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ABSTRACT

The paper shows the application of the most recent sensitivity techniques implemented in Serpent-2 in
order to propagate the uncertainty from the nuclear data to the macroscopic, homogenised cross sections of
the ALFRED reactor, which is then simulated with the multi-physics code FRENETIC. The main results
are encouraging and define a possible methodology to propagate the nuclear data uncertainties to the main
macroscopic parameters computed with FRENETIC, in order to perform thorough safety analyses for the
ALFRED reactor.
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1. INTRODUCTION

One of the most important phases in the safety assessment of a nuclear reactor design is related to
the quantification of the major uncertainties that can affect the operational conditions of the plant.
As far as the neutronic design is concerned, there are mainly two kinds of uncertainty sources:
on one side, the approximations introduced by the physico-mathematical model (e.g., multi-group
vs. continuous-energy, diffusion vs. transport, ...), on the other the uncertainties associated to
the model input data, i.e. the geometrical parameters, the operating conditions, the experimental
nuclear data, and so on.

The reference model in reactor physics is indeed the transport equation, and the reference compu-
tational tool to solve it is the Monte Carlo (MC) method, since it is able to cover the whole phase
space without any discretisation, provided that the statistical samples are large enough. Never-
theless, practical applications, especially when design- and safety-related, require fast yet reliable
tools like multi-group diffusion codes. In order to fairly reproduce the reference results, these
tools need suitable energy-collapsed and space-homogenised material constants that are usually
prepared using fine-group deterministic codes like the ECCO-ERANOS system [1] or, more re-
cently, using detailed stochastic transport that read continuous-energy data from the nuclear data
libraries. Therefore, in order to correctly quantify the impact of the nuclear data uncertainties on
the chain calculation output, propagating them through the deterministic or MC simulation to the
multi-group constants is extremely relevant, although quite computationally expensive.

Thanks to the recent developments in the Serpent-2 MC code [2], there are nowadays two ways of
performing the Sensitivity Analysis (SA) needed for a first-order Uncertainty Quantification (UQ):
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the Generalized Perturbation Theory (GPT) and the eXtended Generalized Perturbation Theory
(xGPT) [3]. While the first one is common also to the deterministic codes, xGPT is peculiar of
stochastic transport since it allows to exploit the continuous-energy projected coefficients. A recent
uncertainty propagation study performed for the Molten Salt Fast Reactor (MSFR)[4] highlighted
some difficulties arising in the study of homogenized multi-group constants, due to the intrinsic
necessity to perform full-core simulations for a MSR, leading to an impracticable computational
cost to reach statistical convergent results.

Nevertheless, the application of these methods should be interesting also for other GEN-IV reactor
design, such as Lead-cooled Fast Reactors (LFR), as the heterogeneous arrangement of the core
assemblies would allow to focus the attention on a specific region, thus reducing the computa-
tional burden. Therefore, the primary objective of this work is to prove the feasibility of the MC
propagation of the uncertainty from the basic nuclear data to the multi-group constant for a LFR
design. As a second step, the uncertainty is then propagated to two relevant integral quantities, i.e.
keff and the assembly power PASSi

, that are evaluated with the multiphysics code FRENETIC (Fast
REactor NEutronics/ThermalhydraulICs), developed at Politecnico di Torino in the last years [5].

The liquid metal fast reactor design chosen for this analysis is the EU LFR demonstrator, the
ALFRED reactor [6]. The results presented in this work should define a possible methodology to
propagate uncertainty from basic nuclear data to macroscopic output quantities using FRENETIC,
establishing a procedure to be applied extensively to perform uncertainty quantification studies for
LFRs.

2. UNCERTAINTY QUANTIFICATION TECHNIQUES EMPLOYED

Uncertainty Quantification techniques are basically divided into two categories: direct sampling
and surrogate techniques. The first one, employed, for example, in the so-called Total Monte Carlo
method (TMC) [7], is very accurate and does not suffer from the curse of dimensionality, allowing
thus to assess the impact of many parameters at the same time. However, the main limit of such
approach is that it is extremely time consuming, as it converges as a 1/

√
N , whereN is the number

of samples. Therefore, practical studies usually employ surrogate, approximated models, like the
first-order sandwich formula [8],

var[R] = ~S
R

x cov[~x]~S
RT

x , (1)

where var stands for the variance of a certain response R, S is the sensitivity of R to a variation in
the input x, and cov is the covariance matrix of the input.

