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Abstract. The outbreak of the Covid-19 pandemic has forced governments

to impose restrictions on the individual liberty of people. Such containment

measures have considerably reduced the number of infections but have also
caused substantial damage. In this context the following main issue arises:

which policy is the best to contain fatalities and economic losses complying

with the intensive care units capacity? This issue is investigated through the
study of an optimal control problem based on a SEAIRD epidemic model re-

ferring to Covid-19. A state constraint is imposed on the number of infected

individuals in order to maintain the infectious level under the health-facilities
capacity threshold. The challenge is to find a control function that minimizes

the total cost which represents a trade-off between economic losses and hu-

man deaths. After showing the existence of an optimal solution, the necessary
optimality conditions provided by Pontryagin Minimum Principle are derived.

Numerical solutions are obtained by discretizing the optimal control problem

and applying nonlinear optimization methods. Various scenarios with different
initial conditions representing different degrees of infection are studied and the

solutions are compared.The COVID-19 control problem treated here may also
serve as a prototypical example for solving an epidemiological control model

with state constraints.

1. Introduction. From December 2019 on, the Covid-19 virus has begun to spread
from Wuhan, China [68], hitting later all over the world. In particular, after China,
Italy was one of the most affected country, where the outbreak was recorded on
February 2020 [54]. Because of this world-wide and rapid spread, on March 11, 2020,
the World Health Organization (WHO) declared the COVID-19 outbreak a global
pandemic [61]. Nowadays, it still causes many infected people and deaths and thus
represents an emergency framework where a large number of aspects are involved.
Indeed, not only it provides a health problem, but it has brought to light many issues
dealing with economy, sociology and constitutional human rights. The multifaceted
complexity of the Covid-19 crisis, makes it a very challenging emergency to be faced
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and overcome. It needs ongoing and updated research from biological and medical
points of view, starting from genetics, pathogenicity, immunology, epidemiology,
etiology and disease treatments.

Many non-pharmaceutical interventions like social distancing, school closure,
workplace distancing, restricted public gathering and travel, voluntary case iso-
lation, voluntary quarantine and infection control measures (hand hygiene, cough
etiquette, and mask usage) were effective [22, 53]. But in the meantime, many
collateral social problems due to social restrictions were involved and increased: do-
mestic violence [48, 16] long-term effects in physical activity and sleep [44], mental
illness [62, 65], eating disorders [17], delay in diagnosis as in cancer [38].

Although it has been quantified how containment measures have had a large ef-
fects on reducing transmission [18, 29], it has been also questioned how economics
was affected by social limitations. The change of people mobility led to dramatic
consequences in economics. Indeed it affected the costumer’s behavior, ethical is-
sues, business action and aspects related to employees and leadership. Economics
consequences evolved and were differentiated in different sectors like tourism, re-
tail, research and education [42]. In addition to these issues, economic implications
have tightened the economic gap among people leading to social hardships [9]. At
the end, in addition to health emergency, economics and social problems provided
important and deep issues that demand attention from governments.

In order to model an epidemic framework and predict its spread, many different
approaches are established. For example deterministic compartmental models, sto-
chastic models [3] and epidemic models in complex network [49] have been largely
studied. The origins of deterministic epidemiological modeling trace back to the
20th century, experiencing exponential growth from the middle of the 20th century
until a tremendous variety of models have now been formulated, mathematically an-
alyzed, and applied to infectious diseases. The mathematical model usually provides
a system of differential equations. Many deterministic compartmental models based
on the idea of dividing the whole population in compartments as in SIR models,
are largely discussed in [26]. Indeed, the introduction of additional compartments
allows researchers to study more deeply the dynamic mechanism of Covid-19. For
example in [50] susceptible people and susceptible people which are most afraid
are distinguished because of their different rate of transmission; in [33] unreported
asymptomatic infectious people are taken into account; different levels of being in-
fectious are considered in [45]. In SIDARTHE model the population are divided in
eight stages of infectivity: susceptible (S), infected (I), diagnosed (D), ailing (A),
recognized (R), threatened (T), healed (H) and extinct (E) [23]. In [64] also vac-
cinated people are included and in [35] quarantined people. In order to predict
the spread of an epidemic related to social closure, in [21] the effect of closure of
school looking for the transmission rate between scholar and its effect on the whole
population, has been studied.

Optimal control theory [52] is a powerful and successful tool in many fields like
aerospace engineering, finance, biology and epidemics. Many applications in bi-
ology as in cancer treatment are developed [30]. In infectious disease it provides
the best interventions strategies to flatten the curve of infectivity. For example
one can minimize the number of infections, the cost of the control, or both [60].
Many studies are focused on vaccination policies where the aim is to minimize the
vaccination cost [46] or the sum of vaccination and infected people, with a thresh-
old constraint on vaccinated population [8], and in multi objective framework [31].



OPTIMAL CONTROL OF AN EPIDEMIOLOGICAL MODEL WITH STATE CONSTRAINT 3

Other approaches aimed to find optimal allocation strategy in vaccination in or-
der to minimize deaths. The optimal vaccine allocation in different age-groups is
investigated [39]. Many studies investigate the optimal policy where controls are
provided by the level of hospitalization and quarantine [63], personal protections
and contact-tracing (diagnoses) [4, 13] and the objective included a theoretical eco-
nomic cost of implementing two controls. Other different objectives and controls in
infectious diseases are largely discussed in [7, 58, 43, 1, 51, 69, 2, 34, 57, 10, 32].
Also the control on people awareness due to media coverage and the control that
minimizes the total treatment cost, is investigated [36]. In [55] and [24] the optimal
control is constrained to an age-structured model.

Some studies, that consider intensive care units (ICU) included in the optimal
control formulation, are of interest to us. In [41] the control must be as close as
possible to a certain transmission rate to avoid overloading of the ICU capacity. The
pandemic emergency led governments to impose non-pharmaceutical interventions,
especially in social restrictions, that caused significant economic losses all over in
the world. Compared to previous work, our aim is to include the economic cost that
tries to fit the real-world phenomena of economic losses due to social restrictions.

In studies that detected the tradeoff between infectivity and economic losses, the
cost is linear [14] or quadratic [12] with respect to the control function. Kantner and
Koprucki [27] proposed a different objective to be minimized: on the one hand, the
number of disease-related deaths are minimized by strictly avoiding an overcrowd
of the intensive care treatment capacities, on the other hand sufficient immunity
must be established in the population in the long run to prevent a second outbreak
of the epidemic. The aim of this work is the investigation of an optimal control that
provides a trade-off between human deaths and economic losses by improving non-
pharmaceutical interventions as social restrictions and personal control measures.
We exclude the possibility of complete eradication and vaccination. Additionally,
we want to include the threshold of ICU capacity in order to avoid the overcrowding
of national health systems as an additional state constraint in the formulation of
the problem. Indeed, our aim is to look for the best policy that flattens the curve,
balances deaths and economics and at the same time satisfies the health system
capability. Our starting point is the model developed by Aspri et al. [5]. They
extend the classical SIR compartmental model to a SEAIRD model and introduce
a realistic cost functional related to control policy, where the economic losses were
well-modeled taking into account gross domestic production losses due to Covid-19
restrictions. The cost functional is convex with respect to the control but is neither
quadratic nor linear, as commonly considered in literature. In addition to this,
they measure a statistical value of life that represents the fraction of GDP related
welfare that the social planner is willing to renounce to save an actualized 1 % of
Covid mortality. The type of cost functional proposed by [5] implies that the strict
Legendre-Clebsch condition holds. It then follows from the Pontryagin Minimum
Principle that the optimal control is a continuous function. It provides the best
level of control at each time, but this type of control represents an idealized policy
since its continuity cannot be really implemented by governments. However, the
optimal continuous control can be conveniently approximated by a control that is
piecewise constant on a given segmentation of the planning interval. This will be
demonstrated in Section 5.3.4 on one instance for the large terminal time T = 200.

