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ELLIPTIC REGULARIZATION OF SOME SEMILINEAR PARABOLIC FREE

BOUNDARY PROBLEMS

ALESSANDRO AUDRITO AND TOMÁS SANZ-PERELA

Abstract. We prove existence of strong solutions to a family of some semilinear parabolic free bound-
ary problems by means of elliptic regularization. Existence of solutions is obtained in two steps: we
first show some uniform energy estimates and then we pass to the weak limit. To carry out this sec-
ond step, we establish uniform non-degeneracy estimates for the approximating sequence as well as
parabolic non-degeneracy and optimal regularity for the limit solution. To the best of our knowledge,
this is the first time the elliptic regularization approach is used in the context of parabolic obstacle
problems.

1. Introduction

In this note we use elliptic regularization to construct strong solutions to the following class of
semilinear parabolic free boundary problems

(1.1)

{
∂tu−∆u = −fγ(u) in Q := Rn × (0,∞),

u|t=0 = u0 in Rn,

where n ≥ 1, γ ∈ [1, 2), u0 ≥ 0, and

(1.2) fγ(u) := γχ{u>0}u
γ−1.

Such parabolic free boundary problems appear in Chemical engineering (see [29]) and transport of
thermal energy in plasma (see [24]). The mathematical study of its solutions and their free interfaces
was initiated by Caffarelli in [8, 9] (see also [10]) in the case γ = 1, in which (1.1) reduces to a
version of the Stefan problem (see e.g. [20, 10, 19, 4]), and later extended in the elliptic setting to
the range γ ∈ (0, 2) by Alt and Phillips [2] (see also [27, 28]). In the parabolic setting, we mention
the works of Weiss [35, 36] (see also [12], by Choe and Weiss), where the classification of blow-ups
and fine regularity properties of the free boundary were established, together with sharp bounds on
the (parabolic) Hausdorff dimension of ∂{u > 0}. Notice that in [35] the singular range γ ∈ [0, 1) was
considered too. To the best of our knowledge, there are not further results in the range γ < 1, except
the very recent papers [14, 15], [16] and [17], where the authors have studied the range γ < 0 in the
elliptic framework.
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2 A. AUDRITO AND T. SANZ-PERELA

Existence of weak/strong solutions to (1.1) is well-known (see e.g. [20]). However, the elliptic regu-
larization approach is, to the best of our knowledge, new in the context of parabolic obstacle problems,
and presents some interesting features with respect to the classical approach. It is a variational ap-
proximation procedure (also known as WIED method), introduced in the works of Lions [23] and
Oleinik [26] (see also the article of De Giorgi [13]). Due to its intrinsic flexibility, elliptic regulariza-
tion has been applied in many contexts, see for instance [21, 25, 6, 1, 7, 30] in the parabolic setting,
and also [31, 32] in the context of nonlinear wave equations (see also the more recent works [5, 3]
concerning systems with strong competition and nonlocal parabolic problems, respectively).

The main idea of this approach is to approximate solutions to the parabolic problem (1.1) by using
(absolute) minimizers of the functional

(1.3) Eε(w) :=
� ∞

0

e−t/ε

ε

(�
Rn

(ε|∂tw|2 + |∇w|2) dx+ 2

�
Rn

wγ+ dx

)
dt,

where ε ∈ (0, 1) is a free parameter and w+ is the standard notation for max{w, 0}. Indeed, it is not
difficult to check that, when γ ∈ (1, 2), any critical point uε satisfies

(1.4)

{
−ε∂ttuε + ∂tuε −∆uε = −fγ(uε) in Q = Rn × (0,∞),

u|t=0 = u0 in Rn,

in the weak sense (the case γ = 1 is more involved, see the comments below). Problem (1.4) is exactly
(1.1) “up to” the extra term −ε∂ttuε, which makes the equation elliptic for every ε > 0, but degenerate
as ε→ 0: it is thus reasonable to expect that, if minimizers of (1.3) enjoy some uniform boundedness
properties, we may pass to the weak limit into (1.4) (along a suitable subsequence εj → 0) and obtain
a solution u to (1.1).

This plan has two main steps:

1. Prove uniform energy estimates in the spirit of [31, 32] and deduce compactness of families of
minimizers in suitable Sobolev spaces.

2. Pass rigorously to the limit into (1.4) to obtain (1.1).

The main difficulties arising from the fact that we are dealing with a free boundary problem appear
precisely in the second step and when γ = 1 (the case γ ∈ (1, 2) is quite standard since fγ is continuous).
Indeed, there are two issues that must be treated with care, and are the core of this paper. First,
we prove that minimizers uε of Eε satisfy (1.4). This is not obvious, as mentioned above, since the
function w 7→ w+ is not differentiable at w = 0; see Lemma 3.1 below. Second, once we have the
limit of the minimizers, denoted by u (which is obtained by compactness and after passing to a
subsequence), we show that we can take the limit ε → 0 in (1.4) and obtain (1.1). This requires to
prove that χ{uε>0} → χ{u>0} and this is also non-obvious. Indeed, to prove it we establish a uniform
non-degeneracy property for the family uε close to free boundary points, as well as optimal regularity
and parabolic non-degeneracy estimates for the limit u. All these ingredients and fine estimates for
the measure of ∂{u > 0} are crucially exploited to pass to the limit as ε→ 0.

