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A B S T R A C T

The use of fracture energy regularization techniques can effectively mitigate the mesh dependency of
numerical solutions caused by the strain softening behavior of quasi-brittle materials. However, the successful
regularization depends on the correct estimation of the crack bandwidth in Finite Element solutions. This
paper aims to present an enhanced crack band formulation to overcome the strain localization instability
especially for the higher-order elements developed in the framework of Carrera Unified Formulation (CUF).
Besides, a modified Mazars damage method incorporating fracture energy regularization is employed to
describe the nonlinear damage behavior of the concrete. To evaluate the efficiency of the proposed crack
band formulation, three experimental concrete benchmarks are selected for the numerical damage analysis. By
comparing numerical and experimental results, the proposed method can guarantee mesh objectivity despite
varying finite element numbers and orders, indicating perseved fracture energy consumption within proposed
higher-order beam models.
1. Introduction

The mechanical behavior of quasi-brittle materials like concrete
typically exhibits strain softening. This phenomenon is characterized
by decreasing stress with increasing strain due to the growth and
coalescence of microscopic defects. Using Continuum Damage Mechan-
ics (CDM) to model such materials is widely accepted in scientific
and engineering communities [1]. Various damage models have been
proposed within the CDM framework to describe strength and stiff-
ness degradation. These include isotropic damage models using scalar
damage variables [2,3], anisotropic damage models [4], and models
coupling damage with plasticity [5,6]. However, a critical issue arises
from stress localization, where uniform strain distribution changes
into a highly localized one. This localization leads to zero fracture
energy dissipation, resulting in ill-posedness and a lack of objectivity in
numerical analyses [7]. Consequently, such instability notably causes
significant spurious mesh sensitivity in Finite Element (FE) solutions,
affecting their accuracy and reliability.

Various regularization techniques have been proposed to restore the
objectivity of CDM. One widely adopted approach is based on nonlocal
formulations, including integral-type models [8,9] and gradient-type
models [10]. The key idea of the nonlocal model is defined as a
function of the average strain across a specific representative volume
of the material at a given point [11]. However, the implementation

∗ Corresponding author.
E-mail address: mario.rui.arruda@tecnico.ulisboa.pt (M.R.T. Arruda).

of this method is complex, and determining the appropriate size for
the representative volume, empirically associated with the size of the
aggregate in concrete, presents a significant challenge. Additionally,
spurious boundary effects may occur if the influence of the physical
boundaries is not adequately considered [8].

An alternative method involves adjusting the constitutive law based
on the width of the localized band, which is significantly influenced by
the FE mesh in numerical analyses. This approach, known as the crack
band model or fracture energy regularization technique, was first pro-
posed by [12]. This method calculates fracture energy as the product
of dissipation density and the localized bandwidth [13]. Dissipation
density, the energy dissipated per unit volume, represents the area
under the stress–strain curve. In standard CDM, fracture energy tends
to zero as the FE mesh becomes finer, resulting in spurious mesh size
dependency. Thus, the objective of the crack band model is to preserve
fracture energy by rescaling the post-localized portion of the stress–
strain law using a crack bandwidth. A vital advantage of this model is
its simplicity in implementation within FE software.

A critical aspect of the crack band model is determining the crack
bandwidth, also called the characteristic element length (𝑙𝑐). This pa-
rameter is strongly related to various finite element characteristics in
numerical simulations. As reviewed in [13], 𝑙𝑐 is influenced by factors
such as the type of element used (triangles or quadrilaterals), the order
965-9978/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
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of element approximation (linear or quadratic), the integration scheme
(specifically, the number of integration points), and the alignment of
the crack band with the FE mesh. Therefore, the first category of meth-
ods for estimating 𝑙𝑐 is based on the element area or volume [12,14]
to consider the mesh size. Some coefficients are introduced to evaluate
the influence of other aspects, such as mesh shape and element order
in [15]. While this method is straightforward, it does not apply to
elements with arbitrary shapes, promoting some mesh sensitivity.

Therefore, Oliver [16] proposed two more robust methods capable
of accommodating irregular mesh shapes. Physically, the 𝑙𝑐 from one
f them is characterized by measuring the distance between boundary
dges of the element in the crack normal direction at each Gaussian
oint. The other one calculates the distance between the two most
istant midpoints on the element edge in the crack direction at the
idpoint of an isoparametric element. However, these methods have

nly been validated for two-dimensional (2D) elements with linear
nterpolation functions. A discontinuity of the first Oliver’s method was
bserved and then solved by Govindjee in [17], making it suitable for
inear three-dimensional (3D) elements. Govindjee’s approach measures
he distance between the two most distant corner nodes of an ele-
ent in the crack normal direction, physically akin to the projection
ethod proposed by [18]. Building on these concepts, [19] introduced
modification, offering an improved way that calculates the maximum
rojection of midpoints on the element edge along the crack normal
irection to determine 𝑙𝑐 .

The methods above effectively address the influences of element
ize, shape, and mesh alignment, yet they are primarily limited to
inear elements. For higher-order elements with more complex inter-
olation functions, strain softening tends to localize within parts of
he element, leading to concurrent softening and unloading within
he same element. This phenomenon occurs because the strain field
ecomes non-uniform using quadratic interpolation functions, as re-
orted in [13,20]. Consequently, employing the earlier methods in such
cenarios can overestimate 𝑙𝑐 . Therefore, it is suggested to introduce a
arameter that accounts for the integration scheme and element order
n one-dimensional (1D) and 2D analyses [13,20].

Currently, the efficiency of 1D higher-order beam models based on
arrera Unified Formulation (CUF) [21–23] attract significant interest

n structural analysis [24,25]. CUF provides a structural theory frame-
ork that enables the derivation of variable kinematic models without

elying on ad hoc assumptions. CUF-based beam models derive the 3D
isplacement field by employing various expansion functions across the
eam, utilizing the Finite Element Method (FEM) for solutions [26,
7]. Such beam models achieve quasi-3D results while preserving the
fficiency of 1D beam models. The estimation of 𝑙𝑐 in these models

starts with the cubic root of small volumes subdivided according to the
element order, as detailed in [28–30]. However, this initial approach,
which requires a correlation between the beam element size and the
cross-sectional mesh size, can limit the capabilities of 1D-CUF models.
To address this limitation, [31] proposed a robust method inspired
by [19], achieving mesh-independent results in reinforced concrete
structures [32]. Despite this improvement, element order sensitivity
remains challenging, as reported in [31].

