “strict”

constraint that matches them to a fixed value k. This approach, termed Hard Norm Alignment

(HNA), is encapsulated in the LHNA loss formula:

LHNA =
∑

m

(

E[h(Xm)]− k
)2
, (3.3)

where k is the same across all modalities. However, our LRNA formulation effectively

reduces the gap between the norms of the two distributions without the need for the extra k

hyperparameter. Opting for a subtraction approach (Lsub
RNA

) to directly minimize δ2 (Equation

3.1) presents a simpler and viable alternative. The choice for this method stems from

the consideration that a significant difference between k and the expected norms of the
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modalities could result in a high loss value, necessitating precise adjustment of the weights

and thereby heightening the network’s sensitivity to these weights (Kendall et al., 2018).

This dividend/divisor arrangement guarantees the loss remains within the range (0,1].

The main goal of the RNA loss is to teach the model how to effectively utilize the corre-

lation between multiple modalities’ norms at feature level to develop a robust and general

classification model. This focus on feature-level adjustment is key to achieving general-

ization performance, distinguishing our approach from simple input-level normalization or

pre-processing strategies. Importantly, normalization at the input stage may not align well

with pre-trained models and is impractical in Domain Generalization (DG) settings where

target data is inaccessible during training. This means there is no access to the target distri-

bution, and each domain might necessitate a unique normalization approach. Additionally,

learning to re-balance norms instead of applying conventional projection methods for feature

normalization is driven by two considerations. Firstly, by integrating feature normalization

within the learning process through model weights, the network is better equipped to address

the “norm imbalance” issue not just during training but also in inference, adapting to a

normalized feature space learned during training. Secondly, explicit normalization tech-

niques like batch normalization adjust each feature element to a scaled normal distribution

independently, which does not guarantee the alignment of the overall mean feature norms

across modalities.

The overall architecture is finally trained by minimizing the following loss:

L =LC +L
g

RNA
(3.4)

where LC is the standard cross-entropy loss on source data.

Per-class alignment. The formulation in Eq. 3.2 has a limitation: the global cross-modal

alignment facilitated by L
g

RNA
can result in imbalanced norms between modalities at the class

level. This imbalance may lead to a preference for one modality over others when classifying

specific classes. To mitigate this issue, we propose the following enhancements to the RNA

framework.

First, we introduce an intra-domain class constraint, Lc
RNA

, to rectify the cross-modal

norm imbalance at the class level. It is defined as follows:

Lc
RNA(u,v) = λc

C
∑

c=1

(

E[h(Xu
c )]

E[h(Xv
c)]

−
E[h(Xv

c)]

E[h(Xu
c )]

)2

(3.5)
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where λc is the weight of the loss, and E[h(Xm
c )] represents the average norm of the features

for modality m for samples belonging to class c, with C being the total number of classes.

Combining the two components we have previously defined, the extended RNA formulation

in DG settings becomes:

LRNA =L
g

RNA
(us,vs)+L

c
RNA(us,vs) (3.6)

RNA for Domain Adaptation (UDA). The RNA objective in UDA can be defined as:

LRNA =L
g

RNA
(S)+L

g

RNA
(T )+Lc

RNA(S)+Lc
RNA(T ) (3.7)

where L
g

RNA
and Lc

RNA
are defined as the losses in Eq. 3.2 and Eq. 3.5 applied to both source

and target domains. Note that for target samples, pseudo-labels are employed to categorize

them into classes when calculating Lc
RNA

.

In the UDA setting, alignment is performed separately within each domain. Consequently,

substantial discrepancies in the average feature norms between source and target domains

may persist. Such variations often stem from domain-specific features that, while large in the

source domain training, may exhibit reduced activations in the target domain (Barbato et al.,

2021; Xu et al., 2019a). This disparity can significantly impact the model’s overall accuracy.

We extended the LRNA loss to align both the average norms and the per-class norms

of features within each modality across domains. This adjustment allows the network to

prioritize features with higher transferability between domains (Xu et al., 2019a). To this

end, we include the following term in the RNA formulation:

Lmod
RNA(ms,mt) =L

g

RNA
(ms,mt)+L

c
RNA(ms,mt)

where m ∈ {u,v}. The resulting RNA formulation for the UDA setting is:

LRNA =L
g

RNA
(us,vs)+L

g

RNA
(ut,vt)+

Lc
RNA(us,vs)+L

c
RNA(ut,vt)+

Lmod
RNA(us,ut)+L

mod
RNA(vs,vt)

(3.8)

The individual contribution of the three losses is exemplified in Figure 3.5. L
g

RNA
is respon-

sible for the global alignment of modality norms within each domain. Lc
RNA

ensures the

alignment of modality norms for each class within the domains. Lmod
RNA

focuses on aligning the

norms between domains for each modality independently. In the DG setting, Lc
RNA

enhances
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Fig. 3.5 Distinct impacts of LRNA components on feature norms. For each plot, norms for every

class within a given modality and domain are displayed (u or v, associated with source or target).

First row: L
g

RNA
is designed to reduce the overall average norms (indicated by the expanded bars on

the right) for modalities u and v. Second row: Lc
RNA

is focused on ensuring norms are even at the

class level. Third row: Lmod
RNA

aims at re-balancing class and average norms for the same modality

across domains. Each diagram illustrates the norms before (on the left) and after (on the right) the

implementation of the specific LRNA component.

the effectiveness of L
g

RNA
by ensuring that norms are aligned per class to a unified standard.

The integration of Lmod
RNA

within UDA complements the other two losses by aligning the

average and per-class norms of modalities between the source and target domains.

Extension to more than two modalities. The RNA objective in Eqs. 3.6 and 3.8 can be

extended to more than two modalities. In DG, the loss can be rewritten as:

LRNA =LRNA(S) =

M
∑

i=1

M
∑

j=i+1

LRNA(is, js) (3.9)

where i and j span the M modalities. Similarly, the UDA loss becomes:

LRNA =LRNA(S)+LRNA(T )+

M
∑

i=1

Lmod
RNA(is, it)
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where LRNA(S) and LRNA(T ) are the loss in Eq. 3.9 for the source and target domains,

respectively.

Additional learning objectives. In addition to the loss defined in Eq. 3.8, for enhancing

the domain-invariant characteristics of the features, we employ adversarial domain alignment

techniques (Ganin and Lempitsky, 2015a; Wang et al., 2019b). This approach is in line

with methods utilized in recent UDA studies (Chen et al., 2019; Jamal et al., 2018; Munro

and Damen, 2020a; Wei et al., 2022), involving the integration of a classifier asked to

distinguish whether features originate from the source or the target domain. This classifier

is connected to the feature extractors through a Gradient Reversal Layer (GRL) (Ganin and

Lempitsky, 2015a). Consequently, the domain classification loss Ld is scaled by a factor λd

and incorporated into the total loss.

The loss framework we have introduced, which combines LRNA and Ld, is designed to

enhance both the informativeness and the domain-invariant characteristics of the embeddings

across different modalities. However, these components of loss influence only the feature

extractors Fm and do not extend their impact through the classifier. As a consequence, the

classifier is exposed solely to source data during training, lacking any engagement with

the target data. This setup leads to a scenario where the classifier is optimized to merge

multi-modal features effectively for increased accuracy within the source domain, while it

overlooks the classification uncertainty that may arise with target data.

To tackle this issue in the UDA setting, a widely adopted strategy involves the application

of a mutual information criterion (Bridle et al., 1991) to target data. This method not only

aims to minimize prediction uncertainty but also encourages an even distribution of samples

across classes. The technique employs an Information Maximization (IM) loss (Bridle et al.,

1991), which is calculated as the difference between the average entropy of the model’s

predictions and the entropy of the average prediction across the target data:

LIM = −Ex∈XT

C
∑

c=1

pc(x) log pc(x)+

C
∑

c=1

p̄c log p̄c

where C is the total number of classes, pc is the posterior probability for class c, and p̄c is

the mean output score for the current batch.

When integrating all components, we train the model in the UDA setting to minimize the

following loss:

L =LC +LRNA+λdLd +λIMLIM
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where LRNA is from Eq. 3.8 and λIM is the IM loss weight.

3.3 Experiments

In this section, we aim to validate the effectiveness of our proposed approach through empiri-

cal evaluation on two multi-modal egocentric vision benchmarks: the EPIC-KITCHENS-100

(EK100) (Damen et al., 2022) and the EPIC-KITCHENS-55 (EK55) (Damen et al., 2018)

datasets. The rest of the section is organized as follows. We introduce results on EK100

in Section 3.3.1 and on EK55 in Section 3.3.2. For each, we describe the baselines and

evaluation protocol used, and implementation details. Finally, an ablation study is given in

Section 3.3.3.

3.3.1 Experiments on EK100

Experimental Setup

In this section, we describe the evaluation protocol used the baselines, along with information

about input pre-processing and implementation details.

Evaluation Protocol. We follow the experimental setup for UDA proposed in (Damen

et al., 2022). The dataset consists of two splits, source and target, containing labelled and

unlabelled samples respectively. In the intra-domain setting, the train and test sets are in the

same visual domain, i.e. clips have been recorded in the same kitchens in both splits, whereas,

in the cross-domain setting, the training and testing sets are from different kitchens (location

shift) or from the same kitchens but recorded after a long temporal interval of several years

(temporal shift). Actions are annotated with (verb, noun) pairs from a set of 97 verbs and 300

nouns. Models are evaluated in terms of top-1 and top-5 accuracy for verb, noun and action

predictions. The latter is a combination of the verb and noun labels and is used to evaluate

the ability of the network to predict both. All experiments described in this section utilize the

three modalities (RGB, audio, and optical flow) provided by the dataset. This work’s findings

are presented based on the validation split, though prior research has similarly shown the

efficacy of RNA on the test data as well (Planamente et al., 2022a; Plizzari et al., 2021).

Baselines. Our method is evaluated against MM-SADA (Munro and Damen, 2020a),

TA3N (Chen et al., 2019), and CIA (Yang et al., 2022a). Specifically, the MM-SADA

framework is originally designed to work with RGB and optical flow modalities. To adapt the
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audio modality, we adopt a two-branch strategy, creating separate pathways for RGB-Flow

and RGB-Audio combinations, similar to the approach described in (Planamente et al.,

2022b). An adversarial branch is then independently applied to each modality, ensuring a

tailored and effective adaptation process. Finally, since our DG approach is primarily focused

on improving the multi-modal learning capabilities of the model, we extend our analysis to

include the Gradient Blending (GB) technique (Wang et al., 2020a) as a DG comparison.

Input. Following the procedure described in (Kazakos et al., 2019a), RGB and optical

flow modalities are processed by uniformly sampling 25 frames, and the audio modality is

processed by extracting segments lasting 1.28 seconds, each aligned with the action. For

both training and inference, five segments from each modality are chosen and input into the

network.

Implementation Details. Frame-level features fm ∈ R25×1024 for each modality m are

derived from a TBN framework (Kazakos et al., 2019a), initially pre-trained on Kinetics (Kay

et al., 2017) and subsequently fine-tuned for the source domain as per the approach described

in (Damen et al., 2022). A selection of five frame features per segment is uniformly made and

processed through a linear layer, followed by a ReLU activation function and a dropout layer

with a rate of 0.5. The frame features undergo temporal integration via a TRN (Zhou et al.,

2018) module, resulting in action-level features f ′m ∈ R10241. The features are then divided

into two segments, f ′m,v and f ′m,n ∈ R
256, through a linear layer, labeled as verb features and

noun features respectively. These segments are subsequently directed towards two separate

classifiers for generating modality-specific logits for verbs (ym,v) and nouns (ym,n). The

training of the network for action recognition incorporates the usage of cross-entropy loss on

the summed per-modality logits. We enhance the RNA framework by distinctly applying the

alignment losses to the verb and noun features, right before the final classifier. This strategy

of applying RNA losses ensures that the alignment impact is maximally proximate to the

classifier, which is significantly influenced by the values of feature norm. Training extends

over 30 epochs with a batch size comprising 128 samples, employing an SGD optimizer with

a momentum of 0.9 and a weight decay of 10−4. The initial learning rate is set to 0.003 and

is decreased by a factor of 10 following the 10th and 20th epochs.

Results

Table 3.1 presents Top-1 and Top-5 classification accuracies for verbs, nouns, and actions on

both DG and UDA settings. Alongside each method, we report improvements in average

1Until this stage, the procedure adheres closely to the official implementation provided for the EK100 UDA

challenge (Damen et al., 2022).
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Methods Verb@1 Noun@1 Action@1 Verb@5 Noun@5 Action@5

DG

Source Only 47.14 27.35 18.99 75.27 49.36 41.82

MM-SADA (SS) 47.76 27.93 19.15 (▲ +0.16) 77.07 49.77 42.90 (▲ +1.08)

Source Only 50.27 29.04 19.96 81.74 52.14 46.74

GB 50.18 29.60 20.26 (▲ +0.3) 81.82 52.57 46.86 (▲ +0.12)

Source Only 46.79 26.79 18.29 75.39 48.44 41.36

Our (DG) 50.75 27.92 19.81 (▲ +1.52) 80.64 51.37 45.33 (▲ +3.97)

Source Only 49.81 28.55 19.77 81.10 51.90 46.22

Our (DG) 50.20 29.31 20.30 (▲ +0.53) 81.85 52.68 46.76 (▲ +0.54)

UDA

Source Only 46.70 27.78 19.20 75.42 48.27 42.12

TA3N 48.44 28.87 19.61 (▲ +0.41) 75.95 50.12 43.36 (▲ +1.24)

Source Only 47.14 27.35 18.99 75.27 49.36 41.82

MM-SADA 48.44 28.26 19.25 (▲ +0.26) 77.56 50.59 43.41 (▲ +1.59)

Source Only 47.69 28.48 19.61 - - -

CIA 48.34 29.50 20.30 (▲ +0.69) - - -

Source Only 46.79 26.79 18.29 75.39 48.44 41.36

Our (UDA) 50.82 29.19 20.05 (▲ +1.76) 80.89 52.18 46.04 (▲ +4.68)

Table 3.1 Results on EK-100. Classification accuracies (%) on EK100 (Damen et al., 2022) reported

in terms of Top-1 and Top-5 classification accuracy across noun, verb, and action metrics. ∆ Acc.

represents the average improvement in Top-1 accuracy.  These experiments employ cross-entropy

loss on both the fused logits and the per-modality logits. The best results are highlighted in bold, with

the runner-up in underlined.

Top-1 and Top-5 accuracies for actions relative to the respective Source Only baseline,

which involves training on source domains and testing on the test set without applying any

adaptation strategy.

For the DG setting, we compare our approach to two alternative methods. Firstly,

we evaluate against a variant of MM-SADA (Munro and Damen, 2020a) known as MM-

SADA (SS), which incorporates the self-supervised alignment task tailored for the source

domain modalities, omitting the adversarial alignment element of the original approach as

it necessitates target domain data. Secondly, we consider Gradient Blending (GB) (Wang

et al., 2020a), a technique that attempts to find the ideal combination of modalities based

on their tendency to overfit. This optimal combination is derived by integrating a dedicated

cross-entropy loss for each modality with a fusion loss, all weighted appropriately2. When

2Note that the conventional GB method utilizes only RGB and Audio modalities. For this study, the optimal

loss weights were adopted from (Damen et al., 2020), and the weights corresponding to the Flow component,

which was absent in the original formulation, were tuned for our research purposes
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analyzing accuracy results across the different categories, it can be observed that GB performs

best, while our approach ranks as the runner-up and MM-SADA (SS) lags slightly behind.

However, when considering the improvements relative to the Source Only baseline, our

method shows higher improvement on the action category compared to GB (+1.52% and

+3.97% vs +0.3% and +0.12%). This result suggests that our method contributes more

significantly to reducing domain shift. The approach proposed in (Wang et al., 2020a)

bears similarities to our method in terms of enhancing the balance between modalities

for improved classification accuracy. To delve deeper, we conducted further experiments

by applying our method to the Source Only results achieved through Gradient Blending.

Specifically, we utilized multiple classification losses without adjusting their weights. These

additional experiments are denoted by a  symbol. The outcomes, presented in Table 3.4,

are encouraging. In this variation, our method achieves the highest action accuracy when

compared to all DG baseline methods. Notably, our standard approach tackles the alignment

challenge with an adaptive strategy that, distinct from GB, does not depend on the specific

model or dataset and is controlled by only two hyperparameters: λg and λc.

In the UDA experiments, we observe that our method ranks second in terms of Top-1

noun and action accuracy, with CIA being the best performing method. However, it should

be noted that CIA’s evaluation starts from a higher Source Only result. On the other hand,

our method achieves the best results in Top-1 verb accuracy. In terms of improvements, RNA

shows significantly higher accuracy improvements compared to all other competitors in both

Top-1 and Top-5 accuracies. Additionally, our performance on all the evaluation metrics

aligns closely with that of other proposed baselines. Importantly, a substantial part of these

improvements is evident during the DG phase, in which the target domain is not accessed.

Interestingly, our best DG results demonstrates strong competitiveness and comparability

with CIA, the current state-of-the-art in UDA. This underscores the generalization capability

of our method in effectively handling domain shifts.

3.3.2 Experiments on EK55

Experimental Setup

In this section, we outline evaluation protocol used and the baselines, and provide information

on input pre-processing and implementation details.

Evaluation protocol. We use the EPIC-KITCHENS-55 dataset (Damen et al., 2018) and

we adopt the same experimental protocol of (Munro and Damen, 2020b), where the three
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kitchens with the largest amount of labeled samples are handpicked from the 32 available.

We refer to them here as D1, D2, and D3 respectively. We evaluate performance in both a

single-source setting (Di → D j) on these three domains. In the experiments, we restrict our

analysis to the visual and motion (RGB+Flow) and visual and audio (RGB+Audio) modality

combinations, which are the ones recent work in the literature focus on.

Baselines. We compare our results with several state-of-the-art UDA methods. The

first group (GRL (Ganin et al., 2016), MMD (Long et al., 2015), AdaBN (Li et al., 2018d),

and MCD (Saito et al., 2018)) includes approaches originally developed as image-based

methods and later adapted to work with video inputs. The second group includes more recent

methods such as MM-SADA (Munro and Damen, 2020a), the contrastive-based methods

proposed by (Kim et al., 2021b) and STCDA (Song et al., 2021b), and the recently published

CIA (Yang et al., 2022a). In our comparison, we use the results reported in the original paper

for each baseline.

Input. For our study, we utilized various sampling methods to ensure a fair comparison

with previous work. With dense sampling, we randomly chose a series of 16 consecutive

frames from each video. For uniform sampling, we selected 16 frames distributed evenly

across the video. During testing, we followed the training sampling method but used five clips

instead of one, averaging the results as per the suggestion in (Wang et al., 2016). Following

the experimental setup from (Munro and Damen, 2020a), we applied random cropping, scale

adjustments, and horizontal flips to enrich our training data. During testing, we only used

central cropping. For audio data, as described by (Kazakos et al., 2019a), we converted

the audio track into a 256×256 matrix that captures the log spectrogram. We first extracted

the audio from the video, sampled it at 24kHz, and then processed it using the Short-Time

Fourier Transform (STFT) with a 10ms window length, a 5ms step size, and 256 frequency

bands. The same sampling strategy used for RGB was also applied to optical flow inputs.

Implementation details. In our setup, both the RGB and Flow streams employ the I3D

model, pre-trained on the Kinetics dataset (Kay et al., 2017), in line with the experimental

framework of (Munro and Damen, 2020a). For audio feature extraction, we utilize the

BN-Inception model pre-trained on ImageNet, as detailed by (Kazakos et al., 2019a). These

feature extraction models are trained from start to finish. Each modality m generates features

represented as fm ∈ R1024. We compute logits for each modality using a separate linear

layer, which are then combined. The network is trained over 5000 iterations with the SGD

optimizer, momentum set at 0.9, and a weight decay of 10−7. For RGB and Flow, the learning

rate starts at 0.001, reducing to 2×10−4 after 3000 steps. For Audio, the starting learning
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rate is 0.001, which is decreased tenfold at the 1000, 2000, and 3000 step marks. We set the

batch size at 128.

Results

We report results on both DG and UDA settings in Table 3.2. We categorise the results based

on the sampling approach for each modality: dense (D) or uniform (U). The majority of

the baseline methods utilize dense sampling (D-D), with CIA being the only method using

uniform sampling (U-U) for both modalities. Our findings reveal that uniform sampling,

as utilized by CIA, surpasses methods based on dense sampling, supporting the insight

from (Chen et al., 2021) that uniform sampling generally provides better results. Our UDA

strategy outperforms all existing methods for both sampling types, improving by 0.5% on

D-D sampling and 2.2% on U-U sampling. We also explored a hybrid sampling approach

(D for RGB and U for Flow). Interestingly, using this sampling the Source Only method

demonstrates impressive results. Since none of the baselines use this sampling, we only

present our results for the Source Only, DG, and UDA. We note that the Source Only method

already achieves remarkable results (up to 3% better than our method with uniform sampling).

This improvement might be attributed to the mixed sampling’s capacity to better leverage

the unique characteristics of each modality: dense sampling captures finer static details in

RGB, while uniform sampling across a broader temporal span enriches the dynamic Flow

information. Our approach improves over the Source Only baseline by 1.37% and 2.38% in

the DG and UDA setting respectively.

When integrating RGB with Audio, results are slightly inferior than the RGB+Flow

combination. This observation suggests that audio information serves as a less informative

modality compared to optical flow in this context. Our DG models improves by up to 4.37%

over the Source Only, while our UDA model achieves the best results (7% improvement

over Source Only and 1% improvement over the state-of-the-art method). Moreover, the

performance in the DG context is on-par with that in the UDA scenario, showing a slight

difference of -1.01% for RGB+Flow and -2.55% for RGB+Audio. While there are no direct

DG method comparisons available in this domain, our findings indicate that DG configu-

rations can rival the effectiveness of several established UDA approaches that incorporate

target data during training.
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Method Sampling D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Mean

RGB + Flow

Source Only D-D 42.00 41.20 42.50 46.50 44.30 56.30 45.47

GRL (Ganin et al., 2016) D-D 50.20 44.70 46.90 50.80 50.20 53.60 49.40

MMD (Long et al., 2015) D-D 46.60 39.20 43.10 48.50 48.30 55.20 46.82

AdaBN (Li et al., 2018d) D-D 47.00 40.30 44.60 48.80 47.80 54.70 47.20

MCD (Saito et al., 2018) D-D 46.50 43.50 42.10 51.00 47.90 52.70 47.28

DAAA (Jamal et al., 2018) D-D 50.00 43.50 46.50 51.50 51.00 53.70 49.37

MM-SADA (Munro and Damen, 2020a) D-D 49.50 44.10 48.20 52.70 50.90 56.10 50.25

Kim et al. (Kim et al., 2021b) D-D 50.30 46.30 49.50 52.00 51.50 56.30 50.98

STCDA (Song et al., 2021b) D-D 52.00 45.50 49.00 52.50 52.60 55.60 51.20

Our (UDA) D-D 50.84 47.14 48.86 54.38 50.60 58.43 51.71

Source Only U-U 43.20 42.50 43.00 48.00 43.00 55.50 45.90

CIA (Yang et al., 2022a) U-U 52.50 47.80 49.80 53.20 52.20 57.60 52.18

Our (UDA) U-U 52.84 47.49 54.41 54.11 55.53 61.64 54.34

Source Only D-U 54.25 50.72 54.87 56.41 51.65 61.27 54.86

Our (DG) D-U 56.00 50.39 56.25 56.37 56.73 61.63 56.23

Our (UDA) D-U 57.33 52.84 57.19 56.78 57.27 62.03 57.24

RGB + Audio

Source Only D-D 39.03 39.17 35.27 47.52 40.25 49.98 41.87

GRL (Ganin et al., 2016) D-D 41.02 43.04 39.36 49.25 38.77 50.56 43.67

MMD (Long et al., 2015) D-D 42.40 43.84 40.87 48.13 41.46 50.03 44.46

AdaBN (Li et al., 2018d) D-D 36.64 42.57 33.97 46.63 40.51 51.20 41.92

MM-SADA (Munro and Damen, 2020a) D-D 48.90 46.66 39.51 50.89 45.42 55.14 47.75

Our (DG) D-D 42.55 41.77 42.73 51.09 42.63 54.24 46.21

Our (UDA) D-D 46.65 47.22 46.18 52.30 44.04 56.18 48.76

Table 3.2 Results on EPIC-KITCHENS-55. Classification accuracies (%) on EPIC-KITCHENS-

55 (Damen et al., 2018), using the evaluation protocol from (Munro and Damen, 2020a), divided by

modalities. Results are grouped by the sampling strategy used for a fair comparison. Best in bold,

runner-up underlined.

3.3.3 Ablation studies

In this section, we discuss the ablation studies conducted for our approach, all of which

were carried out using the EK100 dataset. Given that EK100 is the largest and most diverse

benchmark used in our work, it enhances the statistical significance of these studies.

Global alignment: a qualitative analysis. In Figure 3.6, we present the average feature

norms for each modality. For simplicity, our discussion will focus on the verb feature norms,

as the same observations are applicable to noun features. Specifically, Figure 3.6 illustrates

how the average norms of verb features across different modalities vary within Domain

Generalization (DG) and Unsupervised Domain Adaptation (UDA) scenarios, highlighting

the influence of LRNA.
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Fig. 3.6 Verb feature norms across different modalities and settings (DG and UDA). Light (

) and dark colors ( ) indicate source and target validation domains, respectively. (a) In

the Source Only configuration, distinct modalities and domains exhibit imbalanced feature norms.

(b) LRNA in DG enhances the alignment between different modalities, but a discrepancy between the

source and target domains still remains. (c) Finally, the inclusion of Lmod in LRNA reduces this gap in

UDA, resulting in more uniform feature norms across different modalities and domains.

A preliminary qualitative assessment of the data depicted in Figure 3.6 indicates that

LRNA within the DG context (as shown in Figure3.6-b) results in improved alignment of the

average feature norms across different modalities and an overall elevation in their values

compared to the Source Only scenario (depicted in Figure 3.6-a). It is important to note

that the norm formulation in Eq. 3.6 aims to address the alignment challenge at the batch

level, therefore it does not assure a precise alignment of all average norms. Additionally,

Figure 3.6-b reveals an increase in the Flow norm within DG in comparison to the Source

Only condition (Figure 3.6-a). Prior research has demonstrated that the Flow modality

is least impacted by domain shifts in egocentric action recognition (Munro and Damen,

2020a), which could potentially enhance generalization capabilities. This may account for

the network’s increased focus on this modality in the DG setting.

In addition, the presence of target data in UDA allows LRNA to enhance the equilibrium

among the norms of the different modalities, facilitating the model’s ability to optimally

leverage each modality’s contributions for its final decisions. The improved complementarity

between modalities, as evidenced by the increased accuracy shown in Table 3.3, may explain

the (relatively) lower norm of Flow in UDA. This is counterbalanced by heightened norms

for (and thus, increased emphasis on) the other two modalities, RGB and Audio.

Class alignment. To evaluate the impact of Lc
RNA

, we illustrate in Figure 3.7 the evolution

of verb norms for both the ten most frequent and the least frequent classes in the DG

context. In the Source Only scenario (Figure 3.7-a), the mean norms of features per class are
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Fig. 3.7 Per-class feature norms. Feature norms for the top 10 most and least common classes

from the target validation split of EPIC-Kitchens-100 are examined. Although L
g

RNA
enhances the

alignment across various modalities, a discrepancy among classes remains evident. Integrating the

per-class variant of RNA significantly improves this misalignment, leading to more uniform feature

norms across diverse classes.

notably imbalanced. Although the exclusive application of L
g

RNA
achieves a more uniform

balance across modality norms, its influence on equalizing the norms on a per-class basis

remains minimal (Figure3.7-b). Conversely, the addition of Lc
RNA

to the minimization process

markedly enhances their alignment (Figure3.7-c), showcasing a substantial improvement in

the balance of per-class feature norms.

Overall effect on feature norms. To delve deeper into the effects of LRNA, Figure 3.8

presents a scatter plot for the validation set under the DG setting. This visual representation

is obtained by plotting the feature norms for RGB, Flow, and Audio of each sample within a

three-dimensional space, where the axes correspond to the norms for the three modalities.

To simplify interpretation, rather than offering a singular 3D plot, the data is shown through

three distinct projections along the coordinate planes formed by the modality pairs. The

objective of these visualizations is to illustrate the alterations in the manifold’s configuration

resulting from the application of LRNA.

The Source Only features display a wide dispersion, reflecting a manifold with a largely

irregular configuration. This irregularity is attributed to the lack of alignment among the

feature norms across different modalities. Using LRNA, the manifold has a more spherical

and compact form, signifying improved alignment of modality norms. Moreover, there is a

noticeable increase in the average feature norm values, causing the manifold to shift towards

the upper right quadrant in the 2D visualizations.

Effect of loss components. Table 3.3 outlines how various loss components contribute

to the final performance in both DG and UDA scenarios. To easily highlight the effect
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Fig. 3.8 Comparison of the feature norms before (top) and after (bottom) application of L
g

RNA

and Lc
RNA

. Each dot in the plots represents a sample from the validation dataset, with the color bar

indicating increasing density values. Initially, the Source Only features exhibit a broad spectrum of

values and an irregular configuration, highlighting the disparity in feature norms across the modalities.

The introduction of the RNA loss readjusts this balance, leading to a more spherical distribution and

concurrently increases the average norms.

of each component, we report the average improvement in terms of accuracy across verb,

noun and action metrics (∆ Acc.). Integrating both global and class components in the

DG setting yields a notable increase in accuracy (+2.20%) compared to using L
g

RNA
alone

(+1.36%). This demonstrates that combining these two components is effective in mitigating

domain shift. Furthermore, the utilization of target data in UDA enhances the accuracy

improvement to 1.78% for L
g

RNA
and to 2.28% for L

g

RNA
+ Lc

RNA
, with the addition of Lmod

RNA

further elevating the average improvement to 2.48%.

As detailed in Section 3.2.2, the UDA learning objective is enhanced by two additional

loss functions: the adversarial domain loss Ld, which seeks to improve feature transferability

across domains, and the Information Maximisation loss LIM, aimed at reducing classification

uncertainty among target classes. In this specific context, Ld leads to a more substantial

improvement (2.71%), while LIM has a lesser impact on overall accuracy. However, it is

important to highlight that the combined effect of these two terms (Ld and LIM) varies

depending on the specific task and benchmark, with some experiments demonstrating more

significant benefits from LIM.
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Method Verb@1 Noun@1 Action@1 ∆ Acc.

Source only 46.79 26.79 18.29 -

DG

L
g

RNA
49.53 27.50 18.91 1.36

L
g

RNA
+Lc

RNA
50.75 27.92 19.81 2.20

UDA

L
g

RNA
49.98 27.79 19.44 1.78

L
g

RNA
+Lc

RNA
50.46 28.49 19.77 2.28

L
g

RNA
+Lc

RNA
+Lmod

RNA
49.94 29.48 19.87 2.48

LRNA+Ld 50.59 29.38 20.04 2.71

LRNA+Ld +LIM 50.82 29.19 20.05 2.73

Table 3.3 Ablation on different loss components. ∆ Acc. is the average accuracy improvement for

the verb, noun, and action metrics. Best in bold and the runner-up underlined.

Multi-modal adaptation capabilities. Another interesting question is whether the pro-

posed method facilitates effective integration of multiple modalities in the final decision-

making process, and if leveraging multiple modalities also enhances the domain adaptation

capabilities of the model.

Table 3.4 presents a comparison of results obtained from experiments using pairs of

modalities versus all three modalities together. It reveals that using all three modalities not

only surpasses the performance of any pair of modalities but also demonstrates superior

generalization capabilities. This is evidenced by an improved delta compared to the Source

Only scenario (2.73%) versus the best two-modality improvement, achieved with Flow +

Audio (2.06%). These findings indicate that our method is successful in combining different

modalities to boost both the overall accuracy and the generalizability of the derived features.

Modality drop. In Table 3.5, we present an experiment designed to explore the impact

of modality imbalance during training. Specifically, we examine the scenario in which a

modality is “unexpectedly” lost at inference time, without the training strategy being designed

to accommodate such a possibility. This situation, also discussed in (Gong et al., 2023), is

significant because constraints at inference time—such as power, computational, or privacy

constraints, or anomalies in an input device—might prevent the use of all modalities.

The core concept of our method is to enable the model to learn from different modalities

equitably by re-balancing their contributions. Although it is evident that an unexpected

loss of a modality results in decreased accuracy, we hypothesize that the influence of RNA
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Method Verb@1 Noun@1 Action@1 ∆ Acc.

RGB + Flow

Source Only 44.80 25.35 16.33 -

Our (DG) 45.95 26.65 16.94 1.02

Our (UDA) 47.64 26.49 16.91 1.52

RGB + Audio

Source Only 39.91 24.18 14.84 -

Our (DG) 42.04 25.54 15.67 1.44

Our (UDA) 42.26 26.45 15.98 1.92

Flow + Audio

Source Only 45.11 21.98 15.37 -

Our (DG) 48.87 23.44 16.49 2.12

Our (UDA) 48.42 23.51 16.71 2.06

RGB + Flow + Audio

Source Only 46.79 26.79 18.29 -

Our (DG) 50.75 27.92 19.81 2.20

Our (UDA) 50.82 29.19 20.05 2.73

Table 3.4 Modality ablation. Top-1 classification accuracies (%) on modality pairs on EPIC-Kitchens-

100 (Damen et al., 2022). ∆ Acc. is the average accuracy improvement for the verb, noun and action

metrics.

Method Verb@1 Noun@1 Action@1 ∆ Acc.

No Audio @ Test

Source only 41.61 21.91 13.07 -

DG 44.03 24.44 14.89 2.26

UDA (LRNA) 44.08 24.77 15.25 2.50

No Flow @ Test

Source only 30.58 20.33 10.63 -

DG 36.88 22.82 12.89 3.69

UDA (LRNA) 36.67 21.83 12.46 3.14

No RGB @ Test

Source only 37.69 17.99 12.41 -

DG 46.70 18.92 13.53 3.69

UDA (LRNA) 46.51 19.37 13.55 3.78

Table 3.5 Modality drop. All configurations are trained on all input modalities. At inference time,

we simulate the loss of a modality, resulting in large performance drops that RNA helps mitigate.
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serves to enhance the model’s resilience to such modality drops more effectively than the

Source Only model. The latter is less able to exploit the synergies between modalities and,

consequently, is more susceptible to the influence of dominant modalities. This hypothesis

is supported by the findings in Table 3.5, aligning with the insights from (Gong et al.,

2023). These findings illustrate distinct yet consistent impacts on Source Only when various

modalities are omitted at test time, notably significant declines in accuracy compared to the

data in Table 3.3. Moreover, these results indicate that RNA’s balancing effect may assist the

model in mitigating the adverse effects of a missing modality by optimizing the combined

contribution of the remaining modalities.

