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A B S T R A C T

The risk assessment for safety-critical, complex systems is a very challenging computational problem when
it is performed with high-fidelity models, e.g. CFD, like in the case of accidental gas releases in congested
systems. Within this framework, a novel CFD approach, named Source Box Accident Model, has been
recently proposed to efficiently model such phenomena by splitting the simulation of the gas release and its
subsequent dispersion in the system in two steps. In this view, the present paper proposes a non-intrusive,
Proper Orthogonal Decomposition-Radial Basis Functions reduced order model that exploits the two-step
nature of the SBAM approach, to mimic the behaviour of the original, long-running CFD model code at a
significantly lower computational cost. Moreover, the paper presents a methodology combining the bootstrap
and unscented transform approaches to efficiently assess the ROM uncertainty in the safety-critical simulation
output quantities of interest, e.g. the flammable volume. The results obtained in a test case involving a high
pressure, accidental gas release in an off-shore Oil & Gas plant are in very satisfactory agreement with those
produced by CFD, with a relative error smaller than 10% and a reduction in the computational time of about
three orders of magnitude.
. Introduction

In the last decades, the attention to major hazards, especially in
he industrial field, has considerably increased. Some regulations have
een introduced to improve the safety of risk-relevant industrial plants,
ike Oil & Gas, chemical and nuclear ones, which involve dangerous
ubstances related to flammability, toxicity and radioactivity, and dan-
erous equipment like highly pressurised tanks, pipelines etc. A failure
n this kind of systems could lead to major accidents (Casal, 2008),
hich, although very rare, must be considered in the risk assessment
y evaluating the possible consequences and related damage level.
he Quantitative Risk Assessment (QRA) is defined as the appropriate
ethodology for the safety demonstration of major accident involving

ndustrial plants by the European Union (EU) Offshore Safety Directive
013/30/EU (EU Parliament, 2013). The QRA consists of the analysis
f hundreds of plausible accidental scenarios, which consequences must
e evaluated through suitable simulations tools. The state-of-the-art of
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QRA methodologies entails the employment of simple integral or semi-
empirical models (Vinnem and Røed, 2014), due to the necessity to
analyze a large number of events in a time compatible with the design
project schedule of the plant. In fact, the aforementioned models can
provide results in a few minutes and do not require any particular
theoretical background or expertise level by the user. In the past,
empirical or integral models were formulated for several phenomena
as turbulent free-jets (Chen and Rodi, 1980; Becker et al., 1967), gas
dispersions (Davidson, 1989), jet fires (TNO, 2005; Zamejc, 2014),
explosions (TNO, 2005), Vapor Cloud Explosion (VCE) (Baker et al.,
1996) and were implemented in software like PHAST (DNV, 2022)
or ALOHA (EPA US, 2022), providing simple comprehensive tools to
companies. On the other hand, the range of validity of these models
is constrained by their assumptions and empirical tests conditions,
therefore their application cannot be generalised to any kind of phe-
nomena. Moreover, their accuracy is so limited that excessively large
over estimation of the threat zones related to the accidental event often
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Acronyms

CFD Computational Fluid Dynamics
FOM Full Order Model
LFL Low Flammability Limit
LOOCV Leave-One-Out Cross Validation
NIROM Non-Intrusive Reduced Order Model
POD Proper Orthogonal Decomposition
QRA Quantitative Risk Assessment
RANS Reynolds Averaged Navier–Stokes
RBF Radial Basis Functions
RMSE Root Mean Square Error
ROM Reduced Order Model
SB Source Box
SBAM Source Box Accident Model
UFL Upper Flammability Limit
UT Unscented Transform

occur (Dasgotra et al., 2018; Derudi et al., 2014; Schleder et al., 2015;
Zuliani et al., 2016; Pontiggia et al., 2014). Finally, they completely
neglect the actual geometrical features of the domain, i.e., only free
jets and fires are considered, and the interaction with the surrounding
equipment is not accounted for. This could have a strong impact on
the final design of the safety systems, especially considering high-
pressure gas leak scenarios in congested domains where the gas–objects
interaction plays a key role on the final gas cloud configuration. For
these reasons, and more in general due to the increase of technology
complexity and safety standards, novel QRA approaches are needed
to enhance the accuracy of the risk estimation. Computational Fluid
Dynamics (CFD) methods can represent a possible strategy to overcome
this issue, although they require a high computational effort. Hence,
the employment of the CFD in a QRA is still prohibitive, and its use
is limited for the verification of the most critical scenarios. This work
proposes an alternative strategy to reduce the computational effort
related to the high-fidelity simulation of high-pressure gas releases in
congested plants. These kind of scenarios are characterised by a highly
compressible flow near the leak point and a subsonic incompressible
flow far from that point, i.e., in the largest part of the domain, and as
a matter of fact, the main issue in simulating such events is mainly
related to the formation of an under-expanded jet (Franquet et al.,
2015) near the leak source, which is likely to interact with an obstacle.
The resolution of the steep flow field variables gradient appearing in
that region require the generation of a dense mesh, which translates
in an unacceptable computational effort. Several authors proposed
innovative strategies to handle this situation. For instance, in Colombini
et al. (2021, 2022a,b) the authors propose an empirical-CFD combined
approach to develop a novel assessment tool to estimate the extent
of a high-pressure methane jet impinging on different shaped obsta-
cles (cylinder, sphere, pipe rack). Despite this methodology permits
a relevant simplification of the simulation and computational cost
reduction since the initial jet expansion is accounted for by the Birch
model (Birch et al., 1984), it can be applied only if the obstacle is placed
far enough from the release point to permit a complete expansion of
the gas jet. Full CFD approaches are also proposed, as in Liu et al.
(2014) where a CO2 high pressure leakage from a pipeline is studied,
r as in de Souza et al. (2019) where predictions for hazardous area
lassification is presented analyzing a set of scenarios. Nevertheless, in
ll these cases only free-jets are considered. Within this framework, a
omputationally efficient approach, named Source Box Accident Model
SBAM) (Moscatello et al., 2021) has been recently proposed to sig-
ificantly mitigate the issue of the computational cost. It consists in
plitting the accident evolution in two steps: (i) the release phase,
2

