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Egidio De Benedetto , Senior Member, IEEE, Luigi Duraccio , Graduate Student Member, IEEE,
Fabrizio Lo Regio , Graduate Student Member, IEEE, and Annarita Tedesco

Abstract—Brain–computer interfaces (BCIs) are an inte-
gration of hardware and software communication sys-
tems that allow a direct communication path between the
human brain and external devices. Among the existing BCI
paradigms, steady-state visually evoked potentials (SSVEPs)
have gained momentum in the development of noninva-
sive BCI applications as they are characterized by adequate
signal-to-noise ratio (SNR) and information transfer rate
(ITR). In recent years, the adoption of augmented reality (AR)
head-mounted displays (HMDs) to render the flickering stim-
uli necessary for SSVEPs elicitation has become an attractive
alternative to traditional computer screens (CSs). In fact, the
increase in system wearability anticipates the possibility of
adopting BCIs in contexts other than research laboratory.
This has contributed to a steadily-increasing interest in BCIs,
as also confirmed by the recent literature dedicated to the
topic. In this evolving scenario, this review intends to provide
a comprehensive picture of the current state-of-the-art in relation to the latest advancement of wearable BCIs based on
SSVEPs classification and AR technology. The goal is to provide the reader with a systematic comparison of different
technological solutions realized over the last years, thus making future research in this direction more efficient.

Index Terms— Augmented reality (AR), brain–computer interface (BCI), electroencephalography (EEG), Health 4.0,
Industry 4.0, instrumentation, measurement, monitoring, steady-state visually evoked potential (SSVEP), real-time
systems, wearable systems.

I. INTRODUCTION

AS THE world embraces the 4.0 era and the digital
transition [1], the demand for more sophisticated and
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powerful human–machine interactions is constantly increas-
ing [2], [3]. This has fostered the diffusion of brain–computer
interfaces (BCIs), a technology that integrates hardware and
software solutions to enable direct communication between
the human brain and external devices [4]. Basically, BCIs rely
on the measurement of cerebral activity in order to associate
a meaning to voluntarily or involuntarily modulated brain
waves. Although BCIs are a well-known technology, it is
only in recent years that their interest has been rediscovered,
partly due to the advancement of technologies related to
measurement systems [5]. BCIs can be classified according to
different taxonomies. A first distinction can be made depend-
ing on the way brain signals are captured: functional magnetic
resonance (fMRI) [6], magnetoencephalography (MEG) [7],
near-infrared spectroscopy (NIRS) [8], or electroencephalog-
raphy (EEG), which is commonly acknowledged as the best
choice since it allows noninvasiveness, satisfactory usability,
and contained costs [9]. Additionally, according to [10], BCIs
can be classified as follows.
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1) Passive, where the user does not directly and consciously
control his electrical brainwaves. This paradigm is gen-
erally used for monitoring the user’s mental state [11]
and in the field of affective computing [12].

2) Active, where the subject voluntarily produces an
appropriate modulation of the brainwaves for control-
ling an application, independently of external events.
Active BCIs are arguably studied in rehabilitation pro-
tocols [13], where the most important paradigm is
represented by motor imagery (MI), which is based on
the premise that the neural activity within a specific
region of the brain undergoes changes when subjects
imagine moving any body part [14], [15], [16], [17].

3) Reactive, where brainwaves are produced in response
to external stimuli. This peculiarity allows the use of
reactive BCIs both for control and monitoring purposes.
All event-related potentials (ERPs), including P300 [18]
and visually evoked potentials (VEPs) [19], fall under
this category.

Among the major reactive BCI paradigms [20], steady-
state VEPs (SSVEPs) have rapidly gained momentum as they
are characterized by adequate signal-to-noise ratio (SNR) and
information transfer rate (ITR) [21]. SSVEPs are elicited in the
primary visual cortex when a flickering stimulus is observed.
The physiological brain response is typically inducted after a
latency ranging from 80 to 160 ms [22]. It is a sinusoidal-
like waveform, showing a fundamental frequency equal to
that of the gazed stimulus, and often higher harmonics [23].
Stimulation frequencies typically range from 1 to 100 Hz [24].
Traditionally, these stimuli are displayed on a computer screen
(CS), typically an LCD monitor placed in front of the user.
This setup, which allows to visualize up to 200 stimuli [25],
is very helpful for developing applications like the BCI Speller,
a system that gives severe motor-disabled patients the possibil-
ity to communicate using their brain activity without muscular
mobility [26], [27]. However, although it represents the best
practice to obtain satisfactory performance, such configuration
is also bulky and inevitably limits the portability of these
systems. For this reason, the adoption of BCI-SSVEP has long
been confined to laboratory environments [28].

Recently, innovative solutions based on the use of wireless
EEG headsets and, most importantly, augmented reality (AR)
head-mounted displays (HMDs) for the stimuli rendering have
been considered as a promising approach to favor more wear-
ability, immersivity, and engagement in the fruition of BCI
applications [29], [30], [31], thus enabling SSVEP-based BCIs
to be deployed in broader application contexts, such as health-
care [32], [33], [34] and industry [35], [36]. Nevertheless, the
overall performance of such systems is strongly dependent on
the specifications of the chosen HMD, which have to be thor-
oughly analyzed [28], [36], [37]. First, the maximum number
of flickering stimuli that can be accommodated in the display
depends on its field of view (FOV), and typically ranges from
a minimum of two [30] up to nine [38]. However, there is
much room for improvements aimed at reaching a number of
stimuli comparable to LCD-based visualization. Second, the

HMDs’ hardware is typically less powerful than desktop PCs:
this translates in a significant nonpredictability of the frame
rate (frames/s) when the flickering stimuli are displayed [39].
This contribution leads to a shift in the values of the rendered
stimulation frequencies. As a consequence, the classification
performance of the SSVEPs could be reduced [40]. Finally,
the stimuli rendered by AR HMDs are holographic: this means
that they are superimposed on the real space, still maintaining
an assigned level of transparency. Hence, if the environmental
brightness increases, the SSVEPs intensity becomes weaker,
leading to lower recognition [37]. For this reason, also ensur-
ing appropriate contrast becomes a crucial aspect for AR
HMDs.

