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SOLVABILITY OF A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS ON

TORI.

ELIA FUSI

Abstract. We study the solvability of a class of fully nonlinear equations on the flat torus. The

equations arise in the study of some Calabi-Yau type problems in torus bundles.

1. Introduction

After Yau proved the Calabi conjecture in [17], some new Calabi-Yau type equations were introduced
on non-Kähler manifolds. Donaldson in [4] formulated a project on compact 4-dimensional symplectic
manifolds which is based on a Calabi-Yau equation on compact almost-Kähler manifolds. The problem
was studied by Weinkove in [16] and by Tosatti, Weinkove and Yau in [12] assuming extra hypothesis
on the curvature and on the torsion of the almost-Kähler metric. Later, Tosatti and Weinkove in [13]
solved the almost-Kähler Calabi-Yau equation on the Kodaira-Thurston manifold assuming the data to
be invariant under the action of a 2-dimensional torus. Buzano, Fino and Vezzoni in [2] generalized the
Tosatti-Weinkove theorem to S1-invariant data. In the latter case, the problem reduces to the study of
the following equation on a 3-dimensional torus T 3

(1) (1 + uxx)(1 + uyy + utt + ut)− u2
xy − u2

xt = ef ,

where f ∈ C∞(T 3) is given and satisfies ∫
T 3

efdV = 1 .

This last result was then extended by Tosatti and Weinkove in [14] considering different almost-Kähler
structures.

In [1] Alesker and Verbitsky introduced a Calabi-Yau problem in HKT geometry and formulated
the so called quaternionic Calabi conjecture. Gentili and Vezzoni in [6] confirmed the conjecture on
8-dimensional nilmanifolds endowed with an Abelian HKT structure and assuming the data invariant
by the action of a 3-dimensional torus. Under these assumptions, the problem reduces to the following
equation on a 5-dimensional torus T 5

(2) (1 + u55)

(
1 +

4∑
i=1

uii

)
−

4∑
i=1

u2
i5 = ef ,

where again f ∈ C∞(T 5) is given and satisfies∫
T 5

efdV = 1 .

The goal of the present paper is to study a class of PDEs on the n-dimensional torus including (1) and
(2) as special cases. Namely, we consider the following type of equations on the n-dimensional torus Tn

(3) (1 + unn +G(∇u))

(
1 +

n−1∑
i=1

uii + F (∇u)

)
−
n−1∑
i=1

u2
in = ef ,

where n > 2, f ∈ C∞(Tn) and F , G are smooth functions of the gradient of u. In the case in which
n = 2, many equations, even more general than (3), were studied, see, for instance, [3], [5], [8] and [15].
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2 ELIA FUSI

Our main result is the following:

Theorem 1.1. Let X,Y be two smooth vector fields with constant coefficients on Tn, n > 2, such that,
∀v ∈ C∞(Tn), F (∇v) = Xivi and G(∇v) = Y ivi. Then, equation (3) has a unique solution u ∈ C∞(Tn)
such that ∫

M

udV = 0 .

The proof of Theorem 1.1 is based on the continuity method and it will be obtained as follows: in
Section 2, we prove some preliminary results about solutions of (3); in Section 3, we prove the C0 estimate
using the Aleksandrov-Bakelman-Pucci maximum principle; in Section 4 we prove the C0 estimate for
the Laplacian of the solutions and higher order estimates by modifying an argument from [6] and in [2];
in Section 5, we conclude the proof of Theorem 1.1.

In the last section, more general equations are taken into account.
Acknowledgements. The author is very grateful to Professor Luigi Vezzoni for his supervision and

support during the work. Many thanks are also due to Giovanni Gentili and Federico Giusti for stimulating
discussions and suggestions.

The author is supported by GNSAGA of INdAM.

2. Preliminaries.

In the following, we will always denote the n-dimensional torus as M , assuming n > 2, and make use of
the Einstein convention over repeated indexes. Moreover, we will identify functions on M with functions
on Rn which are 1-periodic in each variable and denote with {x1, . . . , xn} the standard coordinates on
Rn, unless otherwise stated.

In this section, F and G will only be smooth functions of the gradient of u such that F (0) = G(0) = 0.
For the sake of simplicity, given u ∈ C2(M), we introduce the following notation:

A = 1 + unn +G(∇u) , B = 1 +

n−1∑
i=1

uii + F (∇u) .

So, fixed f ∈ C∞(M), equation (3) can be written in a more compact way, which is:

(4) AB −
n−1∑
i=1

u2
in = ef ,

where u ∈ C∞(M) is the unknown. We will search for solutions u such that∫
M

udV = 0 ,

where dV denotes the standard volume form on M . In what follows, we will denote with

Ck,α0 (M) =

{
v ∈ Ck,α(M)

∣∣∣∣ ∫
M

vdV = 0

}
, ∀α ∈ (0, 1) , ∀k ≥ 0 .

First of all, we can observe easily from equation (4) that AB > 0. Then A and B have the same sign.
On the other hand, if p ∈M is the point where u attains its minimum, we have ∇u = 0 and unn > 0 at
p. So, A,B > 0 on M . This, together with the fact that

(5) A+B = 2 + ∆u+ (F +G)(∇u) > 0 ,

gives a lower bound on Lu = ∆u+ (F +G)(∇u). Obviously, L is a linear elliptic differential operator of
second order. Furthermore, this lower bound can be easily improved.