hich concerns a small volume around the break, named Source Box
(SB), where the underexpanded jet occur and compressibility effects are
relevant and (ii) the dispersion phase, where the flow can be considered
incompressible and buoyancy forces are relevant. In this last step,
where the SB flow profiles and gas concentrations are taken as input,
the analysis is extended to the full spatial scale of the plant (e.g. an
offshore platform, see Fig. 6 later), in order to evaluate some safety-
critical parameters, e.g., the flammable volume. This two-step approach
allows to fairly reduce the computational burden with respect to a
monolithic CFD simulation, as different numerical settings, e.g., the
computational mesh, can be tailored according to the physical phenom-
ena involved. Decoupling the two physical stages implies that also the
parameter space can be partitioned. For example, the break size and
release pressure are relevant in the gas release, while the wind direction
is not. This means that it is possible to compute the concentration and
flow fields for several SB characterised by different combinations of
parameters and use them in the dispersion scenarios, whenever they
are needed. The numerical features and performances of SBAM have
been presented in Moscatello et al. (2021) while its performance against
experimental data in Moscatello et al. (2022). This procedure would
lend itself to the generation of a SB library as a ready-to-use input to
the dispersion simulation, which is strongly case-dependent. Relying
on data libraries is a common approach in the framework of the risk
analysis, but in this case it would jeopardise the advantages of using
a CFD approach. For example, the risk analyst would not be free to
select the flow field profiles for an arbitrary set of parameters, losing
the CFD flexibility. Moreover, a thorough evaluation of the different SB
scenarios would be still quite computationally expensive. In this paper,
which is intended as a follow-up of the work presented in Moscatello
et al. (2021) and in Moscatello et al. (2022), we present a strategy
which relies on machine learning algorithms aiming at further reducing
the computational burden associated with the SB simulation and at
the same time providing an high level of flexibility. In fact, machine
learning algorithms, such as neural networks, are increasingly used in
the safety field to predict gas dispersion paths with relatively low com-
putational efforts (Song et al., 2021). In particular, a strategy relying
on Reduced order models (ROMs) (Pedroni and Zio, 2017; Pedroni,
2022) is employed. This kind of approach reduces both the memory
consumption and the calculation time, introducing some controllable
approximations (Benner et al., 2015) in the model response with re-
spect to the high-fidelity model, the CFD model in this case. ROMs
can be roughly divided in physics-driven and data-driven methods. The
first ones yield an approximated model by manipulating directly the
high-fidelity model (Lorenzi et al., 2016, 2017). However, on top of
the manifest difficulty in accessing the high-fidelity model equations
in most of the commercial codes, these modifications would require
a new code verification and validation (V&V) phase. On the contrary,
the second ones consider the code as a black-box providing the input–
output data examples used to actually train the empirical regression
model. The data-driven nature of such methods makes them non-
intrusive and application-independent, hence they can be employed
effectively even with commercial, validated codes (Casenave et al.,
2020). However, this aspect also brings some drawbacks. First, the data
selection may bias the model prediction capabilities. Second, since no
information on the full-order model (FOM) is explicitly available except
its responses, the lack of important training data can seriously limit
the ROM prediction capability (Lassila et al., 2014). Third, it is very
difficult to obtain an a priori error prediction (Rahman et al., 2018).
Nevertheless, the advantages of these methods are so attractive with
respect to their shortcomings that they are becoming very popular.
Adouze et al. were among the first ones to present a non-intrusive
reduced order model (NIROM) for the solution of parametrized partial
differential equations (Audouze et al., 2013), but, to the best of our
knowledge, the first NIROM application to the Navier–Stokes equations
is due to Xiao (Xiao et al., 2015), who proposed a method relying
on Taylor expansion and another one based on sparse grid colloca-

tion. Since then, many approaches have been proposed to perform
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non-intrusive model reduction, especially for CFD applications (Kumar
et al., 2016; Demo et al., 2019). Therefore, the aim of the paper is
to assess the NIROM effectiveness in reducing the computational cost
associated with the SB simulations (i.e., to the generation of the spatial
SB flow profiles). A successful model reduction of the release phase
would represent the first step for a computationally smart strategy for
safety-oriented, CFD-based analyses. Thanks to its non-intrusiveness,
this approach could be applied to any validated code for the QRA
of different industrial congested systems, like the forthcoming nuclear
fusion plants and hydrogen installations. In this paper, our case of
study concerns the accidental release of CH4 on an Oil & Gas off-
hore platform, simulated using the ANSYS Fluent code. Since the
bjective of our NIROM application is to approximate the behaviour of
Source-Box (SB) and to provide a set of flow fields for a subsequent

dispersion) simulation, it is of paramount importance to quantify the
OM approximation error and propagate it on the dispersion simulation
utput, i.e. risk oriented quantities such as the flammable volume, etc.
n the works mentioned above, except for Xiao (2019), a little effort
as devoted to this perspective. Therefore, in this work we propose
novel combination of the Proper Orthogonal Decomposition-Radial

asis Functions (POD-RBF) approach with two statistical approaches,
amely the bootstrap method (Efron, 1981; Kohavi, 1995) and the
nscented transform (Julier and Uhlmann, 1997), for an estimation of
onfidence intervals on the final output (i.e. the irreversible injuries
rea). The techniques to estimate the error bounds are quite general and
ould be applied to other NIROMs. In synthesis, from the methodologi-
al viewpoint the novel contribution of the present paper is twofold: (i)
he bootstrap method is combined for the first time (to the best of the
uthors’ knowledge) with a (fast-running) POD-based NIROM to obtain
n empirical (bootstrapped) distribution of a functional output, which
llows building confidence in the ROM estimates (i.e., in the gas flow
patial fields); (ii) the unscented transform is employed to propagate

with a relatively small number of long-running CFD simulation –
he uncertainties in the spatial fields onto the final simulation output
i.e., released pollutant mass). From the applicative viewpoint, the
fficient combination of statistical techniques mentioned above is em-
loyed for the first time in the quantitative analysis of a congested Oil
Gas off-shore platform. As a final remark, it is worth acknowledging

hat we do not aim at carrying out a complete, full-scale QRA of an
nergy plant, but rather at developing a versatile tool that can support
t, in an efficient and computationally tractable fashion. The paper is
rganised as follows. In Section 2 we first discuss the main features of
BAM, then we present the POD-RBF method and the methodology to
stimate the confidence interval on the output of the whole calculation
hain. Then, in Section 3 we discuss the main simulation settings
nd we presents our main results and the relative discussion, as well.
inally, some concluding remarks and future perspectives are reported
n Section 4.

. The non-intrusive POD-RBF model

Basically all the physico-mathematical problems that may be posed
n the field of physics and engineering can be compactly represented
s the action of a certain model  on a 𝑃 -dimensional input vector
arameter 𝑝,

⃗ = (𝑝), (1)

here 𝑦 is the 𝑚-dimensional output response, named snapshot. The
odel  hides both the model variables (e.g., space, time, energy...)

nd the different modelling and numerical approximations and com-
lexities. Hence, it may be though as a black-box taking a certain
nput from the outside and responding with a certain output. Inci-
entally, this is exactly the way any computer code aiming at solving
ny practical problem works. Therefore, in the following the notions
f physico-mathematical model and computer model are assumed to be
nterchangeable.
3

.1. CFD modelling: Source box accident model

In our case, the computational model is a CFD approach to study
he accidental high-pressure gas releases in industrial, congested plants,
amed SBAM. It was firstly introduced in Moscatello et al. (2021)
nd its performances against experimental data were presented in
oscatello et al. (2022). In order to focus on the peculiarities featur-

ng this approach and the implications to realise a ROM simulation
ramework, this method will be briefly discussed in the following.

High-pressure gas releases, i.e. from 10 bar onward, in large, open
nvironments (e.g. 30 × 20 × 5 m platform deck, see Fig. 6) al-
ays lead to a complex multi-scale and multi-physics phenomenon.

n such cases, an under-expanded jet is generated near the release
oint (Franquet et al., 2015), i.e. a supersonic highly compressible
low (𝑀𝑎 > 0.3) (Munson et al., 2010, chapter 9), characterised by
strong discontinuity in the flow-field quantities. Such discontinuities

re located at a specific distance from the release point, where a Mach
isk appears: this is a normal shock where a steep variation of velocity,
ensity, temperature and pressure is expected. In this region, near the
elease point, the flow is dominated by inertial effects, and buoyancy
orces are negligible. If the high-pressure release occurs in a large
nvironment, there is enough space for the gas to slow down from
upersonic to subsonic velocity. Hence, far from the release point, the
low reaches a subsonic flow regime (𝑀𝑎 < 0.3). At this point, the flow
an be considered incompressible and it is no more inertia-dominated,
.e. buoyancy forces can be relevant.

These two phases can be named release (compressible, inertia-
ominated) and dispersion (incompressible, subsonic). In Moscatello
t al. (2021) it is demonstrated that splitting the entire phenomenon in
his two pieces has some advantages from a modelling point of view,
specially if the CFD simulation is QRA-oriented. This is the basis of
BAM, in which the release phase is simulated in a small domain, the
B, sized in a proper way to contain all the compressibility effects, and
he dispersion in the environment under analysis, e.g., an off-shore Oil

Gas platform. The coupling of the two simulations is realised impos-
ng the velocity flow field (v⃗(x, y, z)) and gas concentration (Cgas(x, y, z))
istributions obtained on the SB faces as boundary conditions in the
ispersion simulation.