In section 2 we discuss the dynamic features of the SEAIRD model for COVID-19.
Section 3 introduces the cost functional and presents the optimal control problem.
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Moreover, an upper bound for the number of infected people is imposed as a state
constraint. It is shown that an optimal solution to the optimal control exists. In
Section 4 we evaluate the necessary optimality conditions for the state-constrained
optimal control problem. Since the state constraint satisfies a regularity condition,
we can use the direct adjoining approach in Pontryagin’s Minimum Principle as
discussed in [25]. Section 5 presents the optimal control and the state trajectories
for three scenarios corresponding to different initial conditions and terminal times.
The results are obtained by applying either boundary value methods associated with
the Maximum Principle or by discretization and nonlinear programming methods.
The state-constrained solutions are compared to the solutions without the state
constraint.

2. Controlled Epidemiological Model for Covid-19. We introduce an optimal
control problem for an epidemiological model of Covid-19 starting from the formu-
lation in Aspri, Gandolfi et al [5]. The underlying dynamics is a compartmental
epidemic model based on the classical SIR model which is adapted to epidemio-
logical features of Covid-19 using current observations. The population is divided
into compartments defining the following state variables: susceptible (S), exposed
(E), asymptomatic (A), infected with symptoms (I), recovered (R), Covid related
deceased (D) and natural deaths (DN ). These variables are functions of time t, but
in the sequel we omit the t-dependence in our notation for better readability. The
state variables are normalized so that

S + E +A+ I +R+D = 1, (1)

A natural death rate n is considered and an equal natural birth rate compensates
it. The birth rate can be seen as the rate of new ”labor force”, with a little bit
of linguistic abuse, to be included in the compartments. It is reduced because of
the Covid death compartment that does not contribute to new birth. The dynamic
model is the following:

Susceptible Ṡ(t) = −βuS(sI + E +A)− nS + n(1−D) (2)

Exposed Ė(t) = βuS(sI + E +A)− (k + n)E (3)

Asymptomatic Ȧ(t) = (1− ε)kE − (γ + n)A (4)

Infected İ(t) = εkE − (γ + δ + n)I (5)

Recovered Ṙ(t) = γ(A+ I)− nR (6)

Covid deceased Ḋ(t) = δI (7)

Natural deaths ḊN (t) = n(S + E +A+ I +R) (8)

The initial population at the onset of the outbreak consists of only susceptibles,
S(0) ≈ 1 and a small fraction of exposed such that S(0) + E(0) = 1:

S(0) = 1− E(0), E(0) = 10−6, A(0) = I(0) = R(0) = D(0) = 0. (9)

We point out that the normalization (1) is consistent with the initial condition (9)
and equations (2)-(7), since they imply d/dt(S + E + A + I + R + D) = 0. We
refer to [5] the discussion about epidemic modeling and all details of the choice of
parameters reported in table 1. The probability of a susceptible individual to come
in contact with an asymptomatic person and an exposed one is the same, while the
probability to have contact with an infected individual is reduced by a factor s < 1.
This parameter can be seen as the result of isolation measure after the positivity
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test; it is independent of the government restrictions which justifies the presence of
this parameter. Notice that compared to the model proposed by Aspri et al. [5] we
do not reduce the transmissibility of population E and A. The rate β represents
the transmission of the virus, and it is mitigated by the factor u(t) which represents
the control variable. It represents the external action to reduce the spread of the
epidemic, modulating the interactions between susceptible individuals and either
exposed, asymptomatic or infected people. This is a crucial point of our model: we
act only in this term trough the control function u(t), modifying the transmissibility.
The control u(t) satisfies the control constraint

0 < u0 ≤ u(t) ≤ 1 for a.e t ∈ [0, T ], (10)

for a finite time horizon T > 0. When the control is at its upper bound u(t) =
1, then there are no lockdown restrictions. The lower bound u0 corresponds to
the infeasibility of a complete shutdown, since there will always be a minimum of
interactions and economic productivity. From a realistic point of view, it is not
possible to totally isolate individuals from each other and interrupt every kind of
activity as, for example, through home production with smart working. Gandolfi et
al. [5] assumed that the control is a continuous, piece-wise linear function, with the
additional constraint of being constant for long enough time intervals. In contrast
with this assumption we impose that the control u(·) is a measurable and essentially
bounded function:

u ∈ L∞([0, T ],R).

Thus, the admissible control set in function space is given by

Uad = {u ∈ L∞([0, T ],R) |u0 ≤ u(t) ≤ 1 for a.e t ∈ [0, T ]}. (11)

We denote the state vector of the dynamic system (2)-(7) by

X := (S,E,A, I,R,D) ∈ R6.

Let u ∈ Uad be an admissible control and let X(t) be a solution to (2)-(7) and
(9) in the time interval [0, T ]. The next lemma establishes the non-negativity and
boundedness of the solution.

Lemma 2.1. The solution satisfies the following componentwise estimates

0 ≤ S(t), E(t), A(t), I(t), R(t), D(t) ≤ 1 ∀ t ∈ [0, T ].

Proof. The essential elements of the proof proceed by contradiction. We begin with
showing the non-negativity of the solution. Consider the variable S(t) for which
we will show that S(t) > 0 holds in [0, T ]. Since S(0) > 0 we have S(t) > 0 for
0 ≤ t ≤ c with c > 0. Suppose that t0 > 0 were the first time with S(t0) = 0.

From (2) we get Ṡ(t0) = n(1 − D(t0)) ≥ 0. Indeed, assume on the contrary that
D(t0) > 1. This would imply that at least one of the variables S, E, A, I, R
vanishes at a time t < t0. But we assumed that t0 is the first time with S(t0) = 0.
Hence we have S(t̃) > 0. The proof that the other variables E, A, I, R cannot
vanish follows from the arguments below. In the case D(t0) = 1 we would get
S(t0) = E(t0) = A(t0) = I(t0) = R(t0) = 0 and, hence, the solution is identically

zero, which contradicts the initial condition (9). Then equation (2) gives Ṡ(t0) > 0
and, hence, S(t) is strictly increasing at t0, which is a contradiction. From an
analogous argument we can conclude that S(t) can not approach 0 so that we can
fix a sufficiently small c > 0 such that S(t) ≥ c for all t ∈ [0, T ].
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Consider now the solutions E(t), A(t), I(t). Since E(0) > 0 and A(0) = R(0) =

I(0) = 0 we have E(t) > 0 in a right neighborhood of t = 0. Moreover, Ȧ(0) > 0,

resp., İ(0) > 0 imply that A(t) > 0, resp., I(t) > 0 holds in a right neighborhood

of t = 0. The second derivative of R is obtained from (4)-(6) as R̈(0) = kγE(0) > 0
which yields R(t) > 0 in a right neighborhood of t = 0. So far, we have shown that
E(t), A(t), I(t), R(t) > 0 in a right neighborhood of t = 0.