Lemma 2.1. Let F and G be two smooth functions such that F (0) = 0, G(0) = 0 and let u ∈ C2
0 (M) a

solution of (3). Then, the following holds:

(6) A+B ≥ 2e
f
2 .
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Proof. From (4), we obtain that
AB ≥ ef .

On the other hand, we know that A2 +B2 ≥ 2AB. So,

(A+B)2 ≥ 4AB ≥ 4ef .

From this, the assertion follows. �

Lemma 2.1 will be used in order to prove the C2 estimate in Section 4.
The next Lemma is just a technical result which will be extremely useful in order to prove the ellipticity

of equation (3).

Lemma 2.2. Let a, b, ci ∈ R, ∀i = 1, . . . , n− 1. Then, the characteristic polynomial of

Pn =


a 0 · · · 0 −c1
0 a 0 · · · −c2
...

. . .
...

0 · · · · · · a −cn−1

−c1 −c2 · · · −cn−1 b


is

det(Pn − λId) = (a− λ)n−2

(
λ2 − (a+ b)λ+ ab−

n−1∑
i=1

c2i

)
.

Lemma 2.2 can be proved by a straightforward induction. Then, ellipticity of (3) is a direct consequence
of Lemma 2.2.

Proposition 2.3. Equation (3) is elliptic. Moreover, ∀ζ ∈ Rn, ζ 6= 0, we have

(7) A

n−1∑
i=1

ζ2
i +Bζ2

n − 2

n−1∑
i=1

uinζiζn ≥ λ−|ζ|2 ,

where

λ− =
1

2

(
A+B −

√
(A+B)2 − 4ef

)
.

Proof. Define the operator Φ: C2(M)→ C0(M) such that, ∀u ∈ C2(M),

Φ(u) = AB −
n−1∑
i=1

u2
in .

Suppose that u is a solution for (3), then the linearization of Φ at u computed in v ∈ C2(M) is:

duΦ(v) = Bv55 +A

(
n−1∑
i=1

vii

)
− 2

n−1∑
i=1

uinvin +A
d

dt
F (∇(u+ tv))|t=0

+B
d

dt
G(∇(u+ tv))|t=0

.

Then, the matrix corresponding to the principal symbol of Φ is

Pu =


A 0 · · · 0 −u1n

0 A 0 · · · −u2n

...
. . .

...
0 · · · · · · A −un−1n

−u1n −u2n · · · −un−1n B


whose eigenvalues, thanks to Lemma 2.2, are

λ = A , λ± =
1

2

(
A+B ±

√
(A+B)2 − 4ef

)
> 0 .

It is easy to prove that λ− ≤ A ≤ λ+. This guarantees the assertion. �
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3. C0 estimate.

The method we used to obtain the C0 estimate on the solution is based on Székelyhidi’s method in [9].
In this section, we will suppose that F (∇v) = Xivi and G(∇v) = Y ivi, ∀v ∈ C1(M), where X,Y are
smooth vector fields on M , without any further hypothesis. Then, the estimate we proved holds true in
a more general setting than the one described by Theorem 1.1.

Let u ∈ C2
0 (M) a solution of (3) and p ∈ M be the point where u attains its minimum. Consider a

local chart centered in p and suppose that its domain is B(0, 1) ⊂ Rn. Fix ε > 0 and define the function

ϕ(x) = u(x)−max
M

u+ ε|x|2 , ∀x ∈ B(0, 1) .

Clearly, we have that
D2ϕ = D2u+ 2εId , ∇ϕ = ∇u+ 2εx .

Then, ϕ is a solution of the following:

(8) (1− 2ε+ ϕnn +G(∇ϕ)− 2εG(x))

(
1− 2(n− 1)ε+

n−1∑
i=1

ϕii + F (∇ϕ)− 2εF (x)

)
−
n−1∑
i=1

ϕ2
in = ef .

Define

P = {x ∈ B(0, 1) | |∇ϕ(x)| < ε

2
, ϕ(y) ≥ ϕ(x) +∇ϕ(x) · (y − x) , ∀y ∈ B(0, 1)} ,

called the contact set of ϕ. Then, easily, we see that

ϕ(x) ≤ ϕ(0) +∇ϕ(x) · x ≤ ϕ(0) +
ε

2
= min

M
u−max

M
u+

ε

2
, ∀x ∈ P

which implies that

(9) ũ(x) ≤ min
M

ũ+
ε

2
, ∀x ∈ P ,

where
ũ = u−max

M
u ≤ 0 .

So, given any p ∈ [1, n
n−2 ), we can apply the function h(t) = −tp to (9) and integrate it on P obtaining

that:

(10) ‖u‖C0(M) ≤ max
M

u−min
M

u = ‖ũ‖C0(M) ≤
‖ũ‖Lp(M)

V ol(P )
1
p

+
ε

2
.

Remark 3.1. The inequality
‖u‖C0(M) ≤ max

M
u−min

M
u

is a direct consequence of the fact that u has zero mean value on M .

