
15 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning Performance at the Edge: When to Offload an Inference Task / Chukhno, Olga; Singh, Gurtaj;
Campolo, Claudia; Molinaro, Antonella; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2023). (Intervento presentato al
convegno ACM MobiCom Workshop on Networked Sensing Systems for a Sustainable Society (NET4us 2023) tenutosi
a Madrid (Spain) nel 6 October 2023) [10.1145/3615991.3616403].

Original

Machine Learning Performance at the Edge: When to Offload an Inference Task

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3615991.3616403

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980928 since: 2023-08-04T08:05:32Z

ACM

Conference’28, October 2023, Madrid, Spain
Olga Chukhno, Gurtaj Singh,

Claudia Campolo, Antonella Molinaro and Carla Fabiana Chiasserini

Machine Learning Performance at the Edge:
When to O�load an Inference Task

Olga Chukhno, Gurtaj Singh,
Claudia Campolo, Antonella Molinaro

University Mediterranea of Reggio Calabria and CNIT
Reggio Calabria, Italy

name.surname@unirc.it

Carla Fabiana Chiasserini
Politecnico di Torino and CNIT

Turin, Italy
name.surname@polito.it

ABSTRACT
Machine Learning (ML) techniques play a crucial role in ex-
tracting valuable insights from the large amounts of datamas-
sively collected through networked sensing systems. Given
the increased capabilities of user devices and the growing
demand for inference in mobile sensing applications, we are
witnessing a paradigm shift where inference is executed at
the end devices instead of burdening the network and cloud
infrastructures. This paper investigates the performance of
inference execution at the network edge and at end-devices,
when using both a full and a pruned model. While pruning
reduces model size, thus making the model amenable for
execution at an end-device and decreasing communication
footprint, trade-o�s in time complexity, potential accuracy
loss, and energy consumption must be accounted for. We
tackle such trade-o�s through extensive experiments un-
der various ML models, edge load conditions, and pruning
factors. Our results show that executing a pruned model pro-
vides time and energy (on the device side) savings up to 40%
and 53%, respectively, w.r.t. the full model. Also, executing
inference at the end-device may lead to 60% faster decision-
making compared to inference execution at a highly loaded
edge.

This work was supported by the SNS-JU-2022 project ADROIT6G under the
European Union’s Horizon Europe research and innovation programme un-
der Grand Agreement No. 101095363 and by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU
(PE00000001 - program “RESTART”).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’28, October 2023, Madrid, Spain
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Machine learning, inference, edge computing, pruning
ACM Reference Format:
Olga Chukhno, Gurtaj Singh,, Claudia Campolo, Antonella Moli-
naro and Carla Fabiana Chiasserini. 2023. Machine Learning Per-
formance at the Edge: When to O�oad an Inference Task. In Pro-
ceedings of ACM Conference (Conference’28). ACM, Madrid, Spain,
8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
By enabling physical objects equipped with sensing and pro-
cessing capabilities to be connected to the Internet, Internet
of Things (IoT) paves the way to a plethora of innovative
applications also contributing to the sustainability of our
society and ranging from smart agriculture and smart cities
to industry 4.0 and e-health [1]. Machine Learning (ML) al-
lows gaining deep insights from the data collected by IoT
devices. ML relies on two main phases: training and inference.
The former involves training a model using an input dataset,
while the latter uses the trained model to make decisions
and predictions or provide knowledge.

Although inference tasks are instead less demanding than
training procedures, in the case of a high number of inference
requests, the total load over time on computational and net-
working resources can be substantial. Moreover, time-critical
applications require fast and reliable decisions or predictions,
which imply obtaining inference results in near real-time.
Such considerations, along with the growing demand for
swift inference tasks in pervasive environments and the pri-
vacy requirements of a large set of ML-based applications,
call for moving inference execution to the network edge and
far-edge (i.e., on the end-devices).