Suppose now that one of variables E,A, I,R vanishes at a time t0 > 0. Assume
A to be the first variable with A(t0) = 0. Since it is not be possible that A(t) is

strictly increasing at t = t0, this implies Ȧ(t0) = 0 and thus E(t0) = 0. The second
derivative of A is given by

Ä(t0) = (1− ε)kĖ(t0) = (1− ε)kβu(t0)S(t0)sI(t0) > 0

which implies that A(t) has a minimum at t0 and, as a consequence, will not become
negative. Similarly, one can show I(t) ≥ 0 and R(t) ≥ 0.

If E(t) would vanish first at t = t0, we necessarily would have Ė(t0) = 0, since
E(t) cannot increase at t0. Then from equation (3) we obtain A(t0) = I(t0) = 0.
Taking the initial condition (S0, 0, 0, 0, R0, D0) in t = t0, the solution of (2)–(7) is
given by

R(t) = R0e
−n(t−t0), D(t) ≡ D0, S(t) = 1−D(t)−R(t).

Hence, we can conclude that the state variables E,A, I,R cannot become negative.
To show the boundedness of the solution we consider the sum W := S + E +

A+ I +R+D of state variables. The derivative of W (t) is readily computed using

the equations (2)–(7) as Ẇ (t) = n(1 − W (t)). Since W (0) = 1 in view of the
initial conditions (9), it follows that W (t) ≡ 1. Then the non-negativity of the
variables yields the componentwise bound S(t), E(t), A(t), I(t), R(t), D(t) ≤ 1 for
all t ∈ [0, T ].

3. Cost functional and optimal control problem for Covid-19. The aim
of this work is to determine the best control that mitigates the virus spread, but
balances the effect of overall deaths and losses of ”production”. From now on, with a
little bit of linguistic abuse, we call production what concerns the creation of money
and generates economic strength in the community. Hence, the social planner has
to minimize a functional F that combines production P and the number of new
deaths due to Covid Ḋ(t) = δI(t), (7). The functional is formulated starting from
the form

F =

∫ T

0

e−rt[V(P ) + aḊ]dt, (12)

where T is fixed. The presence of the exponential factor represents the discount
factor that actualizes cost, where r is the discounting rate. As a consequence, it
incorporates the lesser interest for more distant economic consequences and the
preference for the present cases of death. Hence it acts in the direction of flattening
the infection curve. The function V(P (t)) is a decreasing convex function that
expressed the loss of the GDP related to the production P (t), defined as

V = −P
1−σ − 1

1− σ
, (13)

where σ > 1, indeed for the productivity at maximum level, i.e P = 1, there
is no loss. We express P as a function on population that actively contribute on
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variation in gross domestic production, through economic consumption and through
the workforce, i.e. S, E, A and R, as

P (u,X) = uθ(S + E +A+R), (14)

with θ ∈ (0, 1), that relates the effect of social restrictions on economical activities.
We point out the fact that as with all compartmental models, it is assumed that
each compartment is homogeneous, meaning each individual within the same com-
partment is indistinguishable from the others. This inevitably leads to an inability
to distinguish individuals of different ages, that contribute differently on economic
consequences. Recalling the state X = (S,E,A, I,R,D) ∈ R6, the cost functional
is finally modeled as follows:

F (X,u) =

∫ T

0

e−rt

[
− (uθ[S + E +A+R])1−σ − 1

1− σ
+ aḊ

]
dt. (15)

The estimation of parameter a is particularly complicated. Since it represents the
social cost of a Covid death, thus it translates the human life as a life cost in
economic term, it depends on socio-political and economic factors that vary from
country to country. About what concerns the parameters σ and θ, they are esti-
mated from data referred to some western countries such as France, Germany, Italy
and US, to be respectively, 2 and 1/3. We refer the reader to [5] for every details
concerning economical arguments on the above parameters estimation. Hence, the
objective involves the control function term u−1/3, that is a new element compared
to many works where the cost functionals depend either quadratically or linearly on
the control; see, eg., [59]. Besides the control constraint (10) we consider the state
constraint

I(t) ≤ Imax ∀ t ∈ [0, T ]. (16)

The aim is to determine a control policy that constrains the trajectory of infected
people to a restricted phase region. The threshold Imax represents the maximum
capacity of a government to manage infected people with health assistance and, for
severely ill people, to guarantee intensive care places in hospitals. Many problems
in the epidemiological literature consider similar state constraints or mixed control-
state constraint [15, 8, 12]. With regard to the threshold value Imax, we argue as
follows. According to [6] at the first epidemic wave in Europe, 2.4% of infected
people needed intensive care and the availability of Intensive Care Units in average
was 11.5 per 100000 people. Since we want to avoid infected people I(t) needing ICU
which would exceed the maximum capacity of the health care system, we consider
the constraint 0.024 · I(t) ≤ 115/106 and thus

I(t) ≤ 115

106 · 0.024
= 4.79 · 10−3 ≈ 0.005.

Hence, we consider the threshold

Imax = 0.005.

The percentage of critical infectious has decreased in the meantime, as it is reported
day by day in worldometers.info and at the same time governments invested in
increasing Intensive Care Units. Despite these facts, we prefer to take into account
the first period of virus spread. Since we want to consider a realistic scenario where
the restrictions policy presumably would start after the evidence of some infectious
cases, our optimal control problem is not complemented by the initial conditions (9)
but the dynamics starts from the scenarios of three sets of initial conditions which
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are obtained by integrating the dynamics (2)–(7), (9) in absence of any control
policy, i.e., u(t) ≡ 1, up to times T0 = 55, T0 = 65 and T0 = 70.

Case 1. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 55 days.

X0 = [0.9979, 7.713·10−4, 1.941·10−4, 3.841·10−4, 6.463·10−4, 8.58904·10−6]. (17)

Since the number of exposed people is less than 800 in one million people, this
scenario indicates a mild spread of the epidemic.

Case 2. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 65 days.

X0 = [0.9932, 0.002614, 6.601 · 10−4, 0.001306, 0.002208, 2.934 · 10−5]. (18)

In this case we there are about 2600 people exposed in one million and, hence, this
case can be considered as an advanced epidemic.

Case 3. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 70 days.

X0 = [0.9873, 0.004853, 0.001229, 0.002434, 0.004138, 5.499 · 10−5]. (19)

Since at day T0 = 70 from the first exposure, the exposed class contains almost
5000 in one million people, the virus has severely spread out.

Remark 3.1. In the 3 scenarios of initial conditions (17)-(19) we have 0 < Xi(0) <
1 for i = 1, . . . , 6. Here, we can improve Lemma 2.1 since we get a positive lower
bound for the trajectories: there exists c > 0 with c ≤ Xi(t) ∀ t ∈ [0, T ], i = 1, . . . , 6.
The positive lower bound follows from the estimates in the proof of Lemma 2.1 and
the continuity of the state variables Xi(t).