Then, in order to obtain the estimate we want, it is sufficient to find a uniform lower bound on V ol(P )
and a uniform upper bound on ‖ũ‖Lp(M). As regards the latter, we recall that, thanks to (5), −ũ is
a non-negative supersolution for the equation Lv = −2, where, in our hypothesis, L is a linear elliptic
differential operator of second order with smooth coefficients. Then, we can use the following result.

Theorem 3.2 (See [7], Theorem 8.18). Let q > n, p ∈ [1, n
n−2 ), and g ∈ Lq(Rn). Suppose that L

is a strictly elliptic and linear differential operator of second order with bounded coefficients. Then, if
u ∈W 1,2(Rn) is a non-negative supersolution of Lu = g in B(y, 4R), we have

‖u‖Lp(B(y,2R)) ≤ C
(

inf
B(y,R)

u+K(R)

)
,

where C > 0 is a uniform constant.

Applying Theorem 3.2 to −ũ, we obtain a local uniform upper bound on the Lp-norm of ũ. This can
be extended to a global uniform upper bound on the Lp-norm of ũ with a standard covering argument,
see [9, p.347] for the details.



SOLVABILITY OF A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS ON TORI. 5

So, it remains to find a uniform lower bound on V ol(P ). First of all, we observe that,

ϕ(0) + ε = min
M

u−max
M

u+ ε ≤ min
∂B(0,1)

ϕ .

Then, we can apply the following Proposition due to Székelyhidi.

Proposition 3.3 ( [9], Proposition 10). Let v : B(0, 1)→ R a smooth function such that

v(0) + ε ≤ inf
∂B(0,1)

v .

Then, there exists a dimensional constant C > 0 such that

Cεn ≤
∫
P

det(D2v) ,

where P is the contact set of v.

So, by applying Proposition 3.3, we obtain the following estimate

Cεn ≤
∫
P

det(D2ϕ) .

On the other hand, we know that, on P , ϕ is convex. Thanks to this, D2ϕ(x) ≥ 0, ∀x ∈ P . Then,
applying the arithmetic-geometric mean inequality, we have

det(D2ϕ) ≤
(

∆u

n

)n
, on P .

So, in order to conclude, it is sufficient to obtain a uniform upper bound on ∆u on P .
First of all, the fact that, ∀x ∈ P , D2u(x) ≥ 0 implies that

ϕii(x) ≥ 0 and ϕii(x)ϕjj(x)− ϕ2
ij(x) ≥ 0 , ∀x ∈ P , ∀i, j = 1, . . . , n .

Moreover, on P , the following inequalities hold:

|F (∇ϕ)| ≤ |X||∇ϕ| < ε

2
‖X‖C0(M) , |G(∇ϕ)| ≤ |Y ||∇ϕ| < ε

2
‖Y ‖C0(M) .

Choosing

ε < max

{
1

2(n− 1) + 5
2‖X‖C0(M)

,
1

2 + 5
2‖Y ‖C0(M)

}
,

we have

ef ≥ (1− 2ε+ ϕnn +G(∇ϕ)− 2εG(x))

(
1− 2(n− 1)ε+

n−1∑
i=1

ϕii + F (∇ϕ)− 2εF (x)

)
− ϕnn

n−1∑
i=1

ϕii

≥
(

1− ε
(

2 +
5

2
‖Y ‖C0(M)

)
+ ϕnn

)(
1− ε

(
2(n− 1) +

5

2
‖X‖C0(M)

)
+

n−1∑
i=1

ϕii

)
− ϕnn

n−1∑
i=1

ϕii

≥
(

1− ε
(

2 +
5

2
‖Y ‖C0(M)

)) n−1∑
i=1

ϕii +

(
1− ε

(
2(n− 1) +

5

2
‖X‖C0(M)

))
ϕnn .

From this, we obtain that ∆u ≤ C on P. So, we proved the following Theorem.

Theorem 3.4. Let X and Y be two smooth vector fields such that

F (∇v) = Xivi , G(∇v) = Y ivi , ∀v ∈ C1(M) ,

and let u ∈ C2
0 (M) be a solution of (3). Then, there exists a uniform constant C > 0 such that

‖u‖C0(M) ≤ C .
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4. Higher order estimates.

In this section, we prove higher order estimates. First of all, we prove a C0 estimate on the Laplacian
of u. Then, we show that all the higher order estimates can be deduced from that one. The main Theorem
of this section is the following.

Theorem 4.1. In the same hypothesis of Theorem 1.1, let u ∈ C4
0 (M) be a solution of (3). Then, there

exists a uniform constant C > 0 such that

(11) ‖∆u‖C0(M) ≤ C(1 + ‖u‖C1(M)) .

Before starting the proof of Theorem 4.1, we should observe that Theorem 1.1 can be considered as
the generalization of both [2, Theorem 10] and [6, Theorem 13]. Indeed, as regards the first case, we have
that Y = 0 and

X =

0
0
1

 ,

while, in the second one, X = 0 = Y.
The following Lemma is a slight generalization of [6, Lemma 7]. The proof is the same as in [6] but,

for completeness, we briefly discuss it.

Lemma 4.2. Let ε ∈ R, g ∈ C2(M) and p0 ∈M be the point where

ψ = ge−εu

attains its maximum. We define

ηij = εg(uij + εuiuj)− gij , ∀i, j = 1, . . . , n .