Another critical aspect of pervasive ML is the large num-
ber of model parameters, up to millions for Deep Neural
Networks (DNNs), and operations, which require signi�cant
memory space and frequent memory access, resulting in
high energy consumption. To face resource constraints of
end-devices that may hamper inference in the far-edge, and
to optimize energy consumption, ML models can be com-
pressed. Techniques, such as model pruning, can be applied
to reduce the size of an ML model for deployment at an

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Machine Learning Performance at the Edge:
When to O�load an Inference Task Conference’28, October 2023, Madrid, Spain

end-device [2]. Pruning aims to keep the most in�uential
network’s weights and remove the less in�uential ones (sim-
ply set to zero) while preserving the quality level of themodel
output. It is worth noting that, although pruning reduces the
size of the full model with inherent bene�ts in terms of time
execution and communication footprint, two major draw-
backs may arise: (i) a degraded quality of the model output
and (ii) the time complexity of the pruning operation itself,
which may indeed be computationally intensive. Hence, it
cannot be stated that pruning a model for a resource-limited
end-device is always bene�cial in terms of inference time
and sustainability.

The objective of our study is thus multifold.We investigate
the performance of inference execution at an end-device in
the far-edge versus the case where such a task is o�oaded to
an edge node by exploring the option of deploying a pruned
model, instead of its full version, on the resource-limited
end-device. Moreover, we consider that the edge server may
adapt a prunedmodel on demand upon a request from an end-
device, e.g., because of the evolving dynamics of a speci�c
domain [3]. In such a situation, an edge server will have
either to update or further prune a model, which is then
sent over the wireless link to the end-device. The latter will
use the new version of the model for inference execution
until the model gets outdated. Our main contributions can
be summarized as follows:

• We characterize the performance of pruning and infer-
ence executed at edge servers and end-devices through
extensive experiments in terms of execution time and
accuracy for di�erent ML models and pruning factors;

• We determine under which conditions, such as load at
the edge and di�erent ML models and pruning factors,
executing inference on an end-device through a pruned
ML model is more convenient than a conventional in-
ference o�oading approach. While doing so, we assess
the inference delay, the quantity of exchanged data,
and the energy consumption of the overall process.

The remainder of this work is organized as follows. Sec-
tion 2 discusses related work and highlights the novelty of
our study. Section 3 describes the reference scenario and
our system model. Section 4 presents our experimental anal-
ysis, and Section 5 draws some conclusions and sketches
directions for future work.

2 BACKGROUND AND MOTIVATION
Di�erent techniques can be applied to adapt an ML model to
the constrained resource capabilities of IoT devices [2]. One
such technique is model pruning, which involves removing a
percentage of edges between neurons, or the neurons them-
selves, that are associated with small magnitude weights,
thus leading to a version of the model of reduced size and

complexity [4]. Pruning o�ers advantages such as reducing
model memory footprint and speeding up inference time.
However, a higher pruning factor may cause a decreased
level of output quality and reduced ability to generalize to
slightly di�erent input data distributions. Therefore, it is
crucial to determine the pruning factor that optimally trades
o� model size with accuracy [5].
Magnitude pruning involves sorting weights by their ab-

solute value and eliminating those with the lowest value,
assuming that less important weights are closer to zero [6].
Sensitivity-based pruning calculates the sensitivity of each
weight to the Neural Network (NN) output instead and re-
moves the weights with the lowest sensitivity value [7]. As
both techniques reduce the number of model parameters
to be transmitted when the model is transferred across the
network, they also have a lower communication footprint
compared to the full model.

In [8], the e�ectiveness of a pruning algorithm for NN has
been evaluated through a series of experiments with the aim
of identifying the appropriate pruning factor, considering
computational complexity, accuracy, and size requirements.
The experiments cover various NN, including ResNet, and
prove that the time required for pruning operations may
range from seconds to hours. This is because model �ne-
tuning after pruning, essential for maintaining model gener-
alization, may take hours [9]. The study in [10] addresses ML
model compression for various devices and optimal training
location decisions based on resource availability. The pro-
posal considers model compression, node and data selection,
and training duration and quality. The work also discusses
the challenges of formulating and optimizing a cooperative
training process that integrates model and node switching.