This last step, as sketched in Fig. 1, allows to evaluate the mass and
olume of the gas cloud resulting from the dispersion. Thanks to these
esults, some safety related quantities can be evaluated. In the case
onsidered in this paper, which concerns a CH4 release, the interests
afety parameters are:

• Total dispersed CH4 mass [kg], 𝑀CH4
• CH4 mass in the flammable cloud [kg], 𝑀CH4,𝑓 𝑙𝑎𝑚

• Flammable cloud volume [m3], 𝑉𝑓𝑙𝑎𝑚
• Irreversible Injuries (II) volume [m3], 𝑉𝐼𝐼
• Irreversible Injuries area at 1.5 m height [m3], 𝐴𝐼𝐼

Apart from the first parameter, the other ones are related to the
lammability which is defined by the LFL (Low Flammability Limit)
nd the UFL (Upper Flammability Limit). For CH4, these quantities
re equal to 5% and 15 % by volume of air, respectively (Scheiner
t al., 1985). 𝑀CH4,𝑓 𝑙𝑎𝑚 is a relevant parameter as it is a measure
f the potential energy released in case of explosion. 𝑉𝑓𝑙𝑎𝑚 (which
an be defined also as the High Lethality zone according to Italian
egulations (Anon, 2022)) represents the region in which the gas con-
entration is between the LFL and UFL and a gas ignition can occur
ausing serious damage to the equipment and people death. The 𝑉𝐼𝐼
nd 𝐴𝐼𝐼 are defined according to Italian regulations (Anon, 2022), and
re the one with a gas concentration above the 0.5 ⋅LFL, and in which
ome damages to equipment and people are expected. Since these scalar
uantities are relevant for the QRA, they will be considered as the
inal output of the whole calculation chain. Nevertheless, in order to
void any loss of generality, they will be indicated as 𝑧, in order to
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Fig. 1. Sketch of the SBAM approach.
remark that the methodology presented in the paper can be applied
to spatial and/or dynamic distributions as well. This computational
strategy allows to simplify the simulation of this complex, multi-physics
phenomena, allowing to save considerably computational time when
several scenarios are needed for a QRA. This is possible because each SB
simulation available can be employed for several dispersion scenarios.
As it will be explained later, the SB simulation can be performed by the
ROM model, dramatically reducing the computational cost. In addition,
the SB and the dispersion simulations are affected by different set of
parameters. The first one is affected mainly by the gas properties, its
pressure, the release hole size and the shape and orientation of the
obstacles near the break, while the second depends on the congested
plant configuration, the release position and direction and the wind
velocity magnitude and direction. This suggested the development of a
surrogate model to mimic the SB behaviour, thus reducing dramatically
the computational cost associated with SBAM.

This paper aims at proving the effectiveness of the NIROM approach
to maximise the computational gain of this decoupled simulation ap-
proach, hence, it stands as a further development of SBAM, a model
previously investigated in Moscatello et al. (2021, 2022). As this is
a proof-of-concept, the pressure will be considered as the only SB
varying parameter. It could be argued that the choice of only one out
of all the possible varying parameters may jeopardise the considera-
tions drawn throughout the paper about the accuracy, the robustness
and the reliability of the proposed method. The gas release pressure,
however, is the most relevant parameter from both the physical and
the computational point of view, ranging continuously from 10 to
80 bar (Vivalda et al., 2018), which is a very large interval from the
fluid-dynamics perspective. On the contrary, the break size and the
SB obstacle dimensions usually assume only few discrete values in the
QRA framework, thus limiting the interest for such parameters from a
ROM perspective. Moreover, the focus of our analysis is more related to
prove the methodology proposed to quantify and propagate the NIROM
uncertainty rather than focusing on the parameter space sampling.

2.2. Reduced order model overview: Offline and online phases

The reduced order model presented in this paper aims at approx-
imating (with a reduced computational burden) the response 𝑦 of a
general physico-mathematical model  depending on a certain vector
parameter 𝑝. As previously mentioned, this is achieved with a data-
driven approach. First, according to a suitable sampling strategy, the
FOM is sampled to gather the high-fidelity responses, whose dimen-
sionality is reduced via POD. The POD coefficients, representing the
solutions in a reduced order space, are then used to train the RBF net-
work. Afterwards, the ROM is validated on some untrained parameter
values, in order to verify that the approximation error of the ROM is
4

acceptable for the intended application. Finally, the bootstrap method
is applied to propagate the ROM approximation error induced by the
training samples choice. This study is performed by constructing a set
of different ROMs, each trained with data sampled with replacement
from the original training set.

Once this computationally expensive phase is completed, the ROM
can be used as a fast-running tool to approximate the FOM responses
on new parameter values. If the ROM response is employed as input for
another model ′, in our case the dispersion simulation, an estimate
of the ROM approximation error can be obtained via the unscented
transform (UT). This method estimates the uncertainty in the response
of ′ by means of a limited number of model evaluations. These steps
are summarised in algorithm 1 and in Figs. 2–3.

Algorithm 1: POD-RBF with uncertainty estimation
Offline procedures

1. define the 𝑝-dimensional parameter space R𝑝;
2. select a parameter space sampling strategy (i.e. sparse grids,

random sampling...);
3. generate full-order model snapshots 𝑦𝑖 ∈ R𝑚 for each parameter

sample 𝑝𝑖;
4. divide the data into the training and the validation sets;
5. reduce dataset dimensionality, using POD (see algorithm 2);
6. train the RBF net with the POD coefficients 𝑎𝑖 ∈ R𝑡 (see

algorithm 3);
7. apply the bootstrap method (see algorithm 5) to generate a set

of ROMs;
8. compute the error distribution of the ROMs on the validation

set;
9. validate the ROM on the validation set. If the average error

between validation data and the set of bootstrapped ROMs is
not acceptable, go back to step 3, adding more training points;

Online procedure

1. interpolate with RBF the POD coefficients over a new point
(i.e. not used during training) 𝑝𝑗 in R𝑝;

2. back-project the POD coefficients 𝑎𝑗 ∈ R𝑡 to get the
approximated snapshot in the original space, 𝑦𝑗 ∈ R𝑚.

3. if the ROM response is used as input for another model, apply
the UT (algorithm 6) to estimate the confidence interval.

2.3. Model sampling and reduction

The performances of data-driven models are strongly dependent on
the quality of the training data. Therefore, whatever is the reduced
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Fig. 2. Offline phase procedure workflow.
Fig. 3. Online phase procedure workflow when a new parameter value 𝑝new is provided to the ROM. The set of weights 𝑤𝑖,𝑗 is computed in the training phase, see algorithm 3.
order modelling approach, one of the most important steps is sampling
the FOM.

One of the most popular deterministic sampling strategies in this
framework is the adoption of sparse grids (Smolyak, 1963) since, with
a proper choice of the quadrature rule used to map the input parameter
space, different levels of nested samples can be obtained. The use of
nested sets of points can help to efficiently train the ROM, allowing an
a posteriori refinement of the parameter samples. Since this paper aims
to present and test a non-intrusive reduced order modelling approach,
the application presented later deals only with the most relevant input
parameter, i.e. the release pressure. Therefore, a simple nested Newton–
Cotes quadrature rule is employed for an adaptive selection of the
training points.

After the FOM sampling, the data are reduced by means of the
POD. The core idea of the POD method, described in algorithm 2 (see
algorithm 2 in Appendix A) and in Fig. B.16, is to express the original
data as an expansion of basis functions, known as POD modes, extracted
with a singular value (eigenvalue) decomposition of the FOM snapshot
matrix (correlation matrix). The main advantage of this technique
is that the first modes retain most of the FOM dataset information.
5

Therefore, truncating the POD expansion usually implies a limited loss
of information (Volkwein, 2011).