It is important to stress that our approach is not only aimed to construct solutions in an alternative
way with respect to the existing literature (regularizing χ{u>0} in the nonlinearity fγ(u) and using
classical tools, see [20]). Indeed, we expect some features of the elliptic problem (with ε > 0) being
inherited by solutions to (1.1), and we hope this could lead to a different approach to study parabolic
free boundary problems in the future. For this, the first step is to establish the appropriate convergence
of approximating minimizers towards solutions to (1.1), as we do in this paper.
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The techniques we use in this article allow us to prove existence of solutions for every γ ∈ [1, 2),
and some of them do not work for γ ∈ (0, 1) (see Remark 2.6 below). The main reason is that we
use in a crucial way the weak formulation of the problem, obtained by considering competitors of the
form u + δφ with δ > 0 and φ ∈ C∞

c (Q), and the weak convergence in H1. Since for γ ∈ (0, 1) the
function u 7→ fγ(u) has a strong singularity at u = 0, we cannot use the standard weak formulation,
but we would need to consider competitors constructed through domain deformations, in order to
avoid differentiating the function u 7→ uγ+. This approach is much more delicate and will be treated
in a forthcoming article.

Remark 1.1. As mentioned above, the elliptic regularization approach is quite flexible and more
general/complex equations can be attacked with similar techniques (see for instance [1, 32]). Here we
just mention that our methods can be slightly modified to prove existence of strong solutions to

(1.5)

{
∂tu−∆u = −fγ(u) in Ω× (0,∞),

u|t=0 = u0 in Ω,

where Ω ⊂ Rn is a bounded domain and homogeneous Dirichlet or Neumann conditions are posed on
∂Ω× (0,∞). The proof of such fact is postponed to Section 4; see Corollary 4.1.

In the next subsection, we introduce the functional setting and we state our main result.

1.1. Functional setting and main result. We will work with the space

U :=
⋂
r>0

H1(Q+
r ), where Q+

r := Br × (0, r2),

made of functions u ∈ L2(Q+
r ) with weak derivatives ∂tu ∈ L2(Q+

r ), ∂iu ∈ L2(Q+
r ) (i = 1, . . . , n),

for every r > 0. The functional (1.3) is well-defined on U with values in [0,+∞]: we will seek for
minimizers u ∈ U , subject to the initial condition u|t=0 = u0 in the sense of traces, where

(1.6) u0 ∈ H1(Rn) ∩ Lγ(Rn) and u0 ≥ 0 a.e. in Rn,

In other words, we will minimize Eε over the space

U0 := {u ∈ U : u|t=0 = u0}.

We remark that the assumptions on the initial data guarantee that u0 (seen as a function of x and
t) belongs to U0: in particular, U0 ̸= ∅. This will be useful in the proof of Lemma 2.2, where we
will use u0 as a competitor and prove the elementary, yet crucial, estimate (2.3). We do not expect
such assumptions to be optimal, but they have the advantage to make the arguments direct and
easy-readable.

We now introduce the notion of strong solutions to (1.1).

Definition 1.2. Let n ≥ 1 and γ ∈ [1, 2). We say that a function u is a strong solution to (1.1) if
• u ∈ L2

loc(0,∞ : H1(Rn)) with ∂tu ∈ L2
loc(0,∞ : L2(Rn)), and u|t=0 = u0 in the sense of traces.

• The integral relation

(1.7)

�
Q
(∂tuη +∇u · ∇η + fγ(u)η) dxdt = 0

is satisfied for every η ∈ C∞
c (Q).
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Note that this definition differs from one for weak solutions in the fact that ∂tu is an L2-function
and the integral (1.7) involves the term ∂tuη and not −u∂tη. In particular, the fact that ∂tu is in L2

yields that ∆u is also in L2.
Finally, we state our main result.

Theorem 1.3. Let n ≥ 1, γ ∈ [1, 2) , u0 as in (1.6), and fγ as in (1.2). Then there exist a sequence
of minimizers {uεj}j∈N of (1.3) in U0 and a continuous strong solution u ∈ U0 to (1.1) such that

uεj ⇀ u weakly in U
uεj → u locally uniformly in Q.

The rest of the paper is organized as follows. In Section 2 we prove existence and uniqueness of
minimizers of Eε in U0, and we establish the uniform energy estimates given in (2.6) and (2.7). As a
corollary, we prove weak and strong convergence of minimizers (see Proposition 2.1 below). Section 3
is divided into three parts. First, in Section 3.1 we write the Euler-Lagrange equations for minimizers
and show uniform non-degeneracy near free boundary points. Then, in Section 3.2 we establish optimal
regularity and parabolic non-degeneracy results for solutions to parabolic obstacle problems. Finally,
all these ingredients are combined crucially in Section 3.3 to prove Theorem 1.3. In the last section of
the article, Section 4, we comment on the slight modifications that one must perform in our methods
in order to construct strong solutions to (1.5) with homogeneous Dirichlet or Neumann conditions on
the parabolic boundary.

2. Energy estimates and Compactness

In this section we establish the following result.

Proposition 2.1. Let {uε}ε∈(0,1) ∈ U0 be a family of minimizers of Eε. Then there exist u ∈ U0 and
a sequence εj → 0 such that

(2.1)
uεj ⇀ u weakly in U
uεj → u in L2

loc(Q).

Before addressing to the proof of the above statement, we show some basic properties of minimizers
of the functional Eε.

2.1. Existence of minimizers. It is not difficult to show that for every ε ∈ (0, 1) the functional Eε
has a unique minimizer in U0 (see Lemma 2.2 below). Before presenting the proof, we introduce the
functional

(2.2) Jε(w) :=
� ∞

0
e−t

(�
Rn

(
|∂tw|2 + ε|∇w|2

)
dx+ 2ε

�
Rn

wγ+ dx

)
dt,

which satisfies

Eε(u) =
1

ε
Jε(v), whenever v(x, t) = u(x, εt).

Since v and u coincide at t = 0, minimizing Eε in U0 is equivalent to minimizing Jε in the same space.
Working with the functional Jε allows us to keep the notations easier.

