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Abstract—The monitoring of electrocardiogram (ECG), pho-
toplethysmogram (PPG) and arterial blood pressure is crucial
for preserving and enhancing individual health and well-being.
These vital parameters offer profound insights into cardiac and
pulmonary functions and are indispensable for the diagnosis
and management of a plethora of health conditions. This paper
presents the design and development of PulsECG, a portable
medical device engineered to estimate arterial blood pressure
using a cuffless approach. It acquires ECG signals according
to the Einthoven’s Triangle, monitors blood oxygen levels, and
derives blood pressure non-invasively through the use of a neural
network. The neural network at the heart of PulsECG leverages
a combination of convolutional and bidirectional LSTM layers
to process time-series input from dual-channel PPG and ECG
signals. A custom database of 20 subjects is collected to train
the network on real-life scenario. To this purpose, a custom data
acquisition process has been designed, which alternates blood
pressure measurements with ECG & PPG recordings, providing
a dataset that underpins the network learning. The results
show the neural network is able to correctly predict systolic
and diastolic blood pressures, proving a high correlation with
the ground truth (sphygmomanometer), despite a slight trend
towards overestimation. This research advances the integration
of neural network models into portable medical devices like
PulsECG, fostering telemedicine and continuous health tracking.
It opens novel ways for improved patient care, offering a solution
for real-time health monitoring, and represents a step forward
to combine artificial intelligence with medical technology.

Index Terms—electrocardiogram, ECG, photoplethysmogram,
PPG, non invasive cuffless arterial blood pressure monitoring,
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I. INTRODUCTION

In the context of health and disease prevention, medical
devices have assumed an increasingly crucial role used across
various healthcare settings. They enable healthcare profes-
sionals to track patient progress and adjust treatments when
needed. This real-time monitoring enhances care quality and
patient outcomes, starting from compensating for physical
limitations, empowering them to lead more independent lives
up to assisting in surgeries and helping manage chronic con-
ditions. The global market boasts around two million distinct
types of medical devices, categorized into over 7,000 generic
device groups [1]. This diversity reflects significant technolog-
ical advancements in healthcare. Within the vast selection of
medical devices, a category of portable devices stands out for
their primary features, including reliability, user-friendliness,
long-lasting battery life, and reduced weight. The focus of
this paper has been on designing and assembling PulsECG, a
device capable of acquiring and processing electrocardiogram
(ECG) [2] and photoplethysmogram (PPG) [3] [4] signals.
Furthermore, preliminary efforts have been made to integrate
a cuffless blood pressure measurement feature into the device
through machine learning (ML) [5]. In the context of medical
devices like PulsECG, ML algorithms can be trained to
identify patterns and anomalies in medical data [6], [7], which
might indicate potential health issues. This application is
particularly crucial in early detection and prevention strategies
for cardiovascular diseases [8], [9] which continue to be a
leading cause of millions of deaths annually [10]. Furthermore,
this innovation aligns with the broader concept of telemedicine
[11], leveraging technology to remotely monitor and manage
health, thereby contributing to the advancement of healthcare

1030



2024 |IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) - Special Session 17

practices to engage the remaining portion of the population
discouraged by the current system performance and encourage
those who already use telemedicine to use it more extensively.

II. STATE OF THE ART

There are numerous medical devices on the market capable
of performing electrocardiography and/or photoplethysmog-
raphy; however, only a few manage to ensure performance
that allows them to stay within a sufficiently low error range
to be considered reliable. The main companies that come
closest to our research focus are AliveCor, Withings, Apple
and Samsung.