The usual figure of merit employed to assess the number of POD
basis functions needed to achieve a certain accuracy is the POD energy
𝑘 (see algorithm 2). The calculation of this quantity is simple and
cheap, but often not enough in order to fully characterise the POD
expansion accuracy. Therefore, in this paper, the root mean squared
error between the FOM output and the ROM estimates will be evaluated
as well to have an additional figure of merit.

2.4. Model training and tuning

Once the reduction step is completed, the parameter-dependent
POD coefficients are employed to train a network of RBFs, which can
be then adopted in the online phase to interpolate the FOM solution on
new parameter values.

Among the different types of radial basis functions, in this paper
we choose to rely on the inverse multi-quadrics formulated by Hardy
(1971). The value of these functions depend on two parameters. The
first one is the euclidean distance between the centers, i.e. the training
parameter values 𝑝 , and the collocation points, i.e. the new parameter
𝑖
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𝑝𝑗 , while the second one is the so-called hyperparameter 𝜎, which is a
free parameter determining the shape of the RBFs. The choice of 𝜎 is a
very delicate aspect of the training phase, as it strongly affects both the
interpolation accuracy and its numerical stability. Usually, the choice
of this parameter is performed in order to minimise the interpolation
error on some test points, which do not belong to the training set. Due
to the large computational cost associated with the CFD simulations,
this approach is too computationally expensive. Therefore, among the
various approaches suggested in the literature, we follow the one
which seems the most general, i.e. the Leave-One-Out-Cross-Validation
(LOOCV) technique, which consists of training the meta-model with
each of the 𝑁 sets obtained taking N-1 samples and using the left one
as a test point. In this framework, the best hyperparameter is the one
minimising the root-mean square error (RMSE) computed from the 𝑁
rained models (Rippa, 2011).

The RBF training phase is summarised in algorithm 3 (see Ap-
endix A), while the hyperparameter optimisation is presented in al-
orithm 4 (see Appendix A).

.5. Model validation and error estimation by a bootstrap-based ensemble
f ROMs

When the training phase is completed, the model needs a validation
n new parameter values to verify its accuracy and consistency with
espect to the FOM solution. An extensive validation would require lots
f FOM evaluations, jeopardising the overall computational efficiency
f the meta-model. A common strategy to overcome this issue consists
n being satisfied with the selection of a few, significant new parameter
alues not too close to the training points. This is the most popular
pproach in the literature when the NIROMs do not allow an a priori
stimation of their confidence interval (Rahman et al., 2018; Xiao et al.,
017).

In this paper we employ the same approach, albeit trying to com-
lement this limited validation with a statistical sensitivity study con-
erning the training set. As a matter of fact, the ROM responses are
iased by the selection of the training points, whatever is the sampling
trategy of the parameter space. Therefore, as a complement of the
alidation phase, we apply the bootstrap method for a full exploitation
f the available training set, maximising the amount of information
xtracted. The idea of this non-parametric statistical method, presented
n algorithm 5 (see Appendix A) and sketched in Fig. 4, consists in
raining a large number of ROMs using different training sets, obtained
y resampling with replacement the original training set. In this way,
t is possible to build an ensemble of meta-models, which can be used
o construct a distribution of output responses: in the end, this can
e employed to estimate the error distribution for each validation
oint (Zio, 2006; Secchi et al., 2008; Zio et al., 2010; Pedroni et al.,
010; Marelli and Sudret, 2018).

The training phase of the NIROM is usually much cheaper than
he offline phase, yet it may be still quite time consuming if the
umber of training parameters and/or the number of reduced order
oefficients are large, because of the RBF tuning process. However,
ince each model reboot is independent, the boostrap procedure can
e massively parallelised. Due to the features of the POD-RBF ROM
pproach, some precautions are needed. First of all, since the RBF
ernel becomes singular if the same training data is repeated, each time
hat a training case is resampled, it is deliberately ignored, thus the
esampled set is always poorer than the original one. Then, due to the
nterpolatory nature of the RBF approach, some care should be devoted
hen the meta-model is tested on the validation set, because one
r more validation samples could fall outside the sampled parameter
pace, i.e. the convex hull obtained from the sampled points. In these
ituations, the RBF net extrapolates rather than interpolating. In order
o better understand the model behaviour in such cases, the bootstrap
s applied in two different ways in our calculations. The first time,
6

ach validation point is accepted and evaluated by the ROM, which
thus could extrapolate parameter values falling outside the training
points, while the second time the validation points falling outside the
training range are discarded. In this last case, no extrapolation occurs
for parameter values drawn outside the parameter ‘‘box’’.

2.6. Unscented transform and POD for uncertainty propagation and confi-
dence interval estimation

As mentioned above, bootstrapping the ROM generates an ensemble
of meta-models. If the ROM response is the final goal of its application,
confidence intervals can be extracted from the ensemble distributions.
However, when the ROM response 𝑦𝑅𝑂𝑀 is an input for another model

′, this operation may not be trivial, especially when 𝑦𝑅𝑂𝑀 is a spatial
field. In this case, the uncertainty in the ROM responses should be
propagated through ′ in order to obtain a confidence interval for
the final output of the calculation chain. To avoid many queries of
the model, it is proposed to approximate the confidence interval with
the so-called Unscented Transform (UT) method (Julier and Uhlmann,
1997).

This method, which is an extension of the Kalman filter (Kalman,
1960) to non-linear models, approximates the original 𝑚-dimensional
statistical distribution with a set of 2𝑚 + 1 specific samples, identified
as sigma points, that are then transformed using the non-linear model,
i.e. ′ in this case. The transformed sigma points can be used to
estimate the mean and the variance of the non-linear model due to the
uncertain input.

In this case, the choice of the sigma points is not trivial, since
the input distribution dimension is proportional to the number of
volumes defining the computational mesh of the CFD calculation. To
overcome this issue, the POD algorithm is applied again to reduce the
dimensionality of the ROM ensemble, similarly to Foad et al. (2020).
The UT-POD procedure is presented in algorithm 6, while a conceptual
scheme is presented in Fig. 5.

3. Study case: Accidental gas release in a congested environment

In this section the results of the NIROM application to the QRA-
oriented, SBAM approach are presented and discussed, with a specific
focus on the peculiarities featuring this case of study.

3.1. Numerical setup of the case study

The considered case study is a high-pressure methane release in an
offshore platform deck under moderate wind conditions. The domain
is visible in Fig. 6 and its dimensions are 30 × 20 × 5 m. The gas
release position is indicated by the blue box in Fig. 6 which is placed
at an height of 2.5 m from the ground, while, the release direction
is described by the blue arrow near the box (along the 𝑥-axis). The
possible release pressure (𝑝𝑟𝑒𝑙) range is 10–80 bar while the release
diameter is fixed to 1 cm. These values are taken from Vivalda et al.
(2018), where the plausible values for an high pressure gas release in
an offshore environment are furnished basing on the review of loss of
containment accident reports and statistical analyses. A uniform wind
velocity profile is assumed, which intensity is equal to 6 m/s, the most
frequent value in the Adriatic Sea (Anon, 2021), and which direction
is shown in Fig. 6 by the cyan arrow. This last is chosen in order to
maximise the gas spreading on the platform, thus considering one of
the worst scenarios.

The SB is dimensioned as a cube whose length (𝐿𝑆𝐵) is such that
all the compressibility effects are exhausted in its volume (Moscatello
et al., 2021). Inside the cube, an obstacle is present to have an imping-
ing jet. To ensure a robust coupling with the dispersion model, a fixed
reference coordinate system and a fixed denomination for the SB faces,
visible in Fig. 7 (left), is employed. Within this reference frame, the
release point is always positioned at the centre of the back face and

the release direction is always parallel to 𝑥-axis in the SB. Moreover,
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Fig. 4. Sketch of the generation of the ROM distribution, and, consequently, of the output spatial fields via bootstrapping.
Fig. 5. Sketch of the POD-UT approach for uncertainty quantification.
Fig. 6. CAD of the case study domain with the representation of a box where the SB profiles are imposed, i.e. representing the gas release source.
since two symmetry planes can be defined, the simulation is carried
out only on one quarter of the cube, using the denomination in Fig. 7
(right). The obstacle inside the SB is featured by a diameter equal to
20 cm and a distance of 30 cm.