3.4 Conclusion

This chapter presents a strategy for tackling the challenge of multi-modal domain generaliza-

tion and adaptation. Our approach is inspired by the observation that discrepancies in the

marginal distributions of modalities can profoundly impact the training process, resulting

in sub-optimal performance and disparities in feature norms. To address these issues, we

introduce the Relative Norm Alignment (RNA) loss, designed to re-balance the norms of

features extracted across different domains and modalities, thereby enhancing overall accu-

racy. In UDA scenarios, this loss is synergized with adversarial domain loss and Information

Maximization to boost feature transferability and regularization in the target domain. Our

empirical findings demonstrate that the RNA method either surpasses or is on par with

various state-of-the-art methods across egocentric action classification tasks, confirming its

efficacy and versatility. Our method stands out for its simplicity and minimalistic design,

facilitating easy integration into diverse architectures and settings without necessitating intri-

cate adjustments. This inherent flexibility positions RNA as a viable option for real-world

scenarios characterized by multi-modal data. Future research will delve into expanding

RNA’s utility and adaptability across a broader spectrum of domains and modalities. It

will focus on overcoming issues related to imbalanced data distributions and will explore

potential synergies with other techniques aimed at mitigating domain shifts and enhancing

generalization.

A limitation we observed stems from the fact that in many real-world scenarios, data

distributions are significantly imbalanced, which leads to reduced accuracy for the tail

classes (Buda et al., 2018). Research illustrates how this imbalance results in uneven norms

of classification weights per class (Guo and Zhang, 2017; Kim and Kim, 2020), as well as

imbalanced norms of features per class (Li et al., 2022a; Wu et al., 2017). In developing our
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method, we hypothesized that equalizing the norms per class would also positively affect

the re-balancing of the classifier’s weights for the tail classes. However, our experimental

findings reveal that this anticipated effect does not occur. This revelation opens avenues for

future research to integrate this goal into RNA as an additional component for re-balancing

the classifier’s weights.



Chapter 4

Vision and Language for Domain

Generalization

The previous chapter focuses on a Domain Generalization (DG) setting, where the domain

gap between the source and target domains is mainly due to differences in the environments

where the activities occur, though still limited to “cooking” activities. In fact, until now,

research efforts in DG have predominantly addressed generalization across visual domain

shifts (Damen et al., 2018; Li et al., 2017a; Munro and Damen, 2020a; Planamente et al.,

2022b; Torralba and Efros, 2011). These studies have sought to understand how models

can be adapted to perform accurately across diverse visual environments that they were not

specifically trained on. While valuable, this approach to DG has mainly focused on variations

in appearance, lighting, or background across datasets.

In this chapter, we delve into the concept of scenario shift, a relatively unexplored

dimension of DG. Scenario shift involves situations where the same action — such as cutting,

moving, or assembling — is carried out in completely different contexts or activities. This

introduces variations not just in the visual domain but in the functional context of the action,

including changes in the tools used, the objects being interacted with, and even the ultimate

goals and expected outcomes of these actions. We also investigate the impact of location

shift, another critical but underexplored factor in DG. Location shift recognizes that the same

action can be executed differently across various geographic and cultural contexts, influenced

by local customs, available materials, and environmental conditions.

To facilitate our analysis, we introduce a specialized dataset named ARGO1M. This

collection features 1.1 million action clips spanning 60 different classes, sourced from 73

unique scenario/location combinations.
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By combining video data with its associated narrations, we can leverage the complemen-

tary nature of visual and language information. The visual content offers insights into the

physical actions and interactions, while the textual descriptions enrich this understanding

by providing a semantic layer, clarifying motivations, contexts, and relationships. This

dual-source approach facilitates a more comprehensive understanding of the video’s content,

improving the model’s ability to generalize across different domains and contexts.

The work presented in this chapter led to the publication of one work:

• Plizzari, C., Perrett, T., Caputo, B., & Damen, D. (2023). What can a cook in Italy

teach a mechanic in India? Action Recognition Generalisation Over Scenarios and

Locations. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (pp. 13656-13666).

Online Resources: [Paper], [Project page]
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4.1 Introduction

A notable distinction between human intelligence and artificial intelligence lies in the re-

markable human capacity for generalization. Consider observing the action of “cutting”

as executed by a chef in Italy; we can instinctively recognize the same action when it is

performed in a geographically distinct location, such as India, despite never having physically

visited the location. Furthermore, our cognitive abilities allow us to identify actions across

novel scenarios. For instance, we can understand a mechanic cutting metal, even if we have

no prior experience with the tools they are using.

This challenge is encapsulated in the concept of domain generalization (Zhou et al.,

2022), which describes a scenario where a model, trained on a specific set of labeled data,

struggles to apply its learning to a different, unseen data distribution during inference. The

gap between these distributions is termed as domain shift. Research in domain generalization

has largely focused on navigating visual domain shifts (Damen et al., 2018; Li et al., 2017a;

Munro and Damen, 2020a; Planamente et al., 2022b; Torralba and Efros, 2011).

This work delves into the concept of scenario shift, wherein the same action occurs

within different activities, thus influencing the tools used, the objects interacted with, and

the ultimate goals and behaviors. For instance, the act of “cutting” could involve various

tools (such as scissors, knives, or saws) and objects (ranging from paper and vegetables to

wood), depending on the context, whether it be in a kitchen, a workshop, or an art studio,

each presenting unique challenges for recognizing the action.

Moreover, we explore the notion of location shift, acknowledging that identical actions

may be performed differently across diverse geographic and cultural contexts, shaped by

local traditions, available resources, and environmental conditions.

In Figure 4.1, we illustrate the action “cut” being performed with a knife in cooking

( ), with pliers in construction ( ), and with scissors in arts and crafts ( ). The choice of

tools is not restricted to a particular scenario and can vary between locations — for instance,

as depicted in Figure 4.1, scissors are used to cut seaweed sheets while cooking in Japan.

Optimal generalization would involve understanding the essence of “cutting” as the act of

dividing an object into two or more sections, independent of the tool used or the setting.

Such generalization capabilities could facilitate the recognition of metal being “cut” by a

mechanic in India using an angle grinder (Figure 4.1, Test), showcasing successful domain

generalization.



4.1 Introduction 85

Fig. 4.1 Problem statement. Problem statement and examples from the ARGO1M dataset illustrate

that the same action, e.g., “cut”, can be executed differently depending on the scenario and location

where it takes place. Our objective is to generalize such that we can recognize the same action within

a new scenario, unseen during training, and in an unseen location, for instance, a Mechanic ( ) in

India ( ).

Our research is made possible by the recent release of the Ego4D dataset (Grauman et al.,

2022), which provides egocentric footage from across the world. We have created a specific

dataset for action generalization, named ARGO1M. This dataset comprises 1.1 million action

clips across 60 classes, originating from 73 unique scenario/location pairings.

To address the challenges presented by ARGO1M, we introduce a novel approach for

domain generalization. Our method models each video as a weighted combination of other

videos within the same batch, which may belong to different domains. This technique

is termed Cross-Instance Reconstruction (CIR). Through the process of reconstruction,

CIR learns to extract video features that can be generalized across various domains. The

supervision of CIR involves both a classification loss and a video-text association loss,

enabling it to effectively learn domain-invariant features through language. The classification

loss guides the model to accurately predict classes of actions within the video content, while

the video-text association loss strengthens its ability to link visual content to corresponding

textual descriptions. This dual strategy helps the model capture the relationships between

video and language, thereby improving its ability to generalize across different domains.

To summarize, the contributions of this chapter are:

• We curate the Action Recognition Generalization dataset (ARGO1M) utilizing videos

and narrations from Ego4D (Grauman et al., 2022). This dataset, ARGO1M, stands as
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the first dataset designed to evaluate action Generalization across both scenario and

location shifts, making it the most extensive domain Generalization dataset for both

images and videos to date (Section 4.3).

• We present CIR, a domain generalization approach that leverages Cross-Instance

Reconstruction along with video-text pairing to learn generalizable representations

(Section 4.4).

• We evaluated CIR on the proposed ARGO1M, demonstrating that it consistently

surpasses both baseline models and recent domain generalization techniques across 10

test sets (Section 4.5).

4.2 Background

In this section, we review existing datasets for Domain Generalization (DG) and existing

approaches performing cross-instance reconstruction tasks. Note that DG aims to generalize

to any unseen target domain, without having access to data from that target domain during the

training phase (Zhou et al., 2022). This is different from the Domain Adaptation approach,

where unlabeled target domain samples are accessible during training (Kim et al., 2021a;

Munro and Damen, 2020a; Song et al., 2021a). For a more comprehensive discussion on the

distinctions between these two approaches, we direct readers to Section 4.3.

Domain Generalization (DG) datasets. Table 4.1 provides a detailed comparison of

various vision datasets that have been curated for the purpose of domain generalization

research. These existing image datasets predominantly feature a stylistic variation across

their contents. Datasets such as PACS (Li et al., 2017a), Office-Home (Venkateswara et al.,

2017), and DomainNet (Peng et al., 2019) include a diverse range of common objects

depicted in different artistic styles including photos, paintings, clipart, cartoons, and sketches.

This approach to dataset composition illustrates the exploration of stylistic shifts within the

data, showcasing common objects and categories represented across a variety of artistic

expressions (Li et al., 2017a; Peng et al., 2019; Venkateswara et al., 2017), as well as across

different datasets (Torralba and Efros, 2011). The concept of location shift has been explored

in (Beery et al., 2018), which contains images of animals captured in a variety of geographical

settings.

In videos, domain shifts are characterized by various factors including cross-dataset

variations (Chen et al., 2019), transitions from synthetic to real environments (Chen et al.,
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Samples Domains

Dataset # Samples # Cls # Train # Test Domain Shift
Im

ag
es

PACS (Li et al., 2017a) 9,991 7 3 4 Style

VLCS (Torralba and Efros, 2011) 10,729 5 3 4 N/A

OfficeHome (Venkateswara et al., 2017) 15,588 65 3 4 Style

TerraIncognita (Beery et al., 2018) 24,788 10 3 4 Loc

DomainNet (Peng et al., 2019) 586,575 345 5 6 Style

V
id

eo
s

UCF-HMDB (Chen et al., 2019) 3809 12 1 2 N/A

Kinetics-Gameplay (Chen et al., 2019) 49,998 30 1 2 Realism

MM-SADA (Munro and Damen, 2020a) 10,094 8 2 3 Loc

EPIC-Kitchens (Damen et al., 2022) 48,139 86 11 1 Time Gap

ARGO1M 1,050,371 60 54-64 10 (Scenario, Loc)

Table 4.1 Datasets for DG. ARGO1M offers combined scenario and location shifts, and is the largest

DG dataset in terms of # of samples and # of domains.

2019), changes in viewpoint (Choi et al., 2020a), geographical location differences (Munro

and Damen, 2020a), and even the effects of time progression (Damen et al., 2022).

ARGO1M is 21× larger than any existing video DG dataset and 1.8× larger than any

image DG dataset previously reported. Critically, ARGO1M introduces the concept of

scenario shift. This involves testing the generalization of models not just across different

locations but also across a wide range of scenarios, featuring an unprecedented scale of

domain diversity with up to 64 training domains and 10 test domains.

Cross-Attention for Reconstruction. The approach of predicting masked tokens within a

video has become a widespread technique in many representation learning methods (Feicht-

enhofer et al., 2022). (Feichtenhofer et al., 2022) randomly mask out space-time patches in

videos and train an autoencoder to reconstruct them. They show that this method can learn

strong spatiotemporal representations from videos with almost no domain-specific bias. Our

method differs from these strategies by focusing on reconstruction using other videos within

the same batch. This idea of cross-instance attention, where query instances are reconstructed

from examples of each class, has seen application in few-shot learning (Doersch et al., 2020;

Perrett et al., 2021). In the work of (Perrett et al., 2023), instances for few-shot classes are

reconstructed from samples belonging to head classes. This has been shown to improve

performance on long-tail video recognition. Similarly, in cross-modal retrieval (Patrick et al.,

2020), reconstruction through cross-attention aids in enhancing video-text representations via

a caption generation task. Specifically, each video’s caption is reconstructed as a weighted

combination of other support videos’ visual representations.

Unlike these previous approaches, our method is unique in that it reconstructs each video

as a learned weighted mixture of videos from various domains. This introduces a novel
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narration: 01:55 #C C trims 

the plant stem with the pruner 

in his right hand

location: unict 

scenario: gardening 

narration: 00:39 #C C stirs food

location: utokyo 

scenario: cooking 

narration: 27:17 #C C shuffle cards

location: bristol 

scenario: playing board games 

narration: 05:56 #C C unwraps 

the black tape with his hands

location: cmu 

scenario: car mechanic

Fig. 4.2 Samples from Ego4D. Each video clip is associated to a timestamp and narration, the

geographic location where the video was captured, and a scenario.

aspect to the domain generalization challenge, as it allows to learn robust representations

that can better generalize to unseen domains.

4.3 ARGO1M Benchmark

In this section, we describe how we curated the ARGO1M dataset from videos within the

Ego4D dataset (Grauman et al., 2022).

Ego4D Background. The Ego4D dataset (Grauman et al., 2022) comprises unedited egocen-

tric videos amounting to 3,670 hours, recorded in eight countries outside the US and five US

states. These videos encapsulate a diverse array of everyday life situations, such as playing

cards, cooking, and car repair. Each video comes with metadata detailing its geographic

location and the scenario depicted. The majority of the videos focus on a single scenario,

although 14.9% are noted to include multiple scenarios. Narrations at the timestamp level

are available within each video, outlining the actions and object interactions of the person

wearing the camera. An example of such a narration is “#C C puts the scraper down” at the

timestamp of 3.70 seconds. Some examples of video clips from Ego4D and the associated

metadata are shown in Figure 4.2.

ARGO1M scenarios. The high-level scenario descriptions in Ego4D are often in free-form

and sometimes absent. We exclude Ego4D videos lacking a scenario description (7.4% of

the total videos). From the 136 free-form scenario descriptions provided by Ego4D, we

select 62 that offer a significant diversity and volume of videos. We omit those that are

redundant or not indicative of a distinct activity, such as “Talking” or “On a screen”. This

process yields a collection of 6,813 videos, accounting for 83.1% of the videos associated

with at least one scenario. Videos identified as encompassing multiple scenarios are also

excluded. Subsequently, we manually categorize the free-form descriptions into 10 distinct
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Scenario Ego4D Descriptions

Cooking BBQing/picnics, Baker, Cooking, Making coffee, Outdoor cooking

Building Carpenter, Fixing something in the home, Handyman, Making bricks, Jobs related to

construction/renovation company (director of work, tiler, plumber, electrician, handy-

man, etc)

Arts and crafts Crafting/knitting/sewing/drawing/painting

Cleaning Car/scooter washing, Cleaning / laundry, Cleaning at the gym, Community cleaning,

Daily hygiene, Household cleaners, Washing the dog / pet or grooming horse

Mechanic Assembling furniture, Bike mechanic, Blacksmith, Car mechanic, Fixing PC, Getting

car fixed, Labwork, Maker Lab (making items in different materials, wood plastic and

also electronics)- some overlap with construction etc. but benefit is all activities take

place within a few rooms, Scooter mechanic, Working at desk, Biology experiments

Gardening Doing yardwork / shoveling snow, Farmer, Flower picking, Gardener, Gardening,

Potting plants (indoor)

Playing Assembling a puzzle, Gaming arcade / pool / billiards, Playing darts, Playing board

games, Playing cards, Playing games / video games, Practicing a musical instrument

Shopping Clothes and other shopping, Grocery shopping indoors, Working in milktea shop,

Working in outdoor store

Sport Attending sporting events - watching and participating in, Baseball, Basketball, Bowl-

ing, Climbing, Cycling / jogging, Football, Going to the gym - (exercise machine, class,

weights), Golfing, Hiking, Playing badminton, Roller skating, Rowing, Swimming in a

pool/ocean, Working out at home, Working out outside

Knitting All videos from Arts and crafts scenario, where at least one narration contains keywords

related to knitting activities.

Table 4.2 Closed-form scenarios for ARGO1M, and corresponding Ego4D free-form descriptions.

scenarios: Cooking ( ), Building ( ), Arts and Crafts ( ), Cleaning ( ), Mechanic ( ),

Gardening ( ), Playing ( ), Shopping ( ), Sport ( ), and Knitting ( ). For instance,

the descriptions “Car mechanic”, “Getting the car fixed”, and “Bike mechanic” are grouped

under Mechanic. The clustered scenarios are detailed in Table 4.2.

ARGO1M video clips. Each chosen video comes with detailed timestamp-level narrations

that describes the actions and object interactions of the person wearing the camera. For

instance, the narration “#C C puts the scraper down” is noted at the 3.70s timestamp. We

selected narrations from annotator_1, focusing exclusively on actions performed by the

camera wearer, indicated by narrations tagged with #C, while disregarding actions by external

actors, which are marked with #O. Additionally, we employed a series of heuristics to filter

out videos with inaccurately provided scenario metadata by Ego4D. This process involved

pinpointing a set of keywords expected to be present in narrations corresponding to the

scenario across the videos. We kept videos whose narrations included these scenario-specific

keywords that we manually identified, resulting in a refined collection of 6,358 videos (93%

of the videos from the designated scenarios) with 1,637,810 narrations. The narrations in

Ego4D are accurately synchronized with the videos, thanks to a pause-and-narrate annotation
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Fig. 4.3 Per-class distribution. The frequency (on a log scale) of the 60 classes within ARGO1M

is depicted across scenarios (top) and locations (bottom), with percentages indicated in the legend.

Within each bar, both scenarios and locations are linearly.

method, as reported in the Ego4D paper and by other studies (Lin et al., 2022). To confirm

this, we manually annotated the start times of actions in a small sample and observed an

average discrepancy of 0.6s between our noted action start times and the provided narration

timestamps, and a 0.9s difference for their conclusions. This precision enables us to consider

the narration timestamp as the beginning of the clip, and the timestamp of the subsequent

narration as the clip’s endpoint. Following previous works, where action boundaries may

be loosely defined as long as they encapsulate the pertinent action (for example, as seen in

Kinetics (Carreira and Zisserman, 2017)), we consider these boundaries adequate for both

training and evaluating action recognition models.We next describe how clips are associated

with class labels.

ARGO1M action classes. Action classes are obtained from the verbs in Ego4D narrations

using the spaCy (Honnibal and Montani, 2017) tool. Narrations are parsed to identify verbs

and nouns, with verbs considered as potential actions. These verbs are then categorised

according to the taxonomy from EPIC-KITCHENS-100 (Damen et al., 2022), albeit with

some modifications to accommodate the broader spectrum of activities captured in Ego4D.

For instance, similar actions such as “take” and “pick” are consolidated into a single class.
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Fig. 4.4 ARGO1M feature distribution. UMAPs (Uniform Manifold Approximation and Projection)

for ARGO1M features showcase the distribution across scenarios (left), locations (center), and for

three specific action classes (right). To demonstrate the alignment across these three dimensions, the

same projection is utilized across all three UMAP plots.

Actions that are ambiguous, e.g. “adjust”, or that do not involve interaction with the

environment, e.g. “look at”, are omitted. Additionally, actions that occur too infrequently

for effective domain generalization training are excluded. This curation results in a final set

of 60 action classes (shown in Figure 4.3) including 1,050,371 instances. The distribution

exhibits a long-tailed pattern, with each action class occurring across a variety of scenarios

and locations, as illustrated in Figure 4.3. On average, each class is represented in 8 different

scenarios and 11 distinct locations. Thus, ARGO1M comprises 1,050,371 video clips sourced

from 5,894 videos, representing 42% of all clips within Ego4D and 61% of all videos selected

from the dataset for this study.

In summary, ARGO1M contains 1,050,371 video clips. Each video clip is captured in a

given scenario (out of 10) and geographic location (out of 13), with associated text narration

and action class (out of 60). For example, the caption, “#Camera wearer (C) cuts the lemon

strand.” is associated to a clip recorded in “Italy” and capturing “Gardening” scenario, with

associated action label “cut”.

ARGO1M feature distribution. Figure 4.4 offers an insight into the feature distribution

of all samples within ARGO1M, highlighting variations across scenarios (left), geographic

locations (center), and action classes (right). For better visual clarity, in the action class

diagram, we selectively depict 3 out of the 60 classes and categorize the rest under others.

These features, derived from a SlowFast network (Feichtenhofer et al., 2019) that was

pre-trained on Kinetics (Carreira and Zisserman, 2017), are visualized using UMAP.

There is noticeable evidence of scenarios clustering according to different locations, for

example, the Playing scenario (indicated by a green cluster on the right side of the feature
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map) spans various locations (United Kingdom, Minnesota, and Indiana), and locations

clustering around different scenarios, such as Minnesota (highlighted by a yellow cluster

on the right), which includes multiple scenarios, predominantly Cleaning and Shopping.

This observation suggests that scenario and location shifts cannot be handled independently

or disentangled easily. Therefore, considering (scenario, location) pairings as distinct test

domains more accurately reflects the intricacies of combined scenario/location shifts.

Although clusters based on scenarios and locations are distinguishable, action classes

appear more dispersed across the map. This dispersion is exemplified by the actions “take”,

“cut”, and “wash”, which are all widely scattered across the feature space. This dispersion

underscores the complexity inherent in the generalization task at hand.

ARGO1M Splits. We curated 10 distinct train/test splits to assess generalization across both

scenarios and locations. These 10 test splits are manually chosen to ensure coverage of all

scenarios. For each scenario, we identify the location with the highest number of samples to

create a test split that allows for a robust evaluation.

With a given pair of scenario and location (Sc, Lo), the corresponding training split is

designed to exclude all samples related to the scenario (Sc) as well as those from the location

(Lo). This methodology ensures a thorough generalization challenge by excluding examples

from that scenario and location from the training set. Later in this section, we demonstrate

that these 10 splits showcase a variety of combined scenario/location shift characteristics,

highlighting the complexity of the generalization task at hand.

The selected test splits and their [number of samples] are: Gardening in Pennsylvania

(Ga, US-PNA1) [16,410], Cleaning in Minnesota (Cl, US-MN) [22,008], Knitting in India

(Kn, IND) [13,250], Shopping in India (Sh, IND) [11,239], Building in Pennsylvania (Bu,

US-PNA) [99,865], Mechanic in Saudi Arabia (Me, SAU) [11,700], Sport in Colombia (Sp,

COL) [16,453], Cooking in Japan (Co, JPN) [82,128], Arts and crafts in Italy (Ar, ITA)

[36,812], Playing in Indiana (Pl, US-IN) [17,379].

ARGO1M Domain Shift analysis. We analyze the effects of scenario and location shifts

within the 10 test splits of ARGO1M by varying the inclusion of samples from the test

scenario and/or location in the training set. Throughout these experiments, we utilize

Empirical Risk Minimization (ERM), which is standard cross-entropy training (refer to

Section 4.5 for comprehensive experimental details). This preliminary analysis aims to shed

light on the domain shift present in ARGO1M.

1We use ISO country codes and US state codes.
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(a) Accuracy without samples from the test scenario

or location (Sc, Lo) as well as (Sc, Lo)∪(Sc, Lo)

and (Sc Lo).

(b) % of drop recovered when adding examples from

either scenario (Sc, Lo) or location (Sc, Lo).

Fig. 4.5 ARGO1M domain shifts. Analysis of scenario and location shifts on ARGO1M.

Initially, we adopt the default setting (1), where samples from neither the test scenario nor

the location are included in the training set, denoted as (Sc, Lo), with the overline indicating

exclusion from the training split. This is different from cases where (2) the training split

incorporates samples featuring either the test scenario or location, but not both, indicated

as (Sc, Lo)∪(Sc, Lo), and (3) samples from both the test scenario and location are present,

indicated as (Sc, Lo). As illustrated in Figure 4.5a, performance improves from (1) → (2),

with a more significant improvement observed from (2) → (3). This progression underscores

the challenges in generalization when neither the test scenario nor location is represented

during training.

Next, we examine the individual contributions of scenario and location shifts to the

observed performance degradation. We explore the extent of recovery against (3) when

incorporating training samples from either the test scenario (Sc, Lo) or location (Sc, Lo).

Figure 4.5b shows that the influence of scenario and location shifts varies significantly across

the test splits. For instance, in the (Sh, IND) split, including the test scenario shopping yields

no improvement, while incorporating the location India proves beneficial. In contrast, for

(Ar, ITA), integrating arts and crafts mitigates 40% of the performance decline, whereas the

location offers no advantage. This variation indicates the distinct challenges posed by both

scenario and location shifts, with our 10 test splits providing a variety of cases to investigate

these dynamics.
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4.4 CIR: Cross-Instance Reconstruction

We introduce Cross-Instance Reconstruction (CIR) as a technique to represent an action by a

weighted combination of actions from diverse scenarios and locations. In this section, we

outline the inputs to our method and detail its specifics. We then describe the training process

and the inference strategy used.

Proposed Setting. Each training instance consists of a video clip v, accompanied by a

free-form text narration t, and an action class label y, denoted as (v, t,y). For testing purposes,

the only requirement is the input video clip, from which the action label is predicted. We use

ŷ to denote the predicted label.

To classify actions, we employ a composite function:

ŷ = h◦ f (v) (4.1)

Here, f represents an encoder that extracts a video representation suitable for domain

generalization, and h is an action classifier operating on that representation.

In addition to the the cross-entropy loss Lc applied to h, we also train f utilizing two

types of losses: a cross-modal loss and an additional classification loss.

Cross-Instance Reconstruction. The core idea behind cross-instance reconstruction (CIR)

is to encourage cross-domain representations of actions, with domains defined as scenarios

and locations. Through this approach, the representations become domain-generalizable as

they reconstruct the same action using samples from other domains.

We adopt a learn-to-reconstruct approach for any given video clip using other video

clips from a randomly sampled batch, referred to as the support set S . We reconstruct all

video clips in the batch jointly at feature level. Consequently, each video clip is included in

the support set for every other clip within the same batch. Before delving into the training

objectives, we first explain the reconstruction process.

We learn two projection heads, designated as the query and key heads, Q and K, consistent

with standard cross-attention methods (Vaswani et al., 2017), and implement a layer norm L.

The correlation between each pair of video clips, vi and v j, in the training batch is computed

as:

ci j = L(Q( f (vi))) ·L(K( f (v j))) (4.2)
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Fig. 4.6 CIR. A video clip and its corresponding narration are shown alongside the support set of

other clips from the batch. Video f (v) and text g(t) embeddings are derived using trained encoders

built upon a frozen model. The cross-entropy loss Lc, along with two Cross-Instance Reconstruction

(CIR) objectives Lrt and Lrc, are minimized during training. For Lrt, query Q and key K projections

for clips within the batch are developed, with subsequent self-masking. The weights obtained are

applied to f (v), and the reconstructed ·v is aligned with its corresponding narration. For Lrc, the

reconstructed ·v′ undergoes classification through the classifier h. During inference, only the video

classifier h is utilized.

The computed weights ci j undergo a softmax operation and are self-masked to prevent trivial

reconstructions from the same sample. The reconstructed representation ·vi is the result of a

weighted sum of all embeddings in its support set, based on the weights ci j:

∀i : ·vi =
∑

j∈S

exp(ci j) f (v j)
∑

k∈S exp(cik)
(4.3)

We apply the weights directly to f (v), which is analogous to using the identity matrix for the

value head in traditional attention mechanisms.
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Training CIR. Figure 4.6 provides an overview of CIR, which we next describe in more

detail. Our goal is for the reconstructions to learn to generalize and then backpropagate

this capability to the video encoder f (Eq. 4.1). We introduce two types of reconstruc-

tions, each driven by a distinct objective. The video-text association reconstruction (·v in

Figure 4.6) leverages text narrations, thus enriching these cross-instance reconstructions

with the semantic description of the video clip. Meanwhile, the classification reconstruction

(·v′ in Figure 4.6) is designed to identify the clip’s action class. The former aims to recon-

struct the specific instance of the action depicted in the video, whereas the latter focuses on

cross-domain action level reconstructions.

For the video-text association reconstruction ·vi, we employ contrastive learning to

align ·vi closely with the text narration embedding associated with its video, for example,

“He turns the lawn mower”. Within a batch of video-text pairs and their corresponding

reconstructions B = {(vi,·vi, ti)}
B
i=1

, we define the objective using Noise Contrastive Estima-

tion (Oord et al., 2018) to focus on both reconstruction-text and text-reconstruction pairings.

Particularly, the reconstruction-text loss considers the reconstruction ·vi as the anchor and

the other text narrations in the batch as negatives, expressed as:

Lr→t(·vi,g(ti)) = −
1

B

B
∑

i

log
exp(s(·vi,g(ti))/Ä)

B
∑

j
exp
(

s(·vi,g(t j))/Ä
)

(4.4)

where s(·, ·) denotes cosine similarity, g represents the text encoder, g(ti) the encoded text

narration, and Ä a learnable temperature parameter. Conversely, the loss Lt→r treats g(ti) as

the anchor with other reconstructions acting as negatives. These components are illustrated

in Figure 4.7. Together, they constitute our reconstruction-text association loss Lrt =Lr→t +

Lt→r.

Note that we avoid pairing this reconstruction with the video embedding f (vi), opting

instead for the text narration g(ti). This is because the video embedding could convey domain

knowledge (i.e., scenario and location), potentially biasing the reconstruction towards videos

from the same scenario or location. Instead, the associated narration provides an instance-

level description of the action, guiding the reconstruction more effectively.

Our classification reconstruction ·v′
i

serves as the input for the classifier h, enabling it

to identify the action class such that ŷ′ = h(·v′). This process is guided by a cross-entropy

loss, referred to as Lrc, indicating its role in classifying reconstructions. The classifier’s

weights for videos and reconstructions are shared to maintain consistency.
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Fig. 4.7 Video-text association. The reconstructed clip ·v′
i

(violet) is matched with its text representa-

tion. The reconstruction-to-text loss Lr→t treats ·v′
i

as the positive sample and other text narrations as

negatives, while the text-to-reconstruction loss Lt→r considers other reconstructions ·v′
j

as negatives.

Furthermore, for this particular reconstruction, we calculate weights using cross-product

attention: c′
i j
= f (vi) · f (v j), effectively replacing c with c′ in Eq. 4.3. Consequently, we do

not introduce separate query and key projections for this task. The rationale and impact of

these choices are further examined in Section 4.5.2.

We integrate our two losses with the cross-entropy video classification loss Lc (detailed

in Section 4.4) to form our comprehensive training objective:

L =Lc+¼1Lrt +¼2Lrc. (4.5)

Here, ¼1 and ¼2 are weights assigned to the two reconstruction losses, balancing their

contribution to the overall training objective.

Inference. Once training is complete, f is capable of deriving domain-generalizable rep-

resentations that encapsulate action class knowledge while remaining free of domain bias.

Consequently, during the testing phase, only video clips vi from the test split undergo pro-

cessing by the encoder f and the classifier h. Narrations are not needed at this stage, and

there is no reconstruction process involved – meaning each clip is classified independently.



98 Vision and Language for Domain Generalization

4.5 Experiments

In this section, we evaluate the ability of CIR to generalize over scenarios and locations by

comparing it against baseline and state-of-the-art domain generalization methods adapted

for our setting. We then conduct ablation studies on its various components to understand

their individual contributions. Additionally, we provide qualitative examples to visualize the

effects of CIR.

Dataset and metrics. For performance evaluation, we conduct experiments on the 10 distinct

test splits outlined in Section 4.3. We report the top-1 accuracy for each test split, as well as

the average accuracy. We employ the validation set for selecting the optimal hyper-parameters

for each algorithm. For each split, the validation set constitutes a random 10% of the training

set, thereby excluding any examples from the test scenario or location. Crucially, the division

is made on a video basis, ensuring that all clips from a single video are collectively included

either in the training or in the validation sets. The performance on the split with the largest

training and validation set (Pl, US-IND) is used for hyper-parameter optimization.

Baselines. We initially compare our method with the Empirical Risk Minimization (ERM)

baseline (Vapnik, 1999), following standard practice in DG research (Carlucci et al., 2019;

Gulrajani and Lopez-Paz, 2020). This involves using cross-entropy loss (Lc) without in-

corporating a generalization objective. Subsequently, we compare our approach against six

Domain Generalization (DG) methods, each integrated with Lc during training.

Most DG methods necessitate domain labels during the training phase. Hence, we supply

these labels as needed and denote such methods with an asterisk (*). During testing, all

methods rely solely on video clip input, without any domain-specific information. Our

baselines, listed chronologically, include:

• CORAL* (Sun and Saenko, 2016): minimizes the distances between means and

covariances of video representations from different scenarios, as well as distances

between means and covariances from different locations.

• DANN* (Ganin et al., 2016): utilizes two fully connected layers to form an adversarial

network predicting the location, alongside a separate adversarial network for scenario

prediction.

• MMD* (Li et al., 2018b): similar to CORAL but utilizes MMD distances (Gretton

et al., 2012).
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• Mixup (Wang et al., 2020c): augments training data through linear interpolations of

samples and labels. Unlike CIR, Mixup only considers randomly selected video pairs

rather than reconstructing from all batch videos based on visual similarity. Additionally,

Mixup alters the output label, whereas CIR retains the original video class label.

• BoDA* (Yang et al., 2022b): aims to minimize distances between domains, similarly

to MMD, but with weights assigned based on both domain and class sizes to address

imbalance.

• DoPrompt* (Zheng et al., 2022): learns a unique domain prompt for each scenario and

location, which is then appended to visual features prior to classification.

Additionally, we provide the average random chance performance across 10 trials.

Implementation details. We utilize SlowFast features (Feichtenhofer et al., 2019), pre-

trained on Kinetics (Carreira and Zisserman, 2017), provided with the Ego4D videos (Grau-

man et al., 2022). The action representation combines three features into a 6912-D vector,

following the approach in (Zhou et al., 2018). These features are captured from the action’s

onset as associated with the narration, midway to the next action, and just before the begin-

ning of the subsequent action. For text features (512-D), we employ the frozen text encoder

from the pre-trained CLIP-ViT-B-32 model (Reimers and Gurevych, 2019).