In nuclear data uncertainity quantification, the UQ is traditionally performed employing equation
(1), since the covariance of the input can be evaluated on a multi-group structure taking the appro-
priate subsection in the nuclear data ENDF-6 format files and processing it with nuclear data codes
like NJOY [9], while the group-wise sensitivity coefficients are estimated with well-established
techniques like the already mentioned GPT, usually available both in deterministic and stochastic
codes, although in the latter case the number of energy groups has to be limited because of statis-
tical reasons. GPT can provide a first-order estimate of the sensitivity coefficient of the perturbed
reaction rates. To overcome this limit and to fully exploit the continuous-energy capabilities of
stochastic transport, it is possible to employ the xGPT method, which allows to retrieve S as a pro-
jection on basis functions bΣi

extracted from a continuous-energy covariance matrix. When a set
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of perturbed data evaluations is available, xGPT can work in a TMC-like way, combining the pro-
jected coefficients SbΣi

and the input random responses to build a surrogate response distribution.
Unfortunately, it is not possible to extract the continuous-energy covariance information directly
from the data with the current processing codes. The only possible workaround is to exploit the
T6 package [10], which is a collection of codes able to produce continuous-energy random nu-
clear data files. If a sufficiently large set of perturbed data was generated, the continuous-energy
covariance matrix could be then extracted from the data themselves. The main drawback of such
procedure is that the random evaluations are extremely computationally intensive. Therefore, the
construction of a set of 239Pu random evaluations for this work with T6 is still ongoing.

In order to exploit the TMC-like capability of xGPT, the interest in having a set of perturbed nuclear
data is strong. To build this set with a good compromise in terms of both cost and accuracy, the
approach recently tested on the MSFR in the framework of the European Project SAMOFAR [4]
can be employed. This methodology consists in generating the covariance matrix on a fine-group
mesh, using the SAmpler of Nuclear Data and uncertaintY (SANDY) code [11], which takes as
input the covariance section of the ENDF-6 file elaborated by the ERRORR module of NJOY
and produces a set of random evaluations. It must be remarked here that since SANDY is only
devoted to random sampling and reads the covariance as an input, it can produce the data in a
much faster way than T6, that builds each each single evaluation from scratch using nuclear physics
models. Figure 1 shows the comparison between the correlation matrices of 239Pu evaluated with

Figure 1: ECCO 33-groups correlation matrices for MT18 (left) and corresponding equally
lethargy spaced 999 groups correlation matrices (right).

the ECCO-33 energy grid and the corresponding matrices scored on a grid of 999 points equally
spaced along the lethargy axes.

3. NUCLIDE SELECTION AND ALFRED MODEL

Thanks to the past experience related to the MSFR, also in this case the choice of the nuclide
for the UQ study involved a fissile species, the 239Pu . The main reasons for this choice are its
abundance and its impact on the fission process, which is expected to be quite significant. In
order to limit the UQ analysis, the only macroscopic cross section considered for the uncertainty
propagation is the multi-group macroscopic fission cross section of the fuel assembly, Σf , as one of
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Table 1: Six-group data adopted to perform the macroscopic cross section energy collapsing
and spatial homogenisation [12].

Group Upper boundary [MeV] Lower boundary [MeV]

1 2.000 · 101 1.353 · 100

2 1.353 · 100 1.832 · 101

3 1.832 · 10−1 6.738 · 10−2

4 6.738 · 10−2 9.119 · 10−3

5 9.119 · 10−3 2.000 · 10−5

6 2.000 · 10−5 1.000 · 10−11

the most influenced by the selected nuclide. The reference thermodynamic condition considered
for the study is uniform temperature of 673 K for the whole system. In order to avoid missing
covariance or MT data, the 239Pu file present in the JEFF-3.1.1 library, that we usually employ for
our calculations, is substituted with one coming from the latest ENDF-B/VIII release. This choice
provides also consistency for the generation of the 239Pu random evaluations with T6, which takes
some data from ENDF-B/VIII. Thanks again to the past experience with the UQ performed at
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Figure 2: Radial (left) and axial (right) sections of ALFRED 3D model.