AliveCor [12] offers one of the most acclaimed devices for
acquiring ECG, providing users with the option to subscribe
and receive real-time diagnoses from a team of cardiologists.
The product line is named Kardia and is paired with an
intuitive application that guides users in performing single-
lead or six-lead electrocardiograms, which are then filtered and
converted into a PDF format. Withings [13] offers a wide range
of products, primarily watches, capable of acquiring a diverse
set of vital signals (e.g. ECG, SpO2, temperature). However,
similar to Kardia, blood pressure calculation is not included
among the measured signals unless using the BPM Core
device with a cuff to be inflated. Likewise, Apple [14] also
introduces watches capable of performing electrocardiograms,
displaying them on-screen, and calculating SpO2, yet arterial
blood pressure is not computed in this case either. Finally,
Samsung [15], offers, among its various devices, the Galaxy
Watch 5, which is capable of acquiring and displaying the ECG
and the PPG signals, and deriving blood pressure from the
latter one. The device asks the user to calibrate it by initially
measuring the pressure using a highly accurate instrument.

The device presented in this paper addresses the existing gap
in the prominent device market by introducing an innovative
and reliable method for cuffless blood pressure calculation
through the use of a neural network, having as input not
only the PPG but also the ECG to improve the accuracy
of the estimation while maintaining competitive pricing. Fur-
thermore, there is a well-known need to empower users to
manage not only data in PDF format but also in numerical
format. This feature allows physicians to filter ECG tracings
at their discretion through the use of desktop applications, a
functionality absent in all the products described above.

ITII. SYSTEM DESCRIPTION

PulsECG is an electronic device designed and assembled
in the Neuronica laboratory at the Polytechnic of Turin.
It is shaped like a bar and is conceived with the idea of
monitoring heart conditions through the use of two electrodes
[16] (according to Einthoven’s triangle [17]). These electrodes,
when in contact with specific areas of the human body, can
capture a meaningful electrocardiographic signal. In addition
to the ECG, the device is designed to acquire the photoplethys-
mographic signal (PPG) using an optical sensor. Once both
ECG and PPG signals are acquired, the device can transmit

them to an Android application using the bluetooth low energy
(BLE) protocol to minimize power consumption.

PulsECG is composed by a first PCB, which contains the
main components and the ECG acquisition part, connected
using a 8-pin flat cable to a second PCB for the PPG recording,
as shown in Figs. 1 and 2:

a) ECG PCB:

« Analog Front-end: This section is responsible of the ECG
signal conditioning [18], which means to amplify and
filter the ECG signals coming from the two electrodes.
It is made of a TI INA333, followed by a high-pass
filter (f. = 0.5 Hz), a notch filter to remove powerline
interference, and a low-pass filter with f. = 100 Hz.

¢ Microcontroller (TT CC2640): this unit manages all other
blocks and samples data from the ECG using its internal
ADC Converter. It also monitors the battery, obtains PPG
values via I12C communication and communicates to the
user by means of LEDs, a switch, and the patch antenna.

o Power Management: the device is powered via a recharge-
able Li-Po battery of 190 mAh, connected to a bat-
tery charger (MAXIM MAXI1555) and a battery gauge
MAXIM MAX17048), which provide the information
to the microcontroller about the charging mode and the
battery status, respectively. In addition, the battery is
connected to the voltage regulator (MAXIM MAX1759)
to generate a steady power voltage for the digital section,
while the TI REF2033 provides the reference voltage for
the analog part.

o Patch Antenna: involved to communicate through BLE
directly to an Android App.

b) PPG PCB: To allow a correct finger positioning on
the PPG sensor and, thus, a noise-free PPG acquisition, it
has been chosen to place the sensor near the top case of the
device. At this purpose, a second PCB with only the MAXIM
MAXMS86161 PPG sensor was designed, connected to the
ECG PCB via an 8-pin flat cable, carrying power lines and
12C lines.

Fig. 1. 3D model of the PulsECG device. On the sides there are the electrodes
(red plates); the two PCBs are superimposed to minimize space requirement,
with the white flat cable to connect them: the ECG PCB is at the base (dark
green), while the PPG PCB is on top of it (light green), with the PPG sensor
above (black block).
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Fig. 2. PulsECG - Block diagram. Two PCBs connected via flat cable: ECG
PCB (left) and PPG PCB (right)

The final prototype, with the two PCBs and the electrodes
enclosed in a 3D-printed case, can be seen in Fig. 3.