The f encoder consists of two fully connected layers with a hidden dimension of 4096 and

an output dimension of 512, featuring a ReLU activation function and a Batch Normalization

layer (Ioffe and Szegedy, 2015). The g encoder is also comprised of two fully connected

layers, but with a 512 hidden dimension and a ReLU activation function. The dimensions of

the query and key embeddings for reconstruction are set at 128.

For all experiments and methods, we use a batch size of 128 and conduct training over

50 epochs with the Adam optimizer (Kingma and Ba, 2014). The learning rate for CIR is

set to 2e−4, with a decay by a factor of 10 at epochs 30 and 40. The coefficients ¼1 = 1 and

¼2 = 0.5 are used in Eq. 4.5. Training is completed in 8 hours on a single Nvidia P100 GPU.

4.5.1 Results

Table 4.3 demonstrates that CIR surpasses all prior approaches on every test split, with an

improvement of up to 4.9% and an average advantage of 2.1% over the second-best method.

When compared to the ERM baseline, CIR achieves an average improvement of 3.4%, and

improves by up to 7.7% on the best split. The extent of improvement varies across splits,
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Ga

US-PNA

Cl

US-MN

Kn

IND

Sh

IND

Bu

US-PNA

Me

SAU

Sp

COL

Co

JPN

Ar

ITA

Pl

US-IN

Mean

Random 08.00 10.64 09.13 14.36 09.55 13.04 08.35 10.13 09.86 15.68 10.84

ERM 20.75 22.35 18.69 22.14 20.73 23.51 18.97 24.81 22.75 23.29 21.80

CORAL* 22.14 22.55 19.07 24.01 22.18 24.31 19.16 25.36 23.89 25.96 22.86

DANN* 22.42 23.85 19.27 22.89 22.23 23.70 18.64 25.86 23.86 23.28 22.60

MMD* 22.42 23.60 19.66 24.46 22.08 24.64 19.59 25.87 23.84 24.78 23.09

Mixup 21.97 22.21 19.90 23.81 21.45 24.35 19.01 25.90 23.85 24.41 22.69

BoDA* 22.17 22.78 19.62 22.94 21.46 23.97 19.18 25.68 23.92 24.90 22.66

DoPrompt* 21.92 22.77 20.40 23.67 22.75 24.67 18.24 25.04 24.74 25.24 22.94

CIR (w/o text) 23.39 24.52 21.02 26.62 24.64 27.00 19.66 25.42 25.71 30.17 24.81

CIR 24.10 25.51 20.46 27.78 24.93 26.83 19.75 26.34 25.67 30.94 25.23

Table 4.3 Top-1 accuracy on ARGO1M. Best results are in bold, and the second-best results are

underlined (excluding CIR without video-text association loss, which is greyed out but included for

direct comparison to highlight strong performance even without narrations). ∗ indicates that domain

labels are required during training.

with the least significant gains observed in the more challenging splits—those with lower

ERM results, e.g., (Kn, IND) and (Sp, COL).

CIR does not rely on domain labels during training, which is a common strategy for

other methods (indicated by ∗ in Table 4.3). Instead, it leverages textual narrations. We also

present results for CIR without textual content (i.e., without Lrt) or domain labels, showing

CIR’s robust average performance even with less supervision compared to other strategies.

The second-highest performing method differs across splits, highlighting the problem’s

complexity and underscoring the necessity of multiple test splits for accurately evaluating

domain generalization techniques. Notably, MMD (Li et al., 2018b), a standard DG approach,

ranks second best overall, with newer methods finding it challenging to exceed its perfor-

mance. Techniques that strive to learn domain-invariant visual features, either by matching

distributions or through domain prompts, appear to struggle when faced with the scenario

shift introduced in ARGO1M. The success of CIR indicates that a reconstruction combined

with the use of text narrations offers an effective solution.

4.5.2 Ablations

CIR Ablation. CIR has two reconstruction objectives, and offers three architectural choices

for reconstruction, which are ablated in Table 4.4. For the two objectives, the one performing

the best differs per split, with the classification reconstructions (Lrc) performing better

on average (worse results are obtained when it is excluded). Both objectives significantly
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Cl

US-MN

Bu

US-PNA

Co

JPN

Ar

ITA

Pl

US-IN
Mean

CIR (ours) 25.51 24.93 26.34 25.67 30.94 26.68

−Lrt 24.83 24.80 25.06 25.38 29.50 25.91

−Lrc 23.13 23.53 25.87 24.95 26.59 24.81

−Lrt −Lrc 22.35 20.73 24.81 22.75 23.29 22.78

·v cross-product 25.66 24.84 25.42 25.41 30.67 26.40

·v′ learnt att. 22.58 22.55 25.85 24.53 25.35 24.17

·v = ·v′ 23.47 23.33 25.53 24.06 28.74 25.03

h , h′ 24.47 23.12 26.74 24.74 27.37 25.29

Table 4.4 CIR components. Ablation studies on CIR show the contributions of the two reconstruction

strategies and explore alternative design choices, illustrating their influence on the method’s effective-

ness.

SL SS OL OS
Cl

US-MN

Bu

US-PNA

Co

JPN

Ar

ITA

Pl

US-IN
Mean

6 6 : 6 25.01 24.86 25.73 25.99 30.69 26.46

6 6 6 : 25.00 25.05 26.07 25.62 30.98 26.55

6 6 : : 24.87 24.68 25.77 25.38 30.07 26.15

: 6 6 6 24.89 25.13 26.05 25.80 30.47 26.47

6 : 6 6 25.22 24.99 26.34 25.84 30.25 26.53

: : 6 6 25.17 24.97 26.36 25.61 30.31 26.48

6 6 6 6 25.51 24.93 26.34 25.67 30.94 26.68

Table 4.5 Effect of masking samples in the support set used for reconstruction. Columns indicate

whether the query can (6) or cannot (:) attend to samples from the Same Scenario/Location (SS, SL)

or Other Scenario/Location (OS, OL) based on the domains they belong to. Note that CIR (bottom)

does not use any masking.

outperform the baseline (- Lrc - Lrt) without reconstruction. We also ablate other decisions in

the reconstruction. Recall that ·v is obtained using learnt attention, while ·v′ utilizes cross-

product attention. We show the impact of reversing each of these decisions. Additionally,

we found that utilizing the same reconstruction for both (·v′ = ·v) and employing distinct

classifiers (h , h′) yield sub-optimal results.

Attention Masking. CIR reconstructs each clip from others in the batch. On average, a

batch contains 11% of videos from the same scenario, 9% from the same location, and 3%

from both. We do not limit the samples to attend to, except for avoiding reconstruction

from the clip itself. In Table 4.5, we explore possible masks for Same Scenario/Location

(SS, SL) or Other Scenario/Location (OS, OL). The results indicate that not applying any

mask yields the best performance on average, followed by results where the same/other

scenario is masked. Masking proves beneficial in certain splits; for instance, excluding

samples from different locations enhances performance for (Ar, ITA). While we do not
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Fig. 4.8 Effect of scenarios and locations. Accuracy improvement of CIR over ERM using the same

training: (1) neither the test scenario nor location appears in training (Sc,Lo), (2) w/ scenario samples

((Sc,Lo), (3), w/ location samples(Sc,Lo)), and (4) w/ both ((Sc, Lo)∪(Sc, Lo)).

employ masking (thus avoiding the need for domain labels), we highlight its potential when

additional information about the domain shift is available.

Effect of scenarios and locations on CIR. Figure 4.8 shows the top-1 accuracy improve-

ments achieved by CIR compared to ERM when both approaches have access to samples

from the test scenarios and locations during training. Four scenarios are analyzed: (Sc,Lo),

(Sc,Lo), (Sc,Lo), and (Sc, Lo)∪(Sc, Lo). CIR exhibits an enhancement over ERM in

every scenario and across all splits, with the most significant improvement noted in the

most challenging scenario, (Sc,Lo), where both scenarios and locations are not seen during

training.

Support-Set Size. In Table 4.6 we show the impact of the batch size on CIR which influences

the size of the support set used for reconstruction. CIR is relatively stable over a range of

sizes, with slightly worse performance for very small or very large batch sizes.

Text models. We compare the CLIP-ViT-B-32 text encoder with other pre-trained language

models in Table 4.7. The results are similar across different language models.

CIR leverages text narrations to mitigate domain shifts. Table 4.8 demonstrates the

advantages of this strategy, indicating that simply integrating video-text association into

existing methods is not enough. We introduce the text association loss Lrt, which acts directly

on video representations (i.e., without reconstruction), to current DG methods. We evaluate

MMD, which ranks as the second-best performer following CIR and requires domain labels.

Additionally, we present results for ERM and Mixup, which do not need domain labels,
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Cl
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US-IN
Mean

16 23.90 22.99 26.04 23.87 28.46 25.05

64 23.89 24.36 26.54 24.98 28.97 25.75

128 25.51 24.93 26.34 25.67 30.94 26.68

256 25.00 24.97 26.52 25.96 30.61 26.61

2048 24.66 24.73 25.48 25.53 30.27 26.14

Table 4.6 Ablation on batch size. Effect of varying the batch size on CIR.

LM
Cl

US-MN

Bu

US-PNA

Co

JPN

Ar

ITA

Pl

US-IN
Mean

CLIP-ViT-B-32 (Radford et al., 2021) 25.51 24.93 26.34 25.67 30.94 26.68

all-mpnet-base-v2 (Song et al., 2020) 25.15 25.01 26.30 25.73 30.71 26.58

all-miniLM-L6-v2 (Wang et al., 2020b) 25.08 25.36 26.36 25.45 30.50 26.55

Table 4.7 Ablation on text models. Comparison of pre-trained text models.

T
Cl

US-MN

Bu

US-PNA

Co

JPN

Ar

ITA

Pl

US-IN
Mean

ERM 22.35 20.73 24.81 22.75 23.29 22.78

MMD* 23.60 22.08 25.87 23.84 24.78 24.03

Mixup 22.21 21.45 25.90 23.85 24.41 23.56

CIR 24.52 24.64 25.42 25.71 30.17 26.09

ERM 6 23.32 23.30 25.84 24.31 27.32 24.82

MMD* 6 23.69 23.43 25.90 24.27 27.66 24.99

Mixup 6 23.94 22.94 25.45 24.71 28.52 25.11

CIR 6 25.51 24.93 26.34 25.67 30.94 26.68

Table 4.8 Impact of adding text to existing DG methods. T indicates text supervision. * requires

additional domain label supervision.

offering a comparable level of supervision to CIR. Notably, CIR without text outperforms

other methods with text.

Ablation on ¼ values. We evaluate how CIR results vary as we change ¼1 and ¼2, which

weigh Lrt and Lrc respectively. For hyper-parameter selection, we chose the ¼1 and ¼2

values achieving the best results on the validation set (¼1=1, ¼2=0.5). In Figure 4.9, we plot

performance as we vary both ¼1 and ¼2 on the test splits. When ¼1 variations are shown, ¼2

is set to 0.5, and vice-versa. Overall, performance is more sensitive to ¼2 than ¼1. In both

cases, we observe a performance drop for lower and higher values.
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Fig. 4.9 Ablation on ¼ values. Average Top-1 accuracy of CIR, over test splits, as we vary the loss

weighting hyper-parameters. Left: Varying ¼1 (left) while keeping ¼2 = 0.5; as well as varying ¼2

(right) while keeping ¼1 = 0.5.

Fig. 4.10 analysis of attention during reconstruction. (a) Normalized sum of attention weights over

SS, OS, SL, OL. (b) Cross-scenario attention (c) Cross-location attention.

4.5.3 CIR analysis

Figure 4.10 analyzes how videos attend to other videos during the reconstruction-text as-

sociation process. (a) demonstrates that videos predominantly focus on different scenarios

and locations, helping to develop representations that generalize across domain shifts. (b)

shows attention between scenarios, with strong self-attention (e.g., cooking) alongside cross-

attention (e.g., sport attending to knitting). Some scenarios distribute their attention equally

across all scenarios (e.g., playing). (c) depicts attention between locations, where fewer

strong entries suggest that knowledge from all locations contribute positively.

Figure 4.11 presents selected examples of our reconstructions during training. It show-

cases the top-5 support set videos with the highest weights in the reconstruction process

(right) in comparison to the query video (left), as identified through CIR (ci j, Section 4.4).

CIR is able to attend to samples belonging to other scenarios, other locations, and both. For
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Fig. 4.11 CIR weights for reconstruction. Five examples of cross-instance reconstruction from

the training set. The query video is shown on the left. For each video, we show its corresponding

scenario/location/narration. For each query, the bar shows the score of the j-th support video (colour-

matched) with white indicating the sum of the remaining scores from other samples.

instance, in the top row, a painting video from the ‘Building’ scenario in Italy is reconstructed

using examples from ‘Arts and Crafts’ in India and ‘Building’ in Italy.

4.6 Conclusion

In this chapter, we introduce the task of Action Recognition Generalization across differ-

ent scenarios and locations. We hypothesize that it is feasible to learn actions in such a

way that they can generalize to new scenarios (e.g., the action ‘cut’ in cooking could be

applied to recognize ‘cut’ performed by a mechanic) and new locations (e.g., the action ‘cut’

observed in Italy could be recognized as ‘cut’ in India). To tackle this new problem, we
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introduce ARGO1M a collection of more than 1 million action clips sourced from 73 unique

scenario/location combinations.

We propose a generalization method which uses vision and language. It reconstructs a

video using samples from various scenarios and locations, aiming for the learned represen-

tation to generalize across test splits featuring diverse scenarios and/or locations. Recon-

structions are supervised by a classification loss and video-text association loss, enabling the

learning of domain-invariant features. CIR consistently outperforms baselines, supported by

thorough analysis and ablation studies.

One notable limitation is the dataset’s long-tail distribution, which can hinder perfor-

mance. This imbalance occurs not only at the level of individual actions but also in the

diversity of scenarios and locations represented. Future work could focus on addressing

these disparities by developing methods that enhance the representation of underrepresented

classes. Extending the analysis to zero-shot action recognition tasks could be particularly

valuable, especially given the recent advancements in Large Language Models (LLMs). This

approach would test the model’s capability to recognize actions it has not been explicitly

trained to identify, demonstrating its adaptability and potential for broader applicability in

real-world scenarios where training data for specific actions might be limited or unavail-

able. Furthermore, the potential for defining varying hierarchies of actions opens up new

avenues for refinement. While our current approach categorizes actions into broad verb

macro-categories, there exists the possibility to delve into more fine-grained sub-categories.

For example, considering “trimming” as a specific instance within the broader “cut” category

could enable a more detailed and precise understanding of actions. This finer granularity

could significantly enhance the model’s ability to distinguish between closely related actions,

contributing to more accurate action recognition.



Chapter 5

Event-Based Data for Egocentric Vision

Chapter 3 and Chapter 4 address cross-domain issues by combining RGB information with

traditional modalities such as optical flow, audio, and text. In this chapter, we analyze how a

novel modality can be introduced in this context: event data from event-based cameras.

In egocentric vision, RGB sensors are by far the richest source of visual information.

However, the performance of RGB-based action recognition models significantly decreases

when the training and test data distributions do not match (David et al., 2010). This issue

primarily arises from the tendency of appearance-based networks to focus on background

cues and object textures, which are often unrelated to the action being performed and

can vary greatly across different environments. Consequently, appearance-independent

modalities, such as optical flow encoding motion, have emerged as the preferred choice

in contemporary egocentric vision systems, as evidenced by the outcomes of recent EPIC-

KITCHENS challenges (Damen et al., 2019, 2020, 2021). However, computing optical flow

in this context, using algorithms like TV-L1 (Zach et al., 2007), involves solving resource-

intensive optimization problems, leading to considerable test-time computation overheads

(Crasto et al., 2019).

Event-based cameras, on the other side, have been recognized for their suitability in

online settings (Delbruck, 2016; Gallego et al., 2020a). Their high pixel bandwidth minimizes

motion blur, and their extremely low latency and power consumption make these innova-

tive sensors especially effective in egocentric scenarios, where fast motion can adversely

affect RGB-based systems. Furthermore, since they capture differential information, event

sequences can reveal more about the dynamics of a scene than its appearance, presenting

a compelling alternative to RGB frames for focusing on motion. Despite these benefits,
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previous research has not explored how to leverage their motion sensitivity in egocentric

vision, leaving these devices underutilized in such applications.

In this chapter, we introduce N-EPIC-Kitchens, a novel dataset that, for the first time,

facilitates the use of event data for egocentric action recognition. Since N-EPIC-Kitchens is

derived through event data simulation, we also present an analysis of the sim-to-real domain

gap for event-based data, focusing on the simpler task of object recognition. This analysis

aims to uncover how effectively models trained on simulated data can generalize to real-world

scenarios, providing valuable insights into the transferability and applicability of event-based

models in practical applications.

The work presented in this chapter led to the publication of three works:

• Plizzari*, C., Planamente*, M., Goletto, G., Cannici, M., Gusso, E., Matteucci, M., &

Caputo, B. (2022). E2 (go) motion: Motion augmented event stream for egocentric

action recognition. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition (pp. 19935-19947).

Online Resources: [Paper], [Project page]

• Cannici*, M., Plizzari*, C., Planamente*, M., Ciccone, M., Bottino, A., Caputo, B.,

and Matteucci, M. (2021). N-ROD: A Neuromorphic Dataset for Synthetic-to-Real

Domain Adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (pp. 1342-1347).

Online Resources: [Paper], [Project page]

• Planamente*, M., Plizzari*, C., Cannici*, M., Ciccone, M., Strada, F., Bottino, A. &

Caputo, B. (2021). Da4event: towards bridging the sim-to-real gap for event cameras

using domain adaptation. IEEE Robotics and Automation Letters, 6(4), 6616-6623.

Online Resources: [Paper]
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5.1 Introduction

Among various sensors, RGB sensors stand out as the most comprehensive source of visual

information. Nonetheless, the effectiveness of RGB-based action recognition models signifi-

cantly diminishes when there is a distribution mismatch between training and testing datasets

(David et al., 2010). This problem, often referred to as environmental bias (Kim et al., 2021b;

Munro and Damen, 2020a; Planamente et al., 2022b; Sahoo et al., 2021b; Song et al., 2021b),

arises from RGB-based networks’ reliance on the specific environment where activities are

captured. Such dependency hinders their capability to accurately recognize actions in new

or unseen settings. The core of this issue lies in the tendency of appearance-based models

to overly focus on background elements and object textures, which often do not correlate

with the action taking place and can vary widely across different settings. Consequently,

modalities that do not depend on appearance, like motion, have gained favor in egocentric

vision systems, as demonstrated in recent EPIC-KITCHENS challenge outcomes (Damen

et al., 2019, 2020, 2021). Nevertheless, the optical flow utilized in these systems, derived

from RGB frames through the solution of intricate optimization problems (e.g., the TV-L1

algorithm (Zach et al., 2007)), entails considerable computational efforts during testing

(Crasto et al., 2019).

Event-based cameras, in contrast, have demonstrated particular suitability for online

settings (Delbruck, 2016; Gallego et al., 2020a). Their high pixel bandwidth leads to reduced

motion blur, while their extremely low latency and low power consumption make these inno-

vative sensors especially advantageous in egocentric scenarios, where rapid movement often

affects negatively RGB-based systems. Additionally, because they convey only differential

information, event sequences provide more insight into the dynamics of a scene than its

appearance, positioning them as a viable alternative to RGB frames for focusing on motion.

Yet, despite the benefits, previous research has not explored leveraging their sensitivity to

motion in egocentric vision, where these devices remain unused.

As a first effort in this direction, we introduce N-EPIC-Kitchens, a novel dataset that,

for the first time, facilitates the use of event data for egocentric action recognition. It is

an expansion of the large-scale EPIC-KITCHENS dataset (Damen et al., 2018), which is

particularly attractive due to its diversity of environments (kitchens) and the availability of

multiple modalities, namely RGB, optical flow, and audio. These characteristics enable an

analysis of the previously mentioned environmental bias and a comparison of event data with

well-established modalities.
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On the proposed N-EPIC-Kitchens, we introduce two approaches to leverage the intrinsic

motion characteristics of event data in this context to solve the action recognition task. The

first approach, which we call E2(GO), enriches conventional 2D and 3D action recognition

frameworks with modifications at layer level, aiming to exploit the motion-rich attributes

of event data. The second approach, E2(GO)MO, facilitates the transfer of motion signals

from optical flow to event data. This transfer is obtained through a teacher-student network,

allowing the exhaustive use of the computationally demanding offline TV-L1 flow in the

training phase, while bypassing its calculation during test time.

We acquired N-EPIC-Kitchens using the setup proposed in (Munro and Damen, 2020a),

which is capable of generating reliable simulated event data. However, this approach gives

rise to an open research question: how well do simulated data generalize to real data? To

address this question, we analyzed the sim-to-real domain gap in event-based data through a

simple object classification task. Particularly, we show how standard unsupervised domain

adaptation techniques can be used to help models trained on simulated data transfer effectively

to real event data obtained from an event-based camera.

We summarize our contributions as follows:

• We introduce N-EPIC-Kitchens, the first event-based egocentric action recognition

dataset, which unlocks the possibility to explore event data in this context (Sec-

tion 5.2.1);

• We propose E2(GO) and E2(GO)MO, two event-based approaches tailored at empha-

sizing motion information captured by event data in egocentric action recognition

(Section 5.2.3);

• We benchmark N-EPIC-Kitchens on popular action recognition architectures, showing

the performance of event data alone and when combined with traditional RGB and

optical flow modalities. We show that event data can surpass RGB in challenging

unseen environments and remain competitive in known environments. This suggests

that utilizing event data is a feasible alternative and warrants further investigation in

this direction (Section 5.2.4).

• We perform an analysis on the sim-to-real domain gap for event based data and show

how standard domain adaptation techniques can be used to address it (Section 5.3);
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5.2 Event-Based Data for Egocentric Action Recognition

In this section, we introduce event-based data for egocentric action recognition. In Sec-

tion 5.2.1, we describe the N-EPIC-KITCHENS datasets and our methodology for collecting

it. We then present two approaches to leverage the intrinsic motion characteristics of event

data in this context (Section 5.2.3). Finally, we benchmark the N-EPIC-KITCHENS dataset

using popular action recognition architectures in Section 5.2.4.

5.2.1 N-EPIC-KITCHENS

Thanks to their focus on capturing only changes in the scene, event-based cameras are

particularly efficient in egocentric scenarios. They drastically reduce the volume of data that

needs to be processed and acquired, prevent motion blur artifacts, and provide fine-grained

temporal information. However, so far, only a limited number of datasets have been made

freely available (de Tournemire et al., 2020; Gehrig et al., 2021; Hu et al., 2016; Perot et al.,

2020). Despite active efforts in the field to increase their availability, as evidenced by the

recent release of event-based versions of ImageNet (Kim et al., 2021c; Lin et al., 2021), there

are relatively few datasets for human activity recognition currently available. As depicted in

Figure 5.1, most of these focus on action or gesture recognition (Amir et al., 2017; Hu et al.,

2016; Innocenti et al., 2021; Miao et al., 2019) in controlled settings where both the camera

and the background remain static, limiting the use of event-based cameras in this scenario.

To highlight the benefits and potential of event-based cameras in egocentric scenarios, as

well as to explore their complementary and equivalent capabilities in comparison to other

modalities, we have extended the EPIC-KITCHENS (EK) dataset (Damen et al., 2018)

to the event modality. This dataset stands as a comprehensive repository of egocentric

videos, showcasing diverse modalities and environments. Drawing on the approach outlined

in (Munro and Damen, 2020a), we selected the three kitchens within EPIC-KITCHENS with

the highest number of training action instances, designated as D1, D2, and D3 (Figure 5.2).

We evaluated performance across the eight most prevalent action categories: ‘put’, ‘take’,

‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’, and ‘pour’.

In the following sections, we first briefly recall the operating principles of DVS cameras.

We direct the reader to Section 4.5 for a more detailed overview. Then, we outline the

approach used to generate N-EPIC-KITCHENS and highlight its benefits.
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Fig. 5.1 Dataset comparison. N-EPIC-KITCHENS vs existing event-based action classification

datasets in the literature (Amir et al., 2017; Hu et al., 2016; Lungu et al., 2017; Miao et al., 2019;

Vasudevan et al., 2020).

Event-Based Vision Data. Pixels in DVS cameras are independent and respond to changes

in the continuous log brightness signal, unlike those in a standard RGB camera. An event is a

tuple ek = (xk,yk, tk, pk), specifying the time tk, the location (xk,yk), and the polarity pk ∈ −1,1

of the brightness change (brightness increase or decrease). An event is triggered when the

magnitude of the log brightness at pixel u = (xk,yk)T and time tk changes by more than a

threshold C since the last event at the same pixel, as described by the following equation:

∆L(u, tk) = L(u, tk)−L(u, tk −∆tk) ⩾ pkC. (5.1)

Therefore, the output from an event camera is a continuous stream of events described as a

sequence E = {(xk,yk, tk, pk)|tk ∈ Ä}, where Ä represents the time interval.

N-EPIC-KITCHENS generation. We utilize ESIM (Rebecq et al., 2018), a recent event

camera simulator, to augment the EPIC-KITCHENS dataset with event modality data. Given

that videos in EPIC-KITCHENS are limited at 60 frames per second, significantly lower than

the microsecond temporal resolution of event cameras, we initially upscale them to a higher

frame rate. For this purpose, we employ Super SloMo (Jiang et al., 2018), recognized for its

exceptional capability to produce frames at any desired temporal precision. This process is

guided by the adaptive sampling strategy outlined in Vid2E (Gehrig et al., 2020), which we

adopt for extracting event streams. Subsequently, we apply Voxel Grid (Zhu et al., 2019a), a
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D1 D2 D3

Fig. 5.2 Multi-modal setting. RGB (top), optical flow (middle) and Voxel Grid representation

(bottom) from the same action (“cut") on the three different kitchens (D1, D2, D3).

technique for encoding event data into frame-like representations, to transform the sparse

and asynchronous event data into a tensor format. This enables the application of standard

convolutional neural network architectures for learning tasks.

5.2.2 Challenges of evaluating event data

The fundamental challenge in assessing event data for egocentric action recognition lies in

its novel application to egocentric vision, unlike other modalities. To establish a benchmark

in this area, we evaluate four distinct aspects of event-based modeling. Our evaluation begins

by considering performance on both seen and unseen test sets; “seen” refers to performance

on the same kitchen used for training, and “unseen” pertains to performance on a different

kitchen. We aim to assess both scenarios within our experiments. The performance on seen

sets offers insight into the modality’s potential maximum effectiveness, while performance on

unseen sets tests the model’s ability to encode domain-invariant features, thereby indicating

its applicability in real-world scenarios. Given that the efficacy of different modalities

can significantly vary based on the chosen architecture for processing (Price and Damen,

2019), we benchmark event data using three highly regarded architectures in egocentric

action recognition: TSM (Lin et al., 2019), TSN (Wang et al., 2018), and I3D (Carreira

and Zisserman, 2017). We utilize a proven method for transforming event streams into

a frame-like format, which has been demonstrated to integrate seamlessly with standard
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CNNs (Planamente et al., 2021; Stoffregen et al., 2020). Finally, we suggest promoting the

modeling of motion features by implementing channel-level attention.

Event Representation. Since event cameras capture scenes through sparse encodings, these

encodings must be transformed into intermediate representations for processing. Various

representations have been proposed, from bio-inspired (Cannici et al., 2019; Cohen, 2016;

Maass, 1997a) to more practical approaches. Frame-like representations are the most widely

used methods, as they can be easily integrated with existing network architectures. Among

the available options (Cannici et al., 2019, 2020b; Deng et al., 2020b; Gehrig et al., 2019a;

Innocenti et al., 2021; Lagorce et al., 2016; Sironi et al., 2018a; Zhu et al., 2019a), we

selected Voxel Grid (Zhu et al., 2019a) for its demonstrated superiority in cross-domain

applications (Planamente et al., 2021; Stoffregen et al., 2020). This representation generates

a B-channel image by dividing time into B distinct intervals:

xE(x,y,b) =

N∑

k=1

pkkb(b− t∗k), (5.2)

where b represents the channels, t∗
k

denotes the timestamps scaled to the range [0,B−1], pk

is the polarity, and kb(a) =max(0,1− |a|).

Backbone Architectures. To evaluate how event data perform across different network

designs, we investigate two popular 2D-CNN approaches, TSM (Lin et al., 2019) and

TSN (Wang et al., 2018), alongside a 3D-CNN approach, I3D (Carreira and Zisserman,

2017). The first two are based on a 2D-CNN architecture, but while TSN (Wang et al., 2018)

primarily utilizes late fusion for temporal modeling, TSM (Lin et al., 2019) employs shift

modules to facilitate the exchange of channel information across adjacent frames. On the

other hand, I3D (Carreira and Zisserman, 2017) is a purely 3D-CNN model that inflates its

filters and pooling kernels into the temporal dimension. Currently, the literature does not

identify a definitive best approach, as different modalities may respond more effectively to

one method over the others without a clear pattern.

The importance of motion. Environmental biases are typically addressed in egocentric

vision systems by using complementary modalities, often those that do not rely on appearance.

Optical flow is usually the best performer in egocentric action recognition tasks (Damen

et al., 2018, 2022; Wang et al., 2018), because it (i) focuses on moving content, namely

the action being performed, (ii) preserves the edges of moving objects, and (iii) disregards
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background information. In this section, we discuss that while event cameras are sensitive

to moving edges and capable of ignoring static information, they only partially embody the

three key advantages of optical flow mentioned above. Indeed, due to camera movement,

these sensors still capture events associated with the background. This observation leads us

to consider learning from optical flow to enhance our ability to filter out less discriminative

data.

5.2.3 Learning from motion

While a traditional RGB frame captures only static information, frame-based representations

utilized for event data also incorporate motion information along the channel dimension (refer

to Section 5.2.2). Specifically, each temporal channel encapsulates the motion occurring in

the interval between two consecutive frames of the video recording. We introduce two distinct

methods to enable standard CNNs to leverage this motion information. The first method,

which we name E2(GO), directly models temporal relationships by integrating channel

operations that facilitate motion analysis. The second approach employs a student-teacher

strategy, named E2(GO)MO, aimed at guiding the network to focus on motion features during

training through the use of a pre-trained optical flow-based network. We elaborate on these

two methodologies in the sections that follow.

E2(GO): event motion

To allow standard CNNs to capture motion information from event data, we propose two

straightforward yet effective architectural modifications. These modifications enhance the

ability to extract temporal inter-channel relationships in 2D and 3D CNNs. We refer to these

modifications as E2(GO)-2D and E2(GO)-3D, respectively.

E2(GO)-2D. A common approach involves capturing temporal correlations at the video

level by modeling dependencies among different frames (Kazakos et al., 2019b; Lin et al.,

2019). Event representation uniquely encodes continuous motion, effectively describing

micro-movements within the scene. This characteristic motivates us to extend the practice

of modeling temporal relations to include learning short-range correlations between event

channels.

To achieve this, we leverage Squeeze and Excitation modules (Hu et al., 2018) to enhance

the attention correlations between channels in 2D CNNs. Given an event volume xE ∈
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R
T×H×W×F as input, where T represents the temporal dimension, H×W denotes the feature

map resolution, and F indicates the number of channels, we denote fE
i
∈ RT×Hi×Wi×Ci as the

features extracted from the i-th layer of the network. The first step involves “squeezing” the

spatial information content of fE
i

into a channel descriptor by aggregating features along the

spatial dimensions,

zE
sq = Fsq( f E

i ) =
1

H×W

H∑

i=1

W∑

j=1

( fi
E(i, j)) (5.3)

where zE
sq ∈ R

T×1×C . Following this is an “excitation” operator, which receives zE
sq as input

to produce a scaling vector s. This vector is used to modulate xE . The scaling vector s is

derived from zE
sq through two fully-connected layers, incorporating a bottleneck structure

that reduces the channel dimension C to C/r. Subsequently, s is applied to re-weight xE ,

yielding a modified feature vector x̃E that emphasizes discriminative motion features while

diminishing less informative ones. Consequently, x̃E captures the dynamic relationships

between different temporal channels, effectively modeling their dependencies as a result of a

self-attention mechanism on the channel dimension.

E2(GO)-3D. Similarly, we aim to leverage the capability of 3D CNNs to process temporal

information using a 3D kernel. Starting with the same input xE ∈ RT×H×W×F , traditional 3D

CNNs apply a 3D convolution across the dimensions of (T,H,W,F), producing an output

of shape (T ′,H′,W′,C). In our approach, we adapt the 3D convolution operator to work

with xE ∈ R(F·T )×H×W×1 by transposing the channel dimensions onto the temporal axis. This

convolution method directly addresses the micro-movements captured across the temporal

channels of the event representation, which might be overlooked when processed in the

channel dimension alone.

E2(GO)MO: learning from flow

Our objective is to train a network that utilizes both event data and optical flow data, thereby

eliminating the need to estimate optical flow during testing. Given a multi-modal input

X = (XE ,XF), where XE represents the event modality and XF represents the flow modality,

we denote their respective feature extractors by FE and FF , and the extracted features by

fE = FE(xE) and fF = FF(xF). Initially, we train the flow extractor FF using a cross-entropy

loss between the actual action labels ŷ and the predicted labels yF produced by a fully

connected layer on top of FF . Subsequently, we freeze the flow extractor FF and proceed to

train the event stream FE . This training involves a combination of the standard cross-entropy
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time

Fig. 5.3 Illustration of the proposed E2(GO)MO. Inputs xE from the event modality and xF from

the flow modality are directed to their respective feature extractors FE and FF . Knowledge from the

pre-trained (and frozen) teacher stream FF is transferred to the student stream FE , which is trained

using standard cross-entropy loss.

loss and a distillation loss, which is defined as the L2 norm difference between the features

fE and fF :

Ldist = ³||f
E − fF ||2. (5.4)

where ³ is a scaling hyperparameter. This loss encourages the features of the event stream

to align with those of the flow stream, compelling FE to mimic the behaviour of FF and

thereby enabling both to generate similar activations. It is important to note that optical flow

data are utilized exclusively during the training phase, and the teacher branch (flow stream)

is omitted during inference. This strategy leverages the benefits of the flow modality while

effectively circumventing its computational complexity during test. A visual representation

of E2(GO)MO is provided in Figure 5.3.