In summary, the ingredients of our optimal control problem (OCP) for Covid-19
are as follows:

(OCP) Minimizeu∈Uad
F (X,u) subject to the dynamical

equations (2)− (7), initial conditions (17), (18), (19),
control constraint (10) and state constraint (16).

 (20)

where the parameters involved in the model are reported in table (1). Now let us

Table 1. Parameter values

Parameter Value Definition

β 0.25 The infection rate
s 0.1 Proportion of infected people who develop symptoms
n 0.00003 The natural death rate
k 0.2 The latency period after infection
ε 2/3 The fraction of asymptomatic
γ 0.14 The recovery period
δ 0.0028 The death rate due to Covid-19
r 0.04 The economic discount rate
σ 2 A parameter that expresses the GDP losses on production
θ 1/3 Elasticity parameter that expresses the dependence

of GDP change on infection spread
a 7833.11 The social cost of human deaths due to Covid-19
Imax 0.005 Intensive Care Units availability

write the optimal control problem for Covid-19 in a compact form that allows to
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evaluate the necessary optimality conditions in the next section in a more convenient
form. Denoting the right hand sides of the ODEs (2)-(7) by f(X,u) we have the
dynamic system

Ẋ(t) = f(X(t), u(t)), X(0) = X0. (21)

Introducing the function h(X) := I − Imax, the state constraint (16) is formally
written as

h(X(t)) = I(t)− Imax ≤ 0, ∀t ∈ [0, T ]. (22)

The objective functional is given by

F (X,u) =

∫ T

0

e−rtf0(X(t), u(t)) dt (23)

where

f0(X,u) =
1− (uθ[S + E +A+R])1−σ

1− σ
+ aδI. (24)

Proposition 3.2. (Existence of an optimal solution)
The optimal control problem (OCP) defined in (20) has an optimal solution for
terminal times T ≤ 200.

Proof. We use the existence result in Cesari, [11], p. 314, Theorem 9.3.i. Then we
have to verify the following three properties:
(1) The family of admissible controls is not empty.
(2) There exists a uniform bound ||X(t)|| ≤ b on [0, T ] for all responses X(t)

to admissible controls.
(3) The extended velocity set

V (t,X) = { (e−rtf0(X,u) + α, f(X,u)) |α ≥ 0, u0 ≤ u ≤ 1 }
is convex in R× R6 for each fixed (t,X).

To show claim (1), we integrate the system (2)-(7) with initial conditions (17), (18)
(19) using the control u(t) = u0 = 0.001 which represents maximal restriction; see
Figure 1. For all three scenarios of initial conditions and all terminal times T ≤ 200
we get the following upper bound for infected individuals (see eg. Figure 1 for
T = 70):

max { I(t) | 0 ≤ t ≤ T } ≤ 0.0028 < Imax = 0.005.

Property (2) follows directly from Lemma 2.1. The convexity property (3) is a
consequence of the fact that the control u enters the dynamics linearly and appears
as the factor u−1/3 in the objective functional, since σ = 2 and θ = 1/3. We remark
that, according to definitions (13)-(14), σ > 1 and θ ∈ (0, 1), the control enters as
uθ(1−σ) hence the condition still holds true even without fixing their values.

4. Pontryagin Minimum Principle: necessary optimality conditions. We
evaluate the necessary optimality conditions in Pontryagin’s Minimum Principle for
state-constrained optimal control problems which are discussed in Jacobson, Lele,
Speyer [28], Maurer [37], Vinter [66] and surveyed in Hartl, Sethi, Thompson [25].
Let us start with some basic notions for the state constraint I(t) ≤ Imax as adopted
from the review [25]. A subinterval [t1, t2] ⊂ [0, T ] with t1 < t2 is called an interior
interval, if I(t) < Imax holds for all t1 < t < t2. An interval [t1, t2] ⊂ [0, T ] with
t1 < t2 is called a boundary interval, if I(t) = Imax holds for all t1 ≤ t ≤ t2. If the
interval [t1, t2] is maximal with this property, then t1 is called an entry-time and
t2 is called an exit time. If ts ∈ [0, T ] is an isolated time with I(ts) = Imax, then
ts is called a contact time. Taken together, entry, exit and contact times are called
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Figure 1. Covid-19 spread under control u ≡ u0 = 0.001, accord-
ing to equations (2)-(7) for the three initial conditions (17)-(18)-
(19).

junction times. The direct adjoining approach in [25], [37] requires the regularity
of the state constraint h(X(t)) = I(t) − Imax ≤ 0 in (22). Since the second total
time derivative of h(X(t)) is the first derivative that contains the control explicitly,
the state constraint has order two. Indeed, omitting the explicit time argument we
have

d2

dt2
h(X) = εkβuS(sI + E +A)− εk(k + 2n+ γ + δ)E + (γ + δ + n)2I. (25)

Along any boundary arc with I(t) = Imax the following regularity condition holds

∂

∂u

d2

dt2
h(X) = εkβS(sI + E +A) 6= 0. (26)

It follows that the boundary control is determined by the feedback expression

ub(X) =
εk(k + 2n+ γ + δ)E − (γ + δ + n)2 I

εkβS(sI + E +A)
. (27)

The standard Hamiltonian is given by

H(X,λ, u, t) = λ0e
−rtf0(X,u)+ < λ, f(X,u) >, (28)

where λ = (λS , λE , λA, λI , λR, λD) ∈ R6 denotes the adjoint variable and λ0 ≥ 0
is a nonnegative scalar. The regularity condition (26) allows us to use the direct
adjoining approach where the state constraint is directly adjoined to the Hamil-
tonian (28) by a scalar multiplier η; see [25], section 4, and [37]. This defines the
augmented Hamiltonian

H(X,λ, η, u, t) = λ0e
−rtf0(X,u)+ < λ, f(X,u) > +η (I − Imax). (29)

To eliminate the discount factor ert it is convenient to consider the current-value
augmented Hamiltonian

Hc(X,λ, η, u) = λ0 f0(X,u)+ < λ, f(X,u) > +η (I − Imax). (30)

The adjoint variable λ and the multiplier η for the augmented current-value Hamil-
tonian (30) are related to the adjoint variable λ̃ and multiplier η̃ of the augmented
Hamiltonian (29) by

λ(t) = ertλ̃(t), η(t) = ertη̃(t), (31)
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We obtain necessary optimality conditions for problem (20) by combining the results
in Jacobson, Lele and Speyer [28], Maurer [37] and Vinter [66], Chapter 9.3, with
the survey in Hartl, Sethi and Vickson [25], Informal Theorem 4.1, Theorem 4.2
and Proposition 4.1. Our notations are a bit different, because the multiplier η(t)
for the state constraint, which appears in the following theorem, is the density of
the function µ(·) of bounded variation on boundary arcs associated with the state
constraint; see [37].