Novelty: Unlike previous studies, we investigate both the
bene�ts and the cost in terms of energy, time, and accuracy
of executing ML inference tasks at the end-devices, when
either a full or a pruned model is used. To do so, we envision
di�erent ways the network edge and the end-devices can
interact and create synergies, and we evaluate the e�ciency
and the e�ectiveness of such interaction by accounting for
(i) the impact of model pruning on inference accuracy, la-
tency, and computational cost, (ii) the computational foot-
print of inference, and (iii) the energy and latency cost due to
data transfer between the edge and an end-device. Through
such comprehensive evaluation, we o�er novel insights that
can facilitate the optimization of ML model deployment in
resource-constrained IoT environments.

3 SYSTEM MODEL
This section �rst introduces the network and application
scenario we consider in our study (Sec. 3.1); then, it details
the main elements of our system and how they interact for

Conference’28, October 2023, Madrid, Spain
Olga Chukhno, Gurtaj Singh,

Claudia Campolo, Antonella Molinaro and Carla Fabiana Chiasserini

Data input transmission
Inference
request

Inference
request

(1) (1)

(2)

(Q)

(2)

(Q)

Inference
request

Result transmission

Inference at the edge server

Inference

Device Edge server

Data input transmission

Result transmission
...

...
Inference

Data input transmission

Result transmission
Inference

PruningPruning

Inference

Inference

Device Edge server
Inference
request

Inference
request

Inference

Inference
request

Model request

Model transmission

Inference at the device

Figure 1: Work�ow required for inference execution
at an edge server (left) and at a mobile device (right).

inference execution at the network edge (Sec. 3.2) and at an
end device (Sec. 3.3).

3.1 Reference scenario
Our study aims to investigate a scenario where mobile de-
vices within the coverage area of a Base Station (BS) of a
cellular network request inference services (e.g., objection
detection). For the sake of simplicity and without loss of
generality, an edge server is co-located with the BS and
stores in a local repository a set of pre-trained ML models,
M = {<1, ...,<" }, either full or pruned models.
Inference tasks can be executed either at the edge server

or the end-device, provided that the pre-trained ML model
is downloaded from the edge server. In the former case, the
mobile device sends the input data (e.g., an image) to the
edge server, which performs the inference, through the full
ML model or through a pruned version thereof, and sends
back the result to device 3 (e.g., the object detected in the
image). In the latter case, the mobile device sends a model
request to the edge server, also specifying its capabilities,
and waits for the (full or pruned) model to perform inference
on board. It follows that each model has a set of possible
con�guration options, K = {:1, ...,: }, that depend on the
model compression parameters (i.e., pruning factors).
The pruned version of the model may already be avail-

able in the repository, e.g., because it is a popular requested
model, or the edge server can prune the model on demand.
After a certain time lapse, the model may become outdated
due to advancements in knowledge or drift of the input data
distribution, thus requiring retraining the model with up-
to-date data to maintain the desired level of output quality.

Therefore, the same model can serve multiple inference re-
quests, say & requests, from the same mobile device before
the model needs to be retrained.

In the case of inference at the edge, the entire work�ow in
Fig. 1(left) (i.e., data input transmission, inference execution,
and result transmission) needs to be repeated& times. On the
contrary, if the inference is performed on the mobile device,
once the model is retrieved and locally stored, there is no
need for the mobile device to undergo the entire work�ow
again and again: as shown in Fig. 1(right), only the last step,
i.e., the inference execution, must be repeated.

3.2 Inference at the edge
Data input/result transmission. Let ⇡D; and ⇡3; be the up-
link and downlink data rates (in bps), estimated using the
Shannon’s theorem and the path loss model in [11]. Then
the latency experienced by device 3 , respectively, to transmit
the input data of ;8=?DC bits to the edge server, and to receive
the inference result of model< with con�guration : from
the BS, can be written as:

) 8=?DC =
;8=?DC

⇡D;
and) A4B<,: =

;A4B<,:

⇡3;
,8< 2 M,: 2 K . (1)

Pruning execution. Upon receiving the input data, the edge
server may need to prune the model to be used for inference.
The pruning time of model< with con�guration option : ,
denoted by) ?A<,: , is experimentally measured (Section 4).