5.2.4 Experiments

In this section, we first introduce the experimental setup used. We then benchmark event data

and evaluate the performance of the proposed E2(GO) and E2(GO)MO models. We conclude
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the section with a discussion on the findings and a paragraph addressing the limitations of

our approach.

Experimental Setup

Input. Experiments involving the I3D model (Carreira and Zisserman, 2017) are carried

out by selecting one random clip from the video during training and five equidistant clips

during testing, which span the entirety of the video, following the methodology in (Munro

and Damen, 2020a). The number of frames in each clip is set to 16 for RGB and optical flow

modalities, and 10 for events. For architectures such as TSN (Wang et al., 2018) and TSM

(Lin et al., 2019), uniform sampling is employed, involving 5 frames uniformly selected

along the video’s duration. During testing, the approach involves using 5 clips per video,

in line with the procedure described in (Lin et al., 2019). The Voxel Grid representations

are bounded between −0.5 and 0.5, and all data modalities are rescaled and normalized to

align with the preprocessing requirements of the pretrained networks associated with each

adopted architecture. For all modalities, standard data augmentation techniques are applied,

as outlined in (Wang et al., 2016).

Implementation and training details. For the I3D model, we opted for the original

implementation as detailed in (Carreira and Zisserman, 2017). The TSN and TSM models

were constructed using a BN-Inception (Ioffe and Szegedy, 2015) and a ResNet-50 (He

et al., 2016) backbone, respectively. In the multi-modal experiments, we employed a

classic late fusion strategy, where prediction scores from different modalities are combined

through summation, and errors are backpropagated across all modalities. All models were

implemented using PyTorch (Paszke et al., 2017). The optimization was carried out using

SGD with momentum (Qian, 1999), starting with a learning rate ¸ of 0.01, a weight decay

of 10−7, and a momentum µ of 0.9. The networks were trained over 5000 iterations, with

a learning rate reduction to 1e−3 at iteration 3000. The experiments were conducted with

a batch size of 128 on four NVIDIA Tesla V100 16Gb GPUs. For the distillation loss, the

optimal hyperparameter ³ was determined to be 100. Regarding the evaluation protocol, for

seen scenarios, we trained on kitchen Di and tested on the same kitchen (Di → Di), where

i ∈ 1,2,3. Performance on unseen scenarios was evaluated by training on kitchen Di and

testing on kitchen D j, with i , j and i, j ∈ 1,2,3 (Di → D j).
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Model Voxel ch. Testing Seen (%) Unseen (%)

I3D 3
Clip 53.75 35.90

Video 55.54 37.52

TSN 3
Clip 58.81 34.65

Video 59.82 35.24

TSM 3
Clip 64.38 37.75

Video 65.93 38.23

Table 5.1 Accuracy on different architectures. Mean accuracy (%) over all Di → D j combinations

on I3D, TSN and TSM on both seen and unseen test sets.

Results

Event Analysis. In Table 5.1 we present the performance of event data across three promi-

nent action recognition architectures (refer to Section 5.2.2). Our findings indicate that

utilizing a 3-channel Voxel Grid representation yields the best results, and therefore, we

adopted this configuration for all subsequent experiments. When evaluating the performance

on both seen and unseen test sets, the TSM model emerges as the most effective, outper-

forming I3D, which shows slightly inferior results. One possible explanation for I3D’s

performance is its focus on processing only a limited segment of the video at a time, which

limits its ability to capture only local features when trained at the clip level. Conversely,

TSM is capable of capturing more global features as it operates on frames spanning the entire

video. The sub-optical of TSN is expected, as its method of frame aggregation does not

facilitate the modeling of temporal correlations. Thus, unless otherwise stated, we perform

video-level analysis and evaluate the proposed approaches on TSM and I3D backbones in all

of the following experiments.

Event vs RGB. In Table 5.2, we compare the performance of event data against the RGB

modality. Results indicate that event data can outperform RGB by up to 3% on unseen test

sets. This advantage can be attributed to the literature’s findings that appearance-based CNNs

are biased towards texture, leading to worse performance across different domains. However,

their robustness improves when there is an increased emphasis on shape bias (Geirhos

et al., 2018). We hypothesize that the primary reason for the superior performance of event

representations is their focus on geometric and temporal information rather than texture

variations, making them more invariant to domain changes. This principle also holds for

seen tests, where RGB-based networks tend to overfit by relying on domain-specific features.

Note that, until this point, event modalities were considered to lag behind RGB images in

purely visual tasks, as evidenced by the recent release of the N-ImageNet benchmark (Kim
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Modality Model D1 D2 D3 D1→ D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Seen (%) Unseen (%)

RGB I3D 53.67 61.12 60.70 34.50 35.70 34.94 36.46 33.93 38.37 58.49 35.65

Event I3D 50.32 58.33 57.99 37.27 39.12 32.98 36.52 35.68 43.56 55.54 37.52

Event E2(GO)-3D 50.52 62.99 60.11 38.07 38.71 35.02 38.49 36.73 45.53 57.87 38.76

RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97

Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23

Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33

Table 5.2 E2(GO) results. Accuracy (%) with respect to RGB using both I3D and TSM frameworks is

presented across all shifts, denoted by Di → D j, indicating training on Di and testing on D j, with Di

signifying training and testing on the same dataset. The top performances for both seen and unseen,

for each backbone, are in bold.

et al., 2021c), where the highest-scoring event architecture achieved only 48.94% accuracy,

significantly lower than the greater than 90% accuracy achieved by RGB models (Dai et al.,

2021; He et al., 2022; Pham et al., 2021; Zhai et al., 2022). In our study, however, we

demonstrate that event data can not only outperform RGB in challenging unseen scenarios

but also compete effectively in seen ones. This highlights the significant potential of event

data in enhancing egocentric vision applications.

E2(GO). In Table 5.2, we detail the performance of E2(GO)-2D and E2(GO)-3D. These

modifications prove particularly advantageous on unseen test sets, as they are designed

to improve temporal correlations. This enhancement enables the network to highlight

motion features that are informative for the action being performed while de-emphasising

those that do not correlate with the action. E2(GO)-3D improves by up to 2% on the

seen test set, whereas E2(GO)-2D achieves results that are on par with the baseline TSM

model. This discrepancy can be attributed to the inherent characteristics of 2D CNNs,

which, as frame-based techniques, depend significantly on visual signals. Although these

signals can be detrimental on different environments, they may prove beneficial in seen

scenarios. Conversely, the I3D model is innately more responsive to temporal correlations.

By extending its capacity for temporal reasoning to include micro-movements, it becomes

more effective in identifying discriminative features relevant to the action. This capability

results in higher accuracy, even when testing in the same environment, demonstrating the

potential of integrating enhanced temporal dynamics into action recognition models.

Multi-modal analysis. Table 5.3 demonstrates the synergistic effects of combining the

event modality with RGB and optical flow data in action recognition tasks. When integrated

with RGB data, the combination results in an improvement of up to 7% on seen test sets
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Model Streams Pretrain Seen (%) Unseen (%)

I3D Event Kinetics-400 (R) 55.54 37.52

E2(GO)-3D Event Kinetics-400 (R) 57.87 38.76

TSM Event ImageNet 65.93 38.23

E2(GO)-2D Event ImageNet 65.40 40.33

I3D Event+RGB Kinetics-400 (R) 59.12 38.13

E2(GO)-3D Event+RGB Kinetics-400 (R) 61.23 41.85

TSM Event+RGB ImageNet 71.88 39.92

E2(GO)-2D Event+RGB ImageNet 72.42 40.61

I3D Event+Flow Kinetics-400 (R) 60.48 44.47

E2(GO)-3D Event+Flow Kinetics-400 (R) 62.66 45.86

TSM Event+Flow ImageNet 72.26 46.89

E2(GO)-2D Event+Flow ImageNet 72.87 49.23

I3D RGB+Flow Kinetics-400 (R) 62.07 44.56

TSM RGB+Flow ImageNet 75.08 45.66

Table 5.3 Multi-modal results. Accuracy results (%) of the event modality when used in combination

to stardard RGB and optical flow. In bold the best result for each modality combination.

and 3% on unseen ones. However, the most significant performances are observed when

event data is paired with optical flow, with improvements reaching up to 7% on seen domains

and 9% on unseen ones. This result suggests that although both event data and optical flow

capture motion information, optical flow is more focused on the motion-relevant aspects,

often overlooking scene or object affordances. In contrast, event data retains valuable

information about object shapes, as illustrated in Figure 5.2. Therefore, combining event

data with optical flow appears to be more effective than pairing it with RGB, especially in

unseen domains where RGB’s reliance on appearance can be a disadvantage. Moreover, this

combination outperforms the conventional RGB+Flow approach, indicating that standard

event representations, which do not emphasize appearance features as strongly as RGB

does, can offer distinct advantages in action recognition tasks, particularly in enhancing

generalizability and robustness across different environments.

E2(GO)MO. In Table 5.4 we present the performance of E2(GO)MO in comparison to an

RGB-based TSM, which, according to our previous analyses, emerges as the most robust

architecture. To support our hypothesis that the proposed distillation technique is particularly

beneficial for leveraging motion features, we apply the same distillation mechanism to an

RGB-based stream, denoted in Table 5.4 as RGB+Ldist. Both the event and RGB streams

show performance improvements on unseen test sets (by +5.3% and +3%, respectively),
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Method Model D1 D2 D3 D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Seen (%) Unseen (%) Mean (%)

RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97 53.73

RGB + Ldist TSM 63.36 79.47 77.97 38.61 35.73 39.36 41.09 34.76 49.68 73.60 39.87 56.73 +3

RGB + Flow TSM 66.97 79.69 78.58 43.76 43.76 45.80 47.13 45.44 48.09 75.08 45.66 60.37

Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23 52.08

Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33 52.87

Event E2(GO)MO-2D 61.38 75.83 75.08 39.77 37.19 44.71 51.03 47.01 53.73 70.76 45.57 58.17 +5.3

Event + Flow E2(GO)-2D 65.11 77.58 75.91 42.12 41.80 48.20 53.50 51.85 57.91 72.87 49.23 61.05

Table 5.4 E2(GO)MO results. Accuracy (%) of E2(GO)MO w.r.t. the baseline on events (TSM)

and E2(GO)-2D. We compare E2(GO)MO with the same approach on RGB to validate the choice of

combining event and flow. In bold the best uni-modal, underlined the best multi-modal.

reinforcing the significance of motion information in real-world scenarios. However, the

E2(GO)MO model benefits significantly more from the distillation loss Ldist than the RGB

stream does, suggesting that event data encapsulates more motion-rich features compared to

RGB streams. This observation validates our premise regarding the motion-centric nature

of event data. Additionally, we compare these models against their respective multi-modal

benchmarks, which incorporate offline-computed optical flow during prediction—specifically,

RGB+Flow and E2(GO)+Flow. While neither model achieves its theoretical upper bound

performance, E2(GO)MO comes closer to matching the E2(GO)+Flow benchmark and even

surpasses the multi-modal performance of RGB+Flow. This outcome further advocates

for the utility of event data, highlighting its advantages in egocentric vision applications,

especially when the goal is to enhance motion understanding without relying solely on

standard RGB information.

Event vs. Optical Flow. Figure 5.4 illustrates the trade-off between accuracy and average

time per frame at test time on both seen and unseen data. We evaluate performance using two

methods of optical flow computation: the TV-L1 algorithm, computed offline as described in

(Zach et al., 2007), and the flow extracted from PWC-Net (Sun et al., 2018a), the latter being

among the most efficient end-to-end CNN models for flow estimation, striking a favorable

balance between time efficiency and accuracy. For these calculations, we utilize a NVIDIA

Titan RTX GPU and report on both the computation time of the inputs and the forward pass

time, excluding the time for data access. Additionally, we delineate the range within which

real-time action recognition is feasible, adopting the frame (sampling) rate threshold from

(Song and Godøy, 2016), which is deemed adequate for a motion tracking system. The

analysis reveals that while TV-L1 achieves higher accuracy, it does so at the expense of a

substantial extraction time of 488 ms, making it impractical for online scenarios. On the

other hand, when optical flow is estimated in real-time using PWC-Net, there is a significant
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Fig. 5.4 Accuracy vs time of RGB modality, E2(GO)MO, estimated PWCNet optical flow and TV-L1

optical flow on seen and unseen scenarios for one clip evalutation.

drop in performance (by up to 10% on seen tests and 8% on unseen tests). Furthermore, the

use of PWC-Net introduces the need for an additional network, thereby increasing the total

number of parameters (approximately 40M) and necessitating an extra stage of fine-tuning.

In contrast, our approach, which does not require the computation of flow at test time, allows

us to fully leverage the precision of more accurate optical flow methods during the distillation

process. As a result, E2(GO)MO, despite not explicitly utilizing flow during inference, still

manages to outperform PWC-Net in seen tests (by up to 6%) and matches its performance

on unseen tests. This outcome underscores the effectiveness of our method in balancing

accuracy and computational efficiency, making it a compelling option for real-time action

recognition in egocentric vision applications.

Discussion and limitations. The simulation of event camera data introduces an inevitable

sim-to-real domain shift, as current methods cannot perfectly replicate the behaviors of actual

event cameras (Planamente et al., 2021; Stoffregen et al., 2020). Despite this limitation,

research has demonstrated that simulated events possess sufficient robustness to generalize

effectively to real-world scenarios (Gehrig et al., 2020; Planamente et al., 2021; Stoffregen

et al., 2020). As we introduce event data into the domain of egocentric action recognition for



124 Event-Based Data for Egocentric Vision

the first time, our goal is to provide a direct comparison with established benchmarks in the

literature (Damen et al., 2018, 2022; Fathi et al., 2012b) and to position the event modality

as a competitive alternative to traditional modalities. This strategic choice motivates our

decision to simulate event data instead of creating a new first-person dataset from the ground

up.

In the next section, we delve into how simulated event data can be effectively adapted to

real-world scenarios using domain adaptation techniques. We aim to showcase the potential

of these techniques to mitigate the sim-to-real domain shift, ensuring that models trained on

simulated data can perform reliably on real event data. This exploration is set to highlight

the adaptability and applicability of simulated event data in practical egocentric vision tasks.
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5.3 Sim-to-Real Gap in Event-Based Data

Recently, new learning approaches that utilize standard computer vision algorithms on event

data have achieved competitive results compared to traditional methods (Gehrig et al., 2019b;

Maqueda et al., 2018). However, training these state-of-the-art deep learning algorithms

demands a substantial amount of data, a requirement that is currently limited by the novelty

and high cost of neuromorphic cameras. A practical solution to this data scarcity issue is the

use of event camera simulators (Rebecq et al., 2018), which can produce reliable simulated

event data. Yet, this solution prompts an important research question: how well do simulated

data generalize to real data? This challenge has been recently addressed in part by (Gehrig

et al., 2020) and (Stoffregen et al., 2020), who proposed methods to narrow the sim-to-real

gap by tweaking simulator parameters. These adjustments occur at the input level during

the data simulation phase, indicating a strategic approach to making simulated data more

reflective of real-world conditions.

While (Gehrig et al., 2020) and (Stoffregen et al., 2020) address the sim-to-real gap by

focusing on the generation of event data, we approach the issue from a domain adaptation

perspective, viewing it as a domain-shift problem. Unlike the well-known Synth-to-Real

shift, which concerns the visual appearance differences between rendered RGB images (ble)

and real RGB images, the challenge here involves a different kind of shift. Specifically, the

gap arises from the differing distributions of events in response to local brightness changes.

Simulators often overlook certain non-idealities that are inherent to real event cameras, such

as the minimum intensity change threshold required to trigger an event or the refractory

period of event pixels, which can vary across different event cameras.

In this section, we demonstrate how Unsupervised Domain Adaptation (UDA) techniques

can effectively bridge the Sim-to-Real gap for event cameras by aligning the feature distribu-

tions between the simulated source domain and the real target one. This alignment allows

neural networks to leverage both simulated data and real, unlabeled events during training.

We extend our analysis to the Synth-to-Real gap by comparing synthetic rendered images

and real images, each paired with corresponding simulated events, to investigate how the

simulated event modality is affected this shift and benefits from UDA techniques. To facilitate

this analysis, we introduce a specialized multi-modal dataset, N-ROD, which includes real

event data captured with an event camera, and data generated through simulation, paired

with real and synthetic images from ROD (Loghmani et al., 2020). We name our approach

DA4Events (DA4E), and illustrate the different domain shift we analyze in Figure 5.5.
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Fig. 5.5 Sim-to-Real gap in event-based cameras. DA4Events exploits unsupervised domain

adaptation techniques to solve this problem by acting at feature level. How else simulated events can

be used? We propose to use events in a real context, exploiting the complementarity with RGB data

to improve networks robustness.

5.3.1 Formulation

In the context of Unsupervised Domain Adaptation (UDA), our objective is to train a model

on a source domain S = {(xs
i
,ys

i
)}

Ns

i=1
, which contains Ns labeled samples with labels from

a known label space Ys, such that it also performs well on a target domain T = {xt
i
}
Nt

i=1
,

comprising Nt unlabeled samples from an unknown label space Yt. We operate under two

primary assumptions: (i) the source and target domains exhibit different distributions, denoted

as Ds ,Dt, and (ii) both domains share the same label space, meaning Ys =Yt. The final

goal is to align the source and target domain distributions by leveraging UDA techniques

outlined in Section 5.3.2, thereby enhancing the model’s ability to transfer from the source to

the target domain.

To demonstrate that the proposed approach is general, we focus on examining different

domain gaps affecting event generation. These settings impact in different ways the two

domain distributions Ds and Dt. We start by analysing the E-Sim-to-Real and RGBE-Synth-

to-Real shifts. While the first solely accounts for discrepancies in event generation, the

second entails a dual shift that also includes variations in the RGB space. Additionally, we

consider a simple variant termed RGB-Synth-to-Real, where the event generation process

is identical across both domains, with the sole discrepancy arising from a shift in the RGB

space. An overview is presented in Table 5.5, and a visual representation can be found in

Figure 5.6. In the next section, we provide a more detailed description of these shifts.
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Fig. 5.6 Domain shifts. Visualization of the three domain shifts studied in this chapter. Clusters of

symbols represent data in the RGB / events space, while arrows indicate event generations through

simulation (ESIM) or through an event camera (Event Camera).

Source Target

Setting Dataset RGB Event RGB Event

E-Sim-to-Real N-Caltech101 ESIM(RGBreal) EvCamera(RGBreal)

RGB-Synth-to-Real ROD Synth ESIM(RGBsynth) Real ESIM(RGBreal)

RGBE-Synth-to-Real N-ROD Synth ESIM(RGBsynth) Real EvCamera(RGBreal)

Table 5.5 Comparison between the different settings. We indicate as ESIM(·) the events ob-

tained through simulation (Rebecq et al., 2018) from either synthetic or real RGB images, and with

EvCamera(·) those obtained using a real event camera. We indicate Sim-to-Real and Synth-to-Real

in different colors, and highlight the corresponding shift in the right side of the table using the same

color.

E-Sim-to-Real shift. In this shift, our focus is solely on the differences within the event

generation process. Simulated events in the source domain, Es
sim

, are generated from an RGB

dataset using an event simulator, i.e., Es
sim
= ESIM(RGBs

real
), and paired with real events in

the target domain captured from the same RGB images using an actual event camera device,

i.e., Et
real
= EvCamera(RGBt

real
). An example of this shift is shown in Figure 5.7. Some

aspects of this shift have been partially addressed through the refinement of hyperparameter

selection in simulation methodologies (Gehrig et al., 2020; Stoffregen et al., 2020). We

utilize this scenario to examine the effectiveness of unsupervised domain adaptation (UDA)

methods in managing variations in the event generation process.

RGBE-Synth-to-Real Shift. This shift examines the combined effect of RGB rendering

and event simulation. Similar to the previous scenario, the target domain consists of event

streams captured with a real camera, namely Et
real
= EvCamera(RGBt

real
). However, in

this case, the source domain comprises simulated events derived from synthetic renderings,

Es
sim
= ESIM(RGBs

synth
). This particular configuration represents a double shift as the change

in event generation (ESIM → EvCamera) is coupled with that in RGB images (RGBs
synth

→



128 Event-Based Data for Egocentric Vision

(a) RGB image (b) Real events (c) Simulated events

Fig. 5.7 Real vs simulated events. Real and simulated events (voxel grid (Zhu et al., 2019a)) on a

Caltech101 sample.

RGBt
real

). We demonstrate that our methodology is adaptable enough to manage this shift

without any modifications to the general framework.

RGB-Synth-to-Real Shift. Finally, we explore a simplified scenario of the previous

setting where the shift in event generation is neutralized by simulating events for both the

source and target domains. The source events are thus simulated as Es
sim
= ESIM(RGBs

synth
),

and the target events as Et
sim
= ESIM(RGBt

real
). We employ this approach to investigate how

variations in the RGB domain impact on performance.

5.3.2 DA4Event: Domain Adaptation for Event Data

We consider a general multi-modal framework where both domains provide paired images

and events, i.e., (RGBs,Es) in the source domain and (RGBt,Et) in the target domain. Images

can either be captured by a real camera or obtained through rendering (Blender, 2018), while

events can be generated from an actual event-based camera or through event simulation (Re-

becq et al., 2018) starting from one of the two image domains. We transform the event

streams Es and Et into multi-channel event representations Rs
E

and Rt
E

, employing techniques

from the literature. When feasible, we use a window-based computation method to divide

the event stream into consecutive bins, extracting a representation from each to improve

performance, as evidenced by prior studies. This yields representations R
s,t

E
∈ RH×W×F ,

where the number of features F depends on the chosen representation and the number of bins

used.

These multi-channel event representations are fed into a feature extractor FE, compatible

with the UDA methods discussed earlier and shared between the source and target domains.

The source domain samples’ extracted features are then processed by a classifier G and a
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Fig. 5.8 Multi-modal DA architecture. Data coming from the source and target domains are

processed separately during training. Source, labelled, data is used for supervised classification in G,

while both target and source data are fed to the DABlock. Features are extracted from each modality

using different extractors FI and Fϵ , shared across domains, and then concatenated before prediction.

The dashed data path is finally removed, along with features concatenation, when just the event

modality is used.

domain adaptation block (DABlock), which also integrates target domain features for adapta-

tion. This DABlock encompasses the domain adaptation techniques detailed in a previous

section. Throughout training, the DABlock aims to minimize the primary classification loss

Ly, based on G’s predictions, alongside an auxiliary domain adaptation loss LDA, thereby

facilitating the regularization of the model towards effective domain adaptation.

MV-DA4Event: a Multi-View Approach. A common method for handling event data

involves aggregating the event stream E = {ei = (xi,yi, ti, pi)}
N
i=1

, which captures the spatio-

temporal dynamics of a scene over a temporal interval T , into a frame-based representation

RE ∈R
H×W×F . This transformation facilitates the processing of event data using conventional

convolutional neural networks (CNNs). Unlike standard RGB images that encode solely

spatial (static) information through the R,G,B channels, these frame-based event representa-

tions encompass temporal information. This is achieved by dividing the event sequence into

multiple intervals (or bins), similar to frames in a video sequence, to preserve temporal detail.

For example, in saccadic motion, a technique often employed to capture event data from

stationary planar images, the channels represent the camera’s response to different movement
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Fig. 5.9 MV-DA4E architecture. Top shows the process of extracting an event representation, taking

voxel grids (Zhu et al., 2019a) and three views as an example, while bottom details the proposed

multi-view architecture (MV-DA4E). Two unpaired random batches from source and target domains

are sampled and processed separately during training. When the multi-view approach is not used

(DA4E), event representations are fed as a single multi-channel tensor to the feature extractor F , and

multi-view pooling is removed. Notice that only source (labelled) data are fed to the classifier G,

while both target and source data are fed to the DABlock.

directions. Consequently, each temporal channel offers a distinct perspective of the observed

object, emphasising various features.

In computer vision and event-based processing, it is common to initialize CNNs with

weights pre-trained on ImageNet. However, for a k-channel representation, where k , 3, the

usual method involves replacing the first convolutional block with a new one and training it

from scratch. This approach might not only limit the utilization of the pre-trained model but

could also be detrimental in cross-domain scenarios. Literature suggests that the initial layers

of a network are often most impacted by domain shift, leading a network trained from scratch

on these layers to specialize too much on the source domain, hindering generalization to the

target domain. Conversely, transferring pre-trained layers allows the network to leverage

robust low-level features, enhancing adaptability.

Motivated by these considerations, we propose a multi-view strategy to preserve the first

pre-trained convolutional layer. This involves transforming the multi-channel event represen-

tation into three-channel images, or views, resulting in a representation R̃E ∈R
H×W×+F/3,×3. A

multi-view network has been specifically crafted, where each view is independently processed

by a feature extractor F . The collected set of features is then merged using a late-fusion

approach within a Multi-View Pooling (MVP) module, which applies average pooling to

produce a feature vector in RFout . This vector is subsequently utilized throughout the remain-

ing segments of the network. Given that the initial layers of the network are more prone to

domain-specific influences while the later layers encapsulate more task-specific knowledge,

we hypothesize that merging the different views in the network’s final stages, rather than at

the beginning, fosters enhanced generalization capabilities.
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Network architecture. In Figure 5.9 we present the architecture of our proposed network.

Events are initially generated using the ESIM simulator in the source domain and directly

captured from an event-based camera in the target domain. These events are divided into

B temporal bins, from which a sequence of event representations is derived, resulting in

a multi-channel volume RE with channels that are a multiple of 3. These representations

are then organized into group views, specifically, 3-channel frames that are interpreted as

images. These frames are processed in parallel through a shared ResNet feature extractor F .

The output features from this process are subsequently merged in the Multi-View Pooling

(MVP) module, which conducts average pooling both spatially and across the views for

features within the same domain, producing two distinct feature vectors for each domain.

The features from the source domain are utilized in G for making final predictions and in

the Domain Adaptation Block (DABlock), along with features from the target domain, to

facilitate domain adaptation. It is important to note that during training, two completely

random batches of source and target samples are selected without any matching constraints

between them.

UDA Algorithms

In this section we give a brief overview of the UDA methods applied within the DABlock of

our architecture.

Gradient Reversal Layer (GRL). The concept of GRL (Gradient Reversal Layer)

involves integrating Domain Adaptation (DA) into the feature learning process. This goal

is accomplished by simultaneously optimising the label predictor and a domain classifier,

which is tasked with determining whether a sample originates from the source or the target

domain (Ganin and Lempitsky, 2015b). The training process is designed to deceive the

domain classifier by maximising its loss through the use of a gradient reversal layer, thereby

promoting the extraction of domain-invariant embeddings.

Maximum Mean Discrepancy (MMD). The method proposed by(Long et al., 2015)

focuses on minimizing the Maximum Mean Discrepancy (MMD) between source and target

distributions. Given data from source and target distributions, xs ∈ S and xt ∈ T respectively,

MMD is defined as:

MMD2(S,T ) = sup
∥φ∥Hf1

∥∥∥Exs∼S[φ(xs)]−Ext∼T [φ(xt)]
∥∥∥2
H

(5.5)
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where φ is a mapping function that belongs to a reproducing kernel Hilbert spaceH . This

approach encourages the final layers of the network to generate features that are invariant

across domains.

Adaptive Feature Norm (AFN). (Xu et al., 2019c) identified that a key challenge in

classifying target domain data is the tendency for target vectors to have smaller feature

norms compared to those of the source domain. To address this problem, the authors

proposed aligning the expected L2-norms of the deep embeddings from both the source and

target domains. More formally, defining h(x) = ∥x∥2, L2-norm convergence is enforced by

minimizing the following Maximum Mean Feature Norm Discrepancy (MMFND):

MMFND(S,T ) = sup
h∈H

1

ns

∑

xs
i
∈S

h(xs
i )−

1

nt

∑

xt
i
∈T

h(xt
i) (5.6)

whereH is the set of all functions composed by the L2-norm operator, xs
i

and xt
i

are the i-th

samples from the source and target domains respectively, ns and nt represent the total number

of source and target samples in the source and target sets S and T .

Rotation (ROT). Xu et al. (Jiaolong et al., 2019) introduced a novel approach to UDA

that incorporates a self-supervised task involving geometric image transformations. This

auxiliary task, which is solved in conjunction with the primary task, involves predicting

the absolute rotation of images from both the source and target domains. The rotations are

selected randomly from the set Θ = 0◦,90◦,180◦,270◦. This method assists the embedding

model in better generalising across domains by leveraging the inherent structure of the

images. Building on this, (Loghmani et al., 2020) expanded this concept to multi-modal

images by designing a task where the network predicts the relative rotation between two

modalities of the same input sample, such as an RGB image and its corresponding depth

image. This extension aims to further enhance the model’s ability to learn domain-invariant

features by exploiting the relationship between different modalities of the same scene.

Entropy minimization (ENT). Entropy minimization (Grandvalet and Bengio, 2004) is

a widely used technique to perform UDA. It consists of representing the uncertainty on the

target domain through a functional that acts as a regularization term of the classification loss,

which is referred to as entropy loss. More formally, the following loss is minimized during

training:

LENT =Ly(θ f , θy)−
1

|T |

∑

xt∈T

F(xt;θ f ) · logGy(F(xt;θ f )), (5.7)
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where F and Gy are respectively the feature extractor and the label predictor, and xt is a

sample from the target distribution. Adding this functional as a regularization term of the

classification loss helps soften the domain shift effects between source and target distributions.

Event-Representations

In this work, we focus on grid-like event representations, which entail converting a stream of

asynchronous events into a volume RE ∈ R
H×W×F with F features. We provide a summary of

these representations below and refer the reader to Section 2.3.2 for a more comprehensive

explanation.

Voxel Grids. This representation, also referred to as an event volume (Zhu et al., 2019a),

divides time into a fixed number B of bins and aggregates events at their corresponding

pixel locations by interpolating polarity values over time. The outcome is a B-channel

representation where the contribution of each event is weighted based on the time of its

occurrence within the temporal bin.

HATS. The Histograms of Oriented Time Surfaces (HATS) representation (Sironi et al.,

2018a) is a two-channel approach that combines hand-crafted features with a mechanism

resistant to noise. The event stream is partitioned into a grid of non-overlapping memory

cells, each extracting local 2D surfaces from the vicinity of each event using an exponential

kernel. These surfaces are then compiled into histograms, one for each polarity, and are

organized based on the location of their originating cells. This method results in a loss of

temporal resolution as the entire span of time is compressed into a single frame, thus not

preserving the temporal detail.

EST. The Event Spike Tensor (EST) representation (Gehrig et al., 2019a) is end-to-end

trainable. It operates similarly to a voxel grid, but with the distinction that timestamps serve

as pixel features and the kernel function used to weigh the contribution of events is learned

through a multi-layer perceptron network. Events are categorised by polarity to derive a

two-channel representation from each temporal bin.

MatrixLSTM. MatrixLSTM (Cannici et al., 2020b) is similar to EST, with the primary

distinction being that pixel features are computed using a matrix of LSTM cells (Hochreiter

and Schmidhuber, 1997) with shared parameters. Each cell processes the time-ordered

sequence of events produced by its corresponding pixel, and the final output of the LSTM

serves as the pixel feature. The feature dimensionality is customisable, and temporal bins

may be employed optionally to yield multiple representations.
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5.3.3 N-ROD: a New Event-Based Dataset for Object Recognition

Collecting precisely annotated data presents a significant challenge, even when using standard

vision devices. A common approach in the literature to circumvent this issue is the use of

synthetic data generation, which offers the advantage of readily available, exact annotations.

However, the disparity between synthetic training data and real testing data, known as the

synth-to-real domain shift, significantly impacts the performance of the final model on real

data. Domain adaptation techniques have proven to be an effective solution to this problem,

as highlighted in several studies (Bousmalis et al., 2017; Sankaranarayanan et al., 2018;

Vu et al., 2019). Yet, the specific effect of the synth-to-real shift on event data remains an

underexplored area, largely due to the absence of suitable datasets for such analyses.

To fill this gap, we extend the widely-used RGB-D Object Dataset (ROD) (Lai et al., 2011)

for object recognition with an event data counterpart. The original ROD dataset includes

RGB and depth modalities captured with real sensors and has been recently augmented with

synthetic samples (Loghmani et al., 2020). Building upon this, we introduce event data to

both ROD and its synthetic variant, SynROD, facilitating synth-to-real studies for the event

modality. This enhancement results in the creation of a new neuromorphic dataset, which

we name N-ROD, offering comprehensive data for investigating the impact of synth-to-real

shifts on event-based vision systems. Some examples from the proposed N-ROD dataset are

shown in Figure 5.10.

Dataset

We propose an extension of the popular RGB-D Object Dataset (ROD) (Lai et al., 2011) for

object recognition. ROD comprises 41,877 samples of 300 everyday objects organized into

51 categories, captured by an RGB-D camera. ROD is augmented with SynROD (Loghmani

et al., 2020), its recent synthetic counterpart created to examine the synth-to-real domain shift

in multi-modal contexts, such as RGB images and depth. SynROD includes photorealistic

renderings of 3D models from the same categories as ROD, produced under natural lighting

conditions. We enhance both versions of the dataset by incorporating real event recordings

obtained from ROD samples, as well as simulated events derived from the synthetic images of

SynROD. The augmented dataset thus created represents the first to facilitate a synth-to-real

analysis on event data.

Recording Setup. We replicate the setting in (Orchard et al., 2015a) for converting

RGB images to event-based recordings. A Prophesee’s HVGA Gen3 (CD+EM) (Gallego

et al., 2020b) Asynchronous Time Based Image Sensor (ATIS), configured with default
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(h) Synthetic (k) Real

Fig. 5.10 N-ROD examples. Synthetic (left) and real (right) samples from the N-ROD dataset.

Depth images are colorised with surface normal encoding and event sequences are represented using

voxelgrid (Zhu et al., 2019a).

bias settings and equipped with a Computar M0814-MP2 8mm lens, is placed on a pan-tilt

mechanism and positioned approximately 23 centimeters away from an LCD monitor. We

used a 2560× 1440 76Hz IPS monitor with a 4ms minimum response time (LenovoT M

ThinkVision P27h-10), setting its brightness and contrast to their highest values as in (Hu

et al., 2016). The pan-tilt mechanism1, similar to the one used in (Orchard et al., 2015a),

consists of two Dynamixel MX-28 servo motors interconnected, controlled by an ArbotiX-M

Robocontroller board via serial communication.