Currently, the scientific community has begun to address
these issues in more detail. The last five years, in fact, have
seen a significant increase in works in the related literature.
Fig. 1 shows the number of documents found (updated as of
April 2023) after searching the keywords AR and SSVEP on
the Scopus database. Given such a growing interest, it becomes
useful to present a comprehensive review of the state-of-
the-art. Therefore, this manuscript aims to review the latest
developments in wearable BCIs that employ SSVEPs recog-
nition and AR technology. This review serves a dual purpose:
first, to provide readers with a detailed overview of wearable
BCIs that are based on SSVEPs and AR, with a focus on
the time period spanning from 2018 onward, which marks the
emergence of the impact of AR advancements on the perfor-
mance of SSVEP-based BCIs (as is also shown by Fig. 1).
Additionally, the manuscript aims to provide a systematic
comparison of the different technological solutions developed
so far, by highlighting the main functional components of this
particular type of BCIs.

This article is organized as follows. Section II reviews the
different solutions proposed in the literature for each of the
functional blocks of an AR-SSVEP BCI. Then, the related
highlights are discussed in Section III. Finally, conclusions
are drawn.

II. LITERATURE REVIEW

The typical architecture of a BCI based on SSVEPs classifi-
cation and AR technology is mainly composed of four blocks,
as shown in Fig. 2.

The first block concerns the Stimuli Generation. An AR
HMD is used to run a dedicated AR application which displays
N concurrent flickering stimuli. Each stimulus flickers at a
different frequency from the others and is associated with a
specific and known command to send.

The second block is related to the EEG Acquisition.
A portable EEG headset acquires the user’s brain signals,
which are digitized by means of the EEG Processing block.

The third block is constituted by a Processing Unit, which
can be internal to the EEG headset, or external: in the latter
case, it is typically a portable board connected to the EEG
headset by cable [30], or a laptop which receives the EEG
samples over wireless communication [41], or even the AR
HMD itself [35]. The processing unit runs the dedicated
Classification Algorithm which is in charge to process the
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Fig. 1. Number of documents found after searching the keywords AR
and SSVEP on the Scopus database.

Fig. 2. Typical architecture of a BCI based on SSVEP and AR.

EEG sample and deduce which stimulus has been observed by
the user: therefore, the recognition of N stimuli at different
frequencies is viewed as an N -class classification problem.

Once the classification has been made, an output command
is sent to the BCI application, the last block of the system
which provides a Feedback to the user depending on the selec-
tion performed. If the classification is successful, the output
command will correspond to the choice desired by the
user.

In Sections II-A–II-D, for each of these functional blocks,
the most recent advancement are detailed.

A. Stimuli Generation
A comprehensive characterization of the Stimuli Generation

block can be provided on the basis of the following aspects.
1) Frequencies: According to [24], the stimulation frequen-

cies can range from 1 to 100 Hz. Despite that, the best
SNRs are typically achieved in the region from 8 to 20 Hz
as discussed in [42], where 16 volunteers with normal vision
were asked to participate in the experiment, and an average
SSVEP amplitude response was obtained as a function of the
stimulation frequency. Nevertheless, although the flickering

Fig. 3. Distribution of AR layouts investigated in [45].

stimuli in the given frequency range evoke SSVEPs with larger
amplitude, gazing at these stimuli can result annoying and
tiring for users [43]. For this reason, in recent years, the
use of high-frequency stimulation was addressed by several
works [43], [44], which adopted stimuli at frequencies higher
than 30 Hz. However, to do this, displays with an adequate
refresh rate (more than 120 Hz) are required: this places a
strong limitation in AR-based SSVEP BCIs as the greatest
part of AR HMDs is endowed with a 60-Hz display [41]. For
this reason, different strategies to increase the user comfort
were adopted by proposing innovative stimulation methods and
colors (see Sections II-A3 and II-A4).

2) Layout: Since the FOV of the AR HMDs is reduced
with respect to human binocular vision, the number of stimuli
to accommodate in the AR display is generally low [45].
In fact, displaying in AR a number of stimuli similar to
CS applications inevitably occludes the real environment, by
reducing the true value of AR employment. For this reason,
in [30] and [35], only two flickering stimuli were used as
the FOV of the chosen AR HMD, namely Epson Moverio
BT-200, was about 23◦. In the last years, the improvements
in AR technology allowed the development of HMDs like
Microsoft HoloLens, characterized by FOV up to 52◦ [46].
Such HMDs are able to display from four to nine stimuli
without degradation of performance [38]. Based on these con-
siderations, an interesting aspect is represented by the choice
of the stimuli layout. In [45], four different display layouts
were designed to verify the influence of different layouts by
comparing the resulting changes in the system performance.
It resulted that the flickering stimuli should not be placed too
close to each other, to avoid interference, but neither at the
edges of the screen, as the angle between the user’s eyes and
the stimuli becomes too wide. Fig. 3 shows the four layouts
investigated by the study: the configuration which allowed
to achieve higher performance was the number 2. Beyond
improving the visual field of AR headsets and optimizing the
position of luminous stimuli, the next step toward increasing
the number of visual stimuli may involve reducing their size
within the display. This aspect, in the knowledge of the
authors, has not yet been addressed in the context of AR-based
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Fig. 4. Comparison between (a) squarewave rendering and
(b) sinewave rendering.

stimulation, but it is an important topic that the scientific
community is beginning to explore for CS setups. For instance,
in [47], the feasibility of using small and peripheral stimuli
was investigated, yielding promising results.