3D full-core level, we take advantage of the heterogeneous arrangement of the core to focus our
analysis on a specific kind of assemblies, in order to reduce the computational domain (and thus the
burden) and, at the same time, to increase the Monte Carlo simulation level of detail. Therefore, to
estimate the influence of 239Pu nuclear data on the six-group (the energy grid is given in Table 1)
homogenised fission macroscopic cross section, which is then used in FRENETIC, the 3D full-core
Serpent-2 model (see figure 2) employed for the generation of the cross sections for FRENETIC
is simplified to a radially infinite system made of 60 cm inner fuel assemblies, axially surrounded
by the top and bottom reflectors. This model certainly yields less accurate inner fuel cross sections
with respect to the ones obtained with the full-core model, but allows to increase the statistics
related to the sensitivity coefficients estimation.
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4. UNCERTAINTY QUANTIFICATION RESULTS

In this section, we briefly summarize the main results of our analysis.

4.1. GPT results

Since the group-wise sensitivity coefficients estimated with GPT approach provide a very clear pic-
ture of the physics and can provide a comparison term for the xGPT, a first calculation employing
this approach is performed scoring the sensitivities on the ECCO-33 energy grid. The simulation
is run with about 2 · 109 active particles and 10 latent generations on 240 CPUs (Intel(R) Xeon(R)
CPU E5-2680 v3 @ 2.50GHz) for a total time of almost 16 hours. Figure 3 shows the behaviour of

Figure 3: ECCO 33-groups sensitivity coefficients evaluated with GPT technique.

the relative sensitivity coefficients of the macroscopic fission cross section for two energy groups.
It is interesting to notice that Σf,6 is slightly sensitive also to perturbations on the two adjacent
upper groups, while Σf in groups from 1 to 5 only depends on what occurs inside each group (only
Σf,3 is shown for sake of brevity). The sensitivity coefficients for MT18 (fission) and MT102 (ra-
diative capture) are then combined with the corresponding ECCO-33 covariance matrix in order to
retrieve the total uncertainties, as reported in Table 2.

Table 2: Values computed by GPT and percentage relative standard deviations due to the
uncertainties in MT18-MT102 reactions for Pu-239.

Parameter Value % Nuclear data uncertainty

Σf,1 0.006894 ± 0.000021 2.34938 ± 0.000150
Σf,2 0.003072 ± 0.000015 1.23322 ± 0.000061
Σf,3 0.001799 ± 0.000005 1.01492 ± 0.000032
Σf,4 0.002213 ± 0.000010 1.02758 ± 0.000016
Σf,5 0.004146 ± 0.000020 0.69354 ± 0.000066
Σf,6 0.013459 ± 0.000083 0.34228 ± 0.000180
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4.2. xGPT results

The same case of the previous section is run in xGPT mode with about 2 · 109 active particles
and 10 latent generations on 240 CPUs (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) for
a total time of almost 40 hours. The projected sensitivities SbΣi

are evaluated using 35 basis
functions approximating the 239Pu sample covariance matrix with an error less than 0.01% [4].
The sample covariance matrix is extracted from the random evaluations generated by SANDY.
Figure 4 provides some visual representations of the values of the Σf sensitivity coefficients to

Figure 4: Projected sensitivity coefficients evaluated with xGPT technique for MT18 and
MT102.

each basis functions of MT18 and MT102 for the same energy bin, corresponding to the first group.
The physical interpretation of these senisitivity coefficients is more complicated with respect to the
previous GPT case.

Table 3: Values computed by xGPT and percentage relative standard deviations due to the
uncertainties in MT18-MT102 reactions for Pu-239.