Objects from the ROD dataset are presented in crops of variable size and aspect ratio.

To process the samples, padding is applied, replicating the border on the shorter side of the

image to ensure squared samples, regardless of the original resolution. Still images from the

original ROD dataset are displayed in a loop, and each sample is recorded while performing

the same saccadic motion pattern described in (Orchard et al., 2015a) (i.e., three saccadic

motions of 100ms each, forming a triangular pattern). A waiting period of 300ms is added

after transitioning to the next image to guarantee that the image is correctly updated on the

monitor and that the event camera has stabilised after detecting the visual changes induced

by the image switch. A 256×256 region of interest is designated on the event camera to

limit recorded events to a squared resolution, mirroring the ROD RGB images. Grayscale

images from exposure measurement (EM) events are utilized to adjust the size of displayed

images to the camera’s field of view before recording.

To simulate data in the source domain, we follow the procedure outlined by(Gehrig et al.,

2020), utilising the ESIM simulator (Rebecq et al., 2018) to generate events. We replicate

1https://trossenrobotics.com/widowx-MX-28-pan-tilt
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the same settings employed for recording real samples, by projecting synthetic images onto a

plane and moving the virtual event camera through the usual saccadic motion.

5.3.4 Experiments

We conduct experiments on the object classification task. We utilize the N-Caltech101 dataset

to compare with state-of-the-art approaches under the E-Sim-to-Real shift. We then employ

the proposed N-ROD dataset to evaluate the DA4E framework under both the RGBE-Synth-

to-Real and RGB-Synth-to-Real settings. The proposed DA4E is assessed using the UDA

methods described in Section 5.3.2, and employing the event representations detailed in the

same section. In the following sections, we detail the datasets used and then discuss the

experimental validation conducted.

Datasets

Apart from the N-ROD dataset already discussed in the previous section, we conduct single-

modal experiments on N-Caltech101 (Orchard et al., 2015a).

N-Caltech101. The Neuromorphic Caltech101 (N-Caltech101) dataset (Orchard et al.,

2015a) represents an event-based conversion of the well-known image dataset Caltech-

101 (Fei-Fei et al., 2006). Samples from N-Caltech101 were generated by capturing the

original RGB images with a real event-based camera, which was moved in front of a stationary

monitor displaying the images. A recent extension to N-Caltech101 has been introduced in

(Gehrig et al., 2020), wherein a simulated replica of the dataset was created using the ESIM

simulator (Rebecq et al., 2018). This process involved re-creating the same setup utilized for

capturing the real samples. Following the approach in (Gehrig et al., 2020), we use these

recordings as simulated source data and those from N-Caltech101 as the real target samples.

We use the train and test splits provided in the EST (Gehrig et al., 2019b) official codebase,

and evaluate the proposed approach by computing the top-1 accuracy on the test set of the

target real domain, as in (Gehrig et al., 2020).

Implementation details

We implement the proposed method within the PyTorch autodiff framework, employing a

ResNet34 (He et al., 2016) as the feature extractor F in N-Caltech101 experiments, and a

ResNet18 (He et al., 2016) for N-ROD experiments, both pre-trained on ImageNet. To ensure
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a fair comparison, we adopt the same network configurations as in (Loghmani et al., 2020) for

both the object recognition classifier G and the network utilized in the pretext rotation task.

The proposed multi-view approach is compared against a baseline with identical architecture,

pre-trained on ImageNet, but wherein event representations are directly inputted as a singular

multi-channel tensor without view grouping. Here, the first convolutional layer is substituted

with a newly, randomly initialised convolution to match the input channels’ number, and

the multi-view pooling stage is omitted. Event representations and RGB images processed

through the main backbone F are preprocessed and augmented during training as per the

procedure in (Loghmani et al., 2020). Input images are normalized using the same mean and

variance as for ImageNet pre-training, while event representations are kept unnormalized, as

this yielded better results. We utilize 9 bins for both voxel grids and EST representations,

resulting in 3 and 6 views respectively, given that the latter generates 2 channels per bin. The

output channels’ number can be tailored in MatrixLSTM, hence we configure the layer to

directly produce 3-channel output representations and set the bin count to 3, as this setup

showed optimal performance. Given that HATS solely offers 2 channels, without default

temporal frame splitting into bins, the proposed multi-view approach is inapplicable. All

network configurations are trained using SGD as the optimiser, with a batch size of 32 and

64 for N-Caltech101 and N-ROD experiments, respectively, and a weight decay of 0.003.

The weights of the DA losses for each event representation and DA method are fine-tuned,

reporting only the accuracy scores of the best configurations, averaged over 3 runs with

different random seeds.

E-Sim-to-Real results

We initially evaluate the effectiveness of the UDA algorithms in mitigating the domain shift

under the E-Sim-to-Real scenario using N-Caltech101. In Table 5.6, we present the perfor-

mance of GRL (Ganin and Lempitsky, 2015b), MMD (Long et al., 2015), Rotation (Jiaolong

et al., 2019), AFN (Xu et al., 2019c), and Entropy (Grandvalet and Bengio, 2004) compared

to the baseline Source Only, which is the network training on labeled source data only

(Sim) and testing directly on unlabeled target data (Real) without any adaptation strategy.

We use the performance achieved by training on real training data and testing on it in a

supervised manner (Supervised) as the upper bound. For each method, we report results both

with (MV-DA4E) and without (DA4E) the proposed multi-view approach. The impact of

UDA strategies on two non-learnable event representations (VoxelGrid and HATS), and two

learnable ones (EST and MatrixLSTM) is considered.
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N-Caltech101 (Sim =⇒ Real)

Method
Voxel

Grid
HATS EST

Matrix

LSTM

Source Only
baseline 80.99 58.32 80.08 82.21

MV-baseline 84.59 - 83.07 84.89

GRL (Ganin and Lempitsky, 2015b)
DA4E 83.08 65.38 83.38 82.94

MV-DA4E 86.77 - 84.03 85.75

MMD (Long et al., 2015)
DA4E 86.37 69.86 83.61 84.04

MV-DA4E 88.23 - 85.36 88.05

Rotation (Jiaolong et al., 2019)
DA4E 79.13 61.52 80.69 83.57

MV-DA4E 86.63 - 84.49 85.7

AFN (Xu et al., 2019c)
DA4E 84.49 69.96 83.59 85.0

MV-DA4E 88.3 - 85.92 87.59

Entropy (Grandvalet and Bengio, 2004)
DA4E 87.0 65.58 85.54 85.97

MV-DA4E 89.24 - 86.06 86.09

RealEvent 88.13 76.45 88.17 87.65
Supervised

MV-RealEvent 90.09 - 89.25 90.35

Table 5.6 Results on N-Caltech101. Target Top-1 Test Accuracy (%) of UDA methods on N-

Caltech101. Bold: representation’s highest result.

UDA results. From the results in Table 5.6 it can be noted that, for all event representations,

in almost all cases the UDA methods outperform the baseline Source Only, exceeding it

by up to 6% on VoxelGrid, 11% on HATS, 6% on EST, and 4% on MatrixLSTM. There

is a single instance where Rotation is on par with the Source Only, which is the case for

VoxelGrid without the multi-view approach. This may be because the principal advantage

of Rotation is to push the network to focus on the geometric aspects of the input through

solving the transformation. Given that event data inherently encodes geometric information

(e.g., direction of movement), Rotation might, in some scenarios, be potentially unhelpful.

Indeed, the network could learn to identify a trivial solution (shortcut) for solving the pretext

task (Noroozi and Favaro, 2016), for example by analysing the direction of movement across

edges. Interestingly, it can be observed that not all representations are equally affected by

the domain shift. For example, HATS is the representation most affected by the Sim-to-Real

shift, with performance decreasing by up to 16% when testing directly on the target domain

(Source Only) rather than on the source (Supervised). Intuitively, the reason lies within

the representation itself. In fact, when events are represented using HATS, the temporal

resolution is lost (see Section 5.3.2), potentially leading to a degradation in performance

when testing on data from a different distribution.
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Fig. 5.11 Ablation on percentage (%) of target. Difference in terms of performance based on

percentage (%) of target data used during training, obtained with constant threshold C = 0.06.

In Figure 5.11, we demonstrate the scalability of our approach when access to target

data is limited, by illustrating how the performance of the proposed methods varies when

only a percentage of target data is available during training (25%,50%,75%). It is noticeable

that an improvement of up to 4% over the Source Only baseline (0% of training target data)

is assured, even when a very small percentage of target samples is available. Qualitative

results are presented in Figure 5.12, where we provide a t-SNE visualization of the source

and target samples, both when adapting the two domains and when not adapting them. We

also computed the Gradient-weighted Class Activation Mapping (Grad-CAM (Selvaraju

et al., 2017)) on several N-Caltech101 samples, which visualizes regions in the input event

representation upon which the network most significantly focuses for prediction. As illus-

trated in Figure 5.13, when trained with the proposed MV-DA4E approach, these regions are

the most discriminative for classifying the object.

MV-DA4E. Table 5.6 demonstrates that applying the multi-view approach MV-DA4E sig-

nificantly enhances performance compared to the DA4E configuration across all experiments,

independently by representations and DA strategies utilized. These results validate the

effectiveness of the proposed method, corroborating the assertions made in Section 5.3.2.

Interestingly, MV-DA4E not only facilitates improvement in the cross-domain scenario (Sim-

to-Real) but also within the intra-domain (Supervised) context. Consequently, we show that

this multi-view approach could serve as a universally applicable strategy for managing event

representations, regardless of the specific task being addressed.

Comparison with approaches acting on the threshold C. Several methods in the litera-

ture, such as (Gehrig et al., 2020; Stoffregen et al., 2020), address the Sim-to-Real challenge

by primarily manipulating the threshold value C utilized by the simulator for data generation.

Since our approach uses a fixed threshold, it raises the question of whether our results
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(a) Source-only (b) DA4E

Fig. 5.12 t-SNE visualization. t-SNE visualization of N-Caltech (Orchard et al., 2015a) features

from the last hidden layer of the main classifier. Red dots: source samples; blue dots: target samples.

When adapting the two domains with the proposed DA4E (b), the two distributions align much better

compared to the non-adapted case (a).

are attributed to an optimal selection of C or if they are a consequence of our decision to

promote adaptation by focusing on feature-level modifications. To answer this question,

we conducted experiments with different UDA methods using the voxel grid representation

and three different settings for C, namely C = 0.06 (the initial value used to examine the

domain shift in (Gehrig et al., 2020)), C = 0.15 (determined following (Stoffregen et al.,

2020)), and C ∼U(0.05,0.5) (as suggested in (Gehrig et al., 2020)). The baselines include

methods based solely on C (specifically, C = 0.15 replicates the conditions in (Stoffregen

et al., 2020) and C ∼U those in (Gehrig et al., 2020)). Results presented in Table 5.7 reveal

that: (i) our methodology consistently and significantly outperforms the baselines across

every tested value of C, underscoring the advantage of addressing DA at the feature level;

(ii) the multi-view strategy benefits from UDA techniques in every scenario; and (iii) even

the methods based solely on C gain from adopting a multi-view approach, as it markedly

mitigates their sensitivity to variations in C.

RGBE and RGB Synth-to-Real results

In robotics, Domain Adaptation (DA) leverages automatically generated synthetic data with

“free” annotations to enhance predictions on real data and offset the absence of extensive

datasets. Nevertheless, differences between synthetic training data and real test data, com-

monly referred to as the synth-to-real domain shift, severely undermine the final model’s
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Source OnlyMV-DA4E MV-DA4ESource Only

Fig. 5.13 Grad-CAM (Selvaraju et al., 2017) visualizations. Grad-CAM (Selvaraju et al., 2017)

visualizations on several real N-Caltech101 samples. In each triplet we show the input event represen-

tations (voxel grid (Zhu et al., 2019a)), the activation maps when the network is trained on simulated

data only, and those obtained by training with MV-DA4E.

performance on the actual data. It has been shown that leveraging the complementary nature

of multi-modal inputs can enhance adaptation performance in cross-domain scenarios (Logh-

mani et al., 2020). To explore the efficacy of event data derived from RGB images and their

applicability in real-world settings, we investigate the performance of the event modality

(both as a standalone and when combined with RGB in a multi-modal RGB+Event setup)

on the N-ROD dataset. This analysis aims to evaluate the advantages of the event modality

compared to traditional ones, such as RGB and depth.

For this analysis, we selected the VoxelGrid representation, which demonstrated superior

cross-domain performance, and the multi-view approach MV-DA4E, which proved to be

highly effective in all conducted experiments on event data (Table 5.6).

RGBE-Synth-to-real. Table 5.8 presents the results in a RGBE-Synth-to-Real scenario,

where events simulated on synthetic data (ES IM(RGBsynth)) serves as the source and events

recorded with a neuromorphic camera from real RGB images (EvCamera(RGBreal)) is the

target.

The findings indicate that the event modality benefits the most from UDA, with a 20.6%

improvement over the Source Only approach, while RGB and depth modalities show smaller

gains of 9.9% and 14.4%, respectively. The event modality’s focus on geometric components

and object shapes—unlike RGB’s texture bias—makes UDA techniques particularly effective

for events. This is because shape information is inherently more robust in transitioning from
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N-Caltech101

Baselines C=0.06 C=0.15 C∼U

Source only
baseline 76.81 80.99 82.29

MV-baseline 83.12 84.59 84.93

Our approach w/ C values: C=0.06 C=0.15 C∼U

GRL (Ganin and Lempitsky, 2015b)
DA4E 80.89 83.08 81.91

MV-DA4E 84.93 86.77 86.45

MMD (Long et al., 2015)
DA4E 83.84 86.37 84.38

MV-DA4E 86.94 88.23 87.31

ROT (Jiaolong et al., 2019)
DA4E 80.05 79.13 80.36

MV-DA4E 86.31 86.63 87.08

AFN (Xu et al., 2019c)
DA4E 84.38 84.49 84.3

MV-DA4E 87.71 88.3 88.17

Entropy (Grandvalet and Bengio, 2004)
DA4E 85.26 87.0 85.16

MV-DA4E 88.38 89.24 88.61

Table 5.7 Comparison with approaches acting on the threshold C. Target Top-1 Test Accuracy (%)

of UDA methods w.r.t. to methods that act on the contrast threshold C.

synthetic to real domains, facilitating alignment more so than the information encoded in

RGB images.

The literature acknowledges the advantage of leveraging the complementary nature of

different input modalities, such as RGB and depth, to enhance adaptation performance in

cross-domain settings. With multi-modal RGB-E (RGB and Event) analysis still uncharted

in research, we introduce an initial approach to this challenge, inspired by strategies used

for RGB-D (RGB and Depth) data. Results underscore the efficacy of DA strategies across

both single and multi-modal settings, with all methods showing consistent improvements

over the Source Only baseline. Notably, the “Rotation” method, when applied to each

modality individually, yields the least performance gain among the methods tested. However,

when adapted to the RGB-E context through “Relative Rotation” between modalities, it

surprisingly outperforms other UDA techniques. This highlights the significance of exploiting

the complementarity between modalities, even within the realm of event data, suggesting a

promising direction for future research in developing networks that efficiently integrate these

two modalities.

RGB-Synth-to-real. Employing simulations on one side and actual event data on the other

leads to the introduction of a Sim-to-Real discrepancy, as explored in (Gehrig et al., 2020;
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ES IM(RGBsynth) =⇒ EvCamera(RGBreal)

Single-modal Multi-modal

Method RGB Depth Event RGB+D RGB+E

Source Only 52.13 7.56 21.78 47.70 50.78

GRL (Ganin and Lempitsky, 2015b) 57.12 26.11 33.09 59.51 57.15

MMD (Long et al., 2015) 63.68 29.34 42.05 62.57 61.78

Rot (Jiaolong et al., 2019)(Loghmani et al., 2020) 63.21 6.70 31.26 66.68 68.54

AFN (Xu et al., 2019b) 64.63 30.72 55.12 62.40 64.04

Entropy (Grandvalet and Bengio, 2004) 61.53 16.79 50.14 63.12 64.08

Avg
62.03 21.93 42.33 62.86 63.12

+9.9 +14.4 +20.6 +15.2 +12.3

Table 5.8 Top-1 accuracy (%) of UDA methods on RGBE-Synth-to-Real shift. Bold: highest

mean result, underline: highest single- and multi-modal results. indicates the improvement of the

avg of UDA methods over the baseline Source Only.

ES IM(RGBsynth) =⇒ (ES IMvsEvCamera)(RGBreal)

Source Target Source Only GRL MMD Rot AFN Entropy Avg

Sim Real 21.78 33.09 42.05 31.26 55.12 50.14 42.33

Sim Sim 40.47 44.52 48.29 42.98 53.50 49.29 47.68

Table 5.9 sim-to-real and sim-to-sim scenarios. Top-1 accuracy (%) on events, in two different

scenarios: sim-to-real and sim-to-sim. In bold the highest mean result.

Stoffregen et al., 2020). To assess the impact of this additional domain shift on performance,

we compare our findings with outcomes derived from simulating events from actual (target)

images (ES IM(RGBreal)), thus creating a scenario where the Sim-to-Real gap is not present.

For this purpose, Table 5.9 presents a comparison of our single-modal results, where

target events are captured using a neuromorphic camera (Source: Sim, Target: Real), against

those generated entirely through simulation (Source: Sim, Target: Sim).

By observing the Source Only results, we observe a performance drop by up to 20%,

clearly showing the Sim-to-Real impact and underscoring the necessity for methodologies

to bridge the simulated and real-world data gap. Once more, our strategy demonstrates

the value of applying UDA techniques within the realm of event data, markedly enhancing

performance and diminishing the Sim-to-Real gap to a mere 5%.
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5.4 Conclusion

In this chapter, we introduced N-EPIC-Kitchens, the first event-based egocentric action

recognition dataset. By leveraging the variety of data modes at our disposal, we conducted

an in-depth comparative analysis, the results of which underscore the significance of motion

information in the context of action recognition. Based on these findings, we proposed and

evaluated two innovative approaches tailored for event data (E2(GO) and E2(GO)MO) that, by

highlighting motion information, yielded competitive results compared to the computationally

expensive optical flow modality. Our extensive experiments shed light on the robustness of

event data and their suitability for an online action recognition scenario, encouraging the

community to delve further into this area.

Introducing event data in egocentric action recognition for the first time, we aim to provide

a direct comparison with established benchmarks in the literature (Damen et al., 2018, 2022;

Fathi et al., 2012b), positioning the event modality competitively against well-established

modalities. This objective motivated us to simulate event data rather than creating a new first-

person dataset from scratch. To justify our choice, we then proposed an alternative approach

to a very recent research problem: how to bridge the Sim-to-Real gap for event cameras that

arises from event generation. By viewing the problem from a new perspective—namely, the

domain shift—we demonstrated that Unsupervised Domain Adaptation (UDA) techniques

operating at the feature level are an effective way to address this issue, compared to previous

work that focused on the input level. Additionally, we introduced a multi-view approach for

handling event representations, which outperforms existing methods and proves to work well

in conjunction with other UDA strategies.

We demonstrate that despite its high computational and temporal costs, the TV-L1 optical

flow still shows superior performance, particularly an exceptional resilience to domain

changes. We primarily attribute this to the algorithm’s ability to partially filter out camera

motion, yielding cleaner motion data compared to raw events. Future work could explore

using motion compensation techniques commonly employed with event data (Stoffregen

et al., 2019) to eliminate redundant background noise. Moreover, building on the promising

results of our work, we plan to further investigate the use of real event streams in this context

to confirm the insights gained so far with a real camera.



Chapter 6

Egocentric Video Understanding using 3D

In the previous chapters, we addressed issues related to cross-domain challenges or the

expensive computation of traditional modalities. In this chapter, we introduce the use of 3D

information to address the limitations of the narrow field of view of egocentric devices. The

egocentric viewpoint is inherently limited, primarily due to the recording device’s proximity

to the location where interactions occur. This means that at any moment, the camera captures

only a small portion of the broader scene, significantly restricting our understanding of the

scene in its entirety. This challenge is further amplified by the dynamic nature of human

interaction with their surroundings: as the individual wearing the camera handles objects,

these items frequently move in and out of the camera’s field of view. This frequent movement

not only complicates understanding the events within the scene but also challenges tracking

objects once they have moved beyond the immediate field of vision, a concept referred to as

object permanence.

We propose to combine 2D frame-based information captured by the camera with 3D

information about the scene and the locations of objects within it. This integration enriches

egocentric vision with the capability to remember the locations of objects even when they

are no longer visible in the egocentric video stream. This capability, commonly referred to in

humans as “spatial cognition”, forms the basis for our introduction of the task “Out of Sight,

Not Out of Mind” (OSNOM)—maintaining knowledge of where objects are, even when they

are absent from the video stream.

The work in this chapter can be found in the following article:
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• Plizzari, C., Goel, S., Perrett, T., Chalk, J., Kanazawa, A., Damen, D. (2024). Spatial

Cognition from Egocentric Video: Out of Sight, Not Out of Mind. Preprint.

Online Resources: [Paper], [Project page]
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6.1 Introduction

It’s lunchtime, and the pan is on the stove. You bend down to pick up the chopping board

from a lower cupboard and place it on the counter. Then, you retrieve a knife from the cutlery

drawer. You use the chopping board and knife to slide the chopped food into the pan before

tossing both into the sink. Afterwards, you grab a clean plate from the drainer to serve the

food. As you move around the kitchen, you are aware of where these objects are, even if they

are currently out of view.

Spatial cognition allows humans to construct a mental map of their surroundings, which

includes “memories of objects once perceived as we moved about” (Downs and Stea, 1973).

Importantly, spatial cognition posits that these objects exist independently of human attention

and continue to exist on the cognitive map even after the observer has left the vicinity

(Burgess, 2006; Committeri et al., 2004; Moore and Meltzoff, 2004; Zewald and Jacobs,

2022). Spatial cognition is an innate ability that is crucial for human survival; it enables

individuals to “acquire and use knowledge about their environment to determine their location,

how to obtain resources, and how to find their way back home (Waller and Nadel, 2013).”

In this chapter, we introduce the task “Out of Sight, Not Out of Mind” (OSNOM) –

maintaining the knowledge of where all objects are located, even as they move and when they

are absent from the egocentric video stream. Egocentric views facilitate detailed observations

of object interactions, such as looking into a fridge or oven, and identifying items removed

from a drainer. Nonetheless, objects frequently exit the camera’s field of view due to the

movements of the person wearing the camera. We focus on this challenging set of active

objects that move within the video sequence. Figure 6.1 illustrates the OSNOM task, where

the 3D locations of objects and their movements are tracked throughout the video, irrespective

of the objects’ visibility. To address the OSNOM challenge, we introduce a method that

lifts 2D observations into a 3D world coordinate frame. This is achieved by reconstructing

the scene mesh and projecting 2D observations using their depth relative to the camera and

estimated surfaces. We then match these transformed observations based on appearance

and location over time to establish consistent object tracks, and maintain awareness of

objects even when they are not visible. This lift, match, and keep (LMK) approach facilitates

egocentric spatio-temporal understanding by combining 2D partial view with 3D information

about object locations from egocentric videos.

In summary, the contributions of this chapter are the following:

• We introduce Lift, Match and Keep (LMK) to address the OSNOM challenge. That

consists in lifting objects in 3D, matching their 3D location, and use it to keep them
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Fig. 6.1 Spatial Cognition. From an egocentric video (top), we introduce the task “Out of Sight, Not

Out of Mind”, which entails tracking the 3D locations of all active objects, visible or not. We present

a 24-minute video to demonstrate how this task aids in tracking three active objects throughout the

video within a global coordinate system. This includes a top-down view featuring camera movement

(top left), the identification of moments when objects are visible (bottom left), and their trajectories

from a side view across five different frames (right). Neon balls indicate the 3D locations of these

objects over time, alongside the camera (represented as a white prism), the corresponding frame

(inset), and changes in object locations (colored arrows). The chopping board is retrieved from a

lower cupboard at 1:00 and is in hand by 05:00. The knife is taken from the drawer shortly after 05:00,

used by 10:00, and then discarded into the sink before 15:00. The plate moves from the drainer to the

table at 15:00, and then back to the counter by 20:00.

tracked over time using both 2D egocentric videos and locations of objects in 3D

(Section 6.3);

• We evaluate our approach using 100 videos from the EPIC-KITCHENS dataset (Damen

et al., 2022), assessing past and future 3D location estimations across multiple time

scales. Our results show that objects are out of view in approximately 85% of the

frames on average. With our LMK approach, we are able to accurately position 64%

of the objects after one minute, 48% after five minutes, and 37% after ten minutes.

Results of the LMK on the OSNOM task are presented in Section 6.4.1.

6.2 Background

Traditionally, egocentric vision has focused on tasks relying solely on the recorded video

stream, i.e., within the camera’s field of view. These tasks range from understanding actions,
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objects, and interactions over short, and more recently, longer timescales (Damen et al., 2022;

Darkhalil et al., 2022; Grauman et al., 2022; Tang et al., 2024). Even when addressing future

predictions (e.g., action anticipation in (Girdhar and Grauman, 2021)), memory (e.g., episodic

memory in (Grauman et al., 2022)), or object tracking (Tang et al., 2024), these approaches

scan the video stream to determine when an object is in sight. The seminal work Ego-Topo

(Nagarajan et al., 2020) builds a 2D affordance graph of the environment, relating actions

to automatically discovered hotspots. The motivation for capturing the relative location of

an object to the camera wearer was further explored in the EgoEnv paper (Nagarajan et al.,

2024), where pre-training was conducted on 3D simulated environments. This shows that

environmentally-informed representations can enhance performance on downstream tasks

such as episodic memory. A number of tasks have recently been proposed that require 3D

understanding in egocentric vision, such as jointly recognizing and localizing actions in a

3D map (Liu et al., 2022). A task related to ours is Visual Query Localization in 3D (VQ3D)

(Grauman et al., 2022). A recent approach, EgoLoc (Mai et al., 2022), searches for the last

frame in which the query object appears through 2D detection and proposes an improved

pipeline to determine the 3D location of this single object. In contrast to (Mai et al., 2022),

which aims to determine the 3D location of one in-view object at a single moment, OSNOM

seeks to ascertain the 3D locations of multiple objects over time, even when they are in-hand,

moving, occluded, or out of the camera’s view.

3D Egocentric Datasets are now increasingly available, as evidenced by sources such as

ODIN (Ravi et al., 2023), Ego4D (Grauman et al., 2022), Aria Digital Twin (Pan et al.,

2023), and EPIC-Fields (Darkhalil et al., 2022). We refer to Section 2.1.3 for a broader

overview on those datasets. EPIC-Fields (Darkhalil et al., 2022) offers a comprehensive

pipeline for extracting point clouds and dense camera poses from egocentric videos. This

pipeline facilitates camera estimates for videos from the EPIC-KITCHENS dataset (Damen

et al., 2022) across 45 kitchens and pairs them with dense active object masks from VISOR

(Darkhalil et al., 2022). In this study, we employ the EPIC-Fields pipeline to localize cameras

within the world coordinate frame and utilize VISOR masks to identify active objects.

Object tracking through occlusion has been extensively studied in 2D. Maintaining object

permanence through heuristic methods, such as assuming constant velocity (Breitenstein

et al., 2009), or through learning-based approaches (Shamsian et al., 2020; Tokmakov et al.,

2021), facilitates the reassignment of tracks when occluded objects reappear (Huang and

Essa, 2005). However, these works do not track objects outside of the camera’s field of

view, and the datasets specifically targeting occlusion are short-term, especially those with

non-synthetic footage (e.g., the recent TCOW (Van Hoorick et al., 2023) has a maximum

video length of 464 frames).
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Autonomous driving maintains a map of the vehicle’s surroundings (Wong et al., 2020),

allowing it to track nearby vehicles, even when out of sight. While these systems maintain

knowledge of surrounding objects through occlusion (Gilroy et al., 2019; Ren et al., 2021),

tracks are deleted after a short time as the vehicle only needs to be aware of objects within its

vicinity.

Human tracking has evolved from 2D (Bergmann et al., 2019; Meinhardt et al., 2022; Zhang

et al., 2022c), to 3D (Rajasegaran et al., 2021), and further to 3D with motion models (Goel

et al., 2023; Khurana et al., 2021; Rajasegaran et al., 2022), which predict the locations of

occluded humans. Although these approaches utilize 3D for tracking, they typically do so

within the camera coordinate frame. Recent studies have begun to explore the simultaneous

reconstruction of camera motion and human pose within the 3D world coordinate frame

(Kocabas et al., 2023; Ye et al., 2023; Yuan et al., 2022). Notably, (Sun et al., 2023) and

(Ye et al., 2023) have applied this concept to the tracking of human subjects. (Khirodkar

et al., 2023) introduces a benchmark for tracking humans from multiple ego- and exo-centric

camera perspectives.

Our approach aligns with these advancements in human 3D tracking. We present the

first egocentric vision effort that focuses on tracking objects within the world coordinate

frame. Unlike humans, objects in egocentric videos do not move by themselves and are

thus considered static when not being manipulated by the camera wearer. Conversely, these

objects frequently move in and out of the camera’s view and are often occluded or blurred.

We expand upon the human tracking methodology (Rajasegaran et al., 2022), adapting it to

track objects while leveraging camera localization within the environment. Differing from

previous works, we maintain and assess the 3D world coordinates of objects even when they

are out-of-view.

6.3 Method - Lift, Match and Keep (LMK)

Our method takes in input an untrimmed/unedited egocentric video, which we refer to

as E, that has been recorded in an indoor environment. Our ultimate goal is to maintain

continuous tracking of all objects of interest within the 3D world coordinate frame. By

consistently capturing the locations of all objects—even when they are not visible in the

camera frame—these 3D tracks address the challenge of “Out of Sight, Not Out of Mind”

(OSNOM). We focus on the challenging set of objects the camera wearer interacts with–

moving them from one place to another, often multiple times in the video–rather than the
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Fig. 6.2 3D reconstruction of the scenes. Example of 3D meshes of 4 different environments using

Poisson surface reconstruction.

objects in the scene that remain in the same position throughout the entire video. We refer to

these as active objects.

Our method takes as input observations of active objects on = ( fn,mn), where fn indicates

a frame, and mn is a semantic-free 2D mask in that frame given in image coordinates.

Throughout the entire video, the set of observations is O = {on : n = 1, ...,N}. Since these

observations are not present for every object and in every frame, i.e., only objects in the

camera frame have a corresponding observation, we refer to them as partial observations.

Since each object may be associated to multiple observations, the number of observations N

is significantly greater than the number of active objects. Due to the possibility of a frame

having zero or more masks, N is also independent of the number of frames T .

We name our method Lift, Match and Keep (LMK). First, we lift 2D observations of

objects to 3D world coordinates, match them over time, and keep objects in mind when they

are out-of-sight.

In Section 6.3.1 we describe the process of lifting our 2D observations into the 3D world

coordinate frame by reconstructing the global 3D representation of the static scene along

with registered camera poses for each frame. Section 6.3.2 explains how we use 3D distances

and visual appearance similarity to match these lifted observations in 3D across frames.

We preserve 3D observed locations when the objects are out of sight, which is crucial for

OSNOM. Section 6.3.3 describes how we can specify object properties explicitly in relation

to the camera wearer and environment using information from LMK.

6.3.1 Lift: Lifting 2D Observations to 3D

3D Scene Representation. Given a single egocentric video stream as input, we use the

pipeline described in (Tschernezki et al., 2024) to estimate camera poses and a sparse point

cloud of the static scenes. By computing the homography over consecutive frames, we elimi-

nate redundant frames, enabling Structure from Motion (SfM) pipelines like COLMAP (Schön-
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Fig. 6.3 Lifting 2D observations to 3D. An example of lifting multiple objects from a 2D image to

3D world coordinates, using masks, the camera pose, and a reconstructed mesh of the environment.

berger and Frahm, 2016) to handle long videos. The resulting subset of video frames contains

enough visual overlap to register all frames to the SfM point cloud and estimate a camera

pose Ct for every time t in the video. Note that this pipeline automatically estimates the

intrinsic parameters of the camera.

This reconstruction focuses on estimating the static background of the scene. Objects

in motion are treated as outliers during matching and are accordingly ignored in the recon-

structions. Since the pipeline has no knowledge of surfaces, it generates a sparse point cloud

that is unusable for 3D object positioning. Thus, we convert these point clouds to surface

representations as follows.

We utilize a conventional Multi-View Stereopsis pipeline (Furukawa and Ponce, 2009;

Schönberger et al., 2016) to generate scene geometry as a 3D mesh. This involves performing

patch matching to establish dense correspondences between stereo image pairs, triangulating

these correspondences to infer depth, and then amalgamating them into a dense 3D point

cloud with surface normals. We then apply Poisson surface reconstruction (Kazhdan et al.,

2006) to successfully derive a scene mesh S from the point cloud. Figure 6.2 showcases

examples of these meshes.

Estimating 3D locations. For each frame fn, we estimate the corresponding monocular depth

using a very recent monocular depth estimation pipeline (Yang et al., 2024). The advantage

of this approach lies in its capability to accurately estimate the positions of both static and

dynamic objects, including those that are being held in-hand. However, this per-frame depth

is temporally inconsistent across frames and not scaled with respect to real depth values in

the 3D world. We use rendering techniques to estimate mesh’s depth from a given camera

viewpoint. We then apply a scale-shift transformation that minimizes the least squares error

between the depth estimate through monocular depth estimation and the mesh’s rendered

depth. The results is an aligned depth map.
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Given an observation on = ( fn,mn), we consider the centroid of the 2D mask mn as the

object’s 2D location. Note that we represent each observation as a point in 3D following

previous works (Grauman et al., 2022; Mai et al., 2022). We then take the depth value dn

in correspondence to the object’s 2D location on the aligned depth map, and assign dn to

observation on.

Given the object’s 2D location in frame fn, depth relative to the camera dn, and camera

pose C fn , we project the observation to the 3D world coordinate as in the following:

[Xn,Yn,Zn]T = C fn

[

dnK−1[xn,yn,1]T

1

]

(6.1)

where Xn,Yn,Zn represent the resulting 3D location of observation on, and K represents the

camera’s intrinsic parameters.

We denote this 3D location as ln ∈ R
3. The process of lifting to 3D is visualized in

Figure 6.3. At this stage, these 3D observations are still partial and confined to individual

frames.