Lemma 2.2. For every ε ∈ (0, 1), the functional Jε defined in (2.2) has a unique minimizer vε in U0.
Such minimizer satisfies vε ≥ 0 a.e. in Q. Moreover, there exists a constant C > 0, depending only
on n, γ, and u0, such that

(2.3) Jε(vε) ≤ Cε.
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Proof. By considering u0 (as a function of x and t) we see that, thanks to (1.6), we have

(2.4)

Jε(u0) = ε

� ∞

0
e−t

( �
Rn

|∇u0|2dx+ 2ε

�
Rn

(u0)
γ
+ dx

)
dt

≤ ε
(
∥u0∥2H1(Rn) + 2∥u0∥γLγ(Rn)

)
≤ Cε,

and thus Jε ̸≡ +∞ on U0. To prove the existence of a minimizer, we consider a minimizing sequence
vj ∈ U0:

Jε(vj) → inf
v∈U0

Jε(v) := Iε ≥ 0.

Consequently, for every fixed r > 0, we have�
Q+

r

(
|∂tvj |2 + ε|∇vj |2

)
dx dt ≤ C,

for some C > 0 independent of j. Since for every j we have vj |t=0 = u0, given δ > 0, for a.e. s ∈ (0, r2)
it holds

∥vj(·, s)∥2L2(Br)
= ∥u0∥2L2(Br)

+ 2

� s

0

�
Br

vj(x, t)∂tvj(x, t)dxdt

≤ ∥u0∥2L2(Br)
+ δ

�
Q+

r

|vj |2dx dt+
1

δ

�
Q+

r

|∂tvj |2dx dt.

Integrating between 0 and r2 and taking δ := 1/(2r2) we find

(2.5)

�
Q+

r

v2jdx dt ≤ 2

[
∥u0∥2L2(Br)

+ 2r2
�
Q+

r

|∂tvj |2dx dt
]
r2 ≤ C,

for some new C > 0 independent of j. Therefore, it follows that {vj}j is bounded in H1(Q+
r ) uniformly

in j which, in turn, implies the existence of v ∈ H1(Q+
r ) such that vj ⇀ v weakly in H1(Q+

r ) and
vj → v in L2(Q+

r ), up to passing to a subsequence. Now, since Rn× (0,∞) = Q = ∪r>0Q
+
r , a diagonal

argument shows that

vj ⇀ v weakly in U and vj → v in L2
loc(Q),

up to passing to another subsequence and, by the fact that U0 is closed and convex, we conclude
v ∈ U0. Finally, by lower semicontinuity and Fatou’s lemma, we obtain

Jε(v) ≤ Iε,

i.e., v is a minimizer of Jε in U0.
Now, uniqueness follows by the convexity of Jε. Furthermore, since u0 ≥ 0, if vε is a minimizer then

(vε)+ is an admissible competitor and thus, by minimality, Jε(vε) ≤ Jε((vε)+) which is impossible
unless vε ≥ 0 a.e. in Q. Finally, (2.3) follows from the minimality of vε and the bound (2.4). □

2.2. Proof of Proposition 2.1. Proposition 2.1 will be obtained as a consequence of the following
energy estimates.

Proposition 2.3. (Energy estimates) There exists a constant C > 0, depending only on n, γ, and
u0, such that for every minimizer uε of Eε we have

(2.6)

� ∞

0

�
Rn

|∂tuε|2 dxdτ ≤ C
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and, for every r ≥ ε,

(2.7)

� r

0

�
Rn

(
|∇uε|2 + 2(uε)

γ
+

)
dxdτ ≤ Cr.

Indeed, with these uniform bounds at hand we readily obtain the main result of this section.

Proof of Proposition 2.1. In light of (2.6) and (2.7), the family {uε}ε∈(0,1) of minimizers of Eε is uni-
formly bounded in H1(Q+

r ) for every fixed r > 0 and thus a standard diagonal procedure shows the
existence of a sequence εj → 0 and u ∈ U0 such that the first limit in (2.1) is satisfied. By the Sobolev
embedding, we immediately obtain also the second limit, up to passing to another subsequence. □

In the rest of the section we establish Proposition 2.3. This is the first key result of the paper and
will be obtained as the byproduct of Lemma 2.4 and Corollary 2.5. In what follows we will use the
following notations: we will denote R+ := (0,+∞) and, for a minimizer v of Jε, we write

(2.8) Jε(v) =
� ∞

0
e−t(I(t) +R(t)) dt,

where

I(t) :=

�
Rn

|∂tv|2 dx, R(t) := ε

�
Rn

(
|∇v|2 + 2vγ+

)
dx.

Since v is a minimizer, it is clear that the functions t 7→ I(t), t 7→ R(t) and t 7→ e−t(I(t) + R(t)) are
locally integrable in R+. Consequently, the function

E(t) := et
� ∞

t
e−τ (I(τ) +R(τ)) dτ,

belongs to W 1,1
loc (R+) ∩ C(R+), with E(0) = Jε(v).

Notice that, by definition,

(2.9) E′ = E − I −R in D′(R+).

In the following result we give an alternative expression for E′ which will be useful later to obtain
energy estimates.

Lemma 2.4. Let v ∈ U0 be a minimizer of Jε. Then

(2.10) E′ = −2I in D′(R+).

Proof. We proceed in the spirit of [31, Proposition 3.1]. Let η ∈ C∞
c (R+) and set ζ(t) :=

� t
0 η(τ)dτ .

Given δ ∈ R, we define

(2.11) φ(t) := t− δζ(t), t ≥ 0.

If |δ| ≤ δ0 and δ0 > 0 is small enough, then φ has smooth inverse ψ := φ−1 given by

(2.12) ψ(τ) = τ + δζ(ψ(τ)).