Theorem 4.1. (Minimum Principle)
Let (X∗(·), u∗(·)) ∈ W 1,∞([0, T ],R6) × L∞([0, T ],R) be an optimal solution of
the optimal control problem (OCP ) in (20). Assume that there are only finitely
many junction times. Moreover, assume that on every boundary interval [t1, t2]
the boundary control ub(X(t)) is in the interior of the control set Ω = [u0, 1], i.e.,
u0 < ub(X(t)) < 1 for t1 < t < t2. Then there exist a constant λ0 ≥ 0, a piece-
wise absolutely continuous adjoint function λ : [0, T ]→ R6, a piecewise continuous
multiplier function η : [0, T ] → R, multipliers νs at every junction time ts < T ,
and a multiplier νT such that (λ0, λ(t), η(t), ν1, ν2, .., νT ) 6= 0 ∀ t ∈ [0, T ] and the
following conditions hold for almost all t ∈ [0, T ]:

Minimizing control:

u∗(t) = argminu0≤u≤1Hc(X∗(t), λ(t), η(t), u) . (32)

Adjoint equations:

λ̇(t)− rλ(t) = − ∂
∂XH

c(X∗(t), λ(t), η(t), u∗(t)

= −λ0 ∂
∂X f0(X∗(t), u∗(t))− ∂

∂X < λ(t), f(X∗(t), u∗(t)) >

−η ∂
∂X h(X∗(t)) .

(33)

Transversality condition:

λS(T ) = λE(T ) = λA(T ) = λR(T ) = λD(T ) = 0, λI(T ) = νT . (34)

Jump condition for adjoint variable λI at a junction time ts:

λ(ts+) = λ(ts−)−νs
∂h

∂X
(X∗(ts)), i.e., λI(ts+) = λI(ts−)−νs, νs ≥ 0. (35)

Complementarity conditions:

η(t) ≥ 0, η(t) (I∗(t)− Imax) = 0, νT (I∗(T )− Imax) = 0. (36)

Remark 4.2. 1. If the multiplier λ0 ≥ 0 is positive, it can be normalized to
λ0 = 1. The case λ0 = 0 is called the abnormal case. If the state constraint
does not become active, we have a control problem with free terminal state
which yields λ(T ) = 0. Then λ0 = 0 would immediately lead to λ(t) ≡ 0
which contradicts the fact that we have a set of nonzero multipliers. For an
active state constraint we cannot exclude the abnormal case λ0 = 0 a priori,
but our computations in Section 5 for the three scenarios of initial conditions
(17)-(19) yield solutions with λ0 = 1.

2. The assumption that the boundary control ub(X(t)) lies in the interior of the
control set can not be checked a priori for the control problem (20). But the
figures in Section 5 displaying the control u(t) will show that this assumption
is satisfied.
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In the following, we shall suppress the upper index star denoting the optimal so-
lution. The control u is determined by the minimum condition (32) as a function
of the state X and adjoint variable λ in the following way. If u0 < u(t) < 1, the
minimum condition (32) yields

0 = Hcu(X,λ, η, uf ) = −θuθ(1−σ)−1f (S + E +A+R)(1−σ) − λSβS(sI + E +A)

+λEβS(sI + E +A),

where uf denotes the so-called free control. This equation yields the following free
control with exponent z = 1

θ(1−σ)−1 :

uf (X,λ) =

[
− (S + E +A+R)σ−1

θ
(λSβS(sI + E +A) + λEβS(sI + E +A))

]z
.

(37)
Then the optimal control u(X,λ) is obtained by projecting the free control uf (X,λ)
onto the admissible control set [u0, 1]:

u(X,λ) = max {u0, min {1, uf (X,λ) } }. (38)

Note that the determination of uf (X,λ) from the equation Hu(X(t), λ, u) = 0 is
made possible by the fact that the strict Legendre-Clebsch condition holds:

∂2Hc

∂u2
= −θ(S + E +A+R)(1−σ)(θ(1− σ)− 1)uθ(1−σ)−2 > 0, (39)

for every values of σ, θ that are consistent with definition given by (13)-(14),
hence it is true for the fixed values θ = 1/3 and σ = 2. Since the functions
f0(X,u), f(X,u), h(X) are of class C∞ in appropriate open domains, a formula
for the multiplier η(t) for the state constraint can be determined recursively; see
[37] and [25], Proposition 4.1 and equation (4.22). Moreover, we get the following
smoothness properties of the control, adjoint variable and multiplier.

Corollary 4.3. Under the assumptions in Theorem 4.1 the following continuity
and smoothness properties hold.
(a) The optimal control u(·) is continuous on [0, T ] including the junction points.
(b) The optimal control u(·), the adjoint function λ(·) and the multiplier η(·) are

piecewise of class C∞.

Proof. The continuity of the optimal control u(·) follows from the fact that the
strict Legendre-Clebsch condition (39) holds and the Hamiltonian Hc is regular,
i.e., has a uniquely defined minimum given in (37) and (38); see [28], [37], Hartl et
al. [25], Proposition 4.3. We point out that the strict convexity of the cost integral
on u is the key point to assure the continuity. Claim (b) is a consequence of the
fact that the functions f0(X,u), f(X,u), h(X) are of class C∞ using the formulas
for the boundary control (27) and free control (37).

It is rather tedious to integrate the adjoint equations (33) numerically. Using
discretization and nonlinear programming methods, the adjoint variables can be
identified by the Lagrange multipliers associated with the discretized differential
equations and thus can be recovered from the optimization code. Nevertheless, for
the sake of completeness and for using the adjoint equations in boundary value



OPTIMAL CONTROL OF AN EPIDEMIOLOGICAL MODEL WITH STATE CONSTRAINT 13

approaches we give the adjoint equations (33) explicitly:

λ̇S = rλS + u(1−σ)θ(S + E +A+R)−σ + λS(n+ βu(sI + E +A))
−λEβu(sI + E +A),

λ̇E = rλE + u(1−σ)θ(S + E +A+R)−σ + λSβuS − λE(βuS − (k + n))
−λA(1− ε)k − λIkε,

λ̇A = rλA + u(1−σ)θ(S + E +A+R)−σ + λSβS − λEβuS + λA(γ + n)
−λRγ,

λ̇I = rλI − aδ + λSβsuS − λEβsuS + λI(γ + δ + n)− λRγ − λDδ − η,
λ̇R = rλR + u(1−σ)θ(S + E +A+R)−σ + λRn,

λ̇D = rλD + λSn− λDδ.



(40)

Remark 4.4. In summary, the necessary conditions represent a mixed system of
differential and algebraic equations. In the absence of the state constraint I−Imax ≤
0, the dynamic equations (21) and adjoint equations (40) lead to a boundary value
problem for the variables (X,λ) by inserting the control expression (38):{

Ẋ(t) = f(X(t), u(X(t), λ(t))), X(0) = X0

λ̇(t) = g(X(t), λ(t)), λ(T ) = 0
(41)

where g(X,λ) denotes the dynamics of adjoint variables (40). Following the ap-
proach employed in [20], in this setting and from the estimation bounds of variables,
see (3.1), the uniqueness of optimal control for T > 0 can be rigorously prove. This
setting will be implemented in the next section in order to compare optimal costs
and epidemiological scenarios with and without the infected population constraint.