Visual features. In addition to computing the 3D locations, we also compute visual features

for each observation on. These features are used to match observations over time, thereby

creating 3D tracks. We denote the visual features of observation on as vn = Ψ(E fn ,mn), where

Ψ is a function that represents the visual feature extractor applied to the mask mn on the

frame fn.

Lifted Visual Observations. We integrate 3D locations and visual features to obtain the set

of partial observationsW = {wn : n = 1, . . . ,N} in the world coordinate frame, where each wn

is a tuple ( fn, ln,vn). Next, we explain how these observations are matched over time to form

3D tracks.

6.3.2 Match and Keep: Matching Lifted Observations and Keeping

them in Mind

In this section, we describe how we used the the set of lifted observations for associating

observations with consistent identities, i.e., tracking objects over time.

We process the egocentric video E using an online approach. While using an offline

approach is also an option, we opt to mimic human spatial cognition—meaning, a person

becomes aware of an object’s location when it is first discovered, and from that moment on

the object is remembered.
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Track definition. We define a track T j as the collection of observations associated with a

single object. The set of all tracks at time t is denoted as Tt.

A track has one 3D location at each point in time, whether the object is in-sight or not, and

we refer to the location of T j at time t by L(T
j

t ). In fact, the concept of object permanence

implies that people use their spatial cognition to remember where objects are, rather than

objects “disappearing” when they are obscured or move out of the egocentric camera’s field

of view.

The track also features a changing visual representation over time. The latter is computed

at time t based on the track’s most recent µ visual features’ visual appearance. Limiting

the average to µ recent frames takes into account the fact that objects change appearance

over time—for example, a bowl may appear full, dirty, and then clean—and that older

representations are less likely to support the match to future observations. The appearance of

the track at time t is denoted V(T
j

t ).

Track initialization. We initialize a new object track with an observation wn if it represents a

new, unseen object, that is not matched to another track using the online matching described

next.

We define an initialization function I, which defines the current 3D location and appear-

ance of the observation wn to initialize a new T J+1, where J tracks already exist. Since this

is the first observation of the object, the track is projected back in time until the beginning of

the video. ∀t ≤ fn:

I(wn)→T J+1 : L(T J+1
t ) = ln and V(T J+1

t ) = vn (6.2)

This reflects the common sense that objects do not magically appear out of thin air, and that

an object’s initial encounter indicates that it was previously there.

Track update. After initialization, a track’s location and visual appearance are updated at

each frame, integrating, if available, information from new observations. We define the track

update functionU. It takes as input a track T j , the observation which will be used to update

the track, and a time t. If the track T j is not assigned a new observation at time t then its

representation remains unchanged:

U(T j,∅, t)→T
j

t = T
j

(t−1)
(6.3)
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However, if a new observation is assigned to the track at time t, then both its location and

visual feature are updated:

U(T j,wn, t)→ L(T
j

t ) = ln and V(T
j

t ) = µ(vn,T
j) (6.4)

where µ calculates the mean of the past µ observations assigned to the track T j.

Online Matching. After having obtained a set of partial 3D observations across the whole

video and having defined track initialization and update functions, we now describe the online

process of forming tracks from these observations. We find the set of new observations at

each t;Wt = {wn ∀n : fn = t}. Note thatWt is empty if there are no observations at time t.

We initialize one track for each of these observations starting with the first frame in the

video that has at least one observation:

Tt = {I(wn) ∀wn ∈Wt} (6.5)

Then, we compareWt to the set of trajectories at time t−1 by iterating over each subsequent

time. A cost function that combines visual similarity and 3D distance is used to determine

matching. We follow (Rajasegaran et al., 2022) and model 3D similarity ÃL between an

observation wn and a track T j by an exponential distribution, and visual similarity ÃV by a

Cauchy distribution:

ÃL(wn,T
j) =

1

´L

exp
[

−D(L(T
j

t−1
), ln)
]

(6.6)

ÃV(wn,T
j) =

1

1+´V D(V(T
j

t−1
),vn)2

(6.7)

where D is the Euclidean distance and ´L and ´V are relative weights for location and visual

similarities.

We define the cost Φ of assigning an observation to an existing track as a combination of

3D and visual distance:

Φ(wn,T
j) = − log(ÃL(wn,T

j))− log(ÃV(wn,T
j)) (6.8)

We use the Hungarian algorithm À, which computes Φ between every observation inWt

and the tracksT(t−1). It returns a set of track assignments for time t, At, where A
j
t =wn denotes

that the observation wn ∈Wt is to be assigned to track T j. A threshold for assignment cost

is set to ³.

At = À(Φ,Wt,Tt−1) (6.9)
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We now update the set of all tracks and initialise new tracks for unassigned observations.

T t←



















U(T j,A
j
t , t) ∀ j

I(wn) ∀wn ∈Wt :
(

∄ j : A
j
t = wn

) (6.10)

By using the proposed online matching, we are able to estimate the 3D location of each

object for which at least one observation is available.

6.3.3 LMK for object visibility and positioning

The Lift-Match-and-Keep process described above facilitates spatial cognition, offering

detailed insights into the visibility of each object in relation to the camera wearer at time t.

An object j can be one of:

• In-sight: if the corresponding track is assigned an observation at time t, i.e., A
j
t , ∅

• Occluded: if L(T
j

t ) is within the field of view of the estimated camera Ct, but there

is no corresponding observation (A
j
t = ∅). This might occur when an object is inside

a container, such as a fridge, drawer, or cupboard, or it is occluded by the wearer’s

hands.

• Out-of-view: if L(T
j

t ) is outside the field of view of the estimated camera Ct.

An object may also be referred to as Out-of-sight if it is either out-of-view or occluded

(i.e. in the camera’s viewing direction but cannot be detected).

LMK also discloses the relative distance between the object and the camera-wearer or

the static environment:

• In-reach: if the distance from object j to the camera’s position at time t is less than

the approximation of the camera wearer’s near space ¸: D(L(T
j

t ),Ct) ≤ ¸

• Out-of-reach: as in-reach, but if D(L(T
j

t ),Ct) > ¸.

• Moved: object j has moved relative to the environment between times t1 and t2 if

D(L(T
j

t2
),L(T

j
t1

)) ≥ ϵ, where ϵ is a minimum threshold (to account for small errors in

camera and object positions).

• Stationary: as moved, but < ϵ.
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Note that the object j at time t may be both e.g. occluded but in-reach.

6.4 Experiments

In this section, we validate the effectiveness of the proposed method in addressing the

OSNOM task. Section 6.4.1, introduces our benchmark for the OSNOM task. This evaluates

the ability to determine object locations at any time given an egocentric video. Section

6.4.2 details baseline methods used for comparison. Section 6.4.3 presents the main results

and qualitative examples. Section 6.4.4 ablates LMK, including its capabilities for spatial

cognition.

6.4.1 Benchmarking OSNOM

Dataset. We evaluate LMK using the EPIC-KITCHENS (Damen et al., 2022) dataset. The

latter contains unscripted recordings of individual participants, where all object movements

in these videos result from the camera wearer interacting with and moving objects.

We extract 3D point clouds and dense camera poses using the pipeline proposed from EPIC-

Fields (Tschernezki et al., 2024). For defining observations, use masks from VISOR (Dark-

halil et al., 2022). For fair comparison, we use the same input for our method and baselines.

In total, we evaluate on 100 videos. Those are 12 minutes long on average, and contain a

total of 7.9M masks, which correspond to 2939 objects. We use the object semantic label

only for calculating the ground truth for evaluation.

For most of our results, we use masks provided by VISOR, which are interpolations based

on ground-truth masks. This approach enables us to assess LMK’s performance without

introducing errors from a detector. For completeness, we also ablate these results using a

semantic-free detector (Shan et al., 2020) in Section 6.4.4. We use an additional set of 10

videos for hyperparmeter tuning.

Benchmark task. We identify a set of frames F where 3 or more objects are being

interacted with. Each frame f ∈ F includes objects that are visible, and our goal is to evaluate

the methods’ ability to accurately determine the 3D locations of these objects across frames

f ±¶. We assess the performance of various methods as ¶ increases. In total, our evaluation

starts from F = 3467 frames, with locations at 1M frames and 2171 objects, averaging

15,000 frames and 20 objects per video. Our benchmark will be made publicly available for

comparisons.
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Fig. 6.4 3D Projection error. Distribution of projections errors in terms of Euclidean distance for the

same object, at the same location, between measurements ln to ln+T .

Ground truth locations. Note that there is currently no egocentric dataset with 3D object

annotations for dynamic objects over time. We utilize our 2D to 3D lifting approach, presented

in Section 6.3.1, to establish ground-truth locations. We evaluate its accuracy in the following

manner.

A random selection of objects and their corresponding time segments, during which they

remain in the same location across the environment, are chosen. Although the ground-truth

is unknown, comparing the errors between projections from multiple views of the same

object at the same location offers an alternative method for assessing the accuracy of our 3D

locations. Given multiple instances of the same object at the same location, we calculate

the mean 3D error of our 3D locations. Our analysis (details provided in the supplementary

material) reveals that the mean 3D error is 3.5cm, with 88% of all errors being less than 6cm

and 96% of all errors less than 10cm (Figure 6.4). Based on these findings, we deem our

lifting approach sufficiently precise to serve as ground-truth locations. This also shapes our

metric, ensuring that our threshold for accepting assignments is significantly larger than the

observed error.

Evaluation metric. We introduce a metric known as the Percentage of Correct Locations

(PCL), inspired by the Percentage of Correct Keypoints (PCK) (Yang and Ramanan, 2012)
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used in pose estimation evaluations, to assess the spatial alignment of objects. Traditional

tracking metrics fail to evaluate tracks when objects are out of sight (Bernardin and Stiefelha-

gen, 2008; Luiten et al., 2021; Ristani et al., 2016). In contrast, PCL considers a predicted

3D location to be correct if its Euclidean distance from the ground truth 3D location is less

than a threshold R.

For our principal experiments, we set R = 30cm1, reflecting the idea that spatial cog-

nition’s function includes knowing an object’s location with enough precision to navigate

towards it or retrieve it (Downs and Stea, 1973; Waller and Nadel, 2013). R is both visualized

in our experiments and ablated.

6.4.2 Experimental setup

Baselines. Since there are no prior works that have addressed the OSNOM task, we compare

LMK against four baselines:

• Random Matching: each observation is randomly assigned either to an existing track

or to initiate a new track, illustrating the complexity of the data.

• Out of Sight, Lost (OSL): objects are considered “lost” when they move out-of-

view, at which point the PCL is reported as 0, and their tracks are terminated. This

baseline emphasizes the inherent challenge in egocentric video analysis, where objects

frequently move out of the camera’s view shortly after being observed.

• Out of Sight, Out of Mind (OSOM): observations can only be assigned to tracks that

are currently in view. Once a track goes out-of-view, the PCL is reported as 0, and the

tracks are frozen until they re-enter the camera’s field of view. This scenario represents

an upper bound for tracking accuracy within the camera coordinate frame.

• EgoLoc (Mai et al., 2022): we adapt this state-of-the-art VQ3D approach to the

OSNOM task to manage multiple objects. We utilize the same masks, features, 3D

scene, and lifting technique for a fair and direct comparison. EgoLoc’s method of

weighted averaging over all past observations is not suitable for OSNOM due to objects

changing positions; instead, we opt for the most recent match.

Implementation details. For appearance features, Ψ, we utilize a DINO-v2 (Oquab et al.,

2023) pre-trained model. We crop each mask, scale it to 224×224, and then pass it to the

1This is half the standard width of a cupboard or cabinet, which is 60 cm or 24 inches.
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Fig. 6.5 OSNOM results. PCL results of LMK

compared to baselines. Results are shown from

0-60 seconds, then 1-12 minutes.
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Fig. 6.6 Effect of visual appearance and loca-

tion. PCL results of LMK for visual features (V),

location features (L), or both (V+L).
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Fig. 6.7 3D location prediction. Predicted 3D locations (neon dots) of two objects (left) across

multiple frames, with insets showing each frame (right). Note how the object locations are accurately

maintained, even when the camera-wearer is at a distance (bottom middle).

backbone. We ablate the choice of features. We set ³ = 10, µ = 100, ´L = 13, and ´V = 2

(chosen based on validation set performance). Meshes are computed in advance, requiring an

average of 5 hours per video on one 2080Ti. For online tracking, DINOv2 operates at 30

FPS and lifting-to-3D processes at 200 FPS on one P100. LMK runs at 1000 FPS on a single

CPU core.

6.4.3 Results

Results for the OSNOM task, comparing LMK against the baselines of OSL, OSOM, Random

Matching, and EgoLoc, are shown in Figure 6.5. We report the average PCL (on the y-axis)

across the entire dataset for each 5-second evaluation interval (x-axis), with the standard

deviation shown as a shaded area. Performance is evaluated over both short-term (0-60

seconds) and long-term (1-12 minutes) intervals. As time progresses, the complexity of

matching observations increases due to an increase in the number of objects being interacted

with and tracked. Consequently, a drop in performance over time is observed for all methods.
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sausages

salt

lid

cup

Fig. 6.8 Trajectory prediction for objects in motion. Neon dots represent the predicted 3D positions

along with corresponding camera poses. Objects are accurately positioned, whether they are stationary

(resting on surfaces) or moving (carried in-hand).

LMK demonstrates significant improvements over all baselines. In comparison to EgoLoc,

it shows a 39% average improvement in tracking up to 1 minute, and 25% improvement from

1 to 12 minutes. This performance boost is attributed to LMK’s tracking across consecutive

frames, enhancing its robustness against variations in object appearance caused by changes

in orientation or occlusion, and its utilization of 3D locations for matching.

The pronounced decline in performance observed with the OSOM and OSL baselines

highlights the challenges presented by egocentric footage, where the constant movement

of the camera wearer frequently causes objects to exit the field of view. Specifically, when

tracking is limited to objects while they are in view (OSL baseline), performance drops

to zero shortly after 20 seconds, indicating rapid loss of objects from sight. The OSOM

baseline, which considers only objects within the camera’s field of view without accounting

for 3D world coordinates and object permanence, proves to be inadequate for the OSNOM

task, performing even worse than random assignment.
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Qualitative results. Figure 6.7 shows the predicted locations of several objects at discrete

time intervals. In Figure 6.8, we present the 3D trajectories of objects as they are manipulated

by the camera wearer. For instance, we depict the trajectory of the salt bottle from being

in hand (pouring salt), to being placed on the countertop, and eventually being returned to

a lower cupboard, while the cup ends up on a hanger. In all instances, LMK successfully

tracks objects both when they are static (on surfaces) and when they are in motion (in-hand).

6.4.4 LMK Ablation

Effect of visual appearance and location. LMK assigns observations to tracks based on

appearance and location similarities. Figure 6.6 illustrates the impact of relying solely on

visual appearance (V) and solely on location (L) compared to the default combination of

both (V+L). This combination yields improvements (mean +19% over V, +8% over L),

underscoring that appearance and location are complementary attributes. Appearance is good

in frame-to-frame assignments, while location proves particularly useful for tracking objects

in motion, those occluded, and for reassigning objects when they re-enter the field of view.

Accuracy at different radii. In all our experiments, we set the PCL threshold to R = 30cm.

Figure 6.9 also presents results for when this threshold is increased to R = 60cm and

R = 90cm, which are visualized in 3D to illustrate their respective challenges. As expected,

the PCL value increases with larger R values.

Visual features. Our default feature extractor Φ is a ViT (Dosovitskiy et al., 2020),

pre-trained using the self-supervised DINO-v2 approach (Oquab et al., 2023). We also

explore ViTs pre-trained on CLIP (Radford et al., 2021) and ImageNet (Deng et al., 2009),

as shown in Figure 6.10. DINO-v2 surpasses the other methods across all time scales, likely

because the pre-training tasks of CLIP (vision and language alignment) and ImageNet (image

classification) are less aligned with our need for consistent frame-to-frame visual similarity.

Detections. We utilized annotations from VISOR (Darkhalil et al., 2022) for 2D masks to

avoid compounding detection errors when assessing the accuracy of 3D location estimation,

which is our primary focus. In Figure 6.11, we present an ablation study using detections

from (Shan et al., 2020). This model generates semantic-free bounding boxes for actively

interacting objects, which are then used as inputs for LMK and the best-performing baseline,

EgoLoc. For result evaluation, we match each detection with the VISOR object that achieves

the highest Maximum Intersection Over Union (MIOU). LMK continues to significantly

outperform EgoLoc.
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Fig. 6.9 Evaluation thresholds. LMK results when increasing the PCL threshold R, which is the

maximum distance between predicted and ground truth 3D locations deemed successful. Visualizations

display the regions encompassed by volumes of R = 30cm,60cm, and 90cm in blue, centered on the

counter.

Weighting visual appearance and location. LMK employs the hyperparameters βV (see

Eq. 6.6) and βL (see Eq. 6.7) to adjust the importance of visual and location similarities

when assigning new observations to tracks. These hyperparameters are selected based on

optimal performance on the validation set, averaged across different timescales. Figure 6.12a

illustrates the validation set performance when βV = 2 is fixed and βL is varied. Conversely,

Figure 6.12b demonstrates the performance when βL = 13 is fixed and βV varies. Both

hyperparameters exhibit relative stability, likely attributed to their scaling by appropriate

distributions (Cauchy and Exponential).

Track visual appearance history. Figure 6.12c ablates γ over the validation set, where γ

represents the number of recent features averaged for the visual representation. Optimal

results are achieved with γ = 100, showing diminished performance for both smaller and

larger values of γ, yet the performance remains relatively stable down to a single observation.

A low γ value, indicating insufficient accumulation of appearance information, fails to

ensure a consistent representation of objects over time. This is particularly problematic in

egocentric videos, where varying perspectives and partial occlusions are common. Conversely,

aggregating appearance features over long periods (high γ) can lead to feature inconsistencies,

especially for objects whose appearance changes a lot over time.
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Fig. 6.10 Visual feature choice of a DINO-v2,

CLIP or ImageNet (ViT).
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Fig. 6.11 Detections. LMK on both visual and

location features when using VISOR annotations

vs using detections from (Shan et al., 2020).
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(a) ´L, the weighting of 3D location

for assigning observations to tracks.
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(b) ´V , the weighting of visual ap-

pearance for assigning observations

to tracks.
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(c) µ, the number of visual appear-

ance features averaged to calculate

track representation.

Fig. 6.12 Hyperparameter ablations for LMK on the validation set. We choose the best average

over 1, 5 and 10 minute sequence lengths.

LMK for spatial cognition. Figure 6.13 illustrates the performance of LMK on object

states as defined in Section 6.3.3. For each state combination of (In-reach2, Out-of-reach)

and (In-sight, Occluded, Out-of-view), we report the total number of ground truth objects

and the number LMK accurately locates over a 1-minute interval. Despite objects being

interacted with for over 1 minute, LMK continues to accurately determine their locations,

achieving an average accuracy of 72%. Moreover, LMK achieves an accuracy of 82% for

objects that are both out-of-reach and out-of-view.

Effect of objects going out-of-view. We analyze the effect of a track disappearing from view

and then reemerging within a 10-minute span, as depicted in Figure 6.14. The LMK method,

which leverages 3D locations for matching, shows a substantial improvement in performance

under these circumstances.

Moved vs. Stationary objects. Figure 6.15 presents the performance of the PCL (Point

Cloud Localization) method when applying a movement threshold of ϵ = 30cm. The results

indicate that the tracking accuracy for stationary objects is, on average, 35% higher than

for objects that have been moved. This discrepancy can be attributed to the fact that objects

2A reachable threshold of ¸ = 70cm is used.
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Fig. 6.13 LMK for spatial cognition. Number

of objects correctly located by LMK, separately

by combinations of (In-reach, Out-of-reach) and

(In-sight, Occluded, Out-of-view).
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Fig. 6.14 Effect of reappearing. Evaluation is

performed over 10 minutes, for LMK with visual

appearance (V) and the combination of visual ap-

pearance and location (V+L).
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Fig. 6.15 LMK Results for Moved vs Stationary objects with respect to the environment.

often appear visually different after being moved, for example, due to changes in orientation

or lighting conditions.

Failure cases. We identify two primary reasons for failure cases in the LMK method. For

clarity, we illustrate each case separately in Figure 6.16 and Figure 6.17. In each figure, we

focus on a single object and depict its predicted trajectory in green. Predictions that fail are

indicated in red, where we plot the accurate ground truth trajectory.

In Figure 6.16, we present cases where the tracking is momentarily lost but subsequently

correctly reacquired. In the first scenario, a tin is accurately tracked for the majority of

its journey, including when it is discarded in the bin. However, for a brief period, the

predictions are incorrect, as highlighted by the red dots. Similarly, in the second scenario,

a knife is inaccurately predicted while it is obscured by a hand or when in hand. The final

example highlights failures in predicting the correct trajectory of a pot as it is filled with

milk, which alters its appearance. Coincidentally, the pot is moved out of the camera’s
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tin

knife

pot

Fig. 6.16 Trajectory prediction - temporarily lost but recovered track. Predicted trajectory of three

objects in motion. Green neon dots represent accurately predicted 3D positions across four frames

along with their corresponding camera views, while red neon dots indicate the ground-truth trajectory

where predictions fail. Although tracking momentarily fails, the object is accurately matched to a

future observation shortly afterward.

Fig. 6.17 Trajectory prediction - lost track. Predicted trajectory of two objects in motion. Green

neon dots indicate correctly predicted 3D positions across four frames along with their corresponding

camera views, while red neon dots display the ground-truth trajectory where predictions fail. When

tracking fails, all subsequent predictions are assigned to a new track.
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view, resulting in failures in both appearance and location matching. However, as the pot is

emptied, appearance matching improves towards the end of the track.

In Figure 6.17, we demonstrate failure cases where tracking is not recovered. In the first

example, a wooden spoon is attributed a new trajectory, and tracking continues under a new

identity. A similar situation arises for a cutting board when it is moved to a cluttered sink.

Failures predominantly occur in cluttered settings, such as when slicing peppers with a knife

in Figure 6.16, or when stirring with a spoon in Figure 6.17. In these instances, the proximity

of multiple objects leads to overlapping locations, making the individual object’s location

less useful for matching.

6.5 Conclusion

In this chapter, we introduce the task of “Out of Sight, Not Out of Mind” (OSNOM) for

egocentric videos with partial object observations. This task evaluates the 3D tracking

performance of active objects, both when they are visible and when they are out of sight.

To address this task, we merged partial 2D-based information with comprehensive 3D

information about the location of objects in the scene where the videos are recorded. We

presented Lift, Match, and Keep (LMK), a method that lifts partial 2D observations from

camera coordinates to 3D world coordinates, matches them over time using visual appearance

and 3D location, and keeps track of them even when they disappear from view. Results

from long-duration videos in the EPIC-Kitchens dataset show that LMK achieves promising

results for both short-term (64% accuracy up to 1 minute) and long-term (37% accuracy for

1-12 minutes) periods. These findings highlight the significance of maintaining 3D world

locations for objects that go out of view. For future work, we aim to explore whether LMK

can effectively track objects through state changes and investigate the potential for shared 3D

object tracks between multiple ego- and exo-centric cameras. A future direction involves

expanding the OSNOM task to multiple videos, over time. This aligns with our ultimate goal

of developing an assistive solution that maintains awareness of object locations over hours

and potentially days.



Chapter 7

Conclusions and future works

In this thesis, we investigated how egocentric video representations might benefit from

multi-modal data. In the first part of the thesis, we demonstrated how solving auxiliary tasks

across multiple information channels can improve the models’ generalization capabilities

in cross-domain scenarios. We then introduced new types of data within the context of

egocentric vision, namely event-based data and 3D information. We analyzed the challenges

associated with integrating these data types with standard RGB information, along with their

respective advantages and disadvantages. In this chapter, we summarize the main takeaways,

limitations, and future works of each chapter.

Multi-Modal Relative Norm Alignment for Tackling the Domain Shift

In Chapter 3, we introduced a method aimed at addressing the challenge of multi-modal

Domain Generalization (DG). Our methodology draws from the observation that differences

in the marginal distributions of modalities can significantly affect the training process, leading

to variances in their feature norms. This ultimately leads to sub-optimal performance in

cross-domain scenarios. Starting from this observation, we introduced the Relative Norm

Alignment (RNA) loss, which is designed to equalize the feature norms extracted from various

modalities. We show that re-balancing the contribution of different modalities during training

improves the overall model accuracy in cross-domain scenarios. We demonstrated how this

loss can be seamlessly integrated into Unsupervised Domain Adaptation (UDA) scenarios,

where it works in conjunction with an adversarial loss and Information Maximization to

enhance feature transferability on the target domain.
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Our experiments involved the integration of visual, audio, and optical flow data. Future

research could explore applying this approach to different modalities, where the issue of

heterogeneity may be more pronounced. For instance, merging visual and textual information

presents an interesting avenue for exploration. Although our current focus was on the activity

recognition task, future efforts could extend to other tasks and to different model architectures,

broadening the applicability of our approach. Finally, RNA rebalances the contribution of

different modalities at feature level. A potential variation to explore might be modulating the

backpropagated gradient, similarly to what has been recently proposed in (Wu et al., 2022b).

This adjustment could provide a different perspective on addressing the modality imbalance

by directly influencing the learning process.

A limitation we observed arises from the fact that in many real-world cases, data distri-

butions are strongly unbalanced, leading to lower accuracy for the tail classes (Buda et al.,

2018). The literature shows how this imbalance results in unbalanced norms of classification

weights per class (Guo and Zhang, 2017; Kim and Kim, 2020), as well as unbalanced norms

of features per class (Li et al., 2022a; Wu et al., 2017). In developing our method, we

hypothesized that balancing the norms per class could positively affect the rebalancing of the

classifier’s weights for the tail classes. However, our experimental results did not demonstrate

this effect. This opens up possibilities for future developments to incorporate this objective

into RNA as an additional component that rebalances the weights of the classifier.

Vision and Language for Domain Generalization

In Chapter 4 we use textual information to address the issue of generalization across varying

scenarios and locations, positing that it is possible to learn actions in a way that enables their

recognition across new contexts (e.g., identifying the action “cut” in cooking as analogous to

“cut” performed by a mechanic) and geographical settings (e.g., recognizing the action “cut”

in Italy as the same action in India). This concept forms the core motivation of our research.

To address this challenge, we introduced ARGO1M, a curated dataset tailored for this

purpose. In response to the complex task of adapting to diverse scenarios and locations,

we developed a novel method grounded in a visual-text reconstruction task. This technique

involves reconstructing videos from a combination of videos from different scenarios and

locations using text narrations to guide reconstructions. This approach ensures that the

reconstructions are not biased toward visual domain-specific information but are instead

informed by semantically related data. Our approach demonstrates superior performance

over existing baselines, as validated by extensive analysis and in-depth ablation studies.
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The complexities posed by ARGO1M represent a significant advancement in domain

generalization research. We hope that this chapter will inspire further research in domain

generalization, particularly in video analysis, an area ripe for deeper exploration. Future

research directions could focus on generalizing to more complex actions, particularly those

involving combinations of verbs and nouns. Considering different hierarchies at the fine-

grained level for classifying actions could be advantageous. For instance, in our study,

actions like “trimming” were grouped under the broader category of “cutting”. However,

alternative grouping strategies could be explored. Additionally, exploring the zero-shot

learning capabilities of Large Language Models (LLMs) presents an opportunity to extend

the model’s applicability beyond the predefined set of 60 actions. By leveraging these

capabilities, we can envision a framework where the model recognizes actions in a zero-shot

setting, transcending the limitations of the initially proposed action set. Finally, since the

reconstruction is currently performed at the feature level, it might be interesting to consider

reconstructing at pixel level. This shift could provide a more granular understanding of the

visual components of the actions, allowing for a deeper analysis of how different elements

interact and contribute to the overall action recognition.

Event-based Data for Egocentric Vision

In Chapter 5 we introduced N-EPIC-Kitchens, a pioneering dataset for event-based egocentric

action recognition. We conducted a comprehensive comparative analysis to evaluate the

performance of event-based data against traditional RGB and optical flow information. This

study aimed to highlight the strengths and limitations of each data type across various

application scenarios. We proposed and evaluated two novel methodologies specifically

designed for event data–E2(GO) and E2(GO)MO–tailored at exploiting the temporality

encoded by event-based information. These methods leverage the unique characteristics of

event data to enhance the understanding and processing of dynamic scenes.

With the introduction of event data into the domain of egocentric action recognition,

our objective is to facilitate a direct comparison with established benchmarks in the field,

such as those proposed by Damen et al. (2018), and further scaled by Damen et al. (2022),

positioning the event modality as a competitor against traditional modalities. This goal led

us to favor simulation of event data over the creation of a new first-person dataset. Our

decision is validated by an in-depth analysis of the Sim-to-Real gap, where we demonstrate

that, through the application of traditional Unsupervised Domain Adaptation techniques,

simulated event data can effectively generalize to real-world scenarios. Future research could

involve recording a new dataset that includes both RGB and event data, utilizing recent
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advancements in event-based cameras that provide both modalities (Berner et al., 2013). This

would allow us to test the differences in our models, which were pre-trained on simulated

data, when applied to both simulated and real data. Such a study would offer valuable insights

into the adaptability and performance of our models in various real-world scenarios.

Moreover, our findings reveal that, despite the significant computational and temporal

overheads, the TV-L1 optical flow algorithm exhibits exceptional performance, particularly

in terms of its resilience to domain shifts. We ascribe this superiority primarily to the

algorithm’s capability to filter out camera motion, thereby providing a more refined motion

analysis compared to that offered by raw event data. In fact, we observed that the motion of

the camera itself inadvertently captures event information near objects in the background.

Future research directions could include the exploration of motion compensation strategies,

which are frequently utilized in event data processing (Stoffregen et al., 2019), to further

mitigate background noise and enhance data utility.

Finally, directly extracting optical flow from event data, rather than distilling it from the

optical flow computed from the RGB stream, could be a promising approach. This method

might enhance the efficiency and accuracy of capturing motion dynamics by leveraging the

high temporal resolution of event data. Such an approach could significantly improve the

detection and analysis of movement within a scene.

Egocentric Video Understanding using 3D

In Chapter 6, we explored the integration of 3D information about the scene with 2D frame-

based information extracted from traditional RGB egocentric cameras. To underscore the

importance of 3D information, we introduced the task of “Out of Sight, Not Out of Mind”

(OSNOM) in the context of egocentric videos that feature partial object observations. This

task emphasizes the significance of 3D data in enhancing our understanding and interpretation

of scenes where objects are only partially visible, demonstrating how 3D information can

complement 2D imagery to provide a more complete and contextually rich analysis. We

evaluated the capabilities of tracking active objects in 3D, focusing on their behavior both

when they are within the visual field and when they temporarily disappear from view.

To address this challenge, we proposed a novel approach named Lift, Match, and Keep

(LMK). This method lifts partial 2D observations from camera coordinates into 3D world

coordinates, matches these observations across time by leveraging visual appearance and

spatial location, and keeps a continuous track of them even when they are not visible.

Empirical results on long-duration videos from the EPIC-Kitchens dataset indicate that LMK
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achieves promising performance, achieving 64% accuracy for tracking durations up to one

minute and maintaining 37% accuracy for tracking from one to twelve minutes. These results

highlight the critical role of preserving 3D world locations for objects when they move out

of the camera’s field of view.

Looking ahead, future works could investigate LMK’s capability to track objects through

their state changes or when they divide into multiple parts. For example, when opening an

egg, the shell and the contents become two distinct entities that could be tracked separately.

This exploration would extend LMK’s applicability to scenarios where objects undergo

significant transformations, providing deeper insights into complex dynamic processes.

Moreover, interesting future studies could assess the feasibility of integrating shared,

3D object tracks across multiple egocentric and exocentric camera perspectives (Grauman

et al., 2023). This would enable a comprehensive multi-view analysis, enhancing object

tracking accuracy and robustness by synthesizing information from various angles and

viewpoints. Such an approach could significantly improve spatial awareness and object

interaction understanding in complex environments.