The SB dimensions, in principle, would change in function of the
release pressure. The different size of the SB, however, can be an issue
when the interesting profiles are extracted and used to train a NIROM.
At first, the SB is dimensioned following the procedure explained
in Moscatello et al. (2021), considering 𝑝𝑟𝑒𝑙 = 80 bar (the largest
possible). The resulting characteristic length of the SB is 𝐿𝑆𝐵 = 0.6 m.
A non-uniform tetrahedral mesh is realised in ANSYS meshing. The
simulation is performed in steady-state using a k-𝜔 SST formulation
of the RANS equations. The mixture CH -Air is loaded in the Fluent
7

4

setup and the ‘‘Species Transport’’ model without chemical reaction is
used. A CH4 mole fraction equal to 1 is imposed at the domain inlet
and a mass flow inlet is set considering a chock mass flow rate due
to the pressure release condition. A pressure outlet set at atmospheric
pressure is imposed on all the external SB surfaces back, up_down,
front, lateral to reproduce the open environment around. A wall with
no-slip condition is imposed on the obstacle surface and a symmetry
condition is imposed on the symmetry planes.

In principle, the SB size scales as the square root of the release
pressure. However, in order to have snapshots of the same dimen-
sionality, each calculation was run using the same SB dimensions, the
ones related to the maximum pressure. Then, the different velocity
profile components (along 𝑥, 𝑦 and 𝑧 directions) and CH mass fraction
4
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Fig. 7. Source box with reference coordinate frame and face names.
profiles on the faces delimiting the SB (back, lateral, front, up-down)
were exported from Fluent on a fixed cartesian grid consisting of 1000
sample points for each direction. These profiles are used as boundary
conditions in the dispersion simulation, where they are imposed at the
faces of the box (see blue box in Fig. 6) representing the gas source in
the plant. On this box, a sufficiently refined mesh to maintain the spa-
tial information of the profiles is realised. Each dispersion simulation
requires about 4 h on a Precision Dell Tower 7820 with a Intel Xeon
Gold 6136 CPU (3.00 GHz) and 64 RAM.

The dispersion simulation is performed in steady-state with a k-𝜔
standard formulation of the RANS equation. A wind with intensity of
6 m/s and direction along the 𝑥-axis is modelled on the face indicated in
Fig. 6. On the other lateral faces of the domain, a pressure outlet with
ambient pressure is imposed. The blue box represents the dispersion
source: on its faces the velocity and CH4 mass fraction profiles obtained
by the SB simulations are loaded as boundary conditions. All the
other platform surfaces, i.e. the objects, the floor and the ceiling, are
modelled as walls with no slip condition.

3.2. Sampling strategy and CFD dimensionality reduction

Despite in this application the parameter space is one-dimensional,
its variation is remarkable from both the physical and the numerical
point of view. Increasing the pressure requires more computational
resources, as the formation of vortexes is enhanced. Therefore, the
sampling strategy should be carefully selected to adequately cover
the release pressure range (10–80 bar), which is expected to induce
very large variations in the resulting flow fields. As mentioned in the
previous Section, the parameter values for the CFD snapshot generation
were chosen with the Newton–Cotes rule.

It is important to remark that to carry out SB simulations at high
pressure, the mass flow inlet boundary conditions must be used instead
of imposing directly the pressure. Hence, mass flows are evaluated
consistently with the needed release pressures considering the chocked
flow conditions. Since the pressure is the reference engineering param-
eter for QRA, the mass flow was sampled, but the corresponding value
of the pressure, which is unique due to the sonic flow regime, was
considered as the free parameter 𝑝, exploiting the fact that the CFD
model is considered as a black-box.

Fig. 8 provides a sketch of the distribution of the inlet mass flow
samples and of the corresponding pressure samples. As a starting point,
an initial level was generated dividing the range to have intervals of
about 10 bar each (red dots). Then, the range was partitioned to have
intervals of approximately 5 bar each, so that the previous level was
included (light blue squares). Finally, the intervals width was halved
again, in order each simulation to span 2.5 bar.

Concerning the dimensionality reduction, a sensitivity study on
the approximation error induced by the POD expansion truncation
shows that a relatively small number of basis functions is sufficient
8

Fig. 8. High-fidelity model samples generated with the Newton–Cotes rule. The orange
circles are the first level, the light blue squares are the second level and the dark blue
triangles are the third level.

Fig. 9. POD basis energy, computed as in algorithm 2.

to adequately represent the original gas concentration and flow field,
catching the 99.99% of the POD energy  , whose convergence trend is
provided in Fig. 9. Fig. B.17 shows the Root-Mean-Square Error (RMSE)
between the CFD snapshots and its POD representation (left) and the
RMSE between the CFD snapshot and its ROM approximation (right)
as a function of different truncation orders, for different values of the
training pressures. The RMSE on the left is useful to highlight that
the truncation error approaches zero as the number of basis functions
increases, as reasonably expected looking at the trend in Fig. 9. On the
contrary, the second one shows that, after a certain expansion order,
the error stabilises on a certain value. This behaviour is explained by
the fact that, in addition to the vanishing truncation error, the NIROM
snapshot is also affected by the interpolation error due to the RBF inter-
polation. This trend has an important implication related to the NIROM
approximation capabilities, i.e. the truncation error is negligible with
respect to the interpolation error, provided that a sufficient number of
basis functions is employed to represent the original dataset.

Throughout the paper all the POD expansions are truncated at least
at the 10th term, unless differently specified, as indicated by the dashed
black line in Figs. 9–B.17.
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Fig. 10. Face-wise relative 𝐿2 error for the CH4 concentration. The black stars represent the training cases, while the dots represent the validation cases and their colour is related
to the relative error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.3. Model training

Exploiting the fact that the samples are nested, the NIROM was
initially trained with the first level of points and validated with the
points belonging to the second level.

Figs. 10, B.18, B.19 and B.20 provide an overview of the percentage
relative error between NIROM and CFD evaluations of the output
distributions of interest, namely the CH4 concentration and the x, y
and z components of the velocity field. The relative percentage error,
computed for each face of the SB (see Fig. 7), is evaluated as follows

𝜖𝑖 = 100
‖𝑦i,CFD(𝑟) − 𝑦i,ROM(𝑟)‖

‖𝑦i,CFD(𝑟)‖
, (2)

where 𝑟 indicates the couple of spatial coordinates pertaining to the
𝑖th face. It should be noticed that, consistently with the notation used
in the paper, ‘‘𝑦’’ indicates the model response, while ‘‘y’’ is the usual
symbol for one of the three spatial variables of the cartesian reference
system.

The black stars visible in Figs. 10, B.18, B.19 and B.20 are the
training points belonging to the first level of sampled points, while the
dots represent the validation points. The size and the colour of these
points is proportional to the magnitude of the error.