Now, from the minimizer v ∈ U0, for |δ| ≤ δ0 we define the competitor

wδ(x, t) := v(x, φ(t)).
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Since φ(0) = 0, we have wδ|t=0 = u0 (which implies w ∈ U0) and, by (2.11), wδ|δ=0 = v. Changing
variable t = ψ(τ) in (2.8), we easily see that

Jε(w) =
� ∞

0
e−t

( �
Rn

(
|∂twδ|2 + ε|∇wδ|2

)
dx+ 2ε

�
Rn

(wδ)
γ
+ dx

)
dt

=

� ∞

0
e−t

[
φ′(t)2 I(φ(t)) +R(φ(t))

]
dt =

� ∞

0
ψ′(τ)e−ψ(τ)

[
φ′(ψ(τ))2 I(τ) +R(τ)

]
dτ,

and thus, since φ,ψ ∈ W 1,∞(R+), we deduce Jε(wδ) < +∞. In particular, wδ ∈ U0 is an admissible
competitor for all |δ| ≤ δ0 and so, by minimality of v,

(2.13) lim
δ→0+

Jε(wδ)− Jε(v)
δ

= 0.

Tedious, yet standard, computations using (2.11) and (2.12) show that

(2.14)
d

dδ

(
ψ′(τ)e−ψ(τ)

) ∣∣∣
δ=0

= ζ ′(τ)e−τ − ζ(τ)e−τ ,
d

dδ

∣∣φ′(ψ(τ))
∣∣2 ∣∣∣

δ=0
= −2ζ ′(τ).

Since t 7→ e−t(I(t) + R(t)) is locally integrable, we can pass to the limit in (2.13) by dominated
convergence and, in light of (2.14), the limit in (2.13) takes the form

(2.15)

� ∞

0
(ζ ′(τ)e−τ − ζ(τ)e−τ )(I(τ) +R(τ))dτ − 2

� ∞

0
e−τζ ′(τ) I(τ) dτ = 0.

We are left to show the (2.15) is equivalent to (2.10). Recalling that ζ is a primitive of η and testing
the equation (2.9) with ζ ′(τ)e−τ and integrating by parts, we obtain

(2.16)

� ∞

0
ζ ′(τ)e−τ (I(τ) +R(τ))dτ =

� ∞

0
E(τ)

[
ζ ′(τ)e−τ +

(
ζ ′(τ)e−τ

)′]
dτ

=

� ∞

0
ζ ′(τ)e−τE(τ) dτ +

� ∞

0
E(τ)

(
η(τ)e−τ

)′
dτ.

Using the definition of E and integration by parts, the first term in the right-hand side of (2.16)
becomes

(2.17)

� ∞

0
ζ ′(τ)e−τE(τ) dτ =

� ∞

0
ζ ′(τ)

� ∞

τ
e−s(I(s) +R(s))dsdτ

=

� ∞

0
ζ(τ)e−τ (I(τ) +R(τ))dτ.

Finally, combining (2.16), (2.17), and (2.15), we deduce� ∞

0
E(τ)

(
e−τη(τ)

)′
dτ = 2

� ∞

0
e−τη(τ) I(τ) dτ ,

which, in turn, yields (2.10) thanks to the arbitrariness of η ∈ C∞
c (R+). □

From the previous result we obtain a corollary which will be the key to establish Proposition 2.3.

Corollary 2.5. There exists a constant C > 0, depending only on n, γ, and u0, such that for every
minimizer vε of Jε, we have

(2.18)

� ∞

0

�
Rn

|∂tvε|2 dxdt ≤ Cε,
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and, for every r ≥ 0,

(2.19)

� r+1

r

�
Rn

(
|∇vε|2 + 2(vε)

γ
+

)
dxdt ≤ C.

Proof. First, since I ≥ 0, the function t 7→ E(t) is non-increasing and so E(t) ≤ E(0) for all t ≥ 0.
Recalling that E(0) = Jε(vε) and the bound (2.3) in Lemma 2.2, it follows that

(2.20) E(t) ≤ Jε(vε) ≤ Cε,

for all t ≥ 0, where C > 0 is a constant depending only on n, γ, and u0.
Now, from Lemma 2.4 we have E′ = −2I a.e. in R+. Integrating this expression and using (2.20),

we obtain

2

� t

0
I(τ) dτ = E(0)− E(τ) ≤ E(0) ≤ Cε,

for all t ≥ 0 (recall that E ≥ 0 by definition) and (2.18) follows by the arbitrariness of t ≥ 0 and the
definition of I.

To prove (2.19) for r ≥ 0, it is enough to use (2.20) to deduce that

ε

� r+1

r

�
Rn

(
|∇vε|2 + 2(vε)

γ
+

)
dx dt =

� r+1

r
R(t) dt ≤ er+1

� r+1

r
e−tR(t) dt ≤ eE(r) ≤ Cε.

□

With the previous result at hand we can now establish the uniform bounds of Proposition 2.3.

Proof of Proposition 2.3. Let u := uε be a minimizer of Eε in U0 and let v(x, t) := u(x, εt). Then,
as a first consequence, we notice that (2.6) is equivalent to (2.18), which has been established above.
Second, changing variable τ = εt in (2.19) yields� ερ+ε

ερ

�
Rn

(
|∇u|2 + 2uγ+

)
dxdt ≤ Cε,

for all ρ ≥ 0. If r = ε then (2.7) follows from the above estimate taking ρ = 0. Otherwise, if r > ε
let k := ⌈r/ε⌉ ≥ 2 and for j = 0, 1, . . . apply the above estimate with ρ = ρj = j. Summing over
j = 0, . . . , k − 1 we obtain � kε

0

�
Rn

(
|∇v|2 + 2vγ+

)
dxdτ ≤ Ckε.