In this context, the present work aims to develop an updated calcu-
lation method for 𝑙𝑐 to mitigate the element order sensitivity in 1D-CUF
FE models. This new method builds upon Govindjee’s approach [17]
and incorporates a parameter that accounts for element order inspired
by the methodology proposed by [20]. By introducing this parameter,
the proposed method ensures comprehensive consideration of the mesh
characteristics of 1D-CUF models. An isotropic damage model, based on
CDM, is utilized in conjunction with the proposed 𝑙𝑐 calculation. Once
the proposed 𝑙𝑐 resolves the mesh size dependency and element order
sensitivity, it is expected to see its successful use in various damage
models. The novelty of this research lies in enhancing the crack band
model for 1D-CUF models, thereby maximizing their computational
2

efficiency and numerical accuracy. 𝛿
This paper begins with a concise introduction to the higher-order
beam theory based on CUF. Then, a modified Mazars damage model
with fracture energy regularization technique, having been verified
by [14,31], is briefly introduced to capture the damage behavior of
the material. Subsequently, the proposed calculation method for 𝑙𝑐
s presented in detail, along with a comparative analysis against the
revious method detailed in [31]. To validate the effectiveness of
he proposed method for 𝑙𝑐 , three examples from experimental tests
re selected for numerical analysis. Finally, the paper concludes with
ignificant findings from the analysis and discussions.

. Unified higher-order structural theories and beam finite ele-
ents

This section briefly introduces higher-order beam theories based on
UF and its finite element implementation. As described in [33], the
D displacement field in 1D beam models is represented by Eq. (1),
tilizing expansion functions denoted as 𝐹𝜏 .

(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝐮𝜏 (𝑦), 𝜏 = 1, 2,…… ,𝑀 (1)

here 𝑦 represents the longitudinal axis of the beam, while 𝑥 and 𝑧 cor-
espond to the cross-sectional coordinates; 𝐮𝜏 signifies the displacement
ield along the length of beam; the subscript 𝜏 denotes a summation
ver terms, and 𝑀 represents the number of terms in the polynomial
xpansions. Various choices for 𝐹𝜏 exist, including Taylor and Lagrange
xpansions. Further details are available in [33].

This work employs 2D Lagrange-like polynomials to describe cross-
ectional kinematics. This approach can handle arbitrary cross-sections
ia isoparametric transformation, and the unknowns from polynomials
epresent pure displacements in numerical modeling. Based on the
rder of Lagrange expansions, the options typically include linear La-
range elements with four nodes (L4), quadratic elements with nine
odes (L9), and cubic elements with sixteen nodes (L16). In this study,
e employ L9 elements; hence, the expression for one L9 element is
rovided as an example in Eq. (2).

𝜏 =1
4
(

𝑟2 + 𝑟𝑟𝜏
) (

𝑠2 + 𝑠𝑠𝜏
)

, 𝜏 = 1, 3, 5, 7

𝜏 =1
2
𝑠2𝜏

(

𝑠2 + 𝑠𝑠𝜏
) (

1 − 𝑟2
)

+ 1
2
𝑟2𝜏

(

𝑟2 + 𝑟𝑟𝜏
) (

1 − 𝑠2
)

, 𝜏 = 2, 4, 6, 8

𝜏 =
(

1 − 𝑟2
) (

1 − 𝑠2
)

, 𝜏 = 9

(2)

here (𝑟, 𝑠) are the normalized coordinates, while (𝑟𝜏 , 𝑠𝜏 ) represent the
ormalized coordinates of each node 𝜏.

By applying the FEM to the generalized displacements 𝐮𝜏 using the
hape function 𝑁𝑖(𝑦), the displacement field as expressed in Eq. (1) can
e reformulated as follows:

(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝐮𝜏𝑖, 𝑖 = 1,… , 𝑁𝑁𝐸 (3)

here 𝑁𝑁𝐸 is the number of nodes per beam element, and 𝐮𝜏𝑖 is the
odal displacement vector, which includes unknown variables. In this
E LE formulation, unlike classical models, the unknown variables of
he computational model do not lie on the beam element axis but are
laced on the physical surfaces of the body.

The selection of beam elements is entirely independent of the choice
f expansion functions. In other words, the order and number of
eam and Lagrange elements can be considered input parameters in
umerical analysis, highlighting a key advantage of CUF-based models.
ommon options for beam elements include two-node linear elements
B2), three-node quadratic elements (B3), and four-node cubic elements
B4).

The Principle of Virtual Displacements (PVD) states that the external
irtual work (𝛿𝐿ext) is equal to the internal virtual work (𝛿𝐿int). For
implicity, the expressions for external and internal virtual work are
resented as follows:

𝑇
𝐿𝑒𝑥𝑡 = 𝛿𝒖𝑠𝑗𝐅𝑠𝑗 (4)
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𝛿𝐿int = 𝛿𝒖𝑇𝑠𝑗𝐊
𝜏𝑠𝑖𝑗𝐮𝜏𝑖 (5)

with

𝐊𝜏𝑠𝑖𝑗 = ∫𝑙 ∫𝛺

[

𝐃(𝑁𝑗 (𝑦)𝐹𝑠(𝑥, 𝑧))
]𝑇 𝐂

[

𝐃(𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦))
]

𝑑𝛺𝑑𝑙 (6)

where 𝑖, 𝑗, and 𝜏, 𝑠 are indexes related to beam shape and cross-
sectional expansion functions, respectively. 𝐊𝜏𝑠𝑖𝑗 is a 3 × 3 fundamental
nucleus (FN), which enables the automatic assembly of the element
stiffness matrix through the combination of four indexes 𝜏, 𝑠, 𝑖, and
𝑗; 𝑙 denotes the length of the beam element, and 𝛺 represents the
rea of cross-section; 𝐂 is Hooke’s law material matrix; 𝐃(⋅) is the
ifferentiation operator; 𝐅𝑠𝑗 is the external force acting on beam node
and cross-sectional node 𝑠.