By inspection of these figures, it is possible to notice the presence of
significant errors on the back face, where the profiles are featured by
some oscillations due to the gas entrainment with the air which causes
a steep velocity variation near the leak source. Due to the relative error
definition given in Eq. (2), it may happen that the error may get very
large values, exceeding 100%, when ‖𝑦i,CFD(𝑟)‖ is very close to 0, as
for the 𝑦 and z components of the velocity in the back face. Despite
their magnitude, these errors do not affect the overall quality of the
NIROM approximations, because the back plane, which is tangent to the
source point, has a negligible contribution to the overall mass flowing
out of the sourcebox. In spite their lower physical importance for the
dispersion phase, the contributions for this face dominates the overall
error behaviour, making the 𝐿2 norm on the whole snapshot unreliable.
To overcome this issue, the face-wise errors are weighted with the mass
fraction flowing from each face,

𝜀 =
𝑓𝑎𝑐𝑒𝑠
∑

𝑖=1

‖𝑦CFD,𝑖(𝑟) − 𝑦ROM,𝑖(𝑟)‖
‖𝑦CFD,𝑖(𝑟)‖

𝑤𝑖, (3)

where the weights are defined as

𝑤𝑖 =
𝑚̇𝑖 . (4)
9

𝑚̇𝑡𝑜𝑡
Concerning the CH4 concentration profile, it is important to notice
here that the error on the lateral face cannot be measured since no gas
reaches this face.

Exploiting the estimator given by Eq. (3), it is possible to combine
the relative errors for the different profiles on each face to get a more
realistic, meaningful and physically reliable overview of the NIROM
accuracy with respect to the reference solution. The values of this
estimator is reported in Fig. 11. The graph on the top represents the
weighted relative error obtained using the first level of the sampled
points as training and the other levels as validation, while the graph
on the bottom provides the same estimator using the first level and
some points of the second for training and the remaining points for
validation. As it can be noticed, more training points were taken above
50 bar, in order to reduce the relative error in this region. If the
parameter space would be high-dimensional, a more rigorous adaptive
selection technique could be employed to spare some computational
time, as in Alsayyari et al. (2021).

An example of the ROM surrogate ability to mimic the response
of the SBAM model is visible in Figs. 12, B.21 and B.22, where it is
possible to see the CH4 mass fraction on the front face and the normal
velocity component on the front and up_down faces, respectively. Each
Figure provides the reference profile, computed with CFD, the NIROM
surrogate profile and the local difference between the two. By direct in-
spection, it is possible to conclude that the NIROM is able to reproduce
fairly well the main spatial features of the flow field, with negligible
errors except for a few, small regions on some faces, where oscillations
around zero due to entrainment may occur, as already discussed for the
back one.

In light of these considerations and having in mind that are referred
to the worst case, the orders of magnitude of the errors reported in
Fig. 11 are judged sufficiently low for the purpose of QRA. In what
follows, the analysis is thus focused on another source of (model)
uncertainty in the ROM estimation, i.e. the error variability due to the
training point selection.

3.4. ROM error estimation by bootstrap

The error distribution for each validation case is constructed reboot-
ing the NIROM 500 times, by sampling with replacement the initial set
of 21 training points.

As mentioned in Section 2.5, some care should be used during the
evaluation of the bootstrapped error distribution, checking whether
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Fig. 11. Weighted percentage relative error between NIROM and CFD using two different sets of training points in the two graphs. The black stars represent the training cases,
while the dots represent the validation cases and their colour is related to the relative error. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 12. CH4 mass fractions for CFD (left) and NIROM (centre) and their difference (right) on the front face for the validation case with 𝑝𝑟𝑒𝑙 = 51.237 bar.
Fig. 13. Weighted relative percentage error (left) and weighted RMSE (right) computed for the validation case 𝑝𝑟𝑒𝑙 = 51.237 bar.
the validation case falls in the training range or not. In the following,
only the interpolation situation is examined, since the NIROMs, due to
their data-driven nature, are usually employed as interpolating tools.
It should be remarked here that, with respect to the deterministic
rule used to generate the training and validation samples for our
application, there is no guarantee that the bootstrap random resampling
covers uniformly the parameter space, therefore this approach should
yield, in this particular case, conservative confidence intervals.

Figs. B.23 and B.24 show the sample distributions of the weighted
percentage relative error and RMSE for the validation cases featured
by the minimum and maximum pressure, respectively, i.e. 10.374 and
79.442 bar. These graphs are quite informative about the method
robustness: the distributions for both the cases are highly skewed to-
wards lower bounds of the error, suggesting that the NIROM is weakly
sensitive to the selection of the finite-sized set of training points. Fig. 13
provides the distributions for the validation case 𝑝𝑟𝑒𝑙 = 51.237 bar,
which is featured by the largest variance and mean error. Due to its
larger sensitivity to the training sample choice with respect to the
others, this case is identified as the worst one, therefore it will be
used in the following section to propagate the ROM approximation
error through the dispersion calculation chain by means of the UT. It
10
should be noticed that, despite in Fig. 11 the cases featured by the
largest weighted relative error are those falling in the interval 70-
80 bar, the bootstrap analysis shows that the validation case which is
the most sensitive to the training sample selection is the one featured
by 𝑝𝑟𝑒𝑙 = 51.237 bar. This case is thus addressed as the worst one in
the following section.

3.5. Uncertainty propagation to the dispersion simulation

Propagating the bootstrap-evaluated uncertainty characterising the
profiles computed by the NIROM onto the output of the successive CFD
dispersion simulation is not trivial. In addition to the large dimensional-
ity of the uncertain input (each snapshot contains > 6⋅106 elements), the
bootstrapped profiles are not associated with real, physical parameters,
but only to the set of training points. Thus, the empirical nature of
this distribution makes difficult to adopt a smart sampling strategy.
A possible option could be using a brute force technique, evaluating
the dispersion model with each bootstrapped ROM response. However,
despite the dispersion simulations are faster than the SB calculations
(∼5 h against ∼25), this would not be practically feasible.
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Fig. 14. Irreversible Injuries volume obtained using the CFD SB profiles (top) and of the NIROM SB profiles (bottom).
To overcome these issues, the procedure illustrated in algorithm
6 is employed. The POD technique helps reducing the dimensionality
of the SB gas flow profiles, providing a set of 𝑡 scalar coefficients
for each profile, while the UT allows to select only the most relevant
coefficients for the final uncertainty estimation. Consistently with the
POD reduction for the training phase, also in this case the POD is
truncated at the 10th order, yielding 𝑘 = 2𝑡 = 20 sigma points. For each
of this point, a dispersion calculation is performed. In particular, the
scenario with the largest variance and mean error (𝑝𝑟𝑒𝑙 = 51.237 bar)
is investigated. In the following, some safety-critical output parameters
estimated by a dispersion calculation are analysed, comparing the
results obtained using the high-fidelity, CFD profiles in one case and
the approximate, ROM profiles in the other one. Fig. 14 shows the
irreversible injuries volumes obtained using respectively the CFD SB
profiles and the NIROM SB profiles are represented. At a first look, no
differences can be appreciated in the two pictures. In both cases the
gas cloud tends to split in two portions along the vertical direction,
and the same platform components are invested by the gas. Some small
discrepancies can be appreciated in one of the two extremity of the
upper region and it is difficult to observe any other difference in the
shape of the two clouds. In fact, in the case of the CFD profile, a 𝑉𝐼𝐼
equal to 22.2 m3 is obtained, while in the NIROM case is 22.4 m3,
confirming that the difference is negligible (∼ 0.9%).

This qualitative comparison can be helpful in verifying if there are
some relevant differences in the dangerous cloud shape: however, a
more detailed analysis needs to be carried out by comparing some
safety related quantities. For the purposes of a QRA, the evaluation of
the mass and volumes involved in the accident is fundamental for the
estimation of the energy that can be released in case of fire or explosion.
In addition, a QRA requires to estimate the dangerous zones extension
11
in terms of volumes and areas. For these reasons, the parameters intro-
duced in Section 2.1 are evaluated. Table 1 provides the main output
quantities computed within the dispersion calculation using the original
CFD profiles, provided by the SB simulation, and the surrogate profiles
computed with the NIROM. With the aim of providing a visual repre-
sentation of these quantities and their uncertainties, the same quantities
are normalised with respect to the CFD case and shown in Fig. 15. The
results in the NIROM column, i.e. the mean and the standard deviation
of each response, are obtained from the 20 dispersion calculations,
exploiting the UT. The results obtained using the NIROM SB profiles
are surprisingly similar to the CFD related ones. The relative difference
in the mean values is always below 7%, and this is a remarkable result
if we consider the dramatic computational cost reduction. In fact, to
obtain the CFD SB profiles, almost 24 h are employed, while the ROM
profiles are obtained in few seconds. This improvement permits to cut
the time necessary for the SB library generation, since it needs only
the simulation of a reduced set of cases for the training of the ROM.
Moreover, since some parameters are slightly underestimated but from
a safety point of view an overestimation of the accident consequences
is preferable, a safety coefficient can be applied to the results to assure
a conservative estimation.