Since r ≤ kε ≤ 2(k − 1)ε ≤ 2r, (2.7) follows. □

Remark 2.6. Notice that all the proofs (and, consequently, the statements) of this section work for the
full range γ ∈ [0, 1) (when γ = 0, we set uγ+ := χ{u>0}). In the next section we are forced to restrict
ourselves to the range γ ∈ [1, 2) in order to derive the Euler-Lagrange equation when considering
competitors of the form u+ δφ with δ > 0 and φ ∈ C∞

c (Q).

3. Proof of the main theorem

This section is devoted to the proof of Theorem 1.3, which is split in three steps. We first write
the Euler-Lagrange equations for minimizers uε of Eε (see Lemma 3.1 below) and then, in Lemma 3.2,
we establish a uniform non-degeneracy property. Next, we establish parabolic non-degeneracy and
optimal regularity results for solutions to parabolic obstacle problems. Last, we combine all these
ingredients to pass two the limit as ε → 0, along a suitable subsequence, establishing Theorem 1.3.
Recall that we are using the notation Q := Rn × (0,+∞) and fγ(u) := γχ{u>0}u

γ−1.
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3.1. Euler-Lagrange equation and uniform non-degeneracy. Let us start with the Euler-
Lagrange equations of minimizers.

Lemma 3.1. Let ε ∈ (0, 1) and let uε ∈ U0 be the minimizer of Eε in U0. Then

(3.1) ε

�
Q
∂tuε∂tη dxdt+

�
Q
(∂tuεη +∇uε · ∇η + fγ(uε)η) dxdt = 0

for every η ∈ C∞
c (Q).

Proof. Let u := uε be the minimizer of Eε in U0 and let φ ∈ C∞
c (Q). We have

Eε(u+ δφ)− Eε(u)
δ

= 2

� ∞

0

e−t/ε

ε

�
Rn

(
ε∂tu∂tφ+∇u · ∇φ+

(u+ δφ)γ+ − uγ+
δ

)
dxdt+O(δ),

as δ → 0. We divide the remaining part of the proof depending whether γ ∈ (1, 2) or γ = 1.

• Assume γ ∈ (1, 2). Then the function u 7→ uγ+ is everywhere differentiable, and thus

(u+ δφ)γ+ − uγ+
δ

→ γuγ−1
+ φ a.e. in Q,

as δ → 0. Consequently, taking the limit of the incremental quotient above and using the minimality
of u, we obtain � ∞

0
e−t/ε

�
Rn

(
ε∂tu∂tφ+∇u · ∇φ+ γuγ−1

+ φ
)
dxdt = 0.

Choosing φ = et/εη and noticing that ∂tφ = et/ε
(
1
εη + ∂tη

)
, (3.1) easily follows.

• Assume γ = 1. In this case, the function u 7→ u+ is not differentiable at u = 0: we thus generalize
the argument in [18, Proposition 5.12] to our degenerate-elliptic setting. By Lemma 2.2, we know that
u ≥ 0 a.e. in Q. Consequently, one easily obtains that

(u+ δφ)+ − u+
δ

→ χ{u>0}φ+ χ{u=0}φ+ a.e. in Q,

as δ → 0+. Since by minimality Eε(u+ δφ)− Eε(u) ≥ 0, we may choose φ = et/εη as before and pass
to the limit as δ → 0+ to find

(3.2) ε

�
Q
∂tu∂tη dxdt+

�
Q
(∂tuη +∇u · ∇η + χ{u>0}η + χ{u=0}η+) dxdt ≥ 0,

for every η ∈ C∞
c (Q).

Now, if we define the differential operator Lε := ε∂tt +∆, setting

−⟨Lεu, η⟩ :=
�
Q
(ε∂tu∂tη +∇u · ∇η) dxdt,

the previous inequality (3.2) becomes

−⟨Lεu, η⟩+
�
Q
(∂tuη + χ{u>0}η + χ{u=0}η+) dxdt ≥ 0.

Consequently,

(3.3) ⟨Lεu, η⟩ ≤

{�
Q(∂tu+ 1)η dxdt for all η ∈ C∞

c (Q) such that η ≥ 0,�
Q(∂tu+ χ{u>0})η dxdt for all η ∈ C∞

c (Q) such that η ≤ 0,
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that is,

(3.4) χ{u>0} ≤ ε∂ttu+∆u− ∂tu ≤ 1

in the weak sense.
Now, given r > 0, we bound Lεu in L2(Q+

r ) by duality: given η ∈ C∞
c (Q+

r ), (3.3) yields

⟨Lεu, η⟩ ≤ ⟨Lεu, η+⟩+ ⟨Lεu,−η−⟩ ≤
�
Q+

r

|∂tu+ 1|η+ dxdt+

�
Q+

r

|∂tu+ χ{u>0}||η−| dxdt

≤ 2∥∂tu+ 1∥L2(Q+
r )∥η∥L2(Q+

r ) ≤ C∥η∥L2(Q+
r ),

where we have used the estimate (2.6) in the last inequality (notice that here the constant C > 0
depends on r but is independent of u). Thus, by the arbitrariness of r > 0, it follows that

Lεu = ε∂ttu+∆u ∈ L2
loc(Q),

and so, by W 2,2-estimates of Calderón-Zygmund type, we obtain u ∈ W 2,2
loc (Q) (see for instance [18,

Section 2]). Since W 2,2-regularity is enough to apply Rademarcher’s theorem, we deduce that

∂tu, ∂ttu,∆u = 0 a.e. in {u = 0}.