Then, the governing equation for static problems is derived by
pplying the PVD and integrating Eq. (4) with Eq. (5). The derived
quation can be rewritten as follows:
𝜏𝑠𝑖𝑗𝐮𝜏𝑖 = 𝐅𝑠𝑗 (7)

. Modified Mazars damage model

As described by Mazars in [2], a simple class of isotropic damage
odels is represented by Eq. (8). This model introduces a scalar damage

ariable 𝑑, which evolves from 0 (indicating intact material) to 1 (sig-
ifying fully damaged material), to describe the reduction in material
lasticity.

= (1 − 𝑑)𝐂𝜺 (8)

In the framework of Mazars damage model, only positive principle
trains contribute to damage evolution. Therefore, a scalar variable
amed equivalent strain 𝜀𝑒𝑞 is defined to regulate the damage variable.
his definition allows the conversion of a triaxial state into a uniaxial
tate. Subsequently, the loading function is defined as follows:

(𝜺, 𝜅) = 𝜀𝑒𝑞(𝜺) − 𝜅 ≤ 0 (9)

here 𝜅 is an internal variable. Initially, 𝜅 is a constant and equals the
lastic strain limit, representing the elastic loading. Following the onset
f damage, 𝜅 is updated as the 𝜀𝑒𝑞 . In the event of unloading, 𝜅 becomes
constant again and equals the maximum level of the equivalent strain

hroughout the load history.
According to [2], the damage variable 𝑑 in Eq. (8) is defined as a

inear combination of the tensile damage 𝑑t and compressive damage
c, which can be expressed as:

= 𝛼t𝑑t + 𝛼c𝑑c (10)

here 𝛼𝑡 and 𝛼𝑐 are the parameters that quantify the respective influ-
nces of tension and compression on the total damage. The detailed
alculations for 𝛼𝑡 and 𝛼𝑐 can be found in [14], but it is worth noting
hat both parameters are less than one, and their sum consistently
quals one.

The original damage evolution laws provided by [2] require the cal-
bration of parameters through experimental tests. This part introduces
ew damage evolution laws derived from the tensile and compressive
onstitutive laws in the fib Model Code 2020 (fib MC2020) [34].
hese laws incorporate a fracture energy regularization technique to
revent zero-energy dissipation and ensure mesh-independent results
n numerical modeling.

In the case of tension, a classic exponential softening law is em-
loyed, designed to prevent stress from decreasing to zero, thereby
nsuring that the damage value never reaches 1.0. This strategy can
nsure better convergence. Eq. (11) presents the corresponding damage
volution law. Detailed discussions can be found in [14].

t = 𝑔t (𝜅t ) = 1−
𝜀d0 exp

(

𝜀d0−𝜅t
)

(11)
3

𝜅t 𝜀tu−𝜀d0
here 𝜀d0 is the limiting elastic strain in a uniaxial state; 𝜀tu is the
quivalent ultimate strain for bilinear softening, which controls the
lope of the softening and related to the tensile volumetric fracture
nergy 𝑔f t . Its calculation is presented as Eq. (12).

f t =
𝐺f t
𝑙c

= 𝑓ctm
(

𝜀tu − 𝜀d0
)

(12)

in which 𝑓ctm is the mean tensile strength in a uniaxial state; 𝐺f t is the
fracture energy dissipated per unit area of a surface due to cracking;
𝑙c is characteristic element length which will be discussed in detail
subsequently.

In the case of compression, the uniaxial constitutive law follows the
guidelines from fib MC2020 [34]. The concept of residual compressive
stress 𝜎cres is introduced to avoid convergence issues. This idea ensures
that the stress remains constant once the strain reaches a threshold,
termed the residual compressive strain 𝜀cres. This strategy guarantees
that the stress never reduces to zero and the damage value never
reaches 1.0. The detailed information can be found in [14]. In this
work, the compressive damage evolution law is presented as follows:

𝑑c=𝑔c
(

𝜅c
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1−

(

𝑘 × 𝜂−𝜂2
)

𝑓cm
(1+(𝑘−2)×𝜂)𝐸cm𝜅c

if 𝜅c ⩽ 𝜀c1

1−
𝑓cm

𝐸cm𝜅c
if 𝜀c1 < 𝜅c ⩽ 𝜀c2

1+
𝑘1
𝐸cm

−
𝑘2

𝐸cm𝜅c
if 𝜀c2 < 𝜅c ⩽ 𝜀cres

1−
𝜎cres
𝐸cm𝜅c

if 𝜀cres < 𝜅c

(13)

with

𝜅c =
𝜅t

𝜈
√

2
; 𝑘 =

1.05𝐸cm𝜀c1
𝑓cm

; 𝜂 =
𝜅c
𝜀c1

;

𝑘1 =
𝑓cm

(

𝜀cu − 𝜀c2
) ; 𝑘2 = 𝑓cm + 𝑘1 × 𝜀c2

(14)

where 𝑓cm is the mean compressive strength; 𝐸cm is the secant Young’s
modulus; 𝑘, 𝑘1 and 𝑘2 are the parameters from [35] to describe the
softening; 𝜀c1 and 𝜀c2 are strain parameters that can be taken as 2.0‰
nd 2.4‰ from [35], respectively; 𝜂 is a unidimensional strain ratio
rovided in [34]. 𝜀cu is the extreme compressive strain for determin-
ng the slope of softening part, which is related to the compressive
olumetric fracture energy 𝑔fc and calculated in Eq. (15).

fc =
𝐺fc
𝑙c

= 𝑓cm ×

(

𝜀cu +
(

𝜀c2 − 𝜀c1
)

2

)

(15)

where 𝐺fc is the compressive fracture energy dissipated per unit area
of a surface due to crushing.