4. Conclusions and future perspectives

In this paper we presented a POD-RBF framework for the non-
intrusive reduced order modelling of QRA-oriented CFD simulations.
This class of NIROMs has been recently applied in many research fields,
yet most of the applications do not show satisfactory assessment and
propagation of the ROM approximation errors, in particular in the
presence of functional (e.g., time- and/or space-dependent) outputs.
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Fig. 15. Expected value and standard deviation for some safety-relevant quantities, i.e., the total dispersed mass of CH4, the mass of CH4 in the cloud, the flammable volume,

the irreversible injuries volume and the irreversible injuries area at 1.5 m. Each data is normalised with respect to the CFD case.
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Table 1
Dispersion calculation outputs computed with the original CFD profiles and with the
surrogate ones given by the NIROM. The results of the second column are provided
with an uncertainty, put in parentheses, given in terms of 1 standard deviation. The
last column shows the absolute value of the relative difference per each parameter.

CFD profile ROM profile Rel. difference

𝑀CH4 [kg] 5.959 5.6 (2) ∼6%
𝑀CH4,𝑓 𝑙𝑎𝑚 [kg] 0.066 0.064 (4) ∼3%
𝑉𝑓𝑙𝑎𝑚 [m3] 1.925 1.8 (1) ∼6.5%
𝑉𝐼𝐼 [m3] 22 23 (1) ∼4.5%
𝐴𝐼𝐼 [m2] 4.20 4.5 (3) ∼7%

In this respect, since the final aim is to employ these surrogate mod-
ls to reduce the computational burden associated with QRA activities
where it is of paramount importance to endow the simulation model
esponses with confidence intervals), we proposed a methodology for
he assessment of the ROM uncertainty in the estimation of functional
in this case, space-dependent) safety oriented quantities. To test this
ethodology and prove its effectiveness, we applied the ROM to the

ase of a methane high pressure, accidental gas release in an off-shore
il & Gas plant, where the output quantities of interest, from a QRA
erspective, are volumes, areas and masses related to flammability of
he gas.

First, the original CFD model was run on a set of nested parame-
er samples, which allowed to adaptively refine the training dataset.
fterwards, the model evaluations were used to train the ROM: first,

he dimensionality of the spatial fields was reduced thanks to the
OD algorithm; then, a net of RBFs was constructed by tuning the
BF hyperparameter with the LOOCV technique. A first assessment
f the model accuracy was conducted comparing the ROM and the
FD evaluations on a set of points not belonging to the training set.
he validation error, computed as a weighted sum of the SB face-wise
rrors, was considered sufficiently low (<15%) using the first level of
raining cases plus additional cases above 50 bar.

Then, to estimate the model response variability to the training
amples, the bootstrap method was employed to obtain the statisti-
al distributions from the ensemble of ROM responses. Since, in our
pplication, the ROM response is used as input for the CFD disper-
ion simulation, a quantitative assessment of the impact of the ROM
pproximation error was considered mandatory.

The propagation of the uncertainty from the ROM response distri-
ution to the dispersion model output was carried out coupling the
OD and the UT techniques. The first allowed to reduce the input data
imensionality, while the second was used to select the input data
or the dispersion calculations and finally to estimate the dispersion
utput confidence intervals. The main quantities of interest in such
alculations, pertinent to the QRA analysis, are in very good agreement
ith the same results obtained using the SB profiles computed by CFD,
ith a relative error between the two approaches below 7% and a re-
12

uction of the computational time of about three orders of magnitude, f
suggesting that the POD-RBF NIROM is adequate to obtain fast yet
very accurate results. It should be remarked that a QRA study has an
intrinsically high level of uncertainty, which makes the additional 7%
introduced by the ROM model acceptable. Moreover, this error is only a
quantification of the impact of the NIROM integration in the numerical
model SBAM, and it is not representative of the simulation error. In
fact, for this last, the uncertainties related to the spatial discretisation,
round-off errors and numerical schemes should be quantified.

In the future, we plan to increase the number of training points con-
sidering also other input parameters affecting the SB, namely the break
size and the obstacle features. Since these parameters have a strong
influence on the SB dimension, a more sophisticated strategy should
be devised in order to handle the snapshots defined on a different
spatial domain. Moreover, adaptive sparse sampling techniques should
be employed in order to progressively refine the parameter space where
the error is not acceptable.

In parallel to these activities, a surrogate model for the dispersion
phase should be trained as well. Such a model could be efficiently
coupled with the first NIROM, allowing to realise a real-time simulation
framework (featured by the capability of providing confidence intervals
on the main results thanks to the combination of bootstrapping and
UT), setting the basis for an effective CFD-QRA integration.
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Appendix A. POD-RBF algorithms

The appendix reports the detailed algorithms adopted throughout
the paper.

Algorithm 2: Proper Orthogonal Decomposition algorithm
Input

1. snapshot matrix 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑛], with 𝑦𝑖 ∈ R𝑚;
2. snapshot matrix rank 𝑟;
3. truncation error 𝜀;

Output

1. POD basis 𝐵̂𝑘 = [𝑏⃗1, 𝑏⃗2,… , 𝑏⃗𝑘], with 𝑏⃗𝑖 ∈ R𝑚;
2. POD eigenvalues 𝜆𝑖,∀𝑖 = 1,… , 𝑘;
3. POD energy 𝑘;
4. POD coefficients 𝐴̂𝑘 = [𝑎1, 𝑎2,… , 𝑎𝑘], with 𝑎𝑖 ∈ R𝑡;

try:
[𝛹̂ , 𝛴̂, 𝛷̂] = 𝚜𝚟𝚍(𝑌 ) # Singular Value Decomposition
for 𝑖 = 1,… , 𝑟 do

𝑏⃗𝑖 = 𝜓⃗𝑖 # 𝜓⃗𝑖 is the 𝛹̂ 𝑖-th column
𝜆𝑖 = 𝜎2𝑖 # 𝜎𝑖 is the 𝑖-th diagonal entry of 𝛴̂

end
except Memory Error :

if 𝑛 > 𝑚 then
[𝛹̂ , 𝛬̂] = 𝚎𝚒𝚐(𝑌 𝑌 T) # Eigenvalue Decomposition
for 𝑖 = 1,… , 𝑟 do

𝑏⃗𝑖 = 𝜓⃗𝑖 # 𝜓⃗𝑖 is the 𝑖-th column of 𝛹̂
𝜆𝑖 = 𝛬̂𝑖,𝑖 # 𝛬̂𝑖,𝑖 is the 𝑖-th diagonal entry of 𝛬̂

end
else

[𝛷̂, 𝛬̂] = 𝚎𝚒𝚐(𝑌 T𝑌 ) # Eigenvalue Decomposition
for 𝑖 = 1,… , 𝑟 do

𝑏⃗𝑖 =
𝑌 𝜙𝑖
√

𝜆𝑖
# 𝜓⃗𝑖 is the 𝑖-th column of 𝛹̂

𝜆𝑖 = 𝛬̂𝑖,𝑖 # 𝛬̂𝑖,𝑖 is the 𝑖-th diagonal entry of 𝛬̂
end

end
end
choose 𝑘 such that 1 − 𝑘 < 𝜀
𝐴̂𝑘 = 𝑌 T𝐵̂𝑘 # compute reduced order coefficients