5. Numerical solutions. In this section, we present numerical results for the solu-
tions of the optimal control problem (20). We prescribe the three initial conditions
(17), (18), (19) representing a mild, intermediate and severe epidemic scenario and
compute solutions for a small and a much larger terminal time T . In each case,
we compare the solutions of the problem (20) in absence of the state constraint
I(t) ≤ Imax with solutions of the problem subjected to the state constraint. Our
principal focus is on examining the state trajectories of Asymptomatics A(t), In-
fected I(t) and Deaths D(t), since they reflect the severity of the epidemics. We
display only the adjoint variable λI(t) which has jumps at the junction points with
a boundary arc I(t) = Imax. All other adjoint variables are continuous and vanish
at the final time; see (34), (35). We start with solving the optimal control problem
without the state constraint I(t) ≤ Imax. The resulting boundary value problem
(41) can be solved either by the Forward-Backward-Sweep-Mathod (FBSM) [40]
or by the BVP4c solver in Matlab. Since the FBSM method converges only for
a sufficiently small time interval, we prefer to use the solver BVP4c, which is a
fourth-order integration method is implemented for the ODE system. The optimal
control problem with state constraint is solved by discretization methods. The dis-
cretized control problem gives rise to a large-scale nonlinear optimization problem
which is conveniently formulated using the Mathematical Programming Language
AMPL developed by Fourer et al. [19]. AMPL can be linked to several optimiza-
tion codes. In our computations, we have used the primal-dual interior point code
Ipopt developed by Wächter [67]. The AMPL program can be directly submit-
ted to the NEOS server; see [47]. As integration method we use either the Euler
implicit method or the trapezoidal rule. We choose the number N = 700, resp.
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Figure 2. Uncontrolled Covid-19 spread according to SEAIRD
system (2)-(7). Infected population I(t) reaches a peak of almost
0.09 after 114 days.

N = 2000, for the time horizon T = 70, resp. T = 200, and prescribe the tolerance
tol = 10−8 in all computations. An alternative numerical method is provided by the
DIDO solver which is based on a pseudospectral approach [56]. Before inspecting
the controlled virus spread, we show the solution of the SEAIRD dynamics (2)-(7)
in absence of any control policy, i.e u(t) ≡ 1; see Figure 2. Our analysis begins
with considering three different scenarios corresponding to different initial condi-
tions when restrictions policies begin to be imposed. For convenience we recall the
new initial conditions (17)-(19) that correspond to a mild, a more severe and a very
severe spread out of the virus.

Case 1. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 55 days.

X0 = [0.9979, 7.713·10−4, 1.941·10−4, 3.841·10−4, 6.463·10−4, 8.58904·10−6]. (42)

Case 2. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 65 days.

X0 = [0.9932, 0.002614, 6.601 · 10−4, 0.001306, 0.002208, 2.934 · 10−5]. (43)

Case 3. Integration of (2)–(7), (9) with u(t) ≡ 1 up to time T0 = 70 days.

X0 = [0.9873, 0.004853, 0.001229, 0.002434, 0.004138, 5.499 · 10−5] (44)

First, we investigate the optimal control problem in the absence of the state con-
straint for the time interval of T = 70 days. Then, we investigate the state-
constrained problem both for the short terminal time T = 70 days and for the
much larger terminal time T = 200.

5.1. Case 1: X0 after 55 days from the first exposure. After 55 days from
the first exposure, the number of exposed people is less than 800 in one million
people. Thus, we can intuitively think that it is not a severe situation which needs
immediately strict confinement. We will see that the results are consistent with this
claim.
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5.1.1. Unconstrained problem for T = 70. We consider the unconstrained solution
omitting the condition I(t) ≤ Imax = 0.005. Hence, we can solve the boundary value
problem (41). Figure 3 displays the solution. Figure 3(A) shows that the optimal
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Figure 3. Case 1: Optimal solution for T = 70 without state
constraint I(t) ≤ 0.005. (A) control u(t), (B) asymptomatic A(t),
infected I(t) and deaths D(t). (C) adjoint variable λI(t).

policy begins with total freedom, decreases until it reaches the most restricted level
u = 0.62 after 41 days, and then gradually increases to reach the maximum level
u = 1 at day 62. It is not surprising that the policy is not restrictive at beginning,
since the initial conditions do not yet provide a serious scenario. We find

max {I(t) | 0 ≤ t ≤ T } = I(T ) = 0.0208.

Hence, the state constraint I(t) ≤ Imax will become active for any bound Imax <
0.02. Then we will either have I(T ) = Imax or a touching point ts ∈ (0, T ) with
I(ts) = Imax or a boundary arc I(t) = Imax for t1 ≤ t ≤ t2 with 0 < t1 < t2 < T .
This occurs also in Case 2 and Case 3 in absence of the state constraint, as we will
see below. The control decreases in the first period rather than thereafter which
is due to the presence of the discount factor in the objective functional. Infected
people exceed the value 0.01 in 63 days and then double in a few days. In this
setting, we obtain D(T ) = 0.001 compared to D(T ) = 0.01 that would be without
any restrictions. Under control, asymptomatics A(t) assumes its maximum value
at the final time, A(T ) = 0.01, while in the analogous setting without control,
the maximum value of asymptomatics is 0.044; see Figure 2. Notice that the final
level of infected people under restrictions is the same at day 30 in the scenario
without any control and then increases more than four times along the interval.
The optimal cost is F = 3.6674. The final value λI(T ) = ηT = 0 is consistent with
the transversality condition (34). We also observe that the adjoint variable λI(t)
depicted in Figure 3 is consistent with the condition (35), because the absence of
the state constraint does not produce any jumps. Also, in all unconstrained cases
reported below we will see that λI(t) is a continuous function with λI(T ) = 0.

5.1.2. Constrained solution for T = 70. We now turn to the case of the problem
with the same initial condition but with the additional state constraint I(t) ≤
Imax = 0.005. As shown in Figure 4, the control policy starts almost from u = 1
and decreases until day 58 at the control level u = 0.505 and then reaches the
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Figure 4. Case 1: Solution for terminal time T = 70 with state
constraint I(t) ≤ 0.005. (A) control u(t). (B) asymptomatics A(t),
infected I(t) and deaths D(t). (C) adjoint variable λI(t).

total freedom in the last days of the time period. Notice that the terminal values
I(T ) = 0.005 of infected, A(T ) = 0.0025 of asymptomatic and D(T ) = 6.6 · 10−4

of deaths are significantly smaller than the terminal values I(T ) = 0.0208, A(T ) =
0.01, D(T ) = 0.001 without state constraint; see Figure 4(B) and Figure 2. It is not
surprising that the total social cost F = 3.89148 is higher than F = 3.6674 without
the threshold Imax. We also notice that the state constraint is only active at t = T ,
since I(T ) = 0.005 and I(t) < 0.005 for t < T . The transversality condition (34)
holds with λI(T ) = νT = 60, but the adjoint variable λI does not have any jumps.