Fig. 3. PulsECG - Final Prototype

IV. NEURAL NETWORK FOR BLOOD PRESSURE
PREDICTION

As previously mentioned, preliminary efforts have been
made to measure blood pressure non-invasively [19]. Extensive
research in this field is documented in the literature [20]-[22],
with many studies focusing on large databases and complex
neural networks. For instance, significant work in literature
has been done using the MIMIC database [23]-[26]; how-
ever, this database presents certain challenges. It is primarily
derived from ICU settings, employing specialized equipment
for recording ECG, PPG, and invasive blood pressure mea-
surements. Additionally, there is a lack of clarity regarding
the database filtering processes and other specific details,
making its application to real-world scenarios problematic.
To address this issue, the proposed approach involved the
collection of a database acquired using the PulsECG device, to
capture a range of everyday scenarios and situations to enhance
applicability and relevance. In addition, this approach ensures
the control on the acquisition pipeline and the relative pre-
propressing.

A. Dataset description

The dataset was meticulously compiled from 20 healthy
subjects, including 5 females and 15 males, spanning a wide
age range of 22 to 84 years. Each participant was carefully
positioned in a seated, relaxed posture to ensure consistency
in physiological responses and to mirror typical, everyday
environmental conditions akin to a home setting. This choice
of positioning and environment was pivotal in minimizing
external variables that could influence the cardiovascular mea-
surements.

Before the initiation of the dataset collection, a thorough
health screening was conducted to confirm that all participants
were free from acute cardiovascular or systemic diseases.
However, it is notable that the cohort included individuals
with varied cardiovascular profiles; one subject exhibited a
consistently elevated heart rate of around 110 beats per
minute, likely due to medication effects. Additionally, some
participants showed signs of hypertension or hypotension,
providing a valuable spectrum of blood pressure values within
the dataset.

Each participant underwent a sequence of three blood
pressure (BP) measurements interspersed with two recordings
of ECG & PPG signals. Blood pressure was measured using
a certified sphygmomanometer, the OMRON X7 Smart, and
the ECG & PPG signals were acquired simultaneously. The
initial BP measurement established the baseline blood pressure
setting the reference point for the subsequent recording. It
was immediately followed by the first ECG & PPG signal
recording, to minimize BP change over time. Subsequently,
a second blood pressure measurement was taken, leading to
the second ECG & PPG recording, and the sequence was
completed with a final blood pressure reading.

After the acquisition, the ECG & PPG data, with a total
duration of 30 seconds, were divided into 228 windows of 8-
seconds each. Blood pressure values for each window were
determined through interpolation between the previous and
subsequent blood pressure measurements, assuming that the
BP variation in just 30 seconds was linear.

This pipeline was aimed at generating a comprehensive
dataset for neural network training, ensuring a significant
quantity of blood pressure samples and enhancing the numer-
ical diversity of the dataset, which is crucial for the reliability
of the model.

V. NEURAL NETWORK STRUCTURE

The neural network uses a multilayered architecture to
process time-series input from dual-channel PPG and ECG
signals, each comprising 1000 time points (8 seconds). It starts
with an input layer, followed by two consecutive convolutional
blocks. Each block contains a convolutional layers with 128
filters (kernel size 3, ’same’ padding), batch normalization, and
ReLU activation, facilitating feature extraction while ensuring
normalization and non-linearity.

After the initial convolutional layers, a residual connection
captures the network’s state before the sequence undergoes
downsampling through a max pooling layer. This is followed
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by three bidirectional LSTM layers, each with 128 units,
designed to capture temporal dependencies in both directions
of the input sequence.

Subsequently, the network applies two more convolutional
layers (128 filters, kernel size 3, ’same’ padding) with
batch normalization and ReLU activation. Data upsampling
is achieved via a transposed convolutional layer (256 filters,
kernel size 2, stride 2, ’same’ padding), which doubles the
sequence length. A concatenation layer merges this upsampled
output with the earlier residual connection, aiming to restore
spatial resolution lost during pooling.

The architecture concludes with three final convolutional
layers (128 filters, kernel size 3, ’same’ padding) with batch
normalization and ReLU activation, leading to a single feature
map. This map is then flattened and passed through a dense
layer to produce the final predictions for systolic and diastolic
blood pressure (SBP and DBP).