Then,
ηii(p0) ≥ 0 ,

√
ηiiηjj ≥ |ηij | at p0 .

Proof. We have
∇ψ = e−εu (∇g − εg∇u) .

At p0, we know that ∇ψ = 0 which implies

(12) ∇g = εg∇u .
On the other hand, at p0, using (12), we obtain that

ψij = ε2e−εuguiuj − εe−εu(uigj + giuj + guij) + e−εugij

= εe−εugiuj − εe−εu(uigj + giuj + guij) + e−εugij

= e−εugij − εe−εu(uigj + guij) = e−εu(gij − εg(uij + εuiuj)) .

So,
D2ψ = e−εu

(
D2g − εg(D2u+ ε∇u⊗∇u)

)
.

Then, at p0,
D2ψ ≤ 0

which implies
εg(D2u+ ε∇u⊗∇u)−D2g ≥ 0 .

From this, the assertion follows. �

The technique we used to prove Theorem 4.1 is an adaptation of the one used in [2] and in [6].

Proof of Theorem 4.1. Easily, we see that

(13)

∆ef + (F +G)(∇ef ) =A(∆B + (F +G)(∇B)) +B(∆A+ (F +G)(∇A))

+ 2∇A · ∇B − 2

n−1∑
i=1

(
uin(∆uin + (F +G)(∇uin)) + |∇uin|2

)
.
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By straightforward calculations, we can observe that

(14) ∆B + (F +G)(∇B) =

n−1∑
i=1

(∆uii + (F +G)(∇uii)) + (F +G)(∇F (∇u)) +

n∑
j=1

F (∇ujj)

and

(15) ∆A+ (F +G)(∇A) = ∆unn + (F +G)(∇unn) +

n∑
j=1

G(∇ujj) + (F +G)(∇G(∇u)) .

Consider g = A+ B and ε > 0 that will be determined later. From now on, unless otherwise stated, all
the quantities and inequalities will be computed at p0 ∈ M as in Lemma 4.2. Then, we can apply (7)
choosing ζi = sign(uin)

√
ηii, ∀i = 1, . . . , n− 1 and ζn =

√
ηnn, obtaining that

(16) 0 ≤ A
n−1∑
i=1

ηii +Bηnn − 2

n−1∑
i=1

|uin|
√
ηiiηnn .

Applying Lemma 4.2, we obtain

0 ≤ A
n−1∑
i=1

ηii +Bηnn − 2

n−1∑
i=1

|uin||ηin| ≤ A
n−1∑
i=1

ηii +Bηnn − 2

n−1∑
i=1

uinηin .

Now, using the definition of ηij ’s, we have that
(17)

0 ≤ εgA
n−1∑
i=1

(
uii + εu2

i

)
+ εgB(unn + εu2

n)− 2εg

n−1∑
i=1

uin(uin + εuiun)−A
n−1∑
i=1

gii −Bgnn + 2

n−1∑
i=1

uingin.

On the other hand, we notice that

(18) gij = ∆uij + (F +G)(∇uij) .
Substituting (18), we obtain that
(19)

−A
n−1∑
i=1

gii −Bgnn + 2

n−1∑
i=1

uingin = −A
n−1∑
i=1

(∆uii + (F +G)(∇uii))−B(∆unn + (F +G)(∇unn))

+ 2

n−1∑
i=1

uin(∆uin + (F +G)(∇uin)) .

Substituting (14) and (15) in (19), it holds that

(20)

−A
n−1∑
i=1

gii −Bgnn + 2

n−1∑
i=1

uingin = −A(∆B + (F +G)(∇B))−B(∆A+ (F +G)(∇A))

+ 2

n−1∑
i=1

uin(∆uin + (F +G)(∇uin)) +A (∆F (∇u) + (F +G)(∇F (∇u)))

+B(∆G(∇u) + (F +G)(∇G(∇u))) .

On the other hand, by straightforward calculation, we see that

(21) ∆F (∇u) + (F +G)(∇F (∇u)) = F (∇g)

and

(22) ∆G(∇u) + (F +G)(∇G(∇u))) = G(∇g) .
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Then, substituting (21) and (22) in (20) and substituting the result in (17), we obtain

(23)

A(∆B + (F +G)(∇B)) +B(∆A+ (F +G)(∇A))− 2

n−1∑
i=1

uin(∆uin + (F +G)(∇uin))

≤ εgA
n−1∑
i=1

(uii + εu2
i ) + εgB(unn + εu2

n)− 2εg

n−1∑
i=1

uin(uin + εuiun) +AF (∇g) +BG(∇g) .

This inequality can be substituted in (13) obtaining that

(24)
∆ef + (F +G)(∇ef ) ≤ εgA

n−1∑
i=1

(uii + εu2
i ) + εgB(unn + εu2

n)− 2εg

n−1∑
i=1

uin(uin + εuiun)

+ 2∇A · ∇B +AF (∇g) +BG(∇g) .