Inference execution. The edge server executes the inference
using model< with con�guration : in a time that is denoted
by) 8=5<,:,4 and is experimentally measured (see Section 4). The
total cycle delay to undergo for an inference task in the case
of inference execution at the edge is given by:

) (4364) =) 8=?DC +) ?A<,: +)
8=5
<,:,4 +)

A4B
<,: . (2)

Correspondingly, the energy spent at the device can be
computed as:

⇢3 (4364) = %CG3) 8=?DC + (%AG3 + %⇢3)) A4B<,: , (3)

where %AG3 /%CG3 is the received/transmitted power (in Watts)
spent at the device3 , %⇢ is the baseband electric circuit power
unit consumed by the BS or the device (in Watts).

3.3 Inference at an end device
Model request/model transmission. Indicating with ;A4@ the
inference request size and with ;B8I4<,: the size of model< with
con�guration : , the respective transmission delays on uplink
and downlink are given by:

) A4@ =
;A4@

⇡D;
and)<>34;<,: =

;B8I4<,:

⇡3;
,8< 2 M,: 2 K . (4)

Machine Learning Performance at the Edge:
When to O�load an Inference Task Conference’28, October 2023, Madrid, Spain

Pruning execution. Experimental measurements for the prun-
ing time of model< with con�guration option : ,) ?A<,: , are
the same as in Section 3.2 and are reported in Section 4.

Inference execution. We experimentally characterize the in-
ference time of model< with con�guration : at device 3 ,
denoted with) 8=5<,:,3 , as detailed in Section 4. Thus, the total
cycle delay in the case of a single inference execution at an
end device can be written as:

) (34E824) =) A4@ +) ?A<,: +)
<>34;
<,: +) 8=5<,:,3 . (5)

Being the device typically battery-powered and more con-
cerned with the energy consumption, we focus only on the
corresponding energy spent at its side, which is computed
as follows:

⇢3 (34E824) = %CG3) A4@ + (%AG3 +%⇢3))<>34;<,: + %3)
8=5
<,:,3 , (6)

where %3 is the power consumption of the device (in Watts).

4 PERFORMANCE EVALUATION
This section presents the system performance when infer-
ence is executed at the edge and at the device. After detail-
ing the system settings under which we derived our results
(Sec. 4.1), we show the impact of the pruning factor on the
ML model and system performance as well as the latency
and energy consumption for the two considered inference
execution options (Sec. 4.2).

4.1 Evaluation settings
For the estimation of the communication latency experienced
in transferring the input data, pruned model, and inference
results, we consider a 5G New Radio (NR) BS operating at a
frequency of 3.5 GHz. The transmit power is set to 23 dBm
at the BS and 10 dBm at the device. We assume an available
bandwidth of 100MHz and that transmitter and receiver
use an antenna array consisting of 4⇥4 antenna elements.
We model the sub-6GHz channel using the Third Genera-
tion Partnership Project (3GPP) Urban Micro (UMi) street
canyon [11].
As for inference and pruning times, we measure them

through experiments. To mimic an edge server, we set up
a virtual machine (VM), Azure Standard D4ds v5, equipped
with 4 virtual CPUs. The underlying physical CPU is an
Intel(R) Xeon(R) Platinum 8370 C processor with 16GB of
RAM. The VM works at full CPU power. We utilize up to 100
Docker containers active in the VM for the execution of infer-
ence tasks to resemble di�erent load conditions on the edge
server. The mobile device has 1 physical core (Intel Core i7-
9750H), 4 GB of RAM, and 30GB of disk space. We focus on
image recognition inference tasks, employing a combination
of deep learning models, datasets, and pruning techniques.
To assess the impact of model size on inference performance,