Moreover, the scope of the OSNOM task could be broadened to encompass multiple video

sequences over extended periods. By utilizing initial assumptions about object locations

from previous observations as priors, OSNOM’s applicability can be enhanced. Extending

our focus beyond single video analysis aligns with our ultimate objective of developing an

assistive system that maintains awareness of object placements over hours or potentially

days, thereby providing a more holistic understanding of object dynamics in everyday

environments.
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Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836–6846, 2021. 20, 24

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain
generalization using meta-regularization. Advances in neural information processing
systems, 31, 2018. 41

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine
learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(2):423–443, 2019. 55



174 References

Siddhant Bansal, Chetan Arora, and CV Jawahar. My view is the best view: Procedure
learning from egocentric videos. In European Conference on Computer Vision, pages
657–675. Springer, 2022. 26, 28

Fabien Baradel, Natalia Neverova, Christian Wolf, Julien Mille, and Greg Mori. Object
level visual reasoning in videos. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 105–121, 2018. 28

Francesco Barbato, Marco Toldo, Umberto Michieli, and Pietro Zanuttigh. Latent space
regularization for unsupervised domain adaptation in semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 2835–2845, June 2021. 65

Leonard Bärmann and Alex Waibel. Where did i leave my keys?-episodic-memory-based
question answering on egocentric videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1560–1568, 2022. 29

Francisco Barranco, Cornelia Fermuller, Yiannis Aloimonos, and Tobi Delbruck. A dataset
for visual navigation with neuromorphic methods. Frontiers in neuroscience, 10:49, 2016.
51

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceed-
ings of the European conference on computer vision (ECCV), pages 456–473, 2018. 86,
87

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi.
Event-based visual flow. IEEE transactions on neural networks and learning systems, 25
(2):407–417, 2013. 49

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and
whistles. In International Conference on Computer Vision, 2019. 150

Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance:
the clear mot metrics. EURASIP Journal on Image and Video Processing, 2008:1–10,
2008. 159

Raphael Berner, Christian Brandli, Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. A
240× 180 10mw 12us latency sparse-output vision sensor for mobile applications. In 2013
Symposium on VLSI Circuits, pages C186–C187. IEEE, 2013. 46, 171

Gedas Bertasius, Hyun Soo Park, and Jianbo Shi. Exploiting egocentric object prior for 3d
saliency detection. arXiv preprint arXiv:1511.02682, 2015. 31

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need
for video understanding? In Proceedings of the International Conference on Machine
Learning (ICML), July 2021. 24

Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis Andreopoulos.
Graph-based object classification for neuromorphic vision sensing. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 491–501, 2019. 53



References 175

O Blender. Blender—a 3d modelling and rendering package. Retrieved. represents the
sequence of Constructs1 to, 4, 2018. 128

János Botzheim, Takenori Obo, and Naoyuki Kubota. Human gesture recognition for robot
partners by spiking neural network and classification learning. In The 6th International
Conference on Soft Computing and Intelligent Systems, and The 13th International Sympo-
sium on Advanced Intelligence Systems, pages 1954–1958. IEEE, 2012. 48

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krish-
nan. Unsupervised pixel-level domain adaptation with generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3722–3731, 2017. 134

Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier, and Luc
Van Gool. Robust tracking-by-detection using a detector confidence particle filter. In
International Conference on Computer Vision, 2009. 149

John Bridle, Anthony Heading, and David MacKay. Unsupervised classifiers, mutual
information and 'phantom targets. In Advances in Neural Information Processing Systems,
volume 4. Morgan-Kaufmann, 1991. 67

Silvia Bucci, Antonio D’Innocente, Yujun Liao, Fabio Maria Carlucci, Barbara Caputo, and
Tatiana Tommasi. Self-supervised learning across domains. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(9):5516–5528, 2021. 36, 40, 41

Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Netw., 106:249–259, oct
2018. ISSN 0893-6080. 80, 169

Neil Burgess. Spatial memory: how egocentric and allocentric combine. Trends in cognitive
sciences, 10(12):551–557, 2006. 147

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Asynchronous
convolutional networks for object detection in neuromorphic cameras. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019. 114

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. A differentiable
recurrent surface for asynchronous event-based data. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16,
pages 136–152. Springer, 2020a. 48

Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. A differentiable
recurrent surface for asynchronous event-based data. In European Conference on Computer
Vision, pages 136–152. Springer, 2020b. 114, 133

Marco Cannici, Chiara Plizzari, Mirco Planamente, Marco Ciccone, Andrea Bottino, Barbara
Caputo, and Matteo Matteucci. N-rod: a neuromorphic dataset for synthetic-to-real domain
adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2021. 8



176 References

Congqi Cao, Yifan Zhang, Yi Wu, Hanqing Lu, and Jian Cheng. Egocentric gesture recog-
nition using recurrent 3d convolutional neural networks with spatiotemporal transformer
modules. In Proceedings of the IEEE international conference on computer vision, pages
3763–3771, 2017. 20

Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi.
Domain generalization by solving jigsaw puzzles. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2229–2238, 2019. 40, 41, 98

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the
kinetics dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6299–6308, 2017. 20, 23, 90, 91, 99, 113, 114, 118

Alejandro Cartas, Jordi Luque, Petia Radeva, Carlos Segura, and Mariella Dimiccoli. Seeing
and hearing egocentric actions: How much can we learn? In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 0–0, 2019. 59

Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak, and Bohyung Han. Domain-
specific batch normalization for unsupervised domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 7354–7362, 2019.
36

Chaoqi Chen, Jiongcheng Li, Xiaoguang Han, Xiaoqing Liu, and Yizhou Yu. Compound
domain generalization via meta-knowledge encoding. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7119–7129, 2022a. 41

Chaoqi Chen, Luyao Tang, Feng Liu, Gangming Zhao, Yue Huang, and Yizhou Yu. Mix and
reason: Reasoning over semantic topology with data mixing for domain generalization.
Advances in Neural Information Processing Systems, 35:33302–33315, 2022b. 41

Chun-Fu Richard Chen, Rameswar Panda, Kandan Ramakrishnan, Rogerio Feris, John Cohn,
Aude Oliva, and Quanfu Fan. Deep analysis of cnn-based spatio-temporal representations
for action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6165–6175, 2021. 73

Min-Hung Chen, Zsolt Kira, Ghassan AlRegib, Jaekwon Yoo, Ruxin Chen, and Jian Zheng.
Temporal attentive alignment for large-scale video domain adaptation. In Proceedings of
the IEEE International Conference on Computer Vision, pages 6321–6330, 2019. 4, 36,
37, 38, 67, 68, 86, 87

Min-Hung Chen, Baopu Li, Yingze Bao, Ghassan AlRegib, and Zsolt Kira. Action seg-
mentation with joint self-supervised temporal domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9454–9463,
2020. 36

Jinwoo Choi, Gaurav Sharma, Manmohan Chandraker, and Jia-Bin Huang. Unsupervised and
semi-supervised domain adaptation for action recognition from drones. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1717–1726,
2020a. 38, 40, 87



References 177

Jinwoo Choi, Gaurav Sharma, Manmohan Chandraker, and Jia-Bin Huang. Unsupervised
and semi-supervised domain adaptation for action recognition from drones. In The IEEE
Winter Conference on Applications of Computer Vision, pages 1717–1726, 2020b. 36

Jinwoo Choi, Gaurav Sharma, Samuel Schulter, and Jia-Bin Huang. Shuffle and attend:
Video domain adaptation. In European Conference on Computer Vision, pages 678–695.
Springer, 2020c. 38, 40

Gregory Kevin Cohen. Event-Based Feature Detection, Recognition and Classification.
Theses, Université Pierre et Marie Curie - Paris VI ; University of Western Sydney,
September 2016. 114

Giorgia Committeri, Gaspare Galati, Anne-Lise Paradis, Luigi Pizzamiglio, Alain Berthoz,
and Denis LeBihan. Reference frames for spatial cognition: different brain areas are
involved in viewer-, object-, and landmark-centered judgments about object location.
Journal of cognitive neuroscience, 16(9):1517–1535, 2004. 147

Nieves Crasto, Philippe Weinzaepfel, Karteek Alahari, and Cordelia Schmid. Mars: Motion-
augmented rgb stream for action recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7882–7891, 2019. 107, 109

Daniel Czech and Garrick Orchard. Evaluating noise filtering for event-based asynchronous
change detection image sensors. In 2016 6th IEEE International Conference on Biomedical
Robotics and Biomechatronics (BioRob), pages 19–24. IEEE, 2016. 48

Victor G Turrisi da Costa, Giacomo Zara, Paolo Rota, Thiago Oliveira-Santos, Nicu Sebe,
Vittorio Murino, and Elisa Ricci. Dual-head contrastive domain adaptation for video
action recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 1181–1190, 2022. 38, 39

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution
and attention for all data sizes. Advances in neural information processing systems, 34:
3965–3977, 2021. 120

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005
IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
volume 1, pages 886–893. Ieee, 2005. 19

Dima Damen, Teesid Leelasawassuk, Osian Haines, Andrew Calway, and Walterio Mayol-
Cuevas. You-do, i-learn: Discovering task relevant objects and their modes of interaction
from multi-user egocentric video. In BMVC, 2014. 31

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Scaling egocentric vision: The epic-kitchens dataset. In Proceedings of the European
conference on computer vision (ECCV), pages 720–736, 2018. xix, 4, 27, 68, 71, 74, 82,
84, 109, 111, 114, 124, 144, 170

Dima Damen, Will Price, Evangelos Kazakos, Antonino Furnari, and Giovanni Maria
Farinella. Epic-kitchens - 2019 challenges report. https://epic-kitchens.github.io/Reports/
EPIC-Kitchens-Challenges-2019-Report.pdf, 2019. xi, 58, 107, 109



178 References

Dima Damen, Evangelos Kazakos, Will Price, Jian Ma, and Hazel Doughty. Epic-kitchens-55
- 2020 challenges report, 2020. xi, 57, 58, 70, 107, 109

Dima Damen, Adriano Fragomeni, Jonathan Munro, Toby Perrett, Daniel Whettam, and
Michael Wray. Epic-kitchens-100- 2021 challenges report. https://epic-kitchens.github.io/
Reports/EPIC-KITCHENS-Challenges-2021-Report.pdf, 2021. 107, 109

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Jian Ma, Evan-
gelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael
Wray. Rescaling egocentric vision: Collection, pipeline and challenges for epic-kitchens-
100. International Journal of Computer Vision, 130:33–55, 2022. xix, xx, 26, 27, 33, 68,
69, 70, 79, 87, 90, 114, 124, 144, 148, 149, 157, 170

Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma, Amlan Kar, Richard Higgins, Sanja Fidler,
David Fouhey, and Dima Damen. Epic-kitchens visor benchmark: Video segmentations
and object relations. Advances in Neural Information Processing Systems, 35:13745–
13758, 2022. 27, 149, 157, 162

Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain
adaptation. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 129–136. JMLR Workshop and Conference Proceedings, 2010.
107, 109

Pierre de Tournemire, Davide Nitti, Etienne Perot, Davide Migliore, and Amos Sironi. A
large scale event-based detection dataset for automotive. arXiv preprint arXiv:2001.08499,
2020. 111

Tobi Delbruck. Neuromorophic vision sensing and processing. In 2016 46Th european
solid-state device research conference (ESSDERC), pages 7–14. IEEE, 2016. 107, 109

Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq, Matthias Faessler, and Davide Scara-
muzza. Are we ready for autonomous drone racing? the uzh-fpv drone racing dataset. In
2019 International Conference on Robotics and Automation (ICRA), pages 6713–6719.
IEEE, 2019. 51

Andong Deng, Taojiannan Yang, and Chen Chen. A large-scale study of spatiotemporal
representation learning with a new benchmark on action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 20519–20531, 2023. 28

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 53, 162

Wanxia Deng, Zhuo Su, Qiang Qiu, Lingjun Zhao, Gangyao Kuang, Matti Pietikäinen,
Huaxin Xiao, and Li Liu. Deep ladder reconstruction-classification network for unsuper-
vised domain adaptation. Pattern Recognition Letters, 152:398–405, 2021. 39

Yongjian Deng, Youfu Li, and Hao Chen. Amae: Adaptive motion-agnostic encoder for
event-based object classification. IEEE Robotics and Automation Letters, 5(3):4596–4603,
2020a. 48



References 179

Yongjian Deng, Youfu Li, and Hao Chen. Amae: Adaptive motion-agnostic encoder for
event-based object classification. IEEE Robotics and Automation Letters, 5(3):4596–4603,
2020b. 114

Zhijie Deng, Yucen Luo, and Jun Zhu. Cluster alignment with a teacher for unsupervised
domain adaptation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 9944–9953, 2019. 36

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael
Pfeiffer. Fast-classifying, high-accuracy spiking deep networks through weight and thresh-
old balancing. In 2015 International joint conference on neural networks (IJCNN), pages
1–8. ieee, 2015. 48, 51

Tien Do, Khiem Vuong, and Hyun Soo Park. Egocentric scene understanding via multimodal
spatial rectifier. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2832–2841, 2022. 32

Carl Doersch, Ankush Gupta, and Andrew Zisserman. Crosstransformers: spatially-aware
few-shot transfer. Advances in Neural Information Processing Systems, 33:21981–21993,
2020. 87

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations, 2020. 20, 24, 162

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain
generalization via model-agnostic learning of semantic features. Advances in Neural
Information Processing Systems, 32:6450–6461, 2019. 40, 41

Roger M Downs and David Stea. Image and environment: Cognitive mapping and spatial
behavior. Transaction Publishers, 1973. 147, 159

Wenbin Du, Yali Wang, and Yu Qiao. Rpan: An end-to-end recurrent pose-attention network
for action recognition in videos. In Proceedings of the IEEE international conference on
computer vision, pages 3725–3734, 2017. 21

Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Image
Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June 29–July 2,
2003 Proceedings 13, pages 363–370. Springer, 2003. 22

Alircza Fathi, Jessica K Hodgins, and James M Rehg. Social interactions: A first-person
perspective. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
1226–1233. IEEE, 2012a. 19

Alireza Fathi, Yin Li, and James M Rehg. Learning to recognize daily actions using gaze. In
Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part I 12, pages 314–327. Springer, 2012b. 20,
26, 124, 144

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE
transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006. 52, 136



180 References

Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal multiplier
networks for video action recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4768–4777, 2017. 22

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6202–6211, 2019. 20, 23, 91, 99

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotem-
poral learners. Advances in neural information processing systems, 35:35946–35958, 2022.
87

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR, 2017. 41

Qichen Fu, Xingyu Liu, and Kris Kitani. Sequential voting with relational box fields for
active object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2374–2383, 2022. 28

Antonino Furnari and Giovanni Maria Farinella. What would you expect? anticipating
egocentric actions with rolling-unrolling lstms and modality attention. In Proceedings of
the IEEE/CVF International conference on computer vision, pages 6252–6261, 2019. 26,
27

Antonino Furnari, Sebastiano Battiato, Kristen Grauman, and Giovanni Maria Farinella.
Next-active-object prediction from egocentric videos. Journal of Visual Communication
and Image Representation, 49:401–411, 2017. 26

Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE
transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2009. 152

Guillermo Gallego, Jon EA Lund, Elias Mueggler, Henri Rebecq, Tobi Delbruck, and Davide
Scaramuzza. Event-based, 6-dof camera tracking from photometric depth maps. IEEE
transactions on pattern analysis and machine intelligence, 40(10):2402–2412, 2017. 48

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea
Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al. Event-
based vision: A survey. IEEE transactions on pattern analysis and machine intelligence,
44(1):154–180, 2020a. 107, 109

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea
Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al. Event-
based vision: A survey. IEEE transactions on pattern analysis and machine intelligence,
44(1):154–180, 2020b. 3, 134

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
volume 37 of Proceedings of Machine Learning Research, pages 1180–1189, Lille, France,
07–09 Jul 2015a. PMLR. x, 36, 37, 67



References 181

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
volume 37 of Proceedings of Machine Learning Research, pages 1180–1189, Lille, France,
07–09 Jul 2015b. PMLR. 131, 137, 138, 142, 143

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training
of neural networks. The journal of machine learning research, 17(1):2096–2030, 2016.
40, 72, 74, 98

Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza. End-
to-end learning of representations for asynchronous event-based data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5633–5643, 2019a.
114, 133

Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis, and Davide Scaramuzza. End-
to-end learning of representations for asynchronous event-based data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5633–5643, 2019b.
48, 51, 125, 136

Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scaramuzza. Video to
events: Recycling video datasets for event cameras. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3586–3595, 2020. 51, 54,
112, 123, 125, 127, 135, 136, 139, 140, 142

Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide Scaramuzza. Dsec: A stereo
event camera dataset for driving scenarios. IEEE Robotics and Automation Letters, 6(3):
4947–4954, 2021. 111

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. International Conference on Learning
Representations, 2018. 119

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep
reconstruction-classification networks for unsupervised domain adaptation. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14, pages 597–613. Springer, 2016. 39

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning
by predicting image rotations. In International Conference on Learning Representations,
2018. 41

Shane Gilroy, Edward Jones, and Martin Glavin. Overcoming occlusion in the automotive
environment—a review. IEEE Transactions on Intelligent Transportation Systems, 22(1):
23–35, 2019. 150

Rohit Girdhar and Kristen Grauman. Anticipative video transformer. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 13505–13515, 2021. 26,
149



182 References

Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. Actionvlad:
Learning spatio-temporal aggregation for action classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 971–980, 2017. 22

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens Van Der Maaten, Armand Joulin, and
Ishan Misra. Omnivore: A single model for many visual modalities. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16102–16112,
2022. 25, 27

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala,
Armand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15180–15190, 2023. 29

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa*, and Jitendra
Malik*. Humans in 4D: Reconstructing and tracking humans with transformers. In
International Conference on Computer Vision, 2023. 150

Xinyu Gong, Sreyas Mohan, Naina Dhingra, Jean-Charles Bazin, Yilei Li, Zhangyang
Wang, and Rakesh Ranjan. Mmg-ego4d: multimodal generalization in egocentric action
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6481–6491, 2023. 78, 80

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 41

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the
v in vqa matter: Elevating the role of image understanding in visual question answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6904–6913, 2017. 57, 59

Yves Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Adv.
Neural Inform. Process. Syst., volume 367, pages 281–296, 01 2004. 132, 137, 138, 142,
143

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari,
Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
Around the world in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18995–19012, 2022. 26,
28, 29, 30, 31, 32, 85, 88, 99, 149, 153

Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Tri-
antafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al.
Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives.
Computer Vision and Pattern Recognition, 2023. 29, 32, 172

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):
723–773, 2012. 40, 98

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.
53



References 183

Xiao Gu, Jianing Qiu, Yao Guo, Benny Lo, and Guang-Zhong Yang. Transaction: Icl-
sjtu submission to epic-kitchens action anticipation challenge 2021. arXiv preprint
arXiv:2107.13259, 2021. 27

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In Interna-
tional Conference on Learning Representations, 2020. 98

Yandong Guo and Lei Zhang. One-shot face recognition by promoting underrepresented
classes. arXiv preprint arXiv:1707.05574, 2017. 80, 169

Yunzhe Hao, Xuhui Huang, Meng Dong, and Bo Xu. A biologically plausible supervised
learning method for spiking neural networks using the symmetric stdp rule. Neural
Networks, 121:387–395, 2020. 48

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-temporal features with
3d residual networks for action recognition. In Proceedings of the IEEE international
conference on computer vision workshops, pages 3154–3160, 2017. 20, 23

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 23, 118, 136

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 16000–16009, June 2022. 120

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations,
2018. 36

Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, and Hironobu Fujiyoshi. Survey
on vision-based path prediction. In Distributed, Ambient and Pervasive Interactions:
Technologies and Contexts: 6th International Conference, DAPI 2018, Held as Part of
HCI International 2018, Las Vegas, NV, USA, July 15–20, 2018, Proceedings, Part II 6,
pages 48–64. Springer, 2018. 2

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997. 133

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. 2017. 90

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence,
44(9):5149–5169, 2021. 41

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.
115



184 References

Yuhuang Hu, Hongjie Liu, Michael Pfeiffer, and Tobi Delbruck. Dvs benchmark datasets for
object tracking, action recognition, and object recognition. Frontiers in neuroscience, 10:
405, 2016. xiv, 51, 53, 111, 112, 135

Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Egocentric audio-visual
object localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 22910–22921, June 2023. 29

Yan Huang and Irfan Essa. Tracking multiple objects through occlusions. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 2, pages 1051–1058. IEEE, 2005. 149

Thomas Huckle and Alexander Kallischko. Frobenius norm minimization and probing for
preconditioning. International Journal of Computer Mathematics, 84(8):1225–1248, 2007.
39

Jaesung Huh, Jacob Chalk, Evangelos Kazakos, Dima Damen, and Andrew Zisserman.
Epic-sounds: A large-scale dataset of actions that sound. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023. 27

Simone Undri Innocenti, Federico Becattini, Federico Pernici, and Alberto Del Bimbo. Tem-
poral binary representation for event-based action recognition. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 10426–10432. IEEE, 2021. 111, 114

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 36, 99, 118

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks.
Advances in neural information processing systems, 28, 2015. 50

Arshad Jamal, Vinay P Namboodiri, Dipti Deodhare, and KS Venkatesh. Deep domain
adaptation in action space. In British Machine Vision Conference, volume 2, page 5, 2018.
36, 37, 38, 39, 67, 74

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):
221–231, 2012. 20, 23

Wenqi Jia, Miao Liu, and James M Rehg. Generative adversarial network for future hand
segmentation from egocentric video. In European Conference on Computer Vision, pages
639–656. Springer, 2022. 26, 27

Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen. Single-side domain generalization
for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8484–8493, 2020. 40, 41

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and Jan
Kautz. Super slomo: High quality estimation of multiple intermediate frames for video
interpolation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9000–9008, 2018. 112



References 185

Xu Jiaolong, Xiao Liang, and Antonio M. López. Self-supervised domain adaptation for
computer vision tasks. IEEE Access, 7:156694–156706, 2019. 132, 137, 138, 142, 143

Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 43
(11):4037–4058, 2020. 41

Matthew Johnson and Yiannis Demiris. Perceptual perspective taking and action recognition.
International Journal of Advanced Robotic Systems, 2(4):32, 2005. 19

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4893–4902, 2019. 36

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017. 69, 72

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Epic-fusion:
Audio-visual temporal binding for egocentric action recognition. In The IEEE International
Conference on Computer Vision (ICCV), October 2019a. 57, 59, 69, 72

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Epic-fusion:
Audio-visual temporal binding for egocentric action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5492–5501, 2019b. 20,
21, 27, 115

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Slow-fast audi-
tory streams for audio recognition. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 855–859. IEEE, 2021a. 59

Vangelis Kazakos, Jaesung Huh, Arsha Nagrani, Andrew Zisserman, and Dima Damen. With
a little help from my temporal context: Multimodal egocentric action recognition. In The
32nd British Machine Vision Conference, 2021b. 25, 26

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In
Eurographics Symposium on Geometry Processing, 2006. 152

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491, 2018. 64

Rawal Khirodkar, Aayush Bansal, Lingni Ma, Richard Newcombe, Minh Vo, and Kris Kitani.
Ego-humans: An ego-centric 3d multi-human benchmark. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19807–19819, 2023. 150

Alireza Khodamoradi and Ryan Kastner. o(n) o (n)-space spatiotemporal filter for reduc-
ing noise in neuromorphic vision sensors. IEEE Transactions on Emerging Topics in
Computing, 9(1):15–23, 2018. 48



186 References

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances
in neural information processing systems, 33:18661–18673, 2020. 39

Tarasha Khurana, Achal Dave, and Deva Ramanan. Detecting invisible people. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pages 3174–3184,
2021. 150

Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning.
IEEE Access, 8:81674–81685, 2020. 80, 169

Donghyun Kim, Yi-Hsuan Tsai, Bingbing Zhuang, Xiang Yu, Stan Sclaroff, Kate Saenko,
and Manmohan Chandraker. Learning cross-modal contrastive features for video domain
adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 13618–13627, October 2021a. 28, 86

Donghyun Kim, Yi-Hsuan Tsai, Bingbing Zhuang, Xiang Yu, Stan Sclaroff, Kate Saenko,
and Manmohan Chandraker. Learning cross-modal contrastive features for video domain
adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 13618–13627, 2021b. 4, 72, 74, 109

Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng, and Andrew J Davison. Simul-
taneous mosaicing and tracking with an event camera. J. Solid State Circ, 43:566–576,
2008. 48

Junho Kim, Jaehyeok Bae, Gangin Park, Dongsu Zhang, and Young Min Kim. N-imagenet:
Towards robust, fine-grained object recognition with event cameras. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2146–2156, 2021c. 51,
53, 111, 119

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 99

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019. 40

KM Kitani, T Okabe, Y Sato, and A Sugimoto. Fast unsupervised ego-action learning for
first-person sports videos. In Proceedings of the 2011 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3241–3248, 2011. 19

Muhammed Kocabas, Ye Yuan, Pavlo Molchanov, Yunrong Guo, Michael J Black, Otmar
Hilliges, Jan Kautz, and Umar Iqbal. Pace: Human and camera motion estimation from
in-the-wild videos. arXiv:2310.13768, 2023. 150

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,
University of Tront, 2009. 53

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25,
2012. 22



References 187

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951. 36

Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad B Benosman.
Hots: a hierarchy of event-based time-surfaces for pattern recognition. IEEE transactions
on pattern analysis and machine intelligence, 39(7):1346–1359, 2016. 114

Bolin Lai, Miao Liu, Fiona Ryan, and James M Rehg. In the eye of transformer: Global-local
correlation for egocentric gaze estimation. In 33rd British Machine Vision Conference
Proceedings, BMVC 2022, 2022. 29

Bolin Lai, Hongxin Zhang, Miao Liu, Aryan Pariani, Fiona Ryan, Wenqi Jia, Shirley Anugrah
Hayati, James Rehg, and Diyi Yang. Werewolf among us: Multimodal resources for
modeling persuasion behaviors in social deduction games. In Findings of the Association
for Computational Linguistics, 2023. 29

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view
rgb-d object dataset. In 2011 IEEE international conference on robotics and automation,
pages 1817–1824. IEEE, 2011. 134

Matthias De Lange, Hamid Eghbalzadeh, Reuben Tan, Michael L. Iuzzolino, Franziska
Meier, and Karl Ridgeway. Egoadapt: A multi-stream evaluation study of adaptation to
real-world egocentric user video. arXiv preprint arXiv:2307.05784, 2023. 29

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 52

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks
using backpropagation. Frontiers in neuroscience, 10:508, 2016. 48

Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Discovering important people and
objects for egocentric video summarization. In 2012 IEEE conference on computer vision
and pattern recognition, pages 1346–1353. IEEE, 2012. 26

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer
vision, pages 5542–5550, 2017a. 82, 84, 86, 87

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018a. 41

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales.
Episodic training for domain generalization. In ICCV, 2019a. 41

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with
adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5400–5409, 2018b. 40, 98, 100

Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex Kot. Domain
generalization for medical imaging classification with linear-dependency regularization.
Advances in neural information processing systems, 33:3118–3129, 2020. 40



188 References

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an
event-stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017b.
53

Mengke Li, Yiu-Ming Cheung, and Juyong Jiang. Feature-balanced loss for long-tailed
visual recognition. In 2022 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6, 2022a. 80, 169

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng
Tao. Deep domain generalization via conditional invariant adversarial networks. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 624–639,
2018c. 40, 41

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch
normalization for practical domain adaptation. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings. OpenReview.net, 2017c. 36

Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch
normalization for practical domain adaptation. Pattern Recognition, 80:109–117, 2018d.
36, 72, 74

Yiming Li, Ziang Cao, Andrew Liang, Benjamin Liang, Luoyao Chen, Hang Zhao, and Chen
Feng. Egocentric prediction of action target in 3d. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 20971–20980. IEEE, 2022b. 31,
33

Yin Li, Zhefan Ye, and James M Rehg. Delving into egocentric actions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 287–295, 2015.
20

Yin Li, Miao Liu, and James M Rehg. In the eye of beholder: Joint learning of gaze and
actions in first person video. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 619–635, 2018e. 26

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy Hospedales. Feature-critic networks for
heterogeneous domain generalization. In International Conference on Machine Learning,
pages 3915–3924. PMLR, 2019b. 41

Hui Liang, Junsong Yuan, Daniel Thalmann, and Nadia Magnenat Thalmann. Ar in hand:
Egocentric palm pose tracking and gesture recognition for augmented reality applications.
In Proceedings of the 23rd ACM international conference on Multimedia, pages 743–744,
2015. 2, 19

Patrick Lichtsteiner et al. A 128 x 128 120 db 15 µs latency asynchronous temporal contrast
vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576, 2008. 44

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video
understanding. In Proceedings of the IEEE International Conference on Computer Vision,
pages 7083–7093, 2019. 23, 59, 113, 114, 115, 118



References 189

Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z Xu,
Difei Gao, Rong-Cheng Tu, Wenzhe Zhao, Weijie Kong, et al. Egocentric video-language
pretraining. Advances in Neural Information Processing Systems, 35:7575–7586, 2022.
28, 90

Yihan Lin, Wei Ding, Shaohua Qiang, Lei Deng, and Guoqi Li. Es-imagenet: A million
event-stream classification dataset for spiking neural networks. Frontiers in neuroscience,
15:726582, 2021. 111

Bei Liu, S. Zheng, Jianlong Fu, and Wen-Huang Cheng. Anchor-based detection for natural
language localization in ego-centric videos. In International Conference on Consumer
Electronics, 2023. 29

Miao Liu, Siyu Tang, Yin Li, and James M Rehg. Forecasting human-object interaction: joint
prediction of motor attention and actions in first person video. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I
16, pages 704–721. Springer, 2020. 27

Miao Liu, Lingni Ma, Kiran Somasundaram, Yin Li, Kristen Grauman, James M Rehg, and
Chao Li. Egocentric activity recognition and localization on a 3d map. In European
Conference on Computer Vision, pages 621–638. Springer, 2022. 29, 32, 149

Mohammad Reza Loghmani, Luca Robbiano, Mirco Planamente, Kiru Park, Barbara Caputo,
and Markus Vincze. Unsupervised domain adaptation through inter-modal rotation for
rgb-d object recognition. IEEE Robotics and Automation Letters, 5(4):6631–6638, 2020.
125, 132, 134, 137, 141, 143

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable
features with deep adaptation networks. In International conference on machine learning,
pages 97–105. PMLR, 2015. 36, 72, 74, 131, 137, 138, 142, 143

David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004. 19

Zheng Lu and Kristen Grauman. Story-driven summarization for egocentric video. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2714–2721, 2013. 26

Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-
Taixé, and Bastian Leibe. Hota: A higher order metric for evaluating multi-object tracking.
International Journal of Computer Vision, 129:548–578, 2021. 159

Iulia-Alexandra Lungu, Federico Corradi, and Tobi Delbrück. Live demonstration: Convolu-
tional neural network driven by dynamic vision sensor playing roshambo. In 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–1. IEEE, 2017. xiv,
112

Jianming Lv, Kaijie Liu, and Shengfeng He. Differentiated learning for multi-modal domain
adaptation. In Proceedings of the 29th ACM International Conference on Multimedia.
ACM, October 2021. 55



190 References

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. Vip: Towards universal visual reward and representation via value-implicit
pre-training. In The Eleventh International Conference on Learning Representations, 2022.
29

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network
models. Neural networks, 10(9):1659–1671, 1997a. 114

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network
models. Neural networks, 10(9):1659–1671, 1997b. 47

Jinjie Mai, Abdullah Hamdi, Silvio Giancola, Chen Zhao, and Bernard Ghanem. Localizing
objects in 3d from egocentric videos with visual queries. arXiv preprint arXiv:2212.06969,
2022. 31, 149, 153, 159

Sagnik Majumder, Hao Jiang, Pierre Moulon, Ethan Henderson, Paul Calamia, Kristen
Grauman, and Vamsi Krishna Ithapu. Chat2map: Efficient scene mapping from multi-ego
conversations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10554–10564, 2023. 31

Massimiliano Mancini, Zeynep Akata, Elisa Ricci, and Barbara Caputo. Towards recognizing
unseen categories in unseen domains. In European Conference on Computer Vision, pages
466–483. Springer, 2020. 41

Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide Scara-
muzza. Event-based vision meets deep learning on steering prediction for self-driving
cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5419–5427, 2018. 49, 125

Esteve Valls Mascaró, Hyemin Ahn, and Dongheui Lee. Intention-conditioned long-term
human egocentric action anticipation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 6048–6057, 2023. 29

Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of mul-
tiple latent domains. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 11749–11756, 2020. 40, 41

Georgios Meditskos, Pierre-Marie Plans, Thanos G Stavropoulos, Jenny Benois-Pineau,
Vincent Buso, and Ioannis Kompatsiaris. Multi-modal activity recognition from egocentric
vision, semantic enrichment and lifelogging applications for the care of dementia. Journal
of Visual Communication and Image Representation, 51:169–190, 2018. 19

Boudjelal Meftah, Olivier Lezoray, and Abdelkader Benyettou. Segmentation and edge
detection based on spiking neural network model. Neural Processing Letters, 32:131–146,
2010. 48

Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichtenhofer. Track-
former: Multi-object tracking with transformers. In Computer Vision and Pattern Recogni-
tion, 2022. 150

Long Short-Term Memory. Long short-term memory. Neural computation, 9(8):1735–1780,
2010. 21



References 191

Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky, Aude
Oliva, Kate Saenko, and Rogerio Feris. Ar-net: Adaptive frame resolution for efficient
action recognition. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part VII 16, pages 86–104. Springer, 2020. 21

Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing, and Alois
Knoll. Neuromorphic vision datasets for pedestrian detection, action recognition, and fall
detection. Frontiers in neurorobotics, 13:38, 2019. xiv, 111, 112

Seonwoo Min, Nokyung Park, Siwon Kim, Seunghyun Park, and Jinkyu Kim. Grounding
visual representations with texts for domain generalization. In European Conference on
Computer Vision, pages 37–53. Springer, 2022. 42

M Keith Moore and Andrew N Meltzoff. Object permanence after a 24-hr delay and leaving
the locale of disappearance: the role of memory, space, and identity. Developmental
Psychology, 40(4):606, 2004. 147

Pedro Morgado, Yi Li, and Nuno Nvasconcelos. Learning representations from audio-visual
spatial alignment. Advances in Neural Information Processing Systems, 33:4733–4744,
2020. 5

Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-visual instance discrimination
with cross-modal agreement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12475–12486, 2021. 2

Gottfried Munda, Christian Reinbacher, and Thomas Pock. Real-time intensity-image
reconstruction for event cameras using manifold regularisation. International Journal of
Computer Vision, 126:1381–1393, 2018. 48

Jonathan Munro and Dima Damen. Multi-modal domain adaptation for fine-grained action
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020a. xix, 4, 5, 28, 36, 38, 55, 67, 68, 70, 72, 74, 75, 82, 84,
86, 87, 109, 110, 111, 118

Jonathan Munro and Dima Damen. Multi-modal domain adaptation for fine-grained action
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 122–132, 2020b. 57, 59, 71

Tushar Nagarajan and Kristen Grauman. Learning affordance landscapes for interaction
exploration in 3d environments. Advances in Neural Information Processing Systems, 33:
2005–2015, 2020. 31

Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and Kristen Grauman. Ego-topo:
Environment affordances from egocentric video. In Computer Vision and Pattern Recogni-
tion, 2020. 149

Tushar Nagarajan, Santhosh Kumar Ramakrishnan, Ruta Desai, James Hillis, and Kristen
Grauman. Egoenv: Human-centric environment representations from egocentric video.
Advances in Neural Information Processing Systems, 36, 2024. 32, 149



192 References

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. In Conference on Robot Learning,
pages 892–909. PMLR, 2023. 29

Atsushi Nakazawa and Miwako Honda. First-person camera system to evaluate tender
dementia-care skill. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision Workshops, pages 0–0, 2019. 19

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing
domain gap by reducing style bias. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8690–8699, 2021. 41

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network.
In Proceedings of the IEEE/CVF international conference on computer vision, pages
3163–3172, 2021. 24

Joe Yue-Hei Ng, Jonghyun Choi, Jan Neumann, and Larry S Davis. Actionflownet: Learn-
ing motion representation for action recognition. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1616–1624. IEEE, 2018. 55

Hongjing Niu, Hanting Li, Feng Zhao, and Bin Li. Domain-unified prompt representations
for source-free domain generalization. arXiv preprint arXiv:2209.14926, 2022. 41

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European conference on computer vision, pages 69–84. Springer, 2016.
138

Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. Real-
time classification and sensor fusion with a spiking deep belief network. Frontiers in
neuroscience, 7:178, 2013. 51