Moreover, thanks to Lemma 4.2 and to (12), at p0, we have

|∇g|2 = ε2g2|∇u|2 .
On the other hand,

(25) ε2g2|∇u|2 = |∇g|2 = |∇(A+B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B .
Moreover, at p0, since (12) holds true, we have

(26) F (∇g) = εgF (∇u) , G(∇g) = εgG(∇u) .

Then, using (25) and (26), we can obtain the following inequality

∆ef + (F +G)(∇ef ) ≤ εgA
n−1∑
i=1

(uii + εu2
i ) + εgB(unn + εu2

n)

− 2εg

n−1∑
i=1

uin(uin + εuiun) + ε2g2|∇u|2 +AεgF (∇u) +BεgG(∇u)

= εg

(
A (B − 1) +B(A− 1)− 2

n−1∑
i=1

u2
in

)
+ ε2g

(
A

n−1∑
i=1

u2
i +Bu2

n − 2

n−1∑
i=1

uinuiun

)
+ ε2g2|∇u|2 .

From the inequality above, using equation (4), we obtain

(27) ∆ef + (F +G)(∇ef ) ≤ 2εgef − εg2 + ε2g

(
A

n−1∑
i=1

u2
i +Bu2

n − 2

n−1∑
i=1

uinuiun

)
+ ε2g2|∇u|2 .

Choosing ζi = ui, ∀i = 1, . . . , n− 1, and ζn = −un, thanks to (7), we easily obtain that

(28) − 2
n−1∑
i=1

uinuiun ≤ A
n−1∑
i=1

u2
i +Bu2

n ≤ g|∇u|2 .

Then, substituting (28) in (27), we have

∆ef + (F +G)(∇ef ) ≤ 2εgef − εg2 + 2ε2g2|∇u|2 ,
which is equivalent to

(29) εg2 ≤ −(∆ef + (F +G)(∇ef )) + 2εgef + 3ε2g2|∇u|2 .
So, we obtain that

(30) εg2 ≤ ‖(∆ef + (F +G)(∇ef ))‖C0(M) + 2εg‖ef‖C0(M) + 3ε2g2|∇u|2 .
Consider, now, p1 ∈M to be the point where g attains its maximum, ψ as in Lemma 4.2 and

ε =
1

g(p1)
.
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Then, we have

g(p0) ≤ g(p1) = ψ(p1)eεu(p1) ≤ max
M

ψeεu(p1) = g(p0)eε(u(p1)−u(p0)) ≤ g(p0)e2ε‖u‖C0(M) .

Moreover, using (6), we observe that

2ε ≤ 1

e
f
2

≤ e−minM
f
2 .

Furthermore, we notice that

(31) exp
(
−e−minM

f
2 ‖u‖C0(M)

)
≤ exp(−2ε‖u‖C0(M)) = εg(p1)e−2ε‖u‖C0(M) ≤ εg(p0) .

Multiplying (31) by g(p1), we obtain that

(32) exp
(
−e−minM

f
2 ‖u‖C0(M)

)
g(p1) ≤ g(p0) .

Again, multiplying (31) and (32), we have that

exp
(
−2e−minM

f
2 ‖u‖C0(M)

)
g(p1) ≤ εg(p0)2 ,

which, thanks to (30) and observing that εg(p0) ≤ 1, guarantees the following

(33) exp
(
−2e−minM

f
2 ‖u‖C0(M)

)
g(p1) ≤ ‖(∆ef + (F +G)(∇ef ))‖C0(M) + 2‖ef‖C0(M) + 3‖∇u‖C0(M) .

From (33), it is easy, using Theorem 3.4, to deduce a uniform upper bound for g as follows

(34) 2 + ∆u+ (F +G)(∇u) = g ≤ C(1 + ‖u‖C1(M)) .

In order to conclude, it is sufficient to recall that

|F (∇u)| ≤ |X|‖u‖C1(M) , |G(∇u)| ≤ |Y |‖u‖C1(M) .

From these and (34), the assertion follows.
�

Remark 4.3. The argument used in the proof of Theorem 4.1 works assuming slightly weaker hypothesis,

which are the following: Y is constant and X does not depend on xn, the matrix ∂X
∂x = (∂X

i

∂xj
)i,j is negative

semidefinite and

0 =

n−1∑
i=1

Y i
∂Xj

∂xi
, ∀j = 1, . . . , n− 1 .

However, assuming that ∂X
∂x is negative semidefinite immediately guarantees that X is constant. Indeed,

thanks to the Sylvester’s criterion, we have that

(35)
∂Xi

∂xi
≤ 0 ,

∂Xi

∂xi

∂Xj

∂xj
−
(
∂Xj

∂xi

)2

≥ 0 , ∀i, j = 1, . . . , n .

From the first condition in (35), we deduce that, for all i = 1, . . . , n, the function Xi, as a function of
xi only, is a 1-periodic function which happens to be non-increasing, that is possible if and only if Xi is
constant with respect to xi. This guarantees that

∂Xi

∂xi
= 0 , ∀i = 1, . . . , n .

Using this in the second condition in (35), we obtain that

∂Xj

∂xi
= 0 , ∀i, j = 1, . . . , n ,

giving us the claim.
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Using the estimate (11), we succeed to prove the C1 estimate. The technique is analogous to the one
used both in [6, Theorem 9] and [2, Theorem 7]. However, for completeness, we give the details of the
proof.