we consider highly heterogeneous models: ResNet-152 [8],
DenseNet201 [12], and MobileNet [13], with ResNet-152 be-
ing the most complex model and MobileNet the simplest one.
We then consider the ImageNet-1000 dataset1 – a widely
used dataset for image recognition tasks – as it provides a
robust evaluation environment with a diverse set of catego-
rized images. For the inference task, a 300 kB-large image is
given as input data, while the inference output size is equal
to 2 kB. With regard to model compression, we considered
magnitude weight pruning and applied di�erent tools to
perform it, namely, Tensor�ow Model Garden, Tensor�ow
Model Optimization, and Keras Surgeon.

We assess energy consumption at the device, by referring
to the following settings: %⇢3 =5.34 W, %CG3 =0.01 W, %AG3 =0.1 W,
%3=2.8W [14].

4.2 Numerical Results
Impact of pruning factor. The �rst set of results focuses
on evaluating the impact of the pruning factor on the system
metrics. Fig. 2(a) shows the performance of the considered
ML models in terms of two popular accuracy metrics, Top-1
and Top-5, for di�erent pruning factors (?5). The former
(dashed line curves) measures the percentage of instances in
which the model predicts the correct class as its highest-rank
prediction. The latter (solid line curves), instead, measures
the percentage of instances where the correct class is in-
cluded within the top �ve predictions of the model. Both
values of accuracy remain stable for a pruning factor less
than or equal to 70%; beyond this value, instead, the accuracy
degrades visibly, indicating the need for �ne-tuning.

Fig. 2(b) depicts the time,) ?A<,: , required for the edge server
to perform pruning (solid line curves), as the edge load varies.
Interestingly, such time remains almost constant for varying
values of the pruning factor, since the operation only implies
the removal of a portion of the weight vector. Conversely,
the experienced delay varies depending on the considered
ML model, due to the di�erent number of model parameters,
which a�ects the ordering times of the weight vector before
the actual pruning is performed. Furthermore, as expected,
latency increases as the load of the edge server grows. Con-
sistently with the behavior noted for the delay, the energy
consumed by the edge server for pruning a full model (as
the product of pruning time and power, with the latter one
set to 131.26W [14]), increases with the edge load (dashed
line curves in Fig. 2(b)).
Based on the above observations, in the following we

�x the pruning factor to 70% whenever the pruned version
of a model is considered. Indeed, such a value provides an
accuracy level almost as good as that of the full model while

1https://www.image-net.org/

Conference’28, October 2023, Madrid, Spain
Olga Chukhno, Gurtaj Singh,

Claudia Campolo, Antonella Molinaro and Carla Fabiana Chiasserini

0 10 20 30 40 50 60 70 80 90

Pruning factor

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
,

%

Top-5: ResNet-152

Top-5: DenseNet201

Top-5: MobileNet

Top-1: ResNet-152

Top-1: DenseNet201

Top-1: MobileNet

(a) Top-1 and Top-5 accuracy metrics vs. pruning factor.

0 20 40 60 80 100

Number of concurrent tasks at the edge

0

5

10

15

20

P
ru

n
in

g
 t

im
e

,
s

0

500

1000

1500

2000
E

n
e

rg
y

co
n

su
m

p
tio

n
 a

t
th

e
 e

d
g

e
,

Jo
u

le
sResNet-152, pf=30%

ResNet-152, pf=50%

ResNet-152, pf=70%

DenseNet201, pf=30%

DenseNet201, pf=50%

DenseNet201, pf=70%

MobileNet, pf=30%

MobileNet, pf=50%

MobileNet, pf=70%

(b) Latency and energy consumption at the edge due to ML
model pruning vs. number of concurrent tasks at the edge.

Figure 2: Impact of pruning for di�erent ML models.

exhibiting lower complexity w.r.t. it and no additional latency
at the edge compared to other pruned models.