The tensile and compressive fracture energies are material prop-
erties that can be measured from experimental tests. As the element
size decreases or finer mesh is adopted in FE, energy dissipation tends
towards zero. Therefore, the general idea of fracture energy regular-
ization based on the crack band model is to rescale the stress–strain
softening curves. This idea ensures the same energy dissipation per
unit area across varying element sizes as shown in Eqs. (12) and (15)
in which the fracture energies are converted into volumetric fracture
energies, signifying the energy dissipated per unit volume.

4. Estimation for characteristic element length

In FE simulations, the correct estimation of the characteristic length
of the element, denoted as 𝑙c, is crucial. Overestimating or underesti-
mating this value can result in inaccurate fracture energy regulariza-
tion. In general, 𝑙c is viewed as an FE discretization parameter influ-

enced by element characteristics such as the selected element shape,
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element size, type of interpolation function, the numerical integration
scheme, and element orientation.

Apart from the fundamental approach of calculating the square
root of the element area or the cubic root of the element volume,
numerous advanced methods have been developed for estimating 𝑙c
uitable for general situations. These methods are comprehensively
eviewed in [13]. Notably, a method proposed by Govindjee in [17]
s particularly significant, as it accounts for the crack band direction
nd is effective for both 2D and 3D linear elements. The estimation
quation proposed by Govindjee [17] is expressed as:

𝐺(𝐱) =
( 𝑛𝑐
∑

𝑖=1

[

𝜕𝑁𝑖
𝜕𝐱

𝛽𝑖

]

⋅ 𝐧(𝐱)
)−1

(16)

with

𝛽𝑖 =

(

𝐱𝑖 − 𝐱𝑐
)

⋅ 𝐧(𝐱) − 𝛽min

𝛽max − 𝛽min

𝛽min = min
𝑖=1,𝑁nodes

{(

𝐱𝑖 − 𝐱𝑐
)

⋅ 𝐧(𝐱)
}

𝛽max = max
𝑖=1,𝑁nodes

{(

𝐱𝑖 − 𝐱𝑐
)

⋅ 𝐧(𝐱)
}

(17)

where 𝑛𝑐 is the number of corner nodes; 𝑁𝑖 is the shape function; 𝐱
represents the target point, such as Gaussian point (GP); 𝐧(𝐱) is the
unit vector in the major principal strain direction; 𝐱𝑖 and 𝐱𝑐 are the
orner nodal points and the central point of the same finite element,
espectively.

The physical meaning of Govindjee’s method is measuring the dis-
ance between the two farthest corner nodes of an element in the
irection normal to the crack, similar to the projection method. This
pproach incorporates factors such as the element sizes, shapes, and
rack orientation. However, it does not consider the interpolation
unction and numerical integration scheme. It is important to note that
his method is conducted based on the central point of the element,
esulting in each GP within the same element having an identical
haracteristic element length.

Regarding the higher-order displacement approximation functions,
13] identified that strain softening localizes at only some, but not all,
Ps within a single element. This phenomenon will lead to the under-
stimation of 𝑙𝑐 if the previous method is employed. Therefore, [20]
roposed two parameters to refine Govindjee’s approach. The first, 𝛼,
ccounts for the potential effects of higher-order approximation, while
he second, 𝛾, serves as an alignment factor. The values of 𝛼 and 𝛾
orresponding to the different element types are suggested in [20]. This
ethod considers nearly all FE characteristics, but its validation was

imited to 2D problems. Consequently, these parameters may not be
uitable for higher-order beam theories based on CUF.

Building on previous studies, [31] developed a robust approach
o estimate the characteristic element length specifically for higher-
rder beam theories. This strategy enhances an existing method de-
ailed in [19], which evolved from Govindjee’s method. According
o [19], the characteristic element length is calculated by measuring
he distance between the two farthest midpoints of the element edges,
riented normal to the crack direction, in a 2D element that typically
as four edges and midpoints. [31] tried to expand this method to
D space by using the same projection but incorporating additional
idpoints because there are eight edges and eight midpoints in one
D element. Furthermore, [31] subdivided the element according to
ts order, aiming to address the effects of the interpolation function.
lthough this method delivers results with accuracy independent of
esh size, it shows higher softening results when quadratic beam

lements are employed. This phenomenon was attributed to the mesh
ensitivity relative to the element order.

Given the summary above, this study proposes an updated method
or estimating the characteristic element length in higher-order beam
odels to mitigate or eliminate mesh sensitivity associated with el-
4

ment order. The key point of this method is the introduction of
parameter, 𝛼, designed to account for the influence of elements
rder. This parameter is then employed to modify the 𝑙𝑔 derived from
ovindjee’s method. Since the finite beam elements with cross-sectional
xpansion are employed in this work, the specific correction for mesh
ias is not considered here. The expression of 𝑙𝑐 incorporating 𝛼 is
ritten as follows:

𝑐 = 𝛼 × 𝑙𝑔 (18)

The computation of 𝛼 is based on the ratio of the weights of
oftening GPs to the total weights of all GPs within a beam element.
his calculation is illustrated with a simple example in Fig. 1, including
he computation for 𝑙𝑔 . Fig. 1 depicts a beam element with three
odes. A 9-node Lagrange element is used for each node, leading to the
ssembly of a 27-node volume element via Lagrange expansion. When
GP undergoes softening, Govindjee’s method is applied to project

he volume element’s corner nodes along the major principal strain
irection, denoted as 𝑙𝑔 . Subsequently, the condition of each GP is
valuated following a specific rule. The 27 GPs in the volume element
re grouped into nine categories, as demonstrated in Fig. 1. Each
P within a group has different weights in Gaussian integration. For

nstance, the highlighted green group in Fig. 1 contains our interested
aussian point. Three distinct scenarios are illustrated in Fig. 1: (1) all
Ps are softening, resulting in 𝛼 = 1; (2) a sub-element localization
attern is observed, leading to 𝛼 = (5∕9 + 8∕9)∕2 = 13∕18; (3) all GPs
re either unloading or in elastic loading, setting 𝛼 = 0, and indicating
he damage no longer increases or no damage occurs. These adopted
alues of 𝛼 were obtained and justified in the work of [13].
Algorithm 1: Proposed estimation of the characteristic
element length