Combining this with (3.4), we finally obtain

−ε∂ttu−∆u+ ∂tu = −χ{u>0} a.e. in Q,

which, in turn, implies (3.1) for γ = 1. □

We now establish a uniform non-degeneracy property for solutions to (3.1) when γ = 1. Notice
that, even though non-degeneracy is quite standard in obstacle problems, it is not clear that such
property can be made uniform with respect to ε ∈ (0, 1), which is exactly what we prove next.

Lemma 3.2. There exists a constant c > 0, depending only on n, such that for every ε ∈ (0, 1), every
(x0, t0) ∈ Q such that B1(x0, t0) ⊂ Q, every weak solution uε to

(3.5) −ε∂ttuε + ∂tuε −∆uε = −χ{uε>0} in B1(x0, t0) ⊂ Q,

every (zε, τε) ∈ {uε > 0} ∩B1/2(x0, t0), and every r ∈ (0, 12), we have

(3.6) sup
Br(zε,τε)

uε ≥ cr2.

Proof. Since the equation (3.5) is invariant under translations and here the initial condition at {t = 0}
plays no role, we may assume (x0, t0) = (0, 0). We also drop the ε-subindexes to make the proof easier

to read, that is, we set u := uε, and (z, τ) := (zε, τε) ∈ {u > 0} ∩B1/2.
Now, take {(zk, τk)}k∈N ⊂ {u > 0} such that (zk, τk) → (z, τ) as k → +∞. For each k ∈ N, we

define

w(x, t) := u(x, t)− u(zk, τk)− c
(
|x− zk|2 + (t− τk)

2
)
, with c := 1

2(n+2) .

Then, if r ∈ (0, 1/2) is arbitrarily fixed, it is easy to compute

−ε∂ttw + ∂tw −∆w = −1 + 2c(n+ ε)− 2c(t− τk)

≤ −1 + 2c(n+ 1) + 2c|t− τk|
≤ −1 + 2c(n+ 1) + 2c ≤ 0 in {u > 0} ∩Br(zk, τk),
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in view of the definition of c above. Note that u (and hence w) is smooth in {u > 0} ∩ Br(zk, τk) by
standard elliptic estimates. By definition, we also have

w(zk, τk) = 0 and w < 0 in ∂{u > 0} ∩Br(zk, τk),
and thus, by the maximum principle,1

0 = w(zk, τk) ≤ sup
∂({u>0}∩Br(zk,τk))

w = sup
{u>0}∩∂Br(zk,τk)

w

= sup
{u>0}∩∂Br(zk,τk)

u− u(zk, τk)− cr2 ≤ sup
Br(zk,τk)

u− u(zk, τk)− cr2,

that is

sup
Br(zk,τk)

u ≥ u(zk, τk) + cr2.

Passing to the limit as k → +∞, (3.6) follows thanks to the continuity of u. □

3.2. Non-degeneracy and optimal regularity: parabolic setting. We present below two tech-
nical results that we will exploit in the proof of Theorem 1.3, in the case γ = 1. The first one,
Lemma 3.3, is a non-degeneracy property —it can be seen as the parabolic version of Lemma 3.2—,
while the second one, Corollary 3.5, is an optimal regularity estimate, obtained by combining interior
estimates and an optimal growth property established below in Lemma 3.4. The optimal regularity
we prove coincides with the optimal regularity of solutions to the parabolic obstacle problem (see
for instance [11]). The proof closely follows the classical one, but we work in a slightly more gen-
eral framework, which is exactly what we need to carry out the limiting procedure in the proof of
Theorem 1.3.

Here and in the rest of the paper, we use the usual notation for parabolic cylinders. That is, we set
Qr(x0, t0) := {(x, t) ∈ Rn × R : |x− x0| < r, |t− t0| < r2} and Q−

r (x0, t0) := Qr(x0, t0) ∩ {t < t0}. As
customary, the center point (x0, t0) is omitted when (x0, t0) = (0, 0).

Lemma 3.3. Let u ∈ C(Q1) be a nonnegative weak solution to

∂tu−∆u = −1 in {u > 0} ∩Q1.

Then, there exists a constant c◦ > 0 depending only on n such that, for every (x0, t0) ∈ {u > 0}∩Q1/2

and every r ∈ (0, 1/2), it holds

sup
Q−

r (x0,t0)

u ≥ c◦r
2.

Proof. The argument follows the proof of Lemma 3.2. Given (x0, t0) ∈ {u > 0}∩Q1/2, let {(xk, tk)}k∈N ⊂
{u > 0} ∩Q1/2 be such that (xk, tk) → (x0, t0) as k → +∞. For each k ∈ N, we define

wk(x, t) := u(x, t)− u(xk, xk)− c◦
(
|x− xk|2 + tk − t

)
, with c◦ :=

1
2n+1 .

Then, in {u > 0} ∪Q1 it holds

∂twk −∆wk = −1 + c◦(2n+ 1) ≤ 0.

Hence, using the maximum principle and that wk < 0 in ∂{u > 0} ∪Q−
r we have

0 = wk(xk, tk) ≤ sup
Q−

r (xk,tk)∪{u>0}
wk = sup

∂p(Q
−
r (xk,tk)∩{u>0})

wk ≤ sup
∂p(Q

−
r (xk,tk))

wk,

1Note that by standard elliptic estimates u,w ∈ C1,α
x,t (B1/2) for all α ∈ (0, 1) and {u > 0} ∩Br(zk, τk) is an open set.
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where ∂pΩ denotes the parabolic boundary of a set Ω ⊂ Rn+1. Since wk ≤ u − u(xk, tk) − c◦r
2 in

∂p(Q
−
r (xk, tk)), it holds that

sup
∂p(Q

−
r (xk,tk))

wk ≤ sup
∂p(Q

−
r (xk,tk))

u− u(xk, tk)− c◦r
2 ≤ sup

Q−
r (xk,tk)

u− u(xk, tk)− c◦r
2,

from which we obtain

sup
Q−

r (xk,tk)

u ≥ u(xk, tk) + c◦r
2.