The network is compiled with the Adam optimizer, using a
mean squared error loss function and tracking mean absolute
error as a metric for prediction accuracy.

VI. RESULTS

To assess the performance of the PulsECG, it was first
measured the quality of the ECG and PPG signals acquired by
the device. Once confirmed the reliability of these two signals
with regard to a medical golden standard, it was performed a
second quality test on the neural network BP prediction.

A. Device

All the electronic features for which the device was designed
were tested, with particular focus on the ECG and PPG signals.
Hundreds of acquisitions were performed on various members
of the Neuronica laboratory, ensuring the deterministic behav-
ior of the device and consistency of the acquired signals. Once
confidence in the signal waveforms was established, tests were
conducted using a General Electric (GE B105) medical device
as the golden reference.

The test was performed as follows:

o 5 subjects.

¢ 5 acquisitions per each subject using the golden reference
GE B105 (ECG, PPG).

« 5 acquisitions per each subject using the prototype (ECG,
PPG).

All the acquisitions were performed in parallel to have the
closest actual scenario. The signals were compared both in
the time and frequency domains. For the latter, starting from
the Fast Fourier Transform (FFT), the power spectral density
(PSD) [27] was calculated to verify that the signal energy
distribution over the spectrum was similar to the GE B105:

N 2

2 xne—lwnAt

n=1

psp(s) = B0

a (D

Fig. 4 and 5 show the comparison between the PSD of the
ECG and PPG acquired by the PulsECG and the corresponding
GE BI105, respectively. In order to perform a quantitative

10 — ECG GEB105
ECG prototype

. JLMMMWLM,.,umu‘.w.-nwwb T s

o 5 10 15 20 25 E
Frequency [Hz]

Fig. 4. Frequency Domain (PSD) comparison of the ECG acquired by the
PulsECG (blue) and the corresponding GE B105 one (red).

— PPG prototype
PPG GE B105

a
Frequency [Hz]

Fig. 5. Frequency Domain (PSD) comparison of the PPG acquired by the
PulsECG (blue) and the corresponding GE B105 one (red).

comparison, the Cumulative Spectral Power (CSP) was also
calculated, which derives from the PSD using a cumulative
sum normalized with the total power [28]. The resulting curve,
CSP(f), is a monotonically increasing function that represents
the percentage of energy contained in the frequencies below
a certain frequency of interest:

f
CSP(f)=Y_PSD(n) 2)

n=1

Fig. 6 and 7 show the comparison between the CSP of the
ECG and PPG acquired by the PulsECG and the corresponding
GE B105, respectively.

1.0+

Magnitude

— GEB105
prototype

T T T
0 5 10 15 20 25 30 35
Frequency [Hz]

Fig. 6. Frequency Domain (CSP) comparison of the ECG acquired by the
PulsECG (blue) and the corresponding GE B105 one (red).

Based on this function, in Tablel and Tablell it is possible to
see the frequency at which ECG and PPG signals, respectively,
reach a specific fraction of the total power, and thus, the
information content.
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Fig. 7. Frequency Domain (CSP) comparison of the PPG acquired by the
PulsECG (blue) and the corresponding GE B105 one (red).

predictive performance for SBP and DBP, respectively. Each
plot correlates the neural network prediction (x-axis) with the
actual true measured values of the sphygmomanometer (y-
axis).

Fig.10 shows a pronounced linear relationship between the
predicted and actual values, with the data points densely popu-
lating a diagonal trend. This indicates that the neural network
predictions for SBP are generally accurate, with a positive
correlation between predicted and measured values. While
there is some degree of scatter, which suggests variability and
prediction error, the overall trend suggests a well-performing
model. The same observations can be made for the DBP (see
Fig.11), which also shows a slight tendency to overestimate
the blood pressure values, as the points generally lie above the
line of perfect prediction.