Input : Beam element with 𝑁𝑁𝐸 nodes, Lagrange element
(LE) with 𝑀 nodes

Output: Characteristic element length 𝑙𝑐 [1 ∶ 𝑀, 1 ∶ 𝑁𝑁𝐸 ] of
all Gaussian points (GPs)

1 Assemble a 3D volume by expanding cross-sections at nodes
along the beam element;

2 Obtain and store the 8 corner nodes 𝐗𝑖 of the assembled 3D
volume;

3 Group all generated GPs into 𝑀 sets, each containing 𝑁𝑁𝐸
points;

4 for each GP do
5 Obtain and store its position 𝐱, status, and crack

direction 𝐧(𝐱) ;
6 end
7 Initialize an array 𝛼 of size 𝑀 ×𝑁𝑁𝐸 to zero

(𝛼[1 ∶ 𝑀, 1 ∶ 𝑁𝑁𝐸 ] = 0);
8 for 𝑚 = 1,𝑀 do
9 Calculate the total weights of GPs in group 𝑚, denote

this as 𝑊𝑎𝑙𝑙;
10 Evaluate the status of each GP in group 𝑚;
11 Compute the sum of weights for GPs under softening in

group 𝑚, denote as 𝑊𝑠;
12 Update the array 𝛼 for group 𝑚 using the ratio of 𝑊𝑠 to

𝑊𝑎𝑙𝑙 (𝛼[𝑚, 1 ∶ 𝑁𝑁𝐸 ] = 𝑊𝑠∕𝑊𝑎𝑙𝑙);
13 for 𝑛 = 1, 𝑁𝑁𝐸 do
14 Determine the length 𝑙𝑔(𝑚, 𝑛) using Eq. (16);
15 Compute the final characteristic element length

𝑙𝑐 (𝑚, 𝑛) = 𝑙𝑔(𝑚, 𝑛) × 𝛼(𝑚, 𝑛).
16 end
17 end

Once the values of 𝑙𝑔 and 𝛼 have been determined, the proposed
method for estimating 𝑙𝑐 can be computed using Eq. (18). The proce-
dures for this computation are presented in Algorithm 1, where the
𝑙𝑐 of all GPs can be obtained within a given beam element and its
corresponding LE. By systematically applying Algorithm 1 to all beam
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Fig. 1. Illustration of calculations for 𝑙𝑔 and 𝛼.
elements and their respective LEs, the 𝑙𝑐 of all GPs across the entire
structural model can be obtained.

Fig. 2 compares the estimated 𝑙𝑐 from both the proposed and a
previous method, applied to a B3 beam element with a length of 2 mm.
The previous method is referred to [31]. An L9 element with a mesh
size of 1 mm × 1 mm is utilized for the cross-section. In Fig. 2(a), the 𝑙𝑐
calculated by the proposed method is derived from 𝑙𝑔 , determined using
Govindjee’s approach, and subsequently adjusted by the parameter
𝛼 = 13∕18. The physical meanings of both Govindjee’s method (𝑙𝑐)
and the previous method (𝑙𝑐𝑝) are depicted in Fig. 2(b). The major
principle strain direction is defined in terms of azimuthal and elevation
angles. The comparison indicates that the 𝑙𝑐 values estimated by the
previous method are consistently lower than those obtained through
the proposed method, regardless of the major principle strain direction.

5. Numerical results

In this section, three numerical benchmark examples from concrete
experimental studies are selected to assess the performance of the
enhanced crack band model with the proposed estimation method for
𝑙𝑐 . Among these examples, one focuses on a reinforced concrete panel
that considers the complex behavior between concrete and steel. All
numerical models are conducted with the displacement control method.

5.1. The Hassanzadeh test

The first well-known benchmark is the Hassanzadeh test, often used
to access concrete damage models. The original experimental campaign
was reported in [36]. It is a direct traction test based on a four-
side notched plain concrete sample. Fig. 3 indicates the geometric
description and loading conditions. The fixed boundary is adopted at
the bottom, and monotonic static tension is assigned on the top using
5

Table 1
Material properties of the Hassanzadeh test.

Material Properties Symbols Units Values

Concrete

Young’s modulus 𝐸𝑐 GPa 35.0
Poisson’s ratio 𝜈𝑐 – 0.2
Mean compressive strength 𝑓𝑐𝑚 MPa 50
Tensile strength 𝑓𝑐𝑡𝑚 MPa 3.0
Fracture energy 𝐺𝑓𝑡 N/m 73.35

displacement control with a maximum value of 0.04 mm. The material
properties from [36] are listed in Table 1.

The beam elements are arranged along the thickness of the speci-
men, as shown in Fig. 4(a). The mesh-independent results have been
obtained using B2 and B4 elements using the previous method as
discussed in [31]. In this work, the research focus is moved to the B3
elements which demonstrated mesh sensitivity in previous work [31].
Table 2 lists the beam element information for each numerical model.
Models 1 and 2, which utilize B2 and B4 elements, are implemented
to verify if the proposed method can replicate results comparable to
the previous method. The subsequent four models are designed to
evaluate whether the proposed method can mitigate the sensitivity
of computational results to B3 elements and, by varying the number
of B3 elements at the central notch, to confirm if it can produce
mesh-independent results. Fig. 4(b) displays the mesh discretization of
the cross-section, where each mesh element is a nine-node quadratic
Lagrange element (L9) with an individual element size of around 8 mm.
All numerical models adopt this same cross-sectional discretization.