We conclude by taking the limit as k → +∞ and using that u(x0, t0) ≥ 0 (note that u(x0, t0) = 0
when (x0, t0) ∈ ∂{u > 0}). □

Next we establish an optimal growth bound and, as corollary, an optimal regularity estimate. The
proof is quite standard, but we present it for completeness, following [4, Lemma 5.3] where it is done
for the parabolic obstacle problem.

Lemma 3.4. Let K > 0 and let f ∈ L∞(Q1) with f ≤ 0 a.e. in Q1 and ∥f∥L∞(Q1) ≤ K. Let
u ∈ C(Q1) be a nonnegative weak solution to

(3.7) ∂tu−∆u = f in Q1

with ∥u∥L∞(Q1) ≤ K. Then, there exists C0 > 0 depending only on n and K such that

(3.8) ||u||L∞(Qr(x0,t0)) ≤ C0r
2,

for every (x0, t0) ∈ {u = 0} ∩Q1/2 and every r ∈ (0, 14).

Proof. Given (x0, t0) ∈ {u = 0}∩Q1/2, since ∥f∥L∞(Q1) ≤ K, we first notice that [35, Lemma 5.1] (or,

equivalently, [4, Lemma 5.2]) yields that for every δ ∈ (0, 1) and r ∈ (0, 14),

(3.9) sup
P δ
r (x0,t0)

u ≤ C0(u(x0, t0) +Kr2) = C0Kr
2,

where C0 > 0 depends only on n and δ, and

P δr (x0, t0) := {(x, t) ∈ Q−
r (x0, t0) : t− t0 < −δ|x− x0|2}.

In light of (3.9), it is sufficient to bound u in the set Qr(x0, t0) \ P δr (x0, t0) for some δ ∈ (0, 1) that
will be chosen later. This will be obtained by comparison with the function

w(x, t) := a(t− t0 + b|x− x0|2),

where

b := 1
2n , a := 2 ·max{C0, 16} · Kb .

Let us show that u ≤ w in Q1/4(x0, t0) \P δ1/4(x0, t0). First, it is immediate to check that the choice

of b makes w caloric in Rn+1. Now, on the one hand, setting δ := b
2 ∈ (0, 1), we have

w(x, t) ≥ a(− δ
16 + b

16) =
ab
32 in ∂pQ1/4(x0, t0) \ P δ1/4(x0, t0),

which allows us to deduce that u ≤ w in ∂pQ1/4(x0, t0) \ P δ1/4(x0, t0), thanks to the assumption

∥u∥L∞(Q1) ≤ K and the definition of a. On the other hand, for every ρ ∈ (0, 14) we have

w(x, t)|t=t0−δ|x−x0|2 = ab
2 ρ

2 in ∂Bρ(x0),
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by definition of w and
sup

x∈∂Bρ(x0),t=t0−δρ2
u(x, t) ≤ C0Kρ

2,

for every ρ ∈ (0, 14), as an immediate consequence of (3.9). Combining the last two inequalities with

the definition of a, we deduce that u ≤ w in ∂P δ1/4(x0, t0) ∩ {t − t0 > −δ/16} and therefore, since u

is sub-caloric in Q1 (since f ≤ 0 a.e. in Q1), we obtain that u ≤ w in Q1/4(x0, t0) \ P δ1/4(x0, t0) as

wanted. The result then follows since v ≤ Cr2 in Qr(x0, t0) \ P δr (x0, t0) for every r ∈ (0, 14) and some
C > 0 depending on a and b. □

Corollary 3.5. Let K > 0, f ∈ L∞(Q1), and u ∈ C(Q1) as in Lemma 3.4. Further, assume that f
is constant in {u > 0}∩Q1. Then there exists a constant C > 0 depending only on n and K such that

(3.10) ∥∂tu∥L∞(Q1/2) + ∥D2u∥L∞(Q1/2) ≤ C.

In addition, for every (y, τ) ∈ {u > 0} ∩Q1/2 we have

(3.11) |∇u(y, τ)| ≤ Cδ,

where δ := sup{ρ > 0 : Qρ(y, τ) ⊂ {u > 0}}.

Proof. We may assume that ∂{u > 0} ∩ Q1/2 ̸= ∅, otherwise the result is classical and well-known.
Let us fix (y, τ) ∈ {u > 0} ∩ Q1/2 and let δ = δ(y, τ) > 0 be as in the statement. We first apply the
interior estimates in [22, Theorem 4.9] (with α = 1, (aij)

n
i,j=1 = I, bi = 0 for i = 1, . . . , n, and c = 0)

to deduce

∥∂tu∥L∞(Qδ/2(y,τ)) + ∥D2u∥L∞(Qδ/2(y,τ)) +
1

δ
∥∇u∥L∞(Qδ/2(y,τ))

≤ C̄

(
1

δ2
∥u∥L∞(Qδ(y,τ)) + ∥f∥L∞(Qδ(y,τ)) + δ[f ]Lipp(Qδ(y,τ))

)
,

for some constant C̄ > 0 depending only on n, where

[f ]Lipp(Q) := sup
(x,t),(y,τ)∈Q
(x,t) ̸=(y,τ)

|f(x, t)− f(y, τ)|√
|x− y|2 + |t− τ |

.