3) Waveform: Initially, the flickering stimuli were imple-
mented by means of simple frame alternation: each frame
reversed between black and white in a cycle defined by
the chosen stimulation frequency. However, in this frame-
based design, the number of stimuli is always limited by
the refresh rate of a the display [41], [48]. For example,
on AR HMDs endowed with a 60-Hz refresh rate, the usable
stimulation frequencies could only be 8.57 Hz (7 frames per
cycle), 10.00 Hz (6 frames per cycle), 12.00 Hz (5 frames
per cycle), or 15.00 Hz (4 frames per cycle). More gener-
ally, the stimulation frequencies can be found by the ratio
RR/n, where RR is the refresh rate of the display, and n
is an integer number whose values start from 2, according
to the Nyquist–Shannon sampling theorem [49]. Therefore,
according to this method, only subharmonic frequencies of the
refresh rate could be chosen. For this reason, in [50], a new
frame-based strategy was designed to render the flickering
stimuli with a higher frequency resolution. This strategy
also allows choosing frequencies that are not subharmonic
of the refresh rate, by using a varying number of frames
in each cycle. Given a desired frequency f , the stimula-
tion sequence can be derived according to the following
equation:

seq( f, i) =
1
2

+ {1 + square[2π f (i/RR)]} (1)

where square(·) generates a square wave with frequency f , i is
the frame index, and RR is the refresh rate. Since the function
square(·) allows only two values (1 or −1), it comes easy
to associate the resulting highest value [seq( f, i) = 1] to the
white color, and the lowest [seq( f, i) = 0] to the black one.
Nevertheless, such standard ON/OFF alternation can typically be
very tiring for users. For this reason, in [51], the sampled

Fig. 5. Likely representation of an AR environment with four flickering
stimuli.

sinusoidal method was proposed, as expressed as follows:

seq( f, i, φ) =
1
2

{1 + sin[2π f (i/RR) + φ]} (2)

where sin(·) generates a sine wave at the chosen frequency f
and phase φ. Again, i and RR represent the frame index and
the refresh rate, respectively. In this way, the transition from
black [seq( f, i, φ) = 0] to white [seq( f, i, φ) = 1] is made
in grayscale. In Fig. 4, a comparison between this method
and the traditional ON/OFF alternation is made for a stimulation
frequency of 8 Hz and a refresh rate of 60 Hz. The sampled
sinusoidal method has emerged as the most widely used over
the years [27].

More recently, instead, a phase-approaching (PA) method
was proposed [41] to realize the flickering sequences at
user-specified frequencies on AR HMDs. The sequences
realized through this method (named PAS sequences) try
to approximate the user-specified stimulation frequencies by
means of minimizing the difference of accumulated phases
between the PAS sequence and the ideal wave of user-specified
frequency. Another promising approach is realizing the flicker-
ing targets by means of checkerboard-based structures, which
reverse their pattern according to the chosen stimulation
frequencies, as done in [52]. According to this study, the
proposed layout managed to achieve an acceptable contrast
relative to the environment, still maintaining adequate comfort
for the user. Finally, in recent research conducted in [53] and
[54], a novel type of visual stimulation known as grow/shrink
stimulation (GSS) was introduced as a potential alternative to
traditional visual stimuli. GSS involves the use of star-shaped
stimuli that flicker at varying frequencies and change in size to
elicit SSVEP responses. In general, the squarewave, sinewave,
and PA methods employ a color alternation scheme (i.e.,
transitioning between black and white and vice versa) based
on the selected stimulation frequency. On the other hand,
the checkerboard and grow/shrink approaches rely on spatial
pattern alternation, involving the inversion of color positions
or changes in the icons’ dimensions. These distinctions are
emphasized in Table I.
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TABLE I
COMPARISON BETWEEN THE DIFFERENT APPROACHES FOR

IMPLEMENTING THE STIMULATIONS FOR SSVEPS INDUCTION

4) Color: As the human eye is composed of three types of
color-sensitive cone cells (red, green, and blue) [55], the ques-
tion of which stimulation color allows to obtain the highest
performance in AR-based SSVEP BCIs is meaningful. For this
reason, in [56], the impact of stimulation color on the system
performance was explored. Different stimulus interfaces were
designed by considering four colors (white, red, green, and
blue). Ten healthy subjects with normal or corrected vision
were asked to participate in the experiments. Overall, the
experimental results showed that the blue stimulation was
considered the most comfortable interface, while red and
white were seen as uncomfortable colors. However, the white
color allowed to achieve the highest performance, while the
blue color the lowest one. At the state-of-the-art, the white
stimulus interface is most widely used in the literature [57].
Nevertheless, the trade-off between high performance and low
eye fatigue has yet to be solved.

5) Frame Rate Stability: Another important aspect is the
frame rate stability of the display used to render the flickering
stimuli. As pointed out in [39], [58], and [59], an AR HMD
typically exhibits a significant nonpredictability of the frame
rate with respect to a traditional laboratory PC, as the computa-
tional unit is less powerful. This uncertainty contribution leads
to an undesired shift in the frequency values of the rendered
stimuli, thus increasing the possibility of misjudgment. For
the sake of example, consider an AR HMD equipped with a
60-Hz display (hence, 60 frames/s), and four flickering stimuli
having nominal frequency values of 11.4, 11.6, 11.8, and
12.0 Hz. If the computational effort needed to run the AR
application is excessive, the frame rate of the display could
decrease to 58 frames/s. Consequently, a nominal 12.0-Hz
stimulus will flicker at 11.6 Hz, a nominal 11.8-Hz stimulus
will flicker at 11.4 Hz, and so on. Hence, if the classification
algorithm identifies 11.6 Hz as the frequency observed by
the user, one might wonder whether the user really observed
a frequency at 11.6 Hz, and frames/s was stable at that
time, or observed a higher frequency but frames/s decreased.
Currently, no hardware solutions have been proposed to solve
this issue. However, in [58], a classification algorithm relying
on a combined processing in frequency and time domains was
proposed to estimate the frames/s variation and enhance the
SSVEPs classification (see Section II-C8 for further details).