Inference at the edge vs. inference at the device. Fig. 3
presents the average time for obtaining an inference result at
the end device once the request has been issued, for inference
executed at the edge (as per (2), curves labeled as Edge), and
at the device (as per (5), curves labeled as Device). In the
plot, the performance is shown when inference is executed
through (i) the full model, (ii) a pre-pruned model stored at
the edge server, or (iii) a model pruned at edge on-demand,
i.e., upon the edge receives a request from a device.
As expected, for all the considered models, in the case of

inference at the edge, the greater the model complexity and
the edge load, the larger the inference time. The di�erence
in performance between using the pruned model and the
full model increases as the model complexity decreases. As
expected, running the full model requires the longest time,
with the exception of the case when ResNet-152 is executed
at the edge. Indeed, the pruning operation for ResNet-152 is

so time consuming that using the full model for inference
may be more convenient than pruning the model and using
this one for inference. Moreover, it can be observed that
executing the pre-pruned model, either at the device or at
the edge, leads to the lowest latency. Interestingly, notice
that, for all the three models, beyond a given threshold on
the level of load at the edge server, it is faster to perform
inference at the device (blue curves) than at the edge (red
curves), with the threshold value getting smaller as a lighter
model is considered.
Fig. 4 depicts the total amount of data exchanged over

the radio interface, in both uplink and downlink directions,
between the device requesting the inference and the edge
server, for several inference requests issued within the model
lifetime, & . In the case of inference at the edge, the commu-
nication footprint is independent of the model, because it
accounts for the input data (;8=?DC) and the inference result
(;A4B<,:). Furthermore, the metric increases with the number
of requests, as the input data for which inference should
be performed must always be sent to the edge server. On
the contrary, in the case of inference executed at the de-
vice (curves with circle markers), the full/pruned model is
transferred only once to the device and re-used for several
inference tasks of the same type. It is clear that the more
complex the model, the larger the amount of transferred data,
which decreases when the pruned version of a model is used.

For a single inference request, it is more convenient execut-
ing inference at the edge, because the burden on the network
for transferring the model from the edge server to the device
is higher than that for delivering the input data from the
device to the edge server, e.g., nearly x1000 for ResNet-152.
Instead, if the model can be reused several times (& > 1), it is
more bene�cial to execute inference at the device. This holds
for all models, with the exception of ResNet-152, for which
performing inference at the edge almost always implies the
lowest communication footprint (at least up to &=300). For
the other models, the & value above which inference at the
device leads to a lower amount of transferred data compared
to inference at the edge varies, being lower for the lighter
models (i.e., MobileNet and pruned versions).

Energy consumption at the device. Fig. 5 presents the
device energy consumption as & varies, when inference is
executed at the edge (as per (3)) and at the device (as per (6)).
In the former case, the energy consumption does not change
regardless of the model size (full or pruned model) due to the
negligible impact of input and output data transfer over the
wireless channel. Not surprisingly, the use of a full model for
inference execution at the device imposes a higher energy
toll than a pruned model: this is because the device has (i)
to receive a larger model from the edge and (ii) execute a
computation-heavier model.

Machine Learning Performance at the Edge:
When to O�load an Inference Task Conference’28, October 2023, Madrid, Spain

1 10 20 30 50 100

Number of concurrent tasks at the edge

0

10

20

30

40

50

60

T
o

ta
l c

yc
le

 d
e

la
y,

 s

Edge, full model

Edge, pre-pruned

Edge, pruned on-demand

Device, full model

Device, pre-pruned

Device, pruned on-demand

(a) ResNet-152

1 10 20 30 50 100

Number of concurrent tasks at the edge

0

5

10

15

20

25

30

35

40

T
o

ta
l c

yc
le

 d
e

la
y,

 s

Edge, full model

Edge, pre-pruned

Edge, pruned on-demand

Device, full model

Device, pre-pruned

Device, pruned on-demand

(b) DenseNet201

1 10 20 30 50 100

Number of concurrent tasks at the edge

0

2

4

6

8

10

12

T
o

ta
l c

yc
le

 d
e

la
y,

 s

Edge, full model

Edge, pre-pruned

Edge, pruned on-demand

Device, full model

Device, pre-pruned

Device, pruned on-demand

(c) MobileNet

Figure 3: Total cycle delay for the two di�erent work�ows, full and pruned models (with ?5 =70%), and edge server
load, when varying the ML model: (a) ResNet-152, (b) DenseNet201, (c) MobileNet.