Fig. 5 compares load–displacement curves of six models using both
a previous method and a novel proposed method. Experimental data
is also included for reference. It is evident from Fig. 5(a) that while
all models exhibit an initial agreement with the experimental curve,
some divergence becomes apparent after the peak load. While minor
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Fig. 2. Comparison of 𝑙𝑐 for a B3 element with one L9: (a) 𝑙𝑐 from two methods with respect to azimuthal angle and elevation angle; (b) physical meaning of 𝑙𝑔 and 𝑙𝑐𝑝 estimated
by [17,31], respectively.
Fig. 3. Geometric information and loading conditions of the Hassanzadeh test.
Fig. 4. Discretization of (a) beam elements and (b) cross-sections for the Hassanzadeh test.
Table 2
Model information for the Hassanzadeh test.
Model No. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Notch elements 1B2 1B4 1B3 2B3 3B3 4B3
Other elements 4B2 2B4 4B3 4B3 4B3 4B3
DoFs 6,498 9,390 11,193 11,919 12,645 13,371
6
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Fig. 5. Comparison of experimental and simulated reaction load–displacement curves from the Hassanzadeh test: with (a) the previous method and (b) the proposed method.
discrepancies between the post-peak curves of Model 1 and Model 2
are observed, both models maintain a close trend to the experimental
curve, indicating that their performance is acceptable. The remaining
four models, which incorporate B3 elements, show a noticeable devi-
ation in their softening curves from the experimental reference. This
non-negligible divergence indicates the earlier method is sensitive to
B3 elements as reported in [31]. Despite the observed overestimation,
Models 3 to 6 show similar post-peak responses, indicating the previous
can mitigate the mesh dependency.

In Fig. 5(b), all models also agree well with the experimental data
before the peak load. Moreover, Models 1 and 2 maintain post-peak
performances consistent with those observed in Fig. 5(a). Furthermore,
the softening curves of Models 3 to 6 have shown significant improve-
ment, closely matching the experimental curve and resembling those
of Models 1 and 2. This performance demonstrates that the proposed
method can simultaneously mitigate the mesh order sensitivity and
mesh size dependency in this case, implying this method may serve as
a robust alternative to the existing method.

Fig. 6 displays numerical models’ final damage distribution patterns.
Models 5 and 6 are omitted due to their similarity to Model 4. The
proposed method accurately replicates the damage distributions of the
previous method with B2 and B4 elements. However, Model 3 exhibits
overestimated damage in the notch area with the former method, as
depicted in Fig. 6(c). This miscalculation likely accounts for the exces-
sive softening observed in the result of Model 3 (Fig. 5(a)), resulting
from an increased dissipated fracture energy due to expanded damage
zones. While increasing the beam element number in the notch refines
the damage distribution (see Fig. 6(d)), slightly spurious damage bands
still occur, thus affecting model accuracy. In contrast, the proposed
method accurately depicts damage localization, primarily within two-
thirds of the notch, as shown in Fig. 6(g). This finding aligns with
the literature, which suggests strain softening often localizes to two
out of three GPs in quadratic beam elements [13]. Further, Fig. 6(h)
demonstrates the anticipated damage distribution, with final damage
confined to two-thirds of a single B3 element despite using two B3
elements.

The precision of the proposed method is further validated by an-
alyzing the performance at specific GPs, which thoroughly examines
the characteristic element length and the corresponding regularized
stress–strain relationships. Fig. 7 compares two GPs, one each from
Model 1 and Model 2. Despite initial fluctuations in the characteristic
element length before peak load, as shown in Fig. 7(a), the two methods
exhibit identical values throughout the subsequent loading history.
Similarly, the stress–strain curves derived from both methods are highly
7

coincident. This consistency demonstrates the ability of the proposed
Table 3
Material properties of the TPB concrete beam.

Material Properties Symbols Units Values

Concrete

Young’s modulus 𝐸𝑐 GPa 20.0
Poisson’s ratio 𝜈𝑐 – 0.2
Mean compressive strength 𝑓𝑐𝑚 MPa 24.0
Tensile strength 𝑓𝑐𝑡𝑚 MPa 2.4
Fracture energy 𝐺𝑓𝑡 N/m 90.0

method to match the precision of the previous method for B2 and B4
elements.

To explain how the proposed method reduces sensitivity to B3 ele-
ments, we analyzed the performance of two GPs in Model 3, as depicted
in Fig. 8. The positions of these points, which both undergo soften-
ing, are indicated in Fig. 8(c). According to Fig. 8(a), the proposed
method consistently presents a higher characteristic element length
than the previous method, thought they tend to the constant value
once the strain deformation increases. This discrepancy accounts for the
lower stress–strain softening branches observed with the new method
(Fig. 8(b)), as opposed to the elevated softening branches associated
with the previous method. The former method’s underestimation of
𝑙𝑐 results in extra regularization of the stress–strain curves, which
in turn causes an overprediction of dissipated fracture energy. This
overprediction contributes to the deviation of models incorporating B3
elements from the experimental benchmarks (Fig. 5(a)). Conversely,
the proposed method effectively handles this overestimation, aligning
the structural performance with experimental observations (Fig. 5(b)).
In summary, the proposed method offers accurate damage distribution
predictions that are less susceptible to mesh sensitivity or dependency.

5.2. Three point bending test

Another experimental benchmark used in this study is the three-
point bending test (TPB) on a notched plain concrete beam, which is an
indirect tension test. This test, previously reported in [37], is frequently
utilized to evaluate different regularization methods. The beam has a
5 mm wide and 50 mm deep notch at the bottom of the mid-span.
Detailed beam dimensions are presented in Fig. 9. The setup includes
a simply supported boundary condition and a displacement-controlled
load, peaking at 0.5 mm, as shown in Fig. 9. Material properties,
referred from [37], are summarized in Table 3.