6) Environment Brightness: It should also be taken into
account that the stimuli rendered by AR HMDs are holo-
graphic [38]. In fact, they are superimposed on the real
space but, at the same time, allow the user to see what lies
beyond them, as visible in Fig. 5. Therefore, the real-time
SSVEPs classification can be more difficult with respect to
CS-based systems. In the study conducted by Zhang and

Yao [37], the effect of environment brightness on AR-SSVEP
performance was investigated. Five distinct light intensities
were designated as experimental conditions to replicate com-
mon ambient brightness scenarios: 0 lx (nighttime), 300 lx
(learning places), 600 lx (examination rooms), 900 lx (sports
venues), and 1200 lx (sunny day). In all cases, the same
flickering stimuli were displayed. The obtained experimental
results showed that SSVEPs can be evoked under all the tested
conditions, but the response intensity became weaker when the
environment brightness increased. This translates to the finding
that the elicitation of SSVEP, and therefore the classification
accuracy, is more effective in low ambient lighting conditions,
although the higher contrast between stimuli and environment
makes users feel more uncomfortable. For this reason, in the
same work, an innovative SSVEP classification algorithm,
named ensemble online adaptive canonical correlation analysis
(eOACCA), was designed to improve the classification per-
formance in high-brightness environment, based on iterative
learning from low-light-intensity SSVEP data. Overall, the
study provided a meaningful contribution to the in-depth
understanding of the performance variations of AR-based
SSVEP BCIs under different lighting conditions and represents
a valid attempt to promote applications in challenging lighting
environments by reducing eye fatigue.

7) Visual Fatigue: Finally, another crucial aspect pertains to
the occurrence of visual fatigue experienced by users while
observing the flickering stimuli. Similar to the conventional
CS-based setup, it is an aspect that also AR-based SSVEP
BCIs need to address. Several approaches have been proposed
in the literature to tackle this issue. For instance, higher-
frequency stimuli (above the alpha band) have been suggested
as an alternative to low-frequency stimuli to mitigate the
excessive visual fatigue associated with them [41], although
the performance are not always satisfactory with respect to
the stimulation based on the alpha band [57]. Additionally,
the utilization of a dynamic time window, adapting to the
subject’s needs for SSVEP identification, has been demon-
strated to effectively reduce the duration of visual stimulation.
This reduction in time length minimizes visual fatigue by
decreasing the required visual and cognitive workload [60],
[61]. Furthermore, it is common in the literature to incorporate
regular breaks of several minutes for users to alleviate visual
fatigue [60], [61]. Moreover, similar to BCI systems based on
traditional monitors, visual stimulus color plays a significant
role in determining the user’s visual comfort in AR-based
BCIs. According to [36] and [56], it comes out that blue is
the most comfortable color, while red and white are perceived
as the most uncomfortable [36]. However, the performance
achieved by blue are significantly worse with respect to white
stimulation [56]. Finally, to objectively evaluate visual fatigue
in AR SSVEP-based BCIs, questionnaires have been typically
proposed thus far [29], [60]. However, it is worth noting that
this approach strongly relies on subjective experience, thus
lacking generalization.

B. EEG Acquisition
In the last few years, increasing attempts has been made to

improve the portability of EEG acquisition systems [62]. Then,
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Fig. 6. User scalp according to the 10-20 International System [63].
The occipital area is bounded in green.

the most recent EEG systems are typically endowed with wire-
less communication to allow freedom of movement. However,
the main drawbacks are the increase in communication latency
and noise, and the reduced number of electrodes that can be
handled. Below, an insight into the most recent developments
is provided on the basis of three indicators: electrode typology,
number of channels, and ergonomics.

1) Electrodes Typology: The gold standard for clinical
recordings is represented by wet electrodes [64]. These are
typically based on silver/silver chloride (Ag/AgCl) coating,
use of conductive gels or paste, and a 1–3-mm diameter [13].
The gel ensures proper contact between skin and electrodes:
this translates into low contact impedance and good SNR.
However, wearing an EEG headset endowed with wet elec-
trodes is usually a long procedure and causes annoyance for
the user. Therefore, dry alternatives have been proposed [32],
[41] to make the procedure faster, adopting reusable elec-
trodes that can be easily placed to the scalp through the
hair. Nevertheless, it is important to note that the contact
impedance between dry electrodes and the user’s scalp is
highly influenced by the pressure applied to the scalp, unlike
wet electrode alternatives [65]. This factor can contribute to
an increase in the level of discomfort or pain experienced by
users. To summarize, wet electrodes offer the best SNR, but
their application requires a lengthy preparation time and can
cause inconvenience for users. Another drawback is that users
need to wash their hair after using wet electrodes. On the
other hand, while dry electrode alternatives require a shorter
preparation time and no need to wash the hair, they often
induce discomfort or pain due to the applied pressure.

2) No. of Channels: Another important aspect is the number
of EEG channels considered. Usually, nine or ten channels are
employed [38], [39], [66], [67], typically among PO8, PO7,
PO6, PO5, PO4, PO3, POz, O2, O1, and Oz, according to
the 10-20 International System [27], [63], since SSVEPs are
elicited in the primary visual cortex, which corresponds to the
occipital region. However, depending on the EEG systems,

Fig. 7. Subjects wearing an AR HMD along with (a) dry EEG headset
[41], and (b) wet EEG headset [56].

also fewer channels can be considered: in [41], Oz, O1, O2,
and POz were chosen, while in [56] they were Oz, O1, O2,
PO3, and PO4. Instead, in [32] and [58], only the channel
Oz was considered in an attempt to develop low-cost BCIs at
the expense of reduced information gathered from the user’s
brain. Fig. 6 shows the user’s scalp according to the 10-20
International System, by highlighting in green the occipital
region.