Parameter Value % Nuclear data uncertainty

Σf,1 0.006894 ± 0.000021 0.41276 ± 0.000065
Σf,2 0.003072 ± 0.000012 0.15817 ± 0.000210
Σf,3 0.001799 ± 0.000005 0.00488 ± 0.001300
Σf,4 0.002213 ± 0.000010 0.01191 ± 0.003000
Σf,5 0.004146 ± 0.000020 0.01239 ± 0.003100
Σf,6 0.013459 ± 0.000083 0.00006 ± 0.025000

Table 3 shows the relative percentage uncertainties related to Σf in each group. With respect to the
previous case, the values are here quite difficult to be interpreted. The inspection of the statistical
error associated to the computed uncertainties would suggest that the statistics is not good enough
in this case, meaning that more accurate simulations need to be performed.
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Table 4: Relative sensitivity coefficients for k, power in central assembly P1 and power in a
peripheral assembly P5 with respect to Σf in the various groups adopted, estimated directly

with FRENETIC.

Parameter Value Parameter Value Parameter Value

S
k

Σf,1
9.7451 · 10−2 S

P1

Σf,1
5.3879 · 10−1 S

P5

Σf,1
1.5713 · 10−1

S
k

Σf,2
1.6296 · 10−1 S

P1

Σf,1
8.7135 · 10−1 S

P5

Σf,1
2.9395 · 10−1

S
k

Σf,3
1.8971 · 10−1 S

P1

Σf,1
1.2022 · 10+0 S

P5

Σf,1
2.2454 · 10−1

S
k

Σf,4
6.6389 · 10−2 S

P1

Σf,1
3.7455 · 10−1 S

P5

Σf,1
1.1383 · 10−1

S
k

Σf,5
5.3438 · 10−2 S

P1

Σf,1
3.1380 · 10−1 S

P5

Σf,1
8.5262 · 10−2

S
k

Σf,6
1.0700 · 10−2 S

P1

Σf,1
7.0228 · 10−2 S

P5

Σf,1
8.7047 · 10−3

5. FRENETIC sensitivity coefficient calculation

After the propagation of the nuclear uncertainty to the Σf parameter, the second step of the work
consists in estimating the sensitivity of some macroscopic responses to the perturbations of the
fission homogenised cross sections characterising the inner fuel assemblies of ALFRED. To per-
form this task, we employed FRENETIC, a multiphysics code that adopts a 1D advection/diffusion
model in the thermo-hydraulics module and a multi-group nodal diffusion model for neutronics.
As a starting point, the code is employed to perform standalone neutronic calculations for a direct
estimation of the sensitivity coefficients as

S
R

Σf
=

δR/R

δΣf/Σf

=
(Rref −Rpert)/R

(Σf,ref − Σf,pert)/Σf

, (2)

where R is one of the selected responses: the effective multiplication parameter, the power in
the central assembly, and the power in one of the peripheral inner fuel assembly (for the correct
identification of the region, please refer to Figure 2). The value of the δΣf is computed assuming
variations of 0.1%, −0.1%, 0.2% and −0.2% separately for each group, in order to verify that
the linear assumption for this variation is satisfied. Since the coupled simulation would require
a complete set of temperature-dependent multi-group constants for the thermal feedback calcula-
tions and, therefore, also a complete set of perturbations for each temperature, the coefficients are
estimated assuming a steady-state uniform temperature distribution in the core. The values of the
sensitivity coefficients computed as described above are listed in table 4.

Combining the sensitivities computed directly by FRENETIC with the Σf uncertainties computed
via GPT per each response, the resulting average values and relative uncertainties are 1.12194 ±
3.686 · 10+2 [pcm] for k, 2.691219 [MW] ± 2.1075 % for the power in the central assembly and
2.240166 [MW] ± 0.5804 % for the power in the peripheral assembly.
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6. CONCLUSIONS

The latest Serpent-2 sensitivity calculation cabalities are applied to propagate the uncertainty from
the MT18-MT102 reactions of 239Pu to the macroscopic, multi-group fission cross section of the
ALFRED inner fuel assembly type. The resulting uncertainty is then propagated to the main neu-
tronic macroscopic parameters computed by the multiphysics code FRENETIC. The results of the
calculations are encouraging, in spite of the fact that xGPT results need some more investiga-
tion. In addition to this aspect, also the propagation of the uncertainties through a fully coupled
neutronics/thermo-hydraulics calculations deserves to be tested, in order to link nuclear data un-
certainties to the main thermo-hydraulics parameters.
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