5.1.3. Constrained solution for T = 200. The control function and the asymp-
tomatic, infected and deaths for the terminal time T = 200 are depicted in Figure
5. Note that, as in Figure 4(A) the optimal policy starts with total freedom and
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Figure 5. Case 1: Solution for T = 200 with state constraint
I(t) ≤ 0.005. (A) control u(t) with boundary interval [56.2, 178].
(B) asymptomatics A(t), infected I(t) and deaths D(t). (C) adjoint
variable λI(t).

it reaches its minimum value at the level u = 0.53. Then it settles between the
values u = 0.55 and u = 0.6 for about 4 months. In Figure 5(B) we notice that the
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constraint is active in the boundary interval [t1, t2], where t1 = 56.2 and t2 = 178,
and at the final time T . Even on this large time interval the control is still able
to hold down the number of infected people. Moreover, at the final time we have
A(T ) = 2.55 · 10−3 and D(T ) = 2.5 · 10−3. The transversality condition (34) is
satisfied with λI(T ) = νT = 0.3. Note also that, according to (35), the adjoint
function λI(t) presents a jump at t = t1. The rapid decrease of λI(t) to zero does
not make evident the additional jump at t = t2. In summary, we conclude that
after a transition period staring on freedom the policy is restrictive for a long time
and it leads to total freedom again at the end of the time interval. The final cost of
this scenario is F = 4.40835, which is significantly higher then F = 3.89148 in the
analogous shorter time setting for T = 70.

5.2. Case 2: X0 after 65 days from the first exposure. Computing the
SEAIRD system (2)-(7) with control u(t) = 1, we observed that after 65 days
from the first exposure, the number of exposed people is 2600 in one million peo-
ple. Thus, they have tripled in 10 days from the setting in Case 1. We expect the
optimal control to be more restrictive and the optimal cost to increase.

5.2.1. Unconstrained solution for T = 70. Omitting the state constraint I(t) ≤
Imax = 0.005 we obtain the solution displayed in Figure 6. Figure 6(A) shows that
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Figure 6. Case 2: Solution for T = 70 without state constraint
I(t) ≤ Imax = 0.005. (A) control u(t). (B) asymptomatics A(t),
infected I(t) and deaths D(t). (C) adjoint variable λI(t).

the optimal control of the problem without state constraint starts from the level
u = 0.76. It decreases until the most restricted level u = 0.59 is reached after 34
days and then increases to reach the total freedom u = 1 after 63 days. We also
see that the trajectories are similar to those depicted in Figure 3 even though the
control is quite different, in particular at the initial time. After day 62 the number
of infected people doubles in a few days. The final values of I(T ), A(T ) and D(T )
are almost the same as in the scenario of Case 1. Because of the absence of the
state constraint, we have λI(T ) = νT = 0. The optimal cost is F = 5.64477.

5.2.2. Constrained solution for T = 70. In Figure 7(A) we observe that the control
starts with the value u = 0.76 and it reaches the minimum value 0.51 after 58
days. The state constraint is active for t1 ≤ t ≤ t2 and at t = T , where t1 = 43.2
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Figure 7. Case 2: Solution for T = 70 with state constraint
I(t) ≤ Imax = 0.005. (A) control u(t) with boundary interval
[43.2, 48]. (B) asymptomatics A(t), infected I(t) and deaths D(t).
(C) adjoint variable λI(t).

and t2 = 48. The adjoint variable λI(t) exhibits jumps at t1 and t2 in agreement
with (35). In view of the transversality condition (34), we find the terminal value
λI(T ) = νT = 59.2. Compared to the situation without state constraint in Figure
6(B) we obtain the terminal values D(T ) = 8.5 ·10−4, A(T ) = 2.55 ·10−3. The total
cost is F = 5.8888 rather than F = 5.64477 without the state constraint.
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Figure 8. Case 2: Solution for T = 200 with state constraint
I(t) ≤ 0.005. (A) control u(t) with boundary interval [42.5, 178].
(B) asymptomatics A(t), infected I(t) and deaths D(t). (C) adjoint
variable λI(t).

5.2.3. Constrained solution for T = 200. As in the shorter time interval, in Figure
8(A) we notice that the initial condition strongly affects the optimal control, specifi-
cally at smaller times. Indeed, compared to Case 1 in Figure 5(A), where the policy
starts with total freedom, the initial control is u(0) ≈ 0.75. Then it reaches the
minimum level u = 0.53 after 40 days, and then stays in a neighborhood of 0.55 for
a long time before sharply increasing at the end. As expected, the state constraint
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I(t) ≤ 0.005 saturates on [t1, t2] and at t = T where t1 = 42.5 and t2 = 175; see
Figure 8(B). According to (35), the adjoint function λI has jumps at t1 and t2. The
rapid decrease of λI(t) to zero does not make evident the additional jump at t = t2.
In view of condition (34), λI(T ) = νT = 0.3. In comparison with the same scenario
in a shorter time horizon, see Figure 7(B), the final value A(T ) = 2.55 · 10−3 is the
same, while the final number of deaths is significantly higher, D(T ) = 2.7 · 10−3.
This result demonstrates the impact of implementing a policy only 10 days later.
Indeed, compared to the scenario where X0 is 10 days before, the number of deaths
increases three times despite the action of a more restrictive policy that is still able
to hold down the trajectory I(t). In this case the final cost is F = 6.3967, whereas
we get F = 5.8888 for the shorter time horizon T = 70 and F = 4.40835 for the
initial condition corresponding to 10 days earlier.

5.3. Case 3: X0 after 70 days from the first exposure. After 70 days from
the first exposure, the number of exposed individuals are about 4800 in one million
people. It means that, after only 5 days after the previous setting, the spread of virus
has almost doubled and it becomes quite severe. Again, we begin by considering
the optimal control problem in the absence of the state constraint.
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Figure 9. Case 3: solution for T = 70 without state constraint
I(t) ≤ Imax = 0.005. (A) control u(t). (B) asymptomatics A(t),
infected A(t) and deaths D(t). (C) adjoint variable λI(t).

5.3.1. Unconstrained solution for T = 70. Figure 9(A) demonstrates that the later
government acts the more restrictive the policy must be on the initial period. In-
deed, we observe that the control starts with the level u = 0.65 until it achieves
the minimum level u = 0.58 in about one month. Then u(t) gradually increases to
total freedom after 63 days. Once again, the trajectories of asymptomatics, infected
and deaths depicted in Figure 9(B) show that the control is able to satisfy the state
constraint I(t) ≤ 0.005 on the whole time interval. The final cost is F = 7.02614. It
is not surprising that the optimal cost is significantly increasing as the policy start
is delayed. We refer to Figure 3 and Figure 6 for the discussion about terminal
state values, since they are similar to those in previous settings.
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Figure 10. Case 3: Solution for T = 70 with state constraint
I(t) ≤ Imax = 0.005. (A) control u(t) with boundary interval
[28.5, 48]. (B) asymptomatics A(t), infected I(t) and deaths D(t).
(C) adjoint variable λI(t).

5.3.2. Constrained solution for T = 70. The initial control is u = 0.63; the control
stays in a neighborhood of u = 0.55 for a long period. It reaches its minimum value
u = 0.51 and then sharply increases up to total freedom in 10 days; see Figure 10(A).
Notice that asymptomatic, infected and deaths trajectories are dramatically reduced
when compared to Figure 9(B). The infected compartment assumes its maximum
value for t ∈ [t1, t2] and in t = T , where t1 = 28.5 and t2 = 48. Consistently with
(35), the adjoint function λI(t) exhibits two jump points at t1 and t2. The final
value of transversality condition (34) is λI(T ) = νT = 59. Since the initial condition
in Case 3 describes a severe epidemic outbreak, the final state of deaths increases
D(T ) = 0.001. The final cost for implementing the optimal restriction policy is now
F = 7.29966 compared to F = 7.02614 without state constraint.