TABLE I
CSP COMPARISON FOR THE ECG SIGNAL
Device f20% [Hz] | f 50% [Hz] | f 80% [Hz]
GE B105 2.58 6.96 13.90
PulsECG 1.16 4.16 8.38
TABLE II
CSP COMPARISON FOR THE PPG SIGNAL
Device f20% [Hz] | f 50% [Hz] | f 80% [Hz]
GE B105 1.06 1.16 2.15
PulsECG 1.12 1.16 2.28

Real SBP values

Finally, Figs. 8 and 9 show the comparison in the time-
domain between the ECG and PPG acquired by the PulsECG
and the corresponding GE B105, respectively.

| | | |

U R | )
A AN A

| — GEB105
|

Fig. 8. Time Domain Comparison of the ECG acquired by the PulsECG
(blue) and the corresponding GE B105 one (red).

Fig. 9. Time Domain Comparison of the PPG acquired by the PulsECG (blue)
and the corresponding GE B105 one (red)

All the above comparisons show a good result with the ECG
acquisition and an optimal performance for the PPG. Indeed,
the ECG CSP shows an higher difference in the distribution of
power over the spectrum with regard to the golden reference.
On the contrary, Table II shows a almost perfect match among
the CSP of PulsECG PPG and the GE B105 one. It is important
to highlight that the PulsECG ECG will be subsequently
processed through the use of digital filters to eliminate certain
components arising from noise, thus improving the quality of
the signal.

B. Neural network

To assess the accuracy of the trained neural network model,
Figs.10 and 11 show the scatter plots of the neural network

Predicted SBP Values

Fig. 10. Scatterplot for SBP showing predicted (x-axis) vs ground truth from
the sphygmomanometer (y-axis)

Real DBP values

Predicted DBP Values

Fig. 11. Scatterplot for DBP showing predicted (x-axis) vs ground truth from
the sphygmomanometer (y-axis)

VII. CONCLUSIONS

Telemedicine is everyday gaining more ground in the overall
population. The benefits of having smart devices that can en-
sure high standards of reliability and streamline, consequently
improving the healthcare system, are huge. All of this is made
more accessible with the integration of artificial intelligence
at every engineering level.

This paper presented a novel device for acquiring ECG and
PPG signals and, from these, estimating the arterial blood
pressure using a neural network model; thus, the proposed
approach does not require an inflation of a cuff over the
arm, which is actually uncomfortable and can cause some
degree of pain. The comparison of the device performance
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with a certified vital sign monitor, the GE B105, showed
the PulsECG reliability and robustness in acquiring human
biological signals, giving the close similarity with the golden
standard corresponding recordings. At the same time, the
neural network performance in predicting systolic and di-
astolic blood pressure values, as evidenced by the scatter
plots, demonstrates a good predictive capability with a high
correlation between the predicted and actual values.

Given the above, the overall results can be considered very
satisfactory and provide a foundation for future optimization to
enhance prediction accuracy and reduce overestimation biases.
The findings from this analysis indicate that with further
refinement, the PulsECG has the potential to be a reliable
tool for a cuffless non-invasive blood pressure monitoring,
which could have significant implications for clinical practice
and remote patient monitoring. However, there are areas for
improvement in the prototype, the dataset and neural network
model.

One notable limitation is the challenge of implementing
PulsECG in real-world clinical settings. Addressing this in-
volves expanding the study to include a larger and more
diverse subject pool. Increasing the number of subjects will
not only enhance the robustness and generalizability of the
findings but also augment statistical power and diminish bias
risk. This expansion is crucial for validating the cuffless blood
pressure monitoring method’s effectiveness across various
demographic groups and medical conditions.

Future research will deal with improving the ECG analog
front-end and the subsequent digital filtering phase to reach
the golden standard quality, especially in low-frequency part
of ECG spectrum. Additional sensors will be embedded to
provide users to monitor more vital parameters, such as human
body temperature, and the amount of acquired ECG leads will
be increased to all the peripheral ones, i.e. six.

Through these enhancements and expansions, future re-
search aims to address current limitations and elevate the
PulsECG device’s capability, further solidifying its role in
advancing cuffless blood pressure monitoring technologies.
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