3) Ergonomics: Finally, also the integration of EEG systems
with AR HMDs represents a major challenge to improve
the ergonomics of BCIs. Currently, many wet EEG headsets
available on the market guarantee suitable integration with
the most used AR HMDs [29], [36], [61] However, this
does not apply to all the dry electrode EEG devices, which
typically still have larger space requirements or limitations
in terms of mobility. In Fig. 7, a successful integration of
both dry and wet EEG headsets with an AR HMD is shown.
As visible, dry electrodes [see Fig. 7(a)] may require more
space than wet ones [see Fig. 7(b)] since amplification and
filtering stages often need to be integrated to ensure proper
signal acquisition [30], [41].

C. EEG Processing
An overview of the typical processing strategies for classi-

fying SSVEPs is given as follows. Most of these strategies
are employed interchangeably in both CS-based and AR-
based SSVEP BCIs and are often used as baselines. However,
in some cases (see Sections II-C5 and II-C8), innovative algo-
rithms have been developed to overcome issues related to the
use of AR headsets, such as frame-rate stability and contrast
between the visual stimuli and the surrounding environment
lighting.

1) Power Spectral Density Analysis : Power spectral density
analysis (PSDA) is the most intuitive approach employed
to detect and classify SSVEPs [42]. The first step is the
application of a fast Fourier transform (FFT) to the user’s EEG.
Then, a PSD is assessed in the neighborhood of each of the N



ANGRISANI et al.: WEARABLE BCIs BASED ON SSVEPs AND AR: A REVIEW 16507

rendered frequencies. Eventually, also Nh multiple harmonics
can be considered, according to

P( fn) =
1

2Nhk + 1

 Nh∑
i=1

ikn+k∑
j=ikn−k

w(i) A2( j)

 (3)

where P( fn) is the PSD coefficient for the given frequency fn
(n = 1, 2, . . . , N ), kn is the corresponding bin in frequency
domain, k is the number of nearest bins to be considered,
i is the harmonics index, A is the signal amplitude, and w

is a weight assigned to each harmonics. The classification is
usually performed based on the hypothesis that the observed
stimulus is very likely to be the one with the highest PSD [68].
The main drawback of PSDA is the requirement of a minimum
time window Tmin for the acquired EEG in order to correctly
discriminate two sinusoidal tones since an appropriate fre-
quency resolution 1 f = (1/Tmin) is needed [69].

2) Canonical Correlation Analysis : CCA is a time
domain-based method to classify SSVEPs. It is a multivariate
statistical method employed to correlate linear relationships
between two sets of data [70], and it is performed between
the EEG signal X and a set of sine waves Yn having the
frequencies of the N stimuli rendered on the display, and
eventually their multiple harmonics. Given a frequency fn
and the number of harmonics Nh , the set of sine waves Yn(t)
(n = 1, 2, . . . , N ) can be obtained according to the following
equation:

Yn =



sin(2π fn t)
cos(2π fn t)
sin(2π 2 fn t)
cos(2π 2 fn t)

· · ·

sin(2π Nh fn t)
cos(2π Nh fn t)


. (4)

For each stimulation frequency fn , a correlation coefficient
ρn is obtained by means of the CCA between X and Yn .
These coefficients are used for the classification stage: for the
sake of example, in [70], the output of the classification was
associated with the frequency having the highest correlation
coefficient. Instead, in [28], [30], and [71], the maximum value
among the correlation coefficients ρn was compared with two
thresholds: the signal was classified only if the chosen cor-
relation coefficient exceeded the thresholds. The classification
performance achieved by CCA is typically better than those
obtained with PSDA [68]. However, a bandpass filtering of the
EEG signal can be often necessary, due to the effect of spon-
taneous EEG activities not involved in SSVEP events, such as
eye-blinking.

3) Filter Bank Canonical Correlation Analysis : The filter
bank CCA (FBCCA) method is an enhancement of CCA.
It was developed in [72] and consists of three major steps:
1) filter bank analysis of the original EEG signal X ; 2) CCA
between SSVEP subband components and sinusoidal reference
signals; and 3) signal classification. First, subband components
Xsb j ( j = 1, 2, . . . , s) are obtained by the filter bank analysis
through multiple filters with different pass-bands. Then, the
standard CCA is applied to each of the subband components

separately. This allows the extraction of the correlation coef-
ficients between the subband components and the sinusoidal
reference signals corresponding to the stimulation frequencies
(n = 1, 2, . . . , N ). In fact, a correlation value ρn

j is obtained
for each frequency n and each subband j according to the
following equation:

ρn
=

[
ρn

1 , ρn
2 , . . . , ρn

j , . . . , ρ
n
s

]
. (5)

Therefore, a weighted sum of squares ρ̃n is calculated
among all the correlation values corresponding to the subband
components

ρ̃n
=

s∑
j=1

w( j) ·

(
ρn

j

)2
(6)

where j is the index of the subband. This represents the feature
for signal classification. Since the SNR of SSVEP harmonics
decreases when the response frequency increases, the weights
for the subband components w are defined as follows:

w( j) = j−a
+ b (7)

where a and b are constants that maximize the classification
performance and are typically determined using a grid search
method in offline analysis. After that the N features ρ̃n are
obtained (one for each frequency), the signal classification is
finally performed based on the criterion that the observed
frequency fz (z ∈ 1, . . . , N ) is that corresponding to the
feature ρ̃z with the maximum value.

4) Extended Canonical Correlation Analysis : A different
enhancement of CCA is represented by the extended CCA
(xCCA) method. According to [73], xCCA combines standard
CCA and Individual Template approach. Given a set of stimu-
lation frequencies (n = 1, 2, . . . , N ), the first step is to obtain
the individual template Xn by averaging multiple calibration
trials χn . Therefore, correlation coefficients between the EEG
test data X̂ , the individual template Xn , and sinusoidal ref-
erence Yn are used for extracting the feature rn . After that
the N features rn are obtained, the classification is again
performed on the basis that the observed frequency fz (z ∈

1, . . . , N ) corresponds to the feature rz with the maximum
value.