50 100 150 200 250 300

Number of inference requests

10-1

100

101

102

103

T
o

ta
l e

xc
h

a
n

g
e

d
 d

a
ta

,
M

B
 [

lo
g

sc
a

le
]

ResNet-152

DenseNet201

MobileNet

Full model

Pruned

Edge

Device

Figure 4: Total exchanged data vs. number of infer-
ence requests from the same device within the model
lifetime (&), for di�erent ML models (with ? 5 =70%
for pruned models). Curves identi�ed with a square
marker are overlapping.

The energy gain when moving from a full model to a
pruned version is in the order of 1.5, 2.7, and 5.4 for ResNet-
152, DenseNet201, and MobileNet, respectively. However,
it is worth remarking that such a gain is achieved at the
expense of additional energy consumption at the edge server,
unless the model is not pre-pruned, as highlighted in Fig. 2(b).
The same �gure also shows three common battery capacity
values: (i) 3.7Wh for embedded devices [15], (ii) 11.1Wh for
smartphones [16], and (iii) 18.5Wh for PCs [17] (grey lines).
While the energy consumption spent by a single on-device
inference task (&=1) is well below all the above thresholds,
running inference at the device multiple times may drain its
battery. This holds for instance for the most complex model,
ResNet-152, for&=100, no matter whether it is pruned or not.
MobileNet, instead, can be executed for values of & higher

ResNet-1
52, Q

=10

DenseNet201, Q
=10

MobileNet, Q
=10

ResNet-1
52, Q

=50

DenseNet201, Q
=50

MobileNet, Q
=50

ResNet-1
52, Q

=100

DenseNet201, Q
=100

MobileNet, Q
=100

10-6

10-4

10-2

100

102

E
n

e
rg

y
co

n
su

m
p

tio
n

 a
t

d
e

vi
ce

,
W

h
 [

lo
g

sc
a

le
]

Edge, full model

Edge, pruned

Device, full model

Device, pruned

18.5 Wh

11.1 Wh
3.7 Wh

Figure 5: Energy consumption at the device for dif-
ferent ML models (? 5 =70% for pruned models), for a
varying number of inference requests from the same
device within the model lifetime (&).

than 100, before the device runs out of battery, con�rming
the suitability of this model for embedded devices.

5 CONCLUSIONS AND FUTUREWORK
We addressed the execution of ML inference tasks in mobile
networks when di�erent ways of interaction and coopera-
tion between edge servers and end devices are considered.
Furthermore, through measurements and extensive experi-
ments, we assessed the system performance when either a
full or a pruned version of an ML model is used at the net-
work edge or at the end device. Notwithstanding the inherent
energy saving at the device when inference is executed at
the edge, experimental results show that inference o�oading
may not always be bene�cial, e.g., for heavy computational
load at the edge, inference at the device turns out to be sig-
ni�cantly faster. This is especially true if a pruned version of

Conference’28, October 2023, Madrid, Spain
Olga Chukhno, Gurtaj Singh,

Claudia Campolo, Antonella Molinaro and Carla Fabiana Chiasserini

a model is used, which, however, may be obtained at the cost
of a non-negligible energy footprint at the edge server if the
model has to be pruned on demand. In a nutshell, whether
inference should be performed at the edge or at the device
depends on how complex the ML model is, for how many
instances of an inference task the model can be reused before
its validity expires, on the overall computational load on the
edge server, on the accuracy and time constraints imposed
by the target application, and on the battery availability at
the device.
Our �ndings pave the way to several future research di-

rections, including the design of judicious mechanisms for
the support of ML tasks in mobile networks that account for
the aforementioned aspects and jointly orchestrate inference
placement and caching of (pruned) models at the edge.