Proposition 4.4. In the same hypothesis of Theorem 1.1, let u ∈ C4
0 (M) be a solution of equation (3).

Then, there exists a uniform constant C > 0 such that

(36) ‖u‖C1(M) ≤ C .

Proof. We fix p > n and, thanks to the Morrey’s inequality for W 2,p(M), we have that there exists a
constant C, depending only on M , such that, for a certain α ∈ (0, 1),

‖u‖C1,α(M) ≤ C‖u‖W 2,p(M) .

On the other hand, thanks to [7, Theorem 9.11], there exists a constant C > 0 such that

‖u‖W 2,p(M) ≤ C(‖u‖Lp(M) + ‖∆u‖Lp(M)) ≤ C(‖u‖C0(M) + ‖∆u‖C0(M)) ≤ C(1 + ‖u‖C1(M)) .

Using the standard interpolation theory, see [7, Section 6.8], we know that, ∀ε > 0, there exists Pε > 0
such that

‖u‖C1(M) ≤ Pε‖u‖C0(M) + ε‖u‖C1,α(M) .

Then, we obtain
‖u‖C1(M) ≤ CPε + εC ′(1 + ‖u‖C1(M)) .

Choosing ε < 1
C′ , the claim follows. �

As a direct corollary of Proposition 4.4 and Theorem 4.1, we obtain the uniform C0 bound on the
Laplacian of u.

Theorem 4.5. In the same hypothesis of Theorem 1.1, let u ∈ C4
0 (M) be a solution of equation (3).

Then, there exists a uniform constant C > 0 such that

(37) ‖∆u‖C0(M) ≤ C .

Finally, the C2,α estimate can be deduced, in a standard way, by [11, Theorem 1.1] using the same
argument as in [10]. An important condition to obtain the C2,α estimate is the concavity of the equation
with respect to the second order derivatives of u. In order to prove this, first of all, as done before, we
define the quantities:

A(T,Z) = 1+Tnn+G(Z) , B(T,Z) = 1+

n−1∑
i=1

Tii+F (Z) , ∀(T,Z) ∈ C∞(M,Sym2T ∗M)×C∞(M,TM) ,

where C∞(M,Sym2T ∗M) and C∞(M,TM) are, respectively, the set of smooth symmetric 2-tensors on
M and the set of smooth vector fields on M . Moreover, we define the set

Γ =

{
(T,Z) ∈ C∞(M, Sym2T ∗M)× C∞(M,TM)

∣∣∣∣∣ A(T,Z)B(T,Z)−
n−1∑
i=1

T 2
in > 0

}
.

We notice that Γ is convex fiberwise, i.e. fixed Z ∈ C∞(M,TM), for all T, S ∈ C∞(M,Sym2T ∗M) such
that (A,Z), (B,Z) ∈ Γ we have that (tT + (1− t)S,Z) ∈ Γ, ∀t ∈ [0, 1]. Indeed, we observe that

(38)

A (tT + (1− t)S,Z)B(tT + (1− t)S,Z)−
n−1∑
i=1

(tTin + (1− t)Sin)2

>t(1− t)

(
A(S,Z)B(T,Z) +A(T,Z)B(S,Z)− 2

n−1∑
i=1

SinTin

)
On the other hand, using Cauchy-Schwarz inequality, we have that

(39)

n−1∑
i=1

SinTin ≤

(
n−1∑
i=1

S2
in

) 1
2
(
n−1∑
i=1

T 2
in

) 1
2

< (A(T,Z)A(S,Z)B(T,Z)B(S,Z))
1
2 .
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Using (39) into (38), we obtain that

A (tT + (1− t)S,Z)B(tT + (1− t)S,Z)−
n−1∑
i=1

(tTin + (1− t)Sin)2

>
(

(A(S,Z)B(T,Z))
1
2 − (A(T,Z)B(S,Z))

1
2

)2

≥ 0 ,

giving us the claim. Now, we consider the following function:

Φ̃(T,Z) = log

(
A(T,Z)B(T,Z)−

n−1∑
i=1

T 2
in

)
− f , ∀(T,Z) ∈ Γ .

In order to prove the concavity of the function Φ̃, we define another function:

G(T,Z) =

(
A(T,Z) −|vT |
−|vT | B(T,Z)

)
,

where vT = (T1n, . . . , Tn−1n). Clearly, we have that

Φ̃(T,Z) = log detG(T,Z)− f , ∀(T,Z) ∈ Γ .

Next, we observe that, fixed (T,Z), (S,Z) ∈ Γ,

(40) det(G(tT + (1− t)S,Z)) ≥ det(tG(T,Z) + (1− t)G(S,Z)) , ∀t ∈ [0, 1] .

Indeed, we have that

det (G(tT + (1− t)S,Z))− det(tG(T,Z) + (1− t)G(S,Z))

= (t|vT |+ (1− t)|vS |)2 − |vtT+(1−t)S |2 ≥ 0 .

Now, applying the function x 7→ x
1
2 , which is increasing, to (40) and using the fact that det

1
2 is concave

on positive definite matrices, we obtain
(41)

(det(G(tT + (1− t)S,Z)))
1
2 ≥ det(tG(T,Z) + (1− t)G(S,Z))

1
2 ≥ tdet(G(T,Z))

1
2 + (1− t) det(G(S,Z))

1
2 .