5) Ensemble Online Adaptive Canonical Correlation Analysis
: eoACCA is a CCA-based approach that, as mentioned in
Section II-A6, addresses the challenges posed by highly lumi-
nous environments in AR-based SSVEP BCIs [37]. In such
scenarios, conventional methods may struggle to maintain reli-
able performance due to issues like strong ambient lighting and
high-intensity visual stimuli. eoACCA offers a robust solution
by employing an ensemble learning framework that adapts
online to varying luminosity conditions. It combines multiple
instances of ACCA: by aggregating the outputs of individual
ACCA models, eoACCA harnesses their collective strength,
enhancing overall system performance. Hence, a key feature
of eoACCA is the ability to mitigate the negative effects
of excessive brightness on signal quality. This is achieved
through real-time updating of the ensemble weights and the
fusion of correlated brain signals. Therefore, by continuously
adapting to the luminosity variations, eoACCA ensures reliable
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and accurate SSVEP detection, even in challenging lighting
conditions.

6) Task-Related Component Analysis : Task-related com-
ponent analysis (TRCA) is a widely used method proposed
in [74]. Two source signals are assumed: 1) task-related signal
s(t) and 2) task-unrelated signal n(t). Then, a linear generative
model of the EEG signal x(t) is considered as expressed by

x(t) = a1s(t) + a2n(t) (8)

where a1 and a2 are coefficients that allow to project the
source signals to the EEG signal. The aim is to recover
the task-related signal s(t) from a linear sum of observed
signals x(t). In this way, spatial filters Ws can be designed
for removing background EEG activities from scalp record-
ings. Hence, a possible rule to classify SSVEPs is based on
correlations of spatial-filtering-derived EEG signals [75]. More
specifically, for each stimulation frequency (n = 1, 2, . . . , N ),
the correlation coefficient cn between the filtered EEG test
data W T

s X̂ , and the filtered individual template W T
s χn is

extracted. Also in this case, the classification is performed
by choosing the frequency associated with the highest corre-
lation coefficient. Although TRCA-based algorithms represent
a method with great potential, the main defect is that they
are not able to suppress more general noises. Hence, in the
study conducted in [76], a novel time filter was designed by
introducing the temporally local weighting into the objective
function of the TRCA-based method and using the singular
value decomposition. The proposed algorithm managed to
achieve results significantly better than those obtained with
traditional algorithms.

7) Multivariate Synchronization Index : The multivariate syn-
chronization index (MSI) is a method proposed in [77]. It is
based on the synchronization between the input EEG signal
X and a set of reference signals Yn , where N is the number
of stimulation frequencies and (n = 1, 2, . . . , N ). After
evaluating the correlation matrix C among X and Yn

Cn =

[
C11 C12
C21 C22

]
(9)

the following linear transformation is adopted to reduce the
autocorrelation influence:

Un =

[
C−1/2

11 0
0 C−1/2

22

]
(10)

then, the transformed correlation matrix is

Rn = UnCnU T
n =

[
I C−1/2

11 C12C−1/2
22

C−1/2
22 C21C−1/2

11 I

]
.

(11)

Therefore, given the eigenvalues λ1
n, λ2

n, . . . ,λ
p
n of the

matrix Rn , the normalized eigenvalues are calculated as
follows:

λ
i
n =

λi
n

tr(Rn)
(12)

where tr(Rn) is the trace of the transformed correla-
tion matrix Rn . Then, the synchronization index Sn is

obtained by

Sn = 1 +

∑P
i=1 λ

i
n log

(
λ

i
n

)
log(P)

(13)

where P = Nc + 2Nh , with Nc number of channels, and Nh
number of harmonics. Finally, in the classification stage, the
output frequency fz is considered that corresponding to the
maximum value among the synchronization indexes S.

8) Other Approaches: In [58], the adoption of classical
machine learning (ML) classifiers such as support vector
machine (SVM), k-nearest neighbor (k-NN), and artificial
neural network (ANN) was addressed to mitigate the effects
caused by undesired frames/s variations of AR HMDs. The
proposed method, named Features Reduction (FR), is com-
posed of two steps: first, the EEG signal X is processed both
in frequency and time domains, in order to extract a reduced
number of features. In particular, first, an FFT is applied to
X ; then, the actual SSVEPs peaks are detected around all
the N rendered stimulus frequencies. More in detail, given
a generic nominal frequency value fn with (n = 1, 2, . . . , N ),
the interval [ fn · 0.9, fn · 1.1] is considered to find the
actual peak frequency f p. Once the actual peaks are found,
the resulting PSD coefficients Pn are more accurate. Thus,
finally, in the time domain, the CCA between X and a set
of sinewaves Yn , having the frequencies of the N detected
peaks, is performed. This also allows the CCA coefficients ρn
obtained for each frequency to be more accurate. Ultimately,
for a given brain signal composed of a number f s · T of
EEG samples and N stimulation frequencies (where fs is the
sampling frequency, and T is time expressed in seconds), only
2N features are extracted and normalized. The second step is
the classification, which is carried out with the aforementioned
three ML classifiers, namely SVM, k-NN, and ANN. The
experimental results obtained on four experimental campaigns
showed a significant increase in classification performance
over the traditional CCA-based algorithms, precisely owing
to the mitigation of frames/s variations.

D. BCI Application
The integration of portable EEG headsets with AR

HMDs has fostered new opportunities of employment of
SSVEP-based BCIs in different application contexts, particu-
larly as both light stimuli and the real world coexist in the same
space: as such, this allows a better interaction between users
and external devices with respect to traditional approaches.