5.3.3. Constrained solution for T = 200. We turn to the last case where we assume
that initial condition corresponds to a severe epidemic spread and the time interval
is much longer. This situation is the most critical one to bring under control, thus
we expect that the optimal cost is the highest compared to all scenarios considered
before. In Figure 11(A) we notice that the initial control value is lower than in the
previous setting. Indeed, it starts from 0.63 and decreases to its minimum value
u = 0.52 in about 25 days. Thus, it will remain between 0.55 and 0.65 for 5 months
and it sharply increases to total freedom only in the last days. The number of
infected saturates in about 20 days. Indeed, Figure 11(B) shows that the constraint
is active in [t1, t2] and t = T , with t1 = 28.4 and t2 = 178. According to condition
(35), the adjoint variable λI(t) has two jump points in t1 and t2. The rapid decrease
of λI(t) to zero does not make evident the additional jump at t = t2. The final
value of additional multiplier is λI(T ) = νT = 0.3, see condition (34). The final size
of state variables are A(T ) = 2.55 · 10−3 and D(T ) = 2.8 · 10−3. In particular, we
remark that the number of dead people is higher than twice the number of deaths
in case T = 70; see Figure 10(B). The optimal social cost is F = 7.80120 compared
to F = 7.29966 in 70 days and compared to F = 6.3967 for the initial condition
chosen 5 days earlier in Case 2.
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Figure 11. Case 3: Solution for T = 200 with state constraint
I(t) ≤ 0.005. (A) control u(t) with boundary interval [28.4, 178].
(B) asymptomatics A(t), infected I(t) and deaths D(t). (C) adjoint
variable λI(t).

5.3.4. Approximative constrained solution for T = 200. We pointed out that in
practice it is difficult to implement the continuous controls, that provide idealized
policies, obtained in the previous sections. An approximative control which is piece-
wise constant on a prescribed segmentation of the interval [0, T ] can be designed in
the following way. Consider the following times of changing the lockdown strategy,

t0 = 0, t1 = 50, t2 = 100, t3 = 125, t4 = 150, t5 = 175, t6 = 200,

and assume that the approximative control ua(t) is piecewise constant with

ua(t) = ci for t+i−1 ≤ t ≤ t
−
i (i = 1, . . . , 6). (45)
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Figure 12. Case 3: Optimal and approximative solution for
T = 200 on 6 segments of [0, T ]. (A) optimal control u(t) and
approximative control ua(t). (B) infected I(t) and approximative
infected Ia(t).

The constant values ci ∈ [0.01, 1], i = 1, . . . , 6, in (45) are optimized under the
state constraint I(t) ≤ 0.005. The optimization approach AMPL/Ipopt yields the



22 ELISA PAPARELLI, ROBERTO GIAMBO’ AND HELMUT MAURER

constant control values

c1 = 0.551, c2 = 0.547, c3 = 0.609, c4 = 0.597, c5 = 0.622, c6 = 0.644,

and the approximative cost Fa = 7.856 that differs only slightly from the optimal
cost F = 7.801. The optimal and approximative controls u(t) and ua(t), resp.,
optimal and approximative infected I(t) and Ia(t) are shown in Figure 12. Note
that the lockdown rate c6 = 0.644 in the terminal interval [175, 200] is still quite
restrictive. This value can be improved by introducing an additional control value
c7 on the small terminal segment [195, 200]. Here, we obtain the value c7 = 0.917
which is close to the control value u = 1 representing total freedom.

We summarize the main results in the table below, recalling that the initial
condition is referred to the starting day of control with respect to the first case of
virus exposure.

Table 2. Numerical results for the 3 scenarios of initial conditions
(42), (43), (44).

X0 T I ≤ Imax min u(t) F I(T ) A(T ) D(T ) νT

55 70 7 0.62 3.6674 0.0208 0.01 0.001 0
55 70 X 0.51 3.8915 0.005 2.55 · 10−3 6.6 · 10−4 60
55 200 X 0.53 4.4084 0.005 2.55 · 10−3 2.5 · 10−3 0.3

65 70 7 0.59 5.6448 0.0209 0.01 0.001 0
65 70 X 0.51 5.8888 0.005 2.55 · 10−3 8.5 · 10−4 59.2
65 200 X 0.53 6.3967 0.005 2.55 · 10−3 2.7 · 10−3 0.3

70 70 7 0.58 7.0261 0.0209 0.0106 0.0015 0
70 70 X 0.51 7.2997 0.005 2.55 · 10−3 0.001 59
70 200 X 0.52 7.8012 0.005 2.55 · 10−3 2.8 · 10−3 0.3

6. Conclusion. We considered an optimal control model for a SEAIRD epidemi-
ological system, where a cost functional to be minimized represents a trade-off
between economic and human losses; see Aspri et al [5]. Since a percentage of in-
fected people needs hospitalization and the Intensive Care Units (ICU) are limited,
overcrowding of ICUs can be avoided by imposing a state constraint on the number
of infected people. The state constraint is of second order which poses a number
of theoretical and numerical challenges. Hence, the proposed state-constrained op-
timal control problem takes into account the three main aspects in a real epidemic
framework: economy, deaths and hospital capacity. We considered three scenarios
for initial conditions representing a mild, an advanced and a severe spread of an epi-
demic. Firstly, we proved the existence of an optimal solution for all three scenarios.
Then we evaluated the necessary optimality conditions of the Pontryagin Maximum
Principle which lead to a system of algebraic and ordinary differential equations.
The multiplier associated with the state constraint is a function of bounded varia-
tion. It could be shown that this function has a density on boundary arcs and leads
to jumps of the adjoint variable at junction times. We used different numerical
methods to solve the optimal control problem. Omitting the state constraint, we
solved the boundary-value problem arising from the Minimum Principle. Solutions
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of the state-constrained control problem are obtained by discretizing the control
problem and applying large-scale optimization methods. For the three scenarios
of initial conditions we studied the solutions for smaller and larger time horizons.
The numerical results for altogether nine different scenarios are compared in Table
2. Comparing the optimal cost values we see that it is beneficial to compute the
control on the large time interval with T = 200 instead of T = 70, since the cost
is increased only by approximatively by 10%. Another point is how the control
and cost change in relation to initial conditions. As expected, the more severe the
initial situation is the more expensive is the control action. This suggests that a
prompt action would reduce the cost in addition to the virus spread. Furthermore,
comparing all scenarios the maximum limitation of freedom obtained is around
50%. It provides a moderate restriction, considering that it is reached for rather
short intermediate time periods. This approach provides the tools to handle other
additional issues. For example, we did not impose conditions on the final state.
Our aim was to flatten the curve of infected people without prescribing a terminal
state or the almost total eradication of the virus. We can ask which is the cost
for the eradication compared to maintaining the spread under a threshold. From
a research perspective, it would be interesting to analyze the same optimal control
setting approximating the continuous control by a piecewise constant control with
only a few arcs and then compare the objective values, as displayed in the exam-
ple (12a)-(12b). Another task could be to take into account the same formulation
with an additional control of vaccination and its related cost in order to combine
pharmaceutical and non-pharmaceutical policies.
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