REFERENCES
[1] Mohammad Saeid Mahdavinejad et al. 2018. Machine learning for

Internet of Things data analysis: A survey. Digital Communications
and Networks, 4, 3, 161–175.

[2] Lachit Dutta et al. 2021. TinyMLMeets IoT: A Comprehensive Survey.
Internet of Things, 16, 100461.

[3] Firas Bayram et al. 2022. From Concept Drift to Model Degradation:
An Overview on Performance-Aware Drift Detectors. Knowledge-
Based Systems, 108632.

[4] Tailin Liang et al. 2021. Pruning and Quantization for Deep Neural
Network Acceleration: A Survey. Neurocomputing, 461, 370–403.

[5] Michael Zhu et al. 2017. To Prune, or Not to Prune: Exploring the E�-
cacy of Pruning forModel Compression. arXiv preprint arXiv:1710.01878.

[6] Trevor Gale et al. 2019. The State of Sparsity in Deep Neural Net-
works. arXiv preprint arXiv:1902.09574.

[7] Cankun Zhong et al. 2022. A Sensitivity-based Pruning Method for
Convolutional Neural Networks. In 2022 IEEE International Confer-
ence on SMC. IEEE, 1032–1038.

[8] Hyeji Kim et al. 2019. E�cient Neural Network Compression. In
Proceedings of the IEEE/CVF conference on CVPR, 12569–12577.

[9] Pavlo Molchanov et al. 2016. Pruning Convolutional Neural Net-
works for Resource E�cient Inference. arXiv preprint arXiv:1611.06440.

[10] Francesco Malandrino et al. 2022. Matching DNN Compression and
Cooperative Training with Resources and Data Availability. arXiv
preprint arXiv:2212.02304.

[11] 3GPP. 2022. Technical Speci�cation Group Radio Access Network;
Study on channel model for frequencies from 0.5 to 100 GHz (Release
17). Tech. rep. 3GPP TR 38.901 V17.0.0, (Mar. 2022).

[12] Gao Huang et al. 2017. Densely Connected Convolutional Networks.
In Proceedings of the IEEE Conference on CVPR, 4700–4708.

[13] Andrew G Howard et al. 2017. Mobilenets: E�cient Convolutional
Neural Networks for Mobile Vision Applications. arXiv preprint
arXiv:1704.04861.

[14] Qianlin Liang et al. 2020. AI on the Edge: Rethinking AI-based IoT
Applications Using Specialized Edge Architectures. arXiv preprint
arXiv:2003.12488.

[15] EEMB Battery. 2023. Datasheet: LP603449-Standard Type Lithium
Polymer Battery. [Online] (accessed August 4, 2023) https://www.ee
mb.com/product-147. (2023).

[16] Microsoft. 2023. Datasheet: Lumia 950. [Online] (accessed August 4,
2023) https://news.microsoft.com/wp-content/uploads/2016/04/Lum
ia-950-Datasheet.pdf. (2023).

[17] BatterySpace.com. 2023. Datasheet: LiFePO4 battery. [Online] (ac-
cessed August 4, 2023) https://www.batteryspace.com/prod-specs/lf
p-32650%20Spec.pdf. (2023).

https://www.eemb.com/product-147
https://www.eemb.com/product-147
https://news.microsoft.com/wp-content/uploads/2016/04/Lumia-950-Datasheet.pdf
https://news.microsoft.com/wp-content/uploads/2016/04/Lumia-950-Datasheet.pdf
https://www.batteryspace.com/prod-specs/lfp-32650%20Spec.pdf
https://www.batteryspace.com/prod-specs/lfp-32650%20Spec.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Model
	3.1 Reference scenario
	3.2 Inference at the edge
	3.3 Inference at an end device

	4 Performance Evaluation
	4.1 Evaluation settings
	4.2 Numerical Results

	5 Conclusions and Future Work