Algorithm 3: Radial Basis Function training algorithm.
Input

1. data reduced via POD, 𝐴̂𝑘 ∈ R𝑛×𝑘;
2. parameter matrix 𝑃 = [𝑝1, 𝑝2,… , 𝑝𝑛], with 𝑝𝑖 ∈ R𝑝;
3. RBF type 𝑓 (e.g. 𝑓 = 1∕

√

||𝑝1 − 𝑝𝑗 ||2 + 𝜎2);

4. hyperparameter 𝜎 via algorithm 4 or Hardy’s formula (Hardy,
1971);

Output
training matrix 𝑊̂ ∈ R𝑛×𝑘

# loop over each column of 𝐴̂𝑘, 𝑎𝑖 ∈ R𝑛
for 𝑖 = 1,… , 𝑘 do

choose hyperparameter 𝜎𝑖 (optimal selection with algorithm 4)
# compute distance matrix 𝐷̂ = [𝑑1,… , 𝑑𝑛] ∈ R𝑛×𝑛
for 𝑗 = 1,… , 𝑛 do

𝑑𝑗 = [𝑓 (||𝑝1 − 𝑝𝑗 ||2, 𝜎𝑖),… , 𝑓 (||𝑝𝑛 − 𝑝𝑗 ||2, 𝜎𝑖)]
end
𝑤⃗𝑖 = 𝐷̂−1𝑎𝑖 # 𝑤⃗𝑖 is the 𝑖-th column of 𝑊̂

end

See Rippa (2011).
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Algorithm 4: Optimal hyperparameter selection.
Input

1. data reduced via POD, 𝐴̂𝑘 ∈ R𝑛×𝑘;
2. parameter matrix 𝑃 = [𝑝1, 𝑝2,… , 𝑝𝑛], with 𝑝𝑖 ∈ R𝑝;
3. RBF type 𝑓 (e.g. 𝑓 = 1∕

√

||𝑝1 − 𝑝𝑗 ||2 + 𝜎2);

4. initial hyperparameter guess 𝜎0 =
0.815
𝑛

𝑛
∑

𝑖=1
||𝑝𝑖 − 𝑝𝓁||2, where 𝓁

is the closest point to 𝑖 in the parameter space (Hardy, 1971).

Output

1. Optimal hyperparameter 𝜎𝑜𝑝𝑡

Optimise 𝜎 minimising RMSE
Select 𝜎 # e.g. via conjugate gradient method
Compute 𝐷̂ and 𝑤⃗𝑖 as in algorithm 3
# use Rippa’s algorithm (Rippa, 2011) and LOOCV
[𝐿̂, 𝑈̂ ] = 𝚕𝚞(𝐷̂) # Compute LU decomposition
for j=1, …, n do

𝑥⃗ = 𝑈̂−1𝐿̂−1𝑒𝑗 # 𝑒𝑗 is the 𝑗-th column of the identity matrix

𝛿𝑗 =
‖

‖

‖

‖

‖

𝑤𝑖,𝑗
𝑥𝑗

‖

‖

‖

‖

‖

# compute interpolation error with 𝑗-th

components of 𝑥⃗ and 𝑤⃗𝑖
end

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑗=1
𝛿2𝑗

end

Algorithm 5: Bootstrap method
Input

1. number of reboots 𝑁𝑟;
2. training parameter values 𝑃 = [𝑝1, 𝑝2,… , 𝑝𝑛];
3. training snapshots 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑛];

Output
Ensemble of ROMs, 1,… ,𝑁𝑟

# this can be done in parallel
for i=1, …, 𝑁𝑟 do

for j=1, …, 𝑁 do
Sample one parameter point 𝑝𝑗 from [𝑝1, 𝑝2,… , 𝑝𝑛] with
replacement;
if 𝑝𝑗 exists then

Discard 𝑝𝑗 to avoid singular RBF kernel;
end
Reduce dataset with algorithm 2;
Train and tune the RBF network with algorithms 3, 4;

end

Fig. B.16. POD-driven dimensionality reduction for the snapshot matrix containing the

training CFD solutions.
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Fig. B.17. Root-Mean Squared-Error between the original snapshot and its truncated POD representation (left) and Root-Mean-Squared Error between the original snapshot and
the ROM reconstruction (right) for some training pressures.

Fig. B.18. Face-wise relative 𝐿2 error for the 𝑥-component of the velocity. The black stars represent the training cases, while the dots represent the validation cases and their
colour is related to the relative error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.19. Face-wise relative 𝐿2 error for the 𝑦-component of the velocity. The black stars represent the training cases, while the dots represent the validation cases and their
colour is related to the relative error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. B.20. Face-wise relative 𝐿2 error for the 𝑧-component of the velocity. The black stars represent the training cases, while the dots represent the validation cases and their
colour is related to the relative error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.21. 𝑥-component of the velocity field for CFD (left) and NIROM (centre) and their difference (right) on the front face for the validation case with 𝑝𝑟𝑒𝑙 = 51.237 bar.

Fig. B.22. 𝑦-component of the velocity field for CFD (left) and NIROM (centre) and their difference (right) on the up-down face for the validation case with 𝑝𝑟𝑒𝑙 = 51.237 bar.

Fig. B.23. Weighted relative percentage error (left) and weighted RMSE (right) computed for the validation case 𝑝𝑟𝑒𝑙 = 10.739 bar.
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Fig. B.24. Weighted relative percentage error (left) and weighted RMSE (right) computed for the validation case 𝑝𝑟𝑒𝑙 = 79.442 bar.
Algorithm 6: Unscented Transform and POD for uncertainty
propagation
Input
ensemble of ROM responses 𝑌 = [𝑦,1,… , 𝑦,𝑁𝑟 ] (spatial fields)
for a certain parameter value 𝑝new;
Output
mean E[𝑧] and covariance cov[𝑧] estimates for the response 𝑧 of
the model ′;

# choose sigma points
Compute reduced order coefficients 𝑎 ∈ R𝑘 via POD (algorithm 2)
of 𝑌;

Compute mean 𝜇 = E[𝑎] and covariance 𝐶̂ = cov[𝑎];
Compute Cholesky or SVD decomposition to obtain 𝐿̂𝐿̂⊺ = 𝑘𝐶̂;
Apply the scaling factor 𝑠 = 𝑘 + 𝜆, 𝑆̂ =

√

𝑠
√

𝐶̂; # 𝜆 is a free
parameter (here 𝜆=0)

Determine weights as 𝑤𝑖 = 1∕2𝑠, 𝑖 = 1,… , 𝑘 and 𝑤0 = 𝜆∕𝑠
(associated with 𝜇);

# this can be performed in parallel
for i=1, …, 𝑘 do

𝜎⃗𝑈𝑇 ,𝑖 = 𝜇 − 𝑆̂𝑖 # 𝑆̂𝑖 is the i-th column of the 𝑆̂ matrix
𝑧𝑖 = ′(𝜎⃗𝑈𝑇 ,𝑖) # apply non-linear model
𝜎⃗𝑈𝑇 ,𝑖+𝑘 = 𝜇 + 𝑆̂𝑖
𝑧𝑖+𝑘 = ′(𝜎⃗𝑈𝑇 ,𝑖+𝑘) # apply non-linear model

end

compute E𝑤[𝑧] =
2𝑘+1
∑

𝑖=0
𝑤𝑖𝑧𝑖 and

cov𝑤[𝑧] =
2𝑘+1
∑

𝑖=0
𝑤𝑖(𝑧𝑖 − E𝑤[𝑧])(𝑧𝑖 − E𝑤[𝑧])T;

Appendix B. Additional figures

See Figs. B.16–B.24.
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