For instance, in [30] and [32], wearable SSVEP-based BCIs
were developed for the treatment of autism spectrum disorder
(ASD) and attention deficit/hyperactivity disorder (ADHD).
In these studies, patients were asked to control humanoid
robots using an AR interface that displayed two flicker-
ing arrows superimposed onto the real world. Through this
approach, the robot not only served as an educational tool but
also as an extension of the patient’s body, enabling augmented
experiences that operated on both the perceptive-emotional and
cognitive levels. However, creating a device that was highly
wearable, attractive, and even playful while being reliable and
training-free presented additional challenges, particularly for
children under the age of eight.
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Another interesting healthcare application is the control
of wearable exoskeletons, which are auxiliary robots widely
used in rehabilitation training. In [59], an SSVEP-based BCI
with an AR interface was developed to improve the par-
ticipation of stroke patients in rehabilitation training. This
system was designed to reduce the patient’s dependence on
external stimulus equipment such as CSs while providing a
more immersive experience. By integrating AR technology, the
system allowed virtual and real content to coexist in the same
space, minimizing the need for users to shift their attention
between the computer monitor and the exoskeleton.

Further within the scope of rehabilitation, interesting appli-
cations were also developed in the field of electric wheelchair
control, as shown in [52]. Since the integration of AR with
SSVEP-based BCIs avoids the need for constant shifts of
gaze between the visual stimuli and the real environment,
the majority of participants in the experiment reported a
positive experience regarding the use of the system and would
recommend it to people with severe disabilities.

Instead, in [40], an integrated, real-time monitoring sys-
tem based on AR and SSVEPs recognition was realized
for hands-free acquisition and visualization of remote data
in the Operating Room. The system allowed the anesthetist
to monitor the patient’s vital signs in real-time, which
were acquired from the electromedical equipment, without
the need to shift their attention away from the patient.
This approach effectively reduced the number of interrup-
tions to the operator’s workflow, increasing their ability to
promptly intervene in case of aggravating conditions of the
patients.

The visualization of remote data by means of the inte-
gration of AR and SSVEP-BCIs was also exploited within
the industrial framework. As an example, Angrisani et al. [35]
proposed a wearable monitoring system for inspection in the
context of Industry 4.0. This system combined AR glasses
with a noninvasive, single-channel SSVEP-BCI, replacing the
traditional input interface of AR platforms. The system was
tested in an inspection scenario involving the collection of
temperature and humidity data from sensors and displaying
the results in real time on the glasses.
Another area of particular interest in industry is the control
of robotic arms. Studies such as those reported in [36] and
[60] demonstrated that high-level and shared control strategies
based on SSVEP recognition are effective in reducing users’
mental load and are preferred over direct control strategies.
This preference is reinforced by the use of AR technology,
which enables virtual and real content to coexist in the
same space. By eliminating the need for users to shift their
attention between the computer monitor and the robotic arm,
AR technology can enhance the user experience.

Controlling drones [41] and humanoid robots [66], [67] for
industrial tasks is a further expanding application framework.
In these cases as well, the portability of AR HMDs, coupled
with the high recognition performance of SSVEPs, has shown
promising results in terms of the applicability of BCIs outside
the research context.

Overall, all these applications have effectively harnessed the
potential of AR in the BCI context. In fact, these technologies

are increasingly facilitating human interaction with the sur-
rounding sensory environment in the 4.0 Era [31].

III. DISCUSSION

Building upon the comprehensive literature review pre-
sented in Section II, this section aims to explicate the principal
contributions and advancements in the field. As stated in
Section I, the selected time horizon was from 2018 onward.
Among the 56 papers found (as of April 2023) by search-
ing the keywords AR and SSVEP on the Scopus Database,
20 papers (listed in Tables II–IV) are considered and thor-
oughly compared. The inclusion criteria were primarily based
on the selection of articles published in scientific journals
that clearly highlighted the main functional components of
this type of BCIs, thus enabling an appropriate comparison
among them. As visible, six of these works were published
between 2018 and 2021, while ten of them in 2022. Finally,
also four works published at the beginning of 2023 are taken
into account. Each paper proposed the development of an
AR-based SSVEP BCI whose architecture is consistent with
the blocks defined in Fig. 2. Therefore, Tables II and III briefly
describe the main features of the AR and EEG subsystems.
Instead, in Table IV, the achieved results are reported in terms
of ITR. The ITR represents a synthetic performance indicator
able to provide the amount of information that can be conveyed
to the chosen BCI application. It is defined as follows:

ITR =

[
log2(N )+ A log2(A)+(1 − A) log2

(
1 − A
N − 1

)]
60
T

(14)

where N is the number of flickering stimuli, A is the classifica-
tion accuracy in the interval [0, 1], and T is the time duration
(expressed in seconds) of the EEG signals processed. It is
expressed in bit/min. In order to highlight the generalization
capability across people of the proposed systems, the ITR
is always reported in terms of interindividual mean and,
when reported in the considered works, standard deviation. As
shown in (14), the ITR takes into account the trade-off between
accuracy, number of stimuli, and the temporal duration of the
acquired EEG. Consequently, it emerges as a more dependable
metric compared to classification accuracy alone. In fact, the
latter tends to be notably high when the number of stimuli
is reduced and acquisition times are prolonged. Therefore,
it is crucial to emphasize that achieving a high classification
accuracy alone does not suffice for the development of a high-
performing BCI. Optimal performance necessitates not only
high accuracy but also minimized acquisition times and a
substantial number of stimuli. To avoid significant misinterpre-
tations, the classification accuracy obtained in the considered
studies is not reported.