Beam elements are assigned along the length of the beam, with a
denser distribution near the notch, as depicted in Fig. 10(a). Due to the

beam’s symmetry, a half-structure model is employed for the numerical
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Fig. 6. Final damage distributions of the notched concrete (deformed shape) with previous method from: (a) Model 1 (1B2); (b) Model 2 (1B4); (c) Model 3 (1B3); (d) Model 4
(2B3) and proposed method from: (e) Model 1 (1B2); (f) Model 2 (1B4); (g) Model 3 (1B3); (h) Model 4 (2B3)
Fig. 7. Comparison of the previous method and proposed method based on the GPs from Model 1 and Model 2 in Hassanzadeh test: (a) Characteristic element length, (b)
stress–strain curves, and (c) locations of selected GPs.
Fig. 8. Comparison of the previous method and proposed method based on the GPs from Model 3 in Hassanzadeh test: (a) Characteristic element length, (b) stress–strain curves,
and (c) locations of selected GPs.
8
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Fig. 9. Geometric information and loading conditions of the TPB test.
Fig. 10. Discretization of (a) beam elements and (b) cross-sections for the TPB concrete beam.
Table 4
Model information of the notched TPB concrete beam.

Model No. Model 1 Model 2 Model 3 Model 4 Model 5

Notch elements 1B2 1B4 1B3 2B3 3B3
Other elements 28B2 10B4 14B3 14B3 14B3
DoFs 21,318 23,694 21,747 22,605 23,463

simulations. Accordingly, three half cross-sections are discretized as
shown in Fig. 10(b). The cross-sectional mesh comprises many nine-
node quadratic Lagrange elements, each approximately 10 mm in size.
The loading and support plates are represented by the white elements
in Fig. 10(b). This study primarily investigates the impact of beam
element discretization on structural response. Five distinct models,
detailed in Table 4, employ varying beam element distributions. Models
1 and 2 are designed to test the proposed method’s ability to replicate
the performance of the previous method with B2 and B4 elements. The
remaining models focus on examining the mesh-independent perfor-
mance of the proposed method with B3 elements, particularly assessing
the effect of varying numbers of B3 elements in the notch area.

Fig. 11 displays the reaction-load mid-span displacement curves
derived from numerical models, employing both the previous and the
proposed methods, alongside experimental data for comparison. As
seen in Fig. 11(a), all models initially exhibit linear behavior consis-
tent with the experimental results. Variations between Model 1 and
Model 2 become apparent during the nonlinear phase, particularly in
the softening branches, but their curves remain in agreement with
experimental curves. These minor discrepancies may be attributed
to the distinct approximations inherent to different beam elements.
Conversely, Models 3 to 5, as demonstrated in Fig. 11(a), show higher
peak loads and softening branches, reflecting the previous method’s
sensitivity to B3 elements. Nonetheless, the previous method can pro-
vide mesh-independent results regardless of the number of B3 elements
implemented.
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In Fig. 11(b), the numerical models display identical linear be-
haviors as observed earlier. Models 1 and 2 notably show consistent
performance regarding peak loads and softening curves, replicating the
results seen in Fig. 11(a). Minor discrepancies among the curves for
Models 1, 2, and 3 are evident, which may be attributed to slight sensi-
tivity to element order. Despite this, the curves from these three models
closely approximate the experimental data, indicating that this sensi-
tivity can be acceptable. In the analysis of mesh dependency with B3
elements, Model 5 exhibits a slightly lower softening curve beyond the
0.35 mm displacement, which deviate from the experimental data. This
deviation might be linked to convergence issues stemming from the
excessively fine beam element discretization in the notch. As discussed
in [8], a finer mesh increases the potential combinations of loading
and unloading at individual GP, complicating the numerical algorithm’s
task in determining the most accurate path. Despite this, Models 3
to 5 incorporating B3 elements match well with experimental data in
Fig. 11(b), showing a significant improvement over their counterparts
in Fig. 11(a). Therefore, the enhanced performance of B3 elements
in these models, as provided by the proposed method, highlights its
efficacy in achieving mesh-independent results.

Since damage mainly occurs around the notch, other beam sections
are excluded in Fig. 12 to enhance the visualization of damage patterns.
In the notch, damage consistently concentrates throughout the B2
element and on the left and right quarters of the B4 element. This
pattern is observed with both the previous and proposed methods.
However, with B3 elements, the previous method depicted in Fig. 12(c)
shows damage extending beyond the central notch, resulting in an
overestimated damage area. This overestimation leads to excessive
fracture energy dissipation, contributing to the high softening curves of
Model 3 (Fig. 11(a)). Although increasing the number of beam elements
in the notch improves the damage distribution, as shown in Fig. 12(d),

the outcome is still unacceptable.
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Fig. 11. Comparison of experimental and simulated load–midspan displacement curves from the TPB test: with (a) the previous method and (b) the proposed method.
Fig. 12. Final damage distributions of the TPB concrete beam (deformed shape) with the previous method from: (a) Model 1 (1B2); (b) Model 2 (1B4); (c) Model 3 (1B3); (d)
Model 4 (2B3) and new method from: (e) Model 1 (1B2); (f) Model 2 (1B4); (g) Model 3 (1B3); (H) Model 4 (2B3)
Conversely, Fig. 12(g) demonstrates the proposed method’s ability
to accurately predict the damage distribution that mainly occurs in two-
thirds of a B3 element in the notch. This correct localization is also
observed in Model 4 with two B3 elements, as shown in Fig. 12(h).
These results demonstrate that the proposed method offers a more
accurate estimation of the 𝑙𝑐 , achieving a better regularization effect
than the previous method.

5.3. The notched reinforced concrete panel

The third case is another uniaxial tension test on a reinforced
concrete (RC) panel. The experimental test was conducted in [38] and
considered a good benchmark for validating numerical simulations such
as in [39]. The solution of a CUF-based 1D model for this problem
has been validated in [40]. However, a different 𝑙𝑐 calculation method
was employed. In this part, the same example from [40] is selected to
validate the proposed method for 𝑙𝑐 in RC structures. Fig. 13 shows
the loading layout and geometric information. This panel has double-
edge notches with a width of 12.7 mm and a depth of 10 mm in
the center. Three longitudinal rebars are distributed evenly along the
panel height. One side of the panel is fixed, and the displacement
control load with a maximum value of 0.8 mm is applied at the other
end. The normal concrete is employed, and the corresponding material
properties from [38] are listed in Table 5.
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Table 5
Material properties of the notched RC panel.