Takehiko Ohkawa, Kun He, Fadime Sener, Tomas Hodan, Luan Tran, and Cem Keskin.
Assemblyhands: Towards egocentric activity understanding via 3d hand pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12999–13008, 2023. 28

Eshed OhnBar, Kris Kitani, and Chieko Asakawa. Personalized dynamics models for adaptive
assistive navigation systems. In Conference on Robot Learning, pages 16–39. PMLR,
2018. 2

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018. 96

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision. Transactions on Machine
Learning Research, 2023. 159, 162

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience,
9:437, 2015a. xvi, 134, 135, 136, 140



References 193

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience,
9:437, 2015b. 52, 53

Boxiao Pan, Zhangjie Cao, Ehsan Adeli, and Juan Carlos Niebles. Adversarial cross-domain
action recognition with co-attention. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 11815–11822, 2020. 36, 37, 38

Xiaqing Pan, Nicholas Charron, Yongqian Yang, Scott Peters, Thomas Whelan, Chen Kong,
Omkar Parkhi, Richard Newcombe, and Yuheng Carl Ren. Aria digital twin: A new
benchmark dataset for egocentric 3d machine perception. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 20133–20143, 2023. 4, 33, 149

Hyun Soo Park, Jyh-Jing Hwang, Yedong Niu, and Jianbo Shi. Egocentric future localization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4697–4705, 2016. 2

Razvan-George Pasca, Alexey Gavryushin, Yen-Ling Kuo, Otmar Hilliges, and Xi Wang.
Summarize the past to predict the future: Natural language descriptions of context boost
multimodal object interaction. arXiv preprint arXiv:2301.09209, 2023. 27, 29

Adam Paszke, S. Gross, Soumith Chintala, G. Chanan, E. Yang, Zachary Devito, Zeming Lin,
Alban Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.
118

Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian Metze, Alexander G Hauptmann,
Joao F Henriques, and Andrea Vedaldi. Support-set bottlenecks for video-text representa-
tion learning. In International Conference on Learning Representations, 2020. 87

Mandela Patrick, Dylan Campbell, Yuki Asano, Ishan Misra, Florian Metze, Christoph
Feichtenhofer, Andrea Vedaldi, and Joao F Henriques. Keeping your eye on the ball:
Trajectory attention in video transformers. Advances in neural information processing
systems, 34:12493–12506, 2021. 20, 24, 25

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Mo-
ment matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1406–1415, 2019. 86, 87

José Antonio Pérez-Carrasco, Bo Zhao, Carmen Serrano, Begona Acha, Teresa Serrano-
Gotarredona, Shouchun Chen, and Bernabé Linares-Barranco. Mapping from frame-
driven to frame-free event-driven vision systems by low-rate rate coding and coincidence
processing–application to feedforward convnets. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2706–2719, 2013. 48, 52

Etienne Perot, Pierre De Tournemire, Davide Nitti, Jonathan Masci, and Amos Sironi. Learn-
ing to detect objects with a 1 megapixel event camera. Advances in Neural Information
Processing Systems, 33:16639–16652, 2020. 111

Toby Perrett and Dima Damen. Ddlstm: dual-domain lstm for cross-dataset action recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7852–7861, 2019. 21



194 References

Toby Perrett, Alessandro Masullo, Tilo Burghardt, Majid Mirmehdi, and Dima Damen.
Temporal-relational crosstransformers for few-shot action recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 475–484,
2021. 87

Toby Perrett, Saptarshi Sinha, Tilo Burghardt, Majid Mirmehdi, and Dima Damen. Use your
head: Improving long-tail video recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2415–2425, 2023. 87

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11557–
11568, 2021. 120

Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-person
camera views. In 2012 IEEE conference on computer vision and pattern recognition,
pages 2847–2854. IEEE, 2012. 19, 26

Mirco Planamente, Chiara Plizzari, Marco Cannici, Marco Ciccone, Francesco Strada,
Andrea Bottino, Matteo Matteucci, and Barbara Caputo. Da4event: towards bridging the
sim-to-real gap for event cameras using domain adaptation. IEEE Robotics and Automation
Letters, 6(4):6616–6623, 2021. 8, 114, 123

Mirco Planamente, Gabriele Goletto, Gabriele Trivigno, Giuseppe Averta, and Barbara Ca-
puto. Polito-iit-cini submission to the epic-kitchens-100 unsupervised domain adaptation
challenge for action recognition. arXiv preprint arXiv:2209.04525, 2022a. 68

Mirco Planamente, Chiara Plizzari, Emanuele Alberti, and Barbara Caputo. Domain general-
ization through audio-visual relative norm alignment in first person action recognition. In
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages
1807–1818, 2022b. 7, 69, 82, 84, 109

Mirco Planamente, Chiara Plizzari, Simone Alberto Peirone, Barbara Caputo, and Andrea
Bottino. Relative norm alignment for tackling domain shift in deep multi-modal classifica-
tion. International Journal of Computer Vision, pages 1–21, 2024. 7

Chiara Plizzari, Mirco Planamente, Emanuele Alberti, and Barbara Caputo. Polito-iit
submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action
recognition. arXiv preprint arXiv:2107.00337, 2021. 68

Chiara Plizzari, Mirco Planamente, Gabriele Goletto, Marco Cannici, Emanuele Gusso, Mat-
teo Matteucci, and Barbara Caputo. E2 (go) motion: Motion augmented event stream for
egocentric action recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19935–19947, 2022. 8

Chiara Plizzari, Gabriele Goletto, Antonino Furnari, Siddhant Bansal, Francesco Ragusa,
Giovanni Maria Farinella, Dima Damen, and Tatiana Tommasi. An outlook into the future
of egocentric vision. International Journal of Computer Vision, 2023a. 7, 12

Chiara Plizzari, Toby Perrett, Barbara Caputo, and Dima Damen. What can a cook in italy
teach a mechanic in india? action recognition generalisation over scenarios and locations.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
13656–13666, 2023b. 7, 29



References 195

Chiara Plizzari, Shubham Goel, Toby Perrett, Jacob Chalk, Angjoo Kanazawa, and Dima
Damen. Spatial cognition from egocentric video: Out of sight, not out of mind. arXiv
preprint arXiv:2404.05072, 2024. 8

Yair Poleg, Ariel Ephrat, Shmuel Peleg, and Chetan Arora. Compact cnn for indexing
egocentric videos. In 2016 IEEE winter conference on applications of computer vision
(WACV), pages 1–9. IEEE, 2016. 20

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin
Van Durme. Hypothesis only baselines in natural language inference. In Proceedings of
the Seventh Joint Conference on Lexical and Computational Semantics. Association for
Computational Linguistics, 2018. 57, 59

Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compression and time-domain
cds. IEEE Journal of Solid-State Circuits, 46(1):259–275, 2010. 45

Christoph Posch, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, and Tobi Delbruck.
Retinomorphic event-based vision sensors: bioinspired cameras with spiking output.
Proceedings of the IEEE, 102(10):1470–1484, 2014. xi, 45

Will Price and Dima Damen. An evaluation of action recognition models on epic-kitchens.
arXiv preprint arXiv:1908.00867, 2019. 113

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks,
12(1):145–151, 1999. ISSN 0893-6080. 118

Shengyi Qian and David F Fouhey. Understanding 3d object interaction from a single image.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
21753–21763, 2023. 32, 33

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12556–12565, 2020. 41

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, 2021. 103, 162

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor
Darrell. Real-world robot learning with masked visual pre-training. In Conference on
Robot Learning, pages 416–426. PMLR, 2023. 29

Francesco Ragusa, Antonino Furnari, Salvatore Livatino, and Giovanni Maria Farinella.
The meccano dataset: Understanding human-object interactions from egocentric videos
in an industrial-like domain. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1569–1578, 2021. 28

Francesco Ragusa, Giovanni Maria Farinella, and Antonino Furnari. Stillfast: An end-to-end
approach for short-term object interaction anticipation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3635–3644, 2023a. 29



196 References

Francesco Ragusa, Antonino Furnari, and Giovanni Maria Farinella. Meccano: A multi-
modal egocentric dataset for humans behavior understanding in the industrial-like domain.
Computer Vision and Image Understanding, 235:103764, 2023b. 26, 28

Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Srid-
haran. Correlation-aware adversarial domain adaptation and generalization. Pattern
Recognition, 100:107124, 2020. 40

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, and Jitendra Malik. Tracking
people with 3d representations. In Advances in Neural Information Processing Systems,
2021. 150

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, and Jitendra Malik. Tracking
people by predicting 3d appearance, location and pose. In Computer Vision and Pattern
Recognition, 2022. 150, 155

Santhosh Kumar Ramakrishnan, Ziad Al-Halah, and Kristen Grauman. Naq: Leveraging
narrations as queries to supervise episodic memory. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6694–6703, 2023. 29

Vignesh Ramanathan, Anmol Kalia, Vladan Petrovic, Yi Wen, Baixue Zheng, Baishan Guo,
Rui Wang, Aaron Marquez, Rama Kovvuri, Abhishek Kadian, et al. Paco: Parts and
attributes of common objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7141–7151, 2023. 29

Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-constrained softmax loss for
discriminative face verification. arXiv preprint arXiv:1703.09507, 2017. 60

Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections and
weight quantization in spiking neural networks for energy-efficient recognition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(4):668–
677, 2018. 48

Siddharth Ravi, Pau Climent-Perez, Théo Morales, Carlo Huesca-Spairani, Kooshan
Hashemifard, and Francisco Florez-Revuelta. Odin: An omnidirectional indoor dataset
capturing activities of daily living from multiple synchronized modalities. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6487–6496, 2023. 34, 149

Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Real-time visual-inertial
odometry for event cameras using keyframe-based nonlinear optimization. In Proceedings
of the British Machine Vision Conference (BMVC), pages 16–1, 2017. 49

Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. Esim: an open event camera simulator.
In Conference on robot learning, pages 969–982. PMLR, 2018. xxi, 54, 112, 125, 127,
128, 135, 136

Kishore K Reddy and Mubarak Shah. Recognizing 50 human action categories of web videos.
Machine vision and applications, 24(5):971–981, 2013. 53

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. Association for Computational Linguistics, 2019. 99



References 197

Christian Reinbacher, Gottfried Munda, and Thomas Pock. Real-time panoramic tracking for
event cameras. In 2017 IEEE International Conference on Computational Photography
(ICCP), pages 1–9. IEEE, 2017. 48

Xuanchi Ren, Tao Yang, Li Erran Li, Alexandre Alahi, and Qifeng Chen. Safety-aware motion
prediction with unseen vehicles for autonomous driving. In International Conference on
Computer Vision, 2021. 150

Nicholas Rhinehart and Kris M Kitani. Learning action maps of large environments via
first-person vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 580–588, 2016. 31

Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Performance
measures and a data set for multi-target, multi-camera tracking. In European conference
on computer vision. Springer, 2016. 159

Debaditya Roy and Basura Fernando. Action anticipation using latent goal learning. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 2745–2753, 2022. 27

Bodo Rueckauer and Tobi Delbruck. Evaluation of event-based algorithms for optical flow
with ground-truth from inertial measurement sensor. Frontiers in neuroscience, 10:176,
2016. 51

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for
image classification. Frontiers in neuroscience, 11:682, 2017. 48

Michael S Ryoo and Larry Matthies. First-person activity recognition: What are they doing
to me? In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2730–2737, 2013. 19

Michael S Ryoo, Brandon Rothrock, and Larry Matthies. Pooled motion features for first-
person videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 896–904, 2015. 20

Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, and Abir Das. Contrast and
mix: Temporal contrastive video domain adaptation with background mixing. Advances in
Neural Information Processing Systems, 34:23386–23400, 2021a. 28

Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, and Abir Das. Contrast and mix:
Temporal contrastive video domain adaptation with background mixing. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021b. 38, 39, 109

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3723–3732, 2018. 36, 72, 74

Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa.
Learning from synthetic data: Addressing domain shift for semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3752–3761, 2018. 134



198 References

Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Continuous-time intensity estimation
using event cameras. In Asian Conference on Computer Vision, pages 308–324. Springer,
2018. 48

Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Asynchronous spatial image convo-
lutions for event cameras. IEEE Robotics and Automation Letters, 4(2):816–822, 2019.
48

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Conference on Computer Vision and Pattern Recognition, 2016. 151

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pix-
elwise view selection for unstructured multi-view stereo. In European Conference on
Computer Vision, 2016. 152

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on computer
vision, pages 618–626, 2017. xvi, 139, 141

Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert
Wang, and Angela Yao. Assembly101: A large-scale multi-view video dataset for under-
standing procedural activities. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21096–21106, 2022. 26, 28

Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. A 128\,×128 1.5% contrast
sensitivity 0.9% fpn 3 µs latency 4 mw asynchronous frame-free dynamic vision sensor
using transimpedance preamplifiers. IEEE Journal of Solid-State Circuits, 48(3):827–838,
2013. 44

Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. Poker-dvs and mnist-dvs. their
history, how they were made, and other details. Frontiers in neuroscience, 9:481, 2015. 52

Laura Sevilla-Lara, Yiyi Liao, Fatma Güney, Varun Jampani, Andreas Geiger, and Michael J
Black. On the integration of optical flow and action recognition. In German conference on
pattern recognition, pages 281–297. Springer, 2019. 3, 55

Aviv Shamsian, Ofri Kleinfeld, Amir Globerson, and Gal Chechik. Learning object perma-
nence from video. In European Conference on Computer Vision, 2020. 149

Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands
in contact at internet scale. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9869–9878, 2020. xviii, 157, 162, 164

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-adversarial discriminative
deep domain generalization for face presentation attack detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10023–10031,
2019. 41

Kenneth Shaw, Shikhar Bahl, and Deepak Pathak. Videodex: Learning dexterity from internet
videos. In Conference on Robot Learning, pages 654–665. PMLR, 2023. 28



References 199

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language
models. Advances in Neural Information Processing Systems, 35:14274–14289, 2022. 41

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action
recognition in videos. Advances in neural information processing systems, 27, 2014. 22

Suriya Singh, Chetan Arora, and CV Jawahar. First person action recognition using deep
learned descriptors. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2620–2628, 2016. 20

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman.
Hats: Histograms of averaged time surfaces for robust event-based object classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1731–1740, 2018a. 114, 133

Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman.
Hats: Histograms of averaged time surfaces for robust event-based object classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1731–1740, 2018b. 50, 53

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in Neural Information Processing
Systems, 33:16857–16867, 2020. 103

Min-Ho Song and Rolf Inge Godøy. How fast is your body motion? determining a sufficient
frame rate for an optical motion tracking system using passive markers. PloS one, 11(3):
e0150993, 2016. 122

Xiaolin Song, Sicheng Zhao, Jingyu Yang, Huanjing Yue, Pengfei Xu, Runbo Hu, and
Hua Chai. Spatio-temporal contrastive domain adaptation for action recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9787–9795, June 2021a. 86

Xiaolin Song, Sicheng Zhao, Jingyu Yang, Huanjing Yue, Pengfei Xu, Runbo Hu, and
Hua Chai. Spatio-temporal contrastive domain adaptation for action recognition. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9787–9795, 2021b. 36, 38, 39, 72, 74, 109

Ekaterina H Spriggs, Fernando De La Torre, and Martial Hebert. Temporal segmentation
and activity classification from first-person sensing. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, pages 17–24. IEEE,
2009. 19

Timo Stoffregen, Guillermo Gallego, Tom Drummond, Lindsay Kleeman, and Davide
Scaramuzza. Event-based motion segmentation by motion compensation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 7244–7253, 2019.
144, 171



200 References

Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drummond, Nick Barnes,
Lindsay Kleeman, and Robert Mahony. Reducing the sim-to-real gap for event cameras. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXVII 16, pages 534–549. Springer, 2020. 114, 123, 125, 127,
139, 140, 143

Swathikiran Sudhakaran and Oswald Lanz. Convolutional long short-term memory net-
works for recognizing first person interactions. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 2339–2346, 2017. 20, 21

Swathikiran Sudhakaran and Oswald Lanz. Attention is all we need: Nailing down object-
centric attention for egocentric activity recognition. In 29th British Machine Vision
Conference, BMVC 2018; Proceedings. BMVA Press, 2018. 20, 21

Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Lsta: Long short-term attention
for egocentric action recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9954–9963, 2019. 21

Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Gate-shift networks for video
action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1102–1111, 2020. 23

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adapta-
tion. In Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14, pages 443–450. Springer, 2016. 36, 40, 98

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943, 2018a. 122

Lin Sun, Kui Jia, Kevin Chen, Dit-Yan Yeung, Bertram E Shi, and Silvio Savarese. Lattice
long short-term memory for human action recognition. In Proceedings of the IEEE
international conference on computer vision, pages 2147–2156, 2017. 21

Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang, and Wei Zhang. Optical flow
guided feature: A fast and robust motion representation for video action recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1390–1399, 2018b. 55

Yu Sun, Qian Bao, Wu Liu, Tao Mei, and Michael J Black. Trace: 5d temporal regression
of avatars with dynamic cameras in 3d environments. In Computer Vision and Pattern
Recognition, 2023. 150

Dipak Surie, Thomas Pederson, Fabien Lagriffoul, Lars-Erik Janlert, and Daniel Sjölie.
Activity recognition using an egocentric perspective of everyday objects. In Ubiquitous
Intelligence and Computing: 4th International Conference, UIC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, pages 246–257. Springer, 2007. 19

Dídac Surís, Dave Epstein, Heng Ji, Shih-Fu Chang, and Carl Vondrick. Learning to learn
words from visual scenes. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages 434–452. Springer,
2020. 28



References 201

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 41

Hao Tang, Kevin J Liang, Kristen Grauman, Matt Feiszli, and Weiyao Wang. Egotracks:
A long-term egocentric visual object tracking dataset. Advances in Neural Information
Processing Systems, 36, 2024. 29, 149

Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 5940–5947, 2020. 36

Yansong Tang, Yi Tian, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Action recognition in rgb-d
egocentric videos. In 2017 IEEE International Conference on Image Processing (ICIP),
pages 3410–3414. IEEE, 2017. 20

Koya Tango, Takehiko Ohkawa, Ryosuke Furuta, and Yoichi Sato. Background mixup data
augmentation for hand and object-in-contact detection. In ECCV Workshop, 2022. 28

Catherine Taylor, Robin McNicholas, and Darren Cosker. Towards an egocentric framework
for rigid and articulated object tracking in virtual reality. In 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages 354–359.
IEEE, 2020. 2, 19

Daksh Thapar, Aditya Nigam, and Chetan Arora. Recognizing camera wearer from hand
gestures in egocentric videos. In International Conference on Multimedia, 2020. 27

Pavel Tokmakov, Jie Li, Wolfram Burgard, and Adrien Gaidon. Learning to track with object
permanence. In International Conference on Computer Vision, 2021. 149

A Torralba and AA Efros. Unbiased look at dataset bias. In Proceedings of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1521–1528, 2011. 2, 57,
82, 84, 86, 87

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 4489–4497, 2015. 20, 23

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A
closer look at spatiotemporal convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 6450–6459, 2018.
20, 23

Vadim Tschernezki, Ahmad Darkhalil, Zhifan Zhu, David Fouhey, Iro Laina, Diane Larlus,
Dima Damen, and Andrea Vedaldi. Epic fields: Marrying 3d geometry and video under-
standing. Advances in Neural Information Processing Systems, 36, 2024. x, 5, 27, 33, 34,
151, 157

Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa. Statistical analysis on stiefel and
grassmann manifolds with applications in computer vision. In 2008 IEEE conference on
computer vision and pattern recognition, pages 1–8. IEEE, 2008. 39



202 References

Basile Van Hoorick, Pavel Tokmakov, Simon Stent, Jie Li, and Carl Vondrick. Tracking
through containers and occluders in the wild. In Computer Vision and Pattern Recognition,
2023. 149

Vladimir N Vapnik. An overview of statistical learning theory. IEEE trans. neural netw., 10
(5):988–999, 1999. 98

Ajay Vasudevan, Pablo Negri, Bernabe Linares-Barranco, and Teresa Serrano-Gotarredona.
Introduction and analysis of an event-based sign language dataset. In 2020 15th IEEE
International Conference on Automatic Face and Gesture Recognition (FG 2020), pages
675–682. IEEE, 2020. xiv, 112

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 20, 23, 24, 94

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5018–5027, 2017. 86, 87

Sagar Verma, Pravin Nagar, Divam Gupta, and Chetan Arora. Making third person techniques
recognize first-person actions in egocentric videos. In 2018 25th IEEE International
Conference on Image Processing (ICIP), pages 2301–2305. IEEE, 2018. 20

Riccardo Volpi and Vittorio Murino. Addressing model vulnerability to distributional shifts
over image transformation sets. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7980–7989, 2019. 41

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and
Silvio Savarese. Generalizing to unseen domains via adversarial data augmentation. In
Advances in neural information processing systems, pages 5334–5344, 2018. 40, 41

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations
from unlabeled video. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 98–106, 2016. 26

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Dada:
Depth-aware domain adaptation in semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7364–7373, 2019. 134

David Ed Waller and Lynn Ed Nadel. Handbook of spatial cognition. American Psychological
Association, 2013. 147, 159

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere
embedding for face verification. In Proceedings of the 25th ACM international conference
on Multimedia, pages 1041–1049, 2017a. 60

Huiyu Wang, Mitesh Kumar Singh, and Lorenzo Torresani. Ego-only: Egocentric action
detection without exocentric transferring. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5250–5261, 2023a. 29



References 203

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc
Van Gool. Temporal segment networks: Towards good practices for deep action recognition.
In European conference on computer vision, pages 20–36. Springer, 2016. 20, 59, 72, 118

Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool. Untrimmednets for weakly
supervised action recognition and detection. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 4325–4334, 2017b. 21

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc
Van Gool. Temporal segment networks for action recognition in videos. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2740–2755, 2018. 113, 114, 118

Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. Tdn: Temporal difference networks for
efficient action recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1895–1904, 2021a. 23

Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. Event-based high dynamic range image and
very high frame rate video generation using conditional generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10081–10090, 2019a. 49

Tian Wang and Hichem Snoussi. Histograms of optical flow orientation for abnormal events
detection. In 2013 IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance (PETS), pages 45–52. IEEE, 2013. 19

Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification
networks hard? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12695–12705, 2020a. 55, 57, 59, 69, 70, 71

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems, 33:5776–5788, 2020b. 103

Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. Transferable atten-
tion for domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence,
33:5345–5352, July 2019b. 67

Xizi Wang, Feng Cheng, Gedas Bertasius, and David J. Crandall. Loconet: Long-short
context network for active speaker detection. arXiv preprint arXiv:2301.08237, 2023b. 29

Yufei Wang, Haoliang Li, and Alex C Kot. Heterogeneous domain generalization via domain
mixup. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3622–3626. IEEE, 2020c. 41, 99

Zhengwei Wang, Qi She, and Aljosa Smolic. Action-net: Multipath excitation for action
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13214–13223, 2021b. 23

Ziqi Wang, Marco Loog, and Jan Van Gemert. Respecting domain relations: Hypothesis
invariance for domain generalization. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 9756–9763. IEEE, 2021c. 40



204 References

Pengfei Wei, Lingdong Kong, Xinghua Qu, Xiang Yin, Zhiqiang Xu, Jing Jiang, and Zejun
Ma. Unsupervised video domain adaptation: A disentanglement perspective. arXiv
preprint arXiv:2208.07365, 2022. 4, 38, 40, 67

David Weikersdorfer, David B Adrian, Daniel Cremers, and Jörg Conradt. Event-based
3d slam with a depth-augmented dynamic vision sensor. In 2014 IEEE international
conference on robotics and automation (ICRA), pages 359–364. IEEE, 2014. 51

Yuhang Wen, Zixuan Tang, Yunsheng Pang, Beichen Ding, and Mengyuan Liu. Interactive
spatiotemporal token attention network for skeleton-based general interactive action recog-
nition. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7886–7892. IEEE, 2023. 28

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabu-
lary image annotation. In Twenty-Second International Joint Conference on Artificial
Intelligence, 2011. 57, 59

Kelvin Wong, Yanlei Gu, and Shunsuke Kamijo. Mapping for autonomous driving: Opportu-
nities and challenges. IEEE Intelligent Transportation Systems Magazine, 13(1):91–106,
2020. 150

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik,
and Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer
for efficient long-term video recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13587–13597, 2022a. 25

Junru Wu, Yi Liang, Hassan Akbari, Zhangyang Wang, Cong Yu, et al. Scaling multimodal
pre-training via cross-modality gradient harmonization. Advances in Neural Information
Processing Systems, 35:36161–36173, 2022b. 169

QingXiang Wu, Martin McGinnity, Liam Maguire, Ammar Belatreche, and Brendan Glackin.
Edge detection based on spiking neural network model. In Advanced Intelligent Computing
Theories and Applications. With Aspects of Artificial Intelligence: Third International
Conference on Intelligent Computing, Proceedings 3, pages 26–34. Springer, 2007. 48

Yue Wu, Hongfu Liu, Jun Li, and Yun Fu. Deep face recognition with center invariant loss.
In Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pages 408–414,
2017. 80, 169

Xuehan Xiong, Anurag Arnab, Arsha Nagrani, and Cordelia Schmid. M&m mix: A multi-
modal multiview transformer ensemble. arXiv preprint arXiv:2206.09852, 2022. 27

Mengmeng Xu, Yanghao Li, Cheng-Yang Fu, Bernard Ghanem, Tao Xiang, and Juan-Manuel
Pérez-Rúa. Where is my wallet? modeling object proposal sets for egocentric visual query
localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2593–2603, 2023. 31

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun
Zhang. Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 6502–6509, 2020. 41



References 205

R. Xu, G. Li, J. Yang, and L. Lin. Larger norm more transferable: An adaptive feature
norm approach for unsupervised domain adaptation. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1426–1435, 2019a. 36, 58, 65

Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An adap-
tive feature norm approach for unsupervised domain adaptation. In The IEEE International
Conference on Computer Vision (ICCV), October 2019b. 143

Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. Larger norm more transferable: An
adaptive feature norm approach for unsupervised domain adaptation. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1426–1435, 2019c. 132,
137, 138, 142

Yuecong Xu, Haozhi Cao, Zhenghua Chen, Xiaoli Li, Lihua Xie, and Jianfei Yang. Video
unsupervised domain adaptation with deep learning: A comprehensive survey. arXiv
preprint arXiv:2211.10412, 2022. 37

Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia
Schmid. Multiview transformers for video recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 3333–3343, 2022. 25, 27

Jinyu Yang, Weizhi An, Sheng Wang, Xinliang Zhu, Chaochao Yan, and Junzhou Huang.
Label-driven reconstruction for domain adaptation in semantic segmentation. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXVII 16, pages 480–498. Springer, 2020. 39

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
Depth anything: Unleashing the power of large-scale unlabeled data. Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2024. 152

Lijin Yang, Yifei Huang, Yusuke Sugano, and Yoichi Sato. Interact before align: Leveraging
cross-modal knowledge for domain adaptive action recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 14722–14732,
2022a. 38, 68, 72, 74

Xitong Yang, Fu-Jen Chu, Matt Feiszli, Raghav Goyal, Lorenzo Torresani, and Du Tran.
Relational space-time query in long-form videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6398–6408, 2023. 29

Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures of parts.
IEEE transactions on pattern analysis and machine intelligence, 35(12):2878–2890, 2012.
158

Yuzhe Yang, Hao Wang, and Dina Katabi. On multi-domain long-tailed recognition, imbal-
anced domain generalization and beyond. In European Conference on Computer Vision,
pages 57–75. Springer, 2022b. 40, 99

Zhiyu Yao, Yunbo Wang, Jianmin Wang, Philip Yu, and Mingsheng Long. Videodg: Gen-
eralizing temporal relations in videos to novel domains. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2021. 42



206 References

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers. In 6th International
Conference on Learning Representations, ICLR 2018, 2018. 60

Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. Decoupling human
and camera motion from videos in the wild. In Computer Vision and Pattern Recognition,
2023. 150

Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan Kautz. Glamr: Global occlusion-
aware human mesh recovery with dynamic cameras. In Computer Vision and Pattern
Recognition, 2022. 150

Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime
tv-l 1 optical flow. In Joint pattern recognition symposium, pages 214–223. Springer, 2007.
22, 107, 109, 122

Olga Zatsarynna and Juergen Gall. Action anticipation with goal consistency. In 2023 IEEE
International Conference on Image Processing (ICIP), pages 1630–1634. IEEE, 2023. 28

Jeroen Zewald and Ivo Jacobs. Object permanence. In Encyclopedia of animal cognition
and behavior, pages 4711–4727. Springer, 2022. 147

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision
transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12104–12113, 2022. 120

Kai Zhan, Steven Faux, and Fabio Ramos. Multi-scale conditional random fields for first-
person activity recognition. In 2014 IEEE international conference on pervasive computing
and communications (PerCom), pages 51–59. IEEE, 2014. 19

Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli Wang. Real-time action
recognition with enhanced motion vector cnns. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2718–2726, 2016. 22

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations,
2018. 41

Lingzhi Zhang, Shenghao Zhou, Simon Stent, and Jianbo Shi. Fine-grained egocentric
hand-object segmentation: Dataset, model, and applications. In European Conference on
Computer Vision, pages 127–145. Springer, 2022a. 29

Xin Zhang, Yusuke Iwasawa, Yutaka Matsuo, and Shixiang Shane Gu. Amortized
prompt: Lightweight fine-tuning for clip in domain generalization. arXiv preprint
arXiv:2111.12853, 2021. 41

Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei Zhang. Exact feature distribution
matching for arbitrary style transfer and domain generalization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8035–8045,
2022b. 41



References 207

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo,
Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every
detection box. In European Conference on Computer Vision. Springer, 2022c. 150

Yunhua Zhang, Hazel Doughty, Ling Shao, and Cees GM Snoek. Audio-adaptive activity
recognition across video domains. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13791–13800, 2022d. 38, 39

Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video represen-
tations from large language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6586–6597, 2023. 28, 30

Xiaozheng Zheng, Chao Wen, Zhou Xue, and Jingyu Wang. Hand pose estimation via
multiview collaborative self-supervised learning. arXiv preprint arXiv:2302.00988, 2023.
28

Yutong Zheng, Dipan K Pal, and Marios Savvides. Ring loss: Convex feature normalization
for face recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5089–5097, 2018. 60

Zangwei Zheng, Xiangyu Yue, Kai Wang, and Yang You. Prompt vision transformer for
domain generalization. arXiv preprint arXiv:2208.08914, 2022. 41, 42, 99

Zeyun Zhong, David Schneider, Michael Voit, Rainer Stiefelhagen, and Jürgen Beyerer.
Anticipative feature fusion transformer for multi-modal action anticipation. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 6068–6077,
2023. 26, 27

Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reason-
ing in videos. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 803–818, 2018. 21, 37, 69, 99

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generaliza-
tion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):
4396–4415, 2022. 41, 84, 86

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Mixstyle neural networks for domain
generalization and adaptation. International Journal of Computer Vision, pages 1–15,
2023. 41

Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. EV-FlowNet: Self-
supervised optical flow estimation for event-based cameras. In Robotics: Science and
Systems XIV. Robotics: Science and Systems Foundation, June 2018. doi: 10.15607/rss.
2018.xiv.062. 49, 51

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsupervised event-
based learning of optical flow, depth, and egomotion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 989–997, 2019a. xv, xvi,
112, 114, 128, 130, 133, 135, 141



208 References

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsupervised event-
based learning of optical flow, depth, and egomotion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 989–997, 2019b. 49, 50

Hao Zhu, Man-Di Luo, Rui Wang, Ai-Hua Zheng, and Ran He. Deep audio-visual learning:
A survey. International Journal of Automation and Computing, 18(3):351–376, 2021. 55

Ming Zong, Ruili Wang, Xiubo Chen, Zhe Chen, and Yuanhao Gong. Motion saliency based
multi-stream multiplier resnets for action recognition. Image and Vision Computing, 107:
104108, 2021. 22


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goals
	1.2 Research questions and motivations
	1.3 Outline and main contributions
	1.4 Publications

	2 Preliminaries
	2.1 Egocentric Vision
	2.1.1 An Outlook into Egocentric Vision
	2.1.2 Egocentric Action Recognition
	2.1.3 3D Scene Understanding

	2.2 Learning across Domains
	2.2.1 Problem Formulation
	2.2.2 Unsupervised Domain Adaptation
	2.2.3 Domain Generalization

	2.3 Event-Based Cameras
	2.3.1 Neuromorphic Vision Devices
	2.3.2 Deep Learning Approaches to Event Cameras
	2.3.3 Datasets and Simulators

	3 Multi-Modal Relative Norm Alignment for Tackling the Domain Shift 
	3.1 Introduction
	3.2 RNA: Relative Norm Alignment
	3.2.1 Intuition and motivation
	3.2.2 Relative Norm Alignment loss

	3.3 Experiments
	3.3.1 Experiments on EK100
	3.3.2 Experiments on EK55
	3.3.3 Ablation studies

	3.4 Conclusion
	4 Vision and Language for Domain Generalization
	4.1 Introduction
	4.2 Background
	4.3 ARGO1M Benchmark
	4.4 CIR: Cross-Instance Reconstruction
	4.5 Experiments
	4.5.1 Results
	4.5.2 Ablations
	4.5.3 CIR analysis

	4.6 Conclusion
	5 Event-Based Data for Egocentric Vision
	5.1 Introduction
	5.2 Event-Based Data for Egocentric Action Recognition
	5.2.1 N-EPIC-KITCHENS
	5.2.2 Challenges of evaluating event data
	5.2.3 Learning from motion
	5.2.4 Experiments

	5.3 Sim-to-Real Gap in Event-Based Data
	5.3.1 Formulation
	5.3.2 DA4Event: Domain Adaptation for Event Data
	5.3.3 N-ROD: a New Event-Based Dataset for Object Recognition
	5.3.4 Experiments

	5.4 Conclusion
	6 Egocentric Video Understanding using 3D 
	6.1 Introduction
	6.2 Background
	6.3 Method - Lift, Match and Keep (LMK)
	6.3.1 Lift: Lifting 2D Observations to 3D
	6.3.2 Match and Keep: Matching Lifted Observations and Keeping them in Mind
	6.3.3 LMK for object visibility and positioning

	6.4 Experiments
	6.4.1 Benchmarking OSNOM
	6.4.2 Experimental setup
	6.4.3 Results
	6.4.4 LMK Ablation

	6.5 Conclusion
	7 Conclusions and future works
	References