Finally, applying the function log to (41) and using the fact that it is concave, we obtain the claim.
Then, by a standard bootstrap argument, we proved the following.

Theorem 4.6. In the same hypothesis of Theorem 1.1, let u ∈ C4
0 (M) be a solution of equation (3).

Then, u ∈ C∞(M), and, ∀k ≥ 0, there exists a uniform constant Ck > 0 such that

‖u‖Ck(M) ≤ Ck .

5. Proof of Theorem 1.1.

Once we obtained the uniform a priori estimates, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider, ∀t ∈ [0, 1], the equation

Φt(u) = AB −
n−1∑
i=1

u2
in − eft = 0 ,

where ft = log(1− t+ tef ) and define

T = {t ∈ [0, 1] | Φt(u) = 0 admits a solution u ∈ C2,α
0 (M)} .

Obviously, Φ0(u) = 0 admits a solution which is u = 0. So, T 6= ∅.
Then, fix t ∈ T and consider u ∈ C2,α

0 (M) to be a solution of Φt(u) = 0. Observe that, ∀t ∈ [0, 1],

Φt : V →W

where

V =

{
v ∈ C2,α(M)

∣∣∣∣ ∫
M

vdV = 0

}
= C2,α

0 (M) , W = C0,α(M) .
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We have already computed the linearization at u of Φt which is

duΦt(v) = Bvnn +A

n−1∑
i=1

vii − 2

n∑
i=1

uinvin +AF (∇v) +BG(∇v) , ∀v ∈ TuV ' V .

So, duΦt is a linear elliptic operator of second order without terms of order zero. Then, the strong
maximum principle implies that duΦt is injective and, moreover, it has closed image. On the other hand,
the symbol of duΦt is invertible and positive, thanks to Proposition 2.3. Then, choosing {x1, . . . , xn}
local coordinates, we can write

duΦt(v) = Θijvij + civi

where ci ∈ C∞(M), ∀i = 1, . . . , n and (Θij)i,j is positive, so, its inverse defines a riemannian metric on
M . This implies that

duΦt(v) = ∆Θv + civi .

In particular, the index of duFt coincides with that of ∆Θ which is zero. The injectivity of duΦt and this
fact imply that ker((duΦt)

∗) = {0}. We conclude observing that

Im(duΦt) = Im(duΦt) = ker((duΦt)
∗)⊥ = C0,α(M) .

So, duΦt is invertible. Applying the implicit function Theorem, we obtain that T is open. Thanks to
Theorem 4.6, T is also closed. From this, the existence of a solution follows. It remains to prove the
uniqueness of the solution. Then, suppose that u, v ∈ C∞0 (M) are two solutions of (3) and denote with
g ∈ C∞(M) the function such that u = v + g. Clearly, since

∫
M
udV =

∫
M
vdV = 0, then

∫
M
gdV = 0.

By straightforward calculations, we notice that

ef = (Av +Ag − 1) (Bv +Bg − 1)−
n−1∑
i=1

(v2
in + 2vingin + g2

in) ,

which can be rewritten as follows:

ef = ef + 1 +AgBg −
n−1∑
i=1

g2
in − (Ag +Bg) + dvΦ(g) .

Then, from this, we have that

(42) 1 +AgBg −
n−1∑
i=1

g2
in − (Ag +Bg) + dvΦ(g) = 0 .

On the other hand, with the same calculations, we observe that

ef = (Au −Ag + 1) (Bu −Bg + 1)−
n−1∑
i=1

(u2
in − 2uingin + g2

in) ,

which is equivalent to

ef = ef + 1 +AgBg −
n−1∑
i=1

g2
in − (Ag +Bg)− duΦ(g) .

Then, from the equation above, we obtain

(43) 1 +AgBg −
n−1∑
i=1

g2
in − (Ag +Bg)− duΦ(g) = 0 .

So, since g has to solve both (42) and (43), it is a solution of

(duΦ + dvΦ)(g) = 0 ,

which is a linear elliptic equation of second order without terms of order zero. Then, the strong maximum
principle implies that g must be constant. Since

∫
M
gdV = 0, g = 0 and u = v. From this, the assertion

follows. �
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6. More general equations.

Equation (3) is just a particular case of a more general class of elliptic fully nonlinear equations that
can be described as follows. Again, let M be a n-dimensional torus, n > 2, and let I ⊂ {1, . . . , n} be a
set of indices with |I| ≥ 1. We denote with J = {1, . . . , n} \ I and we consider the following equation:

(44)

(
1 +

∑
i∈I

uii +G(∇u)

)1 +
∑
j∈J

ujj + F (∇u)

−∑
i∈I
j∈J

u2
ij = ef ,

where, again, f ∈ C∞(M) and F and G are smooth functions of the gradient of u such that F (0) =
G(0) = 0.

Clearly, equation (44) is the more general equation we can consider within this class. However, by a
reorder of the coordinates, we can study a simpler equation. Indeed, we assume that |I| = k ≥ 1 and,
using a diffeomorphism that reorders the coordinates, equation (44) is equivalent to the following:

(45)

(
1 +

n∑
i=n−k+1

uii +G(∇u)

)1 +

n−k∑
j=1

ujj + F (∇u)

− n∑
i=n−k+1

n−k∑
j=1

u2
ij = ef .