Components Properties Symbols Units Values

Concrete Young’s modulus 𝐸𝑐 GPa 27.349
Poisson’s ratio 𝜈𝑐 – 0.175
Mean compressive strength 𝑓𝑐𝑚 MPa 44
Tensile strength 𝑓𝑐𝑡𝑚 MPa 3.19
Fracture energy 𝐺𝑓𝑡𝑚 N/m 144

Steel Young’s modulus 𝐸𝑠 GPa 191.584
Poisson’s ratio 𝜈𝑠 – 0.28
Yield strength 𝑓𝑦 MPa 508

As suggested in [40], more beam element are assigned to the middle
area close to the notch as shown in Fig. 14(a). However, the beam
models from [40] only employed 5 and 7 B3 elements, which were
validated in terms of load–displacement curves. The number of beam
models may be too small to capture the correct damage distributions.
Therefore, more beam elements are considered in this case to assess the
mesh-independent performance of the proposed method. The models’
information is listed in Table 6. The cross-sectional discretization is
the same as in [40] as shown in Fig. 14(b). Multiple L9 are utilized
for cross-sectional expansion. The Component-Wise (CW) approach is
employed to independently consider the actual geometries and material
properties of concrete and steel, in which no bond occurs. Lagrange
points are placed at the boundary of steel and concrete to ensure
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Fig. 13. Geometric information and loading conditions of the notched RC panel (Unit: mm).
Fig. 14. Discretization of (a) beam elements and (b) cross-sections for the notched RC panel test.
Table 6
Model information of the notched RC panel.

Model No. Model 1 Model 2 Model 3 Model 4

Beam elements 21B3 25B3 29B3 33B3
DoFs 53,685 63,693 73,701 83,709

displacement continuity. More details about the CW approach can be
found in [41]. Since the circle rebars occur, the discretization on the
cross-section leads to the irregular shape, which is a good case for
assessing the proposed 𝑙𝑐 .

Fig. 15 shows the experimental and numerical load–displacement
curves. The validation of mesh independency from the previous method
is absent in this case. For comparative purposes, only the result from
Model 2 with the method earlier is plotted in a black solid line in 15.
The observed discrepancies between the linear parts of the numerical
and experimental curves were explained in [40]. It is worth noticing
that all numerical models present identical linear behaviors. A diver-
gence in the softening curves between the numerical models employing
the previous and proposed methods is expected. The relatively higher
softening curve in Model 2, using the previous method, is attributed
to its larger 𝑙𝑐 estimation. Nevertheless, all numerical results align
with the experimental range. This phenomenon may indicate that the
previous method can provide a relatively accurate structural behavior
for RC structures within an acceptable margin of error. Compara-
tive analysis of different models using the proposed method reveals
consistent, mesh-independent results, indicating the reliability of this
proposed approach.

Fig. 16 presents final damage distributions from various numer-
ical models. Evidently, the damage in Fig. 16(a) differs from that
in Fig. 16(c). This difference is due to the different 𝑙𝑐 calculation
methods. From Fig. 16(b) to Fig. 16(e), it can be seen that the finer
mesh provides more detailed damage distribution information. How-
ever, a common feature across these models is the presence of low
damage intensity in areas between two major damage bands. This
phenomenon occurs as these intermediate areas undergo unloading
during damage localization. It is the same as the intact regions between
11
Fig. 15. Comparison of experimental and simulated reaction load–displacement curves
of the notched RC panel.

two cracks in experimental campaigns. Consequently, the unloading
behavior observed between two damage bands can explain fluctuations
observed among numerical curves with the proposed method in Fig. 15.
Such fluctuations are absent in the model using the previous method,
which is a potential shortcoming. These fluctuations lead to challenging
convergence issues, which can be mitigated by reducing the step size,
though this adjustment may require longer computational times.

6. Conclusions

This paper introduces an enhanced crack band model for the higher-
order structural theories and beam elements based on CUF, aimed at
mitigating the spurious size dependency of FE solutions. This model
incorporates a refined method for estimating 𝑙 , integrated into a
𝑐
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Fig. 16. Final damage distributions of the notched RC panel: (a) Model 2 using the previous method; (b) Model 1 (21B3); (c) Model 2 (25B3); (d) Model 3 (29B3); (e) Model 4
(33B3)
modified Mazars damage model. Three numerical examples involving
concrete structures were analyzed to evaluate this method for estimat-
ing 𝑙𝑐 . The comparison of experimental and numerical results leads to
the following key conclusions:

(1) The use of higher-order structural theories and beam elements
leads to the strain softening localized into parts of the element
rather than the whole element. For instance, using B3 elements
results in the localization of strain softening across approximately
two-thirds of the element.

(2) Strain localization is observed in the material upon reaching a
specific level of damage, leading to a reduction in crack band-
width. This reduction is quantified by a specific parameter intro-
duced in this study.

(3) The proposed method for estimating 𝑙𝑐 can effectively identify
whether strain softening has localized within parts of a beam ele-
ment and provide an appropriate adjustment to 𝑙𝑐 as needed. This
approach enhances the objectivity of numerical models, achieving
greater independency from mesh size and reducing sensitivity to
element order.

(4) While the proposed method proves effective for plain concrete
structures, it may encounter convergence challenges in reinforced
concrete structures, potentially due to irregular mesh discretiza-
tion in the cross-section.

In conclusion, the proposed method for calculating the characteris-
tic element length 𝑙𝑐 has been validated in tension-dominant, beam-like
concrete structures using 1D CUF-based beam models. This calculation
method offers a promising alternative for mitigating the issue of mesh
dependency. Future studies will aim to investigate the adaptation of
this method to 2D CUF-based plate or shell elements or 3D solid
elements. Additionally, practical applications involving actual RC mem-
bers, which present more complex and varied structural scenarios, will
also be explored.
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