With regard to the AR Interface, as shown in Table III, the
majority of the studies (13 out of 20) employed Microsoft
HoloLens 1 [81] as AR HMD. It is an AR optical-see-through
(OST) device equipped with hand gestures recognition, a
60-Hz refresh rate, and a diagonal FOV of about 30◦.
HoloLens 1 has gained momentum in the last years as it
outperformed other devices like Epson Moverio BT-200 and
BT-35E [82], [83], which are Smart Glasses endowed with
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TABLE II
DETAILS OF THE WORKS CONSIDERED FOR DISCUSSION, ALONG WITH DETAILS OF THE EEG ACQUISITION SYSTEMS USED

TABLE III
DETAILS OF THE AR INTERFACE DEVELOPED IN THE CONSIDERED STUDIES FOR THE STIMULI GENERATION

a reduced diagonal FOV (23◦) and that can be used only
via touch-pad, thus not allowing the full exploitation of AR
technology. Other AR OST devices, like Lingxi-AR [84] and
NED+ [85], have been used in the considered studies as an
alternative to HoloLens 1, but they represent a minority within
the market of AR systems. The features of HoloLens 1 allow to
generate up to 25 simultaneous flickering stimuli, as conducted
in [39], while the employment of Moverio BT-200 typically
limits the number of stimuli only to two, like in [32], or four,
like in [52]. Currently, HoloLens 1 has been discontinued
and replaced by HoloLens 2 [86], [87], equipped with an
improved FOV (52◦), which can allow more distance between
the rendered stimuli and then an increase in the achieved ITR.
However, the adoption of HoloLens 2 has not been much
explored so far (only in [61] and [79]), perhaps owing to
a price not always affordable (currently about 3500 $) and
not completely justified by the improved FOV. For the sake of
comprehensiveness, an overview of the technical specifications

(in terms of FOV and refresh rate) and cost of the AR
HMD employed in the considered studies is provided in
Table V. In almost all of the works considered in Table III,
the frequencies of the flickering stimuli were chosen in the
interval [8.0–15.0] Hz (commonly acknowledged as the most
effective), with a stimulation type in the form of sine waves or
square waves (checkerboard [52] grow/shrink templates [53],
[54] currently constitute a minority). However, in [41], the
frequency range employed was [19.0, 29.0 Hz], with the
innovative stimulation type named PA method and previously
described in Section II-A3. Instead, only in [52] and [53],
frequencies below 7 Hz were considered.

Concerning the EEG Acquisition, as shown in Table II,
the considerations expressed in Section II-B are confirmed:
in fact, most of the considered works adopted EEG head-
sets endowed with wet electrodes, such as Neuracle [66],
[67], NeuSenW [56], [57], SynAmps2 [39], and BioSemi
ActiveTwo [53], [54] since they guarantee a better SNR with
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TABLE IV
DETAILS OF THE EEG PROCESSING STRATEGIES EMPLOYED AND RESULTS OBTAINED FROM EACH OF THE CONSIDERED STUDIES

TABLE V
TECHNICAL SPECIFICATIONS AND COST OF THE AR HMD

EMPLOYED IN THE CONSIDERED STUDIES

respect to dry alternatives. The number of channels varies from
a minimum of five [56] to a maximum of 64 [80], although
the best practice is to consider about nine channels. However,
the use of dry EEG devices like Olimex EEG-SMT [30], [58]
and InMex EEG [41] represents an interesting solution in
low-channel setups [32], [41], [58], where the ease of use and
the reduced costs become a goal to pursue.

Finally, Table IV shows the experimental results achieved
by each work. The experimental campaigns conducted in
the considered studies involved on average about ten healthy
volunteers with normal or corrected-to-normal vision, with
some exceptions: in [30], [41], [53], [54], and [79] the
participants were 20 or more, while in [57], [61], and [78]
they were less than six. In the other works, they varied
from 9 to 18. With regard to the classification strategies,
it emerges that CCA-based algorithms are currently considered
the gold standard in terms of SSVEPs classification. In fact,
they were employed in 11 works out of 20: FBCCA in four
works, and CCA (or x-CCA) in seven. Instead, the adoption of
TRCA was addressed in two works, while MSI or extended
MSI (eMSI) was used in three. The remaining works [29],
[58], [60], [61] have made use of less conventional approaches.
In particular, in [60], a combination between CCA and
TRCA was implemented, named multitemplate CCA-TRCA
(mtCCA-TRCA). Instead, in [61], an ML approach, named
filter-bank temporal convolutional neural network (FB-tCNN),

was developed. Another ML approach was proposed in [58],
where the algorithm named FR (described in Section II-C8)
represents a first attempt to mitigate the unpredictable frame
rate variations of AR HMDs. Depending on the number of
stimulation frequencies, number of EEG channels, and time
duration, the maximum ITR achieved by the considered studies
ranges from about 12 bit/min (only two flickering stimuli, one
EEG channel, 2-s time duration) up to 255 bit/min (seven
flickering stimuli, eight EEG channels, 0.5-s time duration).

Overall, it emerges from the considered papers that the
current trends in developing highly wearable SSVEP BCIs are
considering the integration of: 1) AR devices endowed with
HoloLens-like specifications; 2) wet EEG headsets equipped
with eight or nine channels; and 3) CCA-based classifica-
tion algorithms to recognize from four to six stimulation
frequencies. However, the adoption of dry EEG headsets,
a reduced number of channels, and ML classification strategies
is representing a sound alternative especially for low-channel
and low-cost setups.

IV. CONCLUSION

In this article, a review of the literature concerning the
development of BCIs based on the recognition of SSVEPs
and on AR technology is provided. After showing the typical
features of such systems, 20 works from 2018 onward were
considered and thoroughly compared. Overall, the study con-
ducted by the authors shows that the current developments of
highly wearable SSVEP BCIs typically rely on the integration
between devices like Microsoft HoloLens (which are repre-
senting the AR market leader) and wet EEG headsets equipped
with about nine channels. With regard to the classification
algorithms, it appears that the use of CCA-based classification
algorithms is still considered the gold standard, although
significant advancements based on Deep Learning are gaining
attention. Instead, the adoption of dry EEG headsets along
with a reduced number of channels is still confined to the role
of a suitable alternative for low-cost configurations. However,
this possibility to choose between different AR and EEG
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subsystems is facilitating the employment of SSVEP-based
BCIs in a wide variety of application scenarios in the context
of digital transformation. This plays a fundamental role in
moving BCIs from research to daily life.
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