As we did in the previous sections, for the sake of simplicity, from now on, we will denote

A = 1 +

n∑
i=n−k+1

uii +G(∇u) , B = 1 +

n−k∑
j=1

ujj + F (∇u) ,

so that equation (45) can be rewritten as follows:

(46) AB −
n∑

i=n−k+1

n−k∑
j=1

u2
ij = ef .

Obviously, we can assume, up to rename A and B, that k ≤ n− k.
Again, as in the previous case, AB > 0 and, then, A and B have the same sign on M . Then, we can

consider p ∈ M as the point where a solution u ∈ C2
0 (M) attains its minimum and apply the Silvester

Criterion for semidefinite matrixes. This yields to the fact that uii(p) ≥ 0, ∀i = 1, . . . , n. So, A(p) > 0.
Then, A and B are both positive on M .

The next step is to prove ellipticity for (46). As in Proposition 2.3, we can define Φk : C2(M)→ C0(M)
such that, ∀v ∈ C2(M),

Φk(v) = AvBv −
n∑

i=n−k+1

n−k∑
j=1

v2
ij .

It is easy to prove that, if u ∈ C2
0 (M) is a solution of (46), then

duΦk(v) = Au

n−k∑
j=1

vjj+Bu

n∑
i=n−k+1

vii−2

n∑
i=n−k+1

n−k∑
j=1

uijvij+Au
d

dt
F (∇u+tv)|t=0

+Bu
d

dt
G(∇u+tv)|t=0

,

so, the matrix which represents the symbol of duΦ is

P ku =

(
AIdn−k −C
−Ct BIdk

)
,

where Idn−k and Idk are, respectively, the identity in GL(n−k,R) and GL(k,R) and C ∈M(n−k, k,R)
is such that

Cst = us,n−k+t , ∀s = 1, . . . , n− k , ∀t = 1, . . . , k .

In this case, for every vector V = (Vn−k, Vk) ∈ Rn, we have that

P kuV = (AVn−k − CVk,−CtVn−k +BVk) .
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Then, denoted with 〈·, ·〉n the standard inner product on Rn, we have

〈P kuV, V 〉n = A|Vn−k|2+B|Vk|2−〈CVk, Vn−k〉n−k−〈CtVn−k, Vk〉k = A|Vn−k|2+B|Vk|2−2〈CVk, Vn−k〉n−k .
But, we know that

〈CVk, Vn−k〉n−k ≤ |〈CVk, Vn−k〉n−k| ≤ |CVk||Vn−k| ≤ ‖C‖|Vk||Vn−k| ,

where ‖C‖ =
(∑n−k

s=1

∑k
t=1 C

2
st

) 1
2

. This implies that

〈P kuV, V 〉n ≥ A|Vn−k|2 +B|Vk|2 − 2‖C‖|Vk||Vn−k| = (
√
A|Vn−k| −

√
B|Vk|)2 + 2(

√
AB − ‖C‖)|Vk||Vn−k|

which is positive if
√
AB − ‖C‖ > 0. On the order hand, using (46), we have that

AB = ef +

n∑
i=n−k+1

n−k∑
j=1

u2
ij = ef + ‖C‖2

which implies
AB > ‖C‖22 ,

giving us the claim. Ellipticity guarantees the fact that, ∀ζ ∈ Rn:

A

n−k∑
j=1

ζ2
j +B

n∑
i=n−k+1

ζ2
i − 2

n∑
i=n−k+1

n−k∑
j=1

uijζiζj ≥ 0 .

The same arguments as the ones used to prove, respectively, Theorem 1.1, Theorem 3.4 and Theorem
4.6 yield openness and uniqueness, the C0 estimate and the higher order estimates assuming an estimate
similar to the one in Theorem 4.1. So, it remains to prove an analogous of Theorem 4.1 for (46). As one
may notice from the proof of Theorem 4.1, in order to obtain the estimate we want, it is sufficient to prove
an inequality similar to (16) and repeat the same argument. Then, to obtain that, ∀j = 1, . . . , n− k, we

can choose ζj ∈ Rn such that, ∀j′ = 1, . . . , n− k, j′ 6= j, ζjj′ = 0, ζjj =
√
ηjj and, ∀i = n− k + 1, . . . , n,

ζji = sign(uij)
√
ηii and apply the ellipticity with ζj . We obtain that:

Aηjj +B

n∑
i=n−k+1

ηii − 2

n∑
i=n−k+1

|uij |
√
ηiiηjj ≥ 0 .

Then, we can sum these n− k inequalities and obtain

(47) A

n−k∑
j=1

ηjj + (n− k)B

n∑
i=n−k+1

ηii − 2

n∑
i=n−k+1

n−k∑
j=1

|uij |
√
ηiiηjj ≥ 0 ,

which is extremely similar to (16) but, due to the presence of the factor n − k, it does not guarantee
what we are looking for. So, it remains to understand if (47) can be improved in order to obtain the C2

estimate that is needed.

The author has no conflicts of interest to declare that are relevant to the content of this article.
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