Then, using the growth estimate (3.8) —applied in Q2δ(y0, τ0)—, the L∞ bound for f , and the fact
that f is constant on Qδ —since Qδ ⊂ {u > 0}—, it follows that

1

δ2
∥u∥L∞(Qδ(y,τ)) + ∥f∥L∞(Qδ(y,τ)) + δ[f ]Lipp(Qδ(y,τ)) ≤ 4C0 +K,

where C0 > 0 is as in Lemma 3.4. Combining the above two inequalities and using the arbitrariness
of (y, τ), we obtain

(3.12) |∂tu(y, τ)|+ |D2u(y, τ)| ≤ C for all (y, τ) ∈ {u > 0} ∩Q1/2

and

(3.13) |∇u(y, τ)| ≤ Cδ for all (y, τ) ∈ {u > 0} ∩Q1/2,

where C := C̄(4C0 +K). In particular, (3.13) implies that ∇u can be continuously extended to zero
in {u = 0} ∩Q1/2.

To complete the proof it is enough to show that ∇u is Lipschitz in space, that is

(3.14) |∇u(x, t)−∇u(z, t)| ≤ L|x− z| for all (x, t), (z, t) ∈ Q1/2,
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for some constant L > 0 depending only on n and K. Indeed, (3.14) implies ∥D2u∥L∞(Q1/2) ≤ L

which, combined with the fact that u is a weak solution to (3.7) and ∥f∥L∞(Q1) ≤ K, gives the bound
∥∂tu∥L∞(Q1/2) ≤ L+K.

In the next argument, we will use the parabolic distance. For points (x, t), (y, τ) ∈ Rn+1, it is defined
as

distp((x, t), (y, τ)) := inf{ρ > 0 : (y, τ) ∈ Qρ(x, t)}.
For a point (x, t) ∈ Rn+1 and a set A ⊂ Rn+1, we set distp((x, t), A) := inf(y,τ)∈A distp((x, t), (y, τ)).

Let us establish (3.14). To do it, let (x, t), (z, t) ∈ Q1/2. If both (x, t), (z, t) ∈ {u = 0} the claim is
trivial since ∇u = 0 in {u = 0} ∩Q1/2. Hence, we may assume that (x, t) ∈ {u > 0}. By symmetry,
we may also assume

d := distp((x, t), {u = 0}) ≥ distp((z, t), {u = 0}).
On the one hand, assume that distp((x, t), (z, t)) ≤ d/2. Then, (z, τ) ∈ Qd/2(x, t) ⊂ {u > 0} and thus,
by (3.12), we have

|∇u(x, t)−∇u(z, t)| ≤
� 1

0
|D2u(sx+ (1− s)z, t)|ds · |x− z| ≤ C|x− z|.

On the other hand, if distp((x, t), (z, t)) ≥ d/2, then (3.13) yields

|∇u(x, t)−∇u(z, t)| ≤ |∇u(x, t)|+ |∇u(z, t)| ≤ 2Cd ≤ 4Cdistp((x, t), (z, t)) = 4C|x− z|.
Therefore (3.14) follows with L := 4C. □

3.3. Proof of Theorem 1.3. In this subsection, we combine all the ingredients introduced above to
prove our main result.

Proof of Theorem 1.3. Let {uε}ε∈(0,1) be the family of minimizers of Eε in U0. Then by Proposition 2.1,
there are εj → 0 and u ∈ U0 such that uεj converge to u in the sense of (2.1) and, by Lemma 3.1,
each uεj satisfies (3.1) for every j ∈ N. For simplicity, we set uj := uεj for j ∈ N.

Step 1: local uniform convergence of the sequence of minimizers.
First, up to passing to another subsequence, we may assume that for every r > 0 and every (x0, t0) ∈ Q
such that Qr(x0, t0) ⊂⊂ Q

∥uj∥Cα,α/2(Qr/2(x0,t0))
≤ Cr−α

[
1 + r−

n+2
2 ∥uj∥L2(Qr(x0,t0))

]
for some α ∈ (0, 1) and C > 0 depending only on n (the parabolic Hölder norm ∥ · ∥Cα,α/2 is quite
standard, see for instance [3, Appendix C] for the definition). This easily follows by combining
the (re-scaled) estimates in [3, Proposition 3.1 and Proposition 4.1] with Uε = uεj = uj , fε = 0,

Fε = −χ{uεj>0}, p = q = ∞, and a = 0.2 Further, the sequence {uj}j∈N is uniformly bounded in

L2(Q+
r ) for every r > 0 —see the argument leading to (2.5)— and thus

∥uj∥Cα,α/2(Qr/2(x0,t0))
≤ C,

for some other constant C > 0 independent of j. Therefore, combining the Arzelà-Ascoli theorem
with a standard covering argument, and up to passing to another subsequence, we deduce that

uj → u locally uniformly in Q,

which, in particular, implies that u is continuous in Q.

2Notice that [3, Proposition 4.1] can be applied here since uεj → u in Cloc(0,∞ : L2(Rn)) (this is an immediate

consequence of (2.6)-(2.7) and [33, Corollary 8]) and thus the assumption (4.1) in [3] is satisfied.
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Step 2: conclusion for γ ∈ (1, 2).
We show that u is a strong solution to (1.1). Notice that, if γ ∈ (1, 2), the nonlinearity fγ is con-
tinuous. Hence, we may pass to the limit in (3.1) by dominated convergence, combining (2.6) and
Proposition 2.1 with the continuity of fγ , and deduce that u satisfies (1.7), i.e., (1.1) in the sense of
Definition 1.2.

Step 3: limit problem for γ = 1.
In the rest of the proof, we assume γ = 1. Since χ{uj>0} are bounded in L∞(Q) uniformly in j ∈ N,
there exists a nonnegative function χ ∈ L∞(Q) such that χ{uj>0} ⇀

⋆ χ in L∞(Q) up to passing to a

subsequence. Consequently, passing to the limit in (3.1) as above and recalling that L∞(Q) = L1(Q)⋆,
we have �

Q
(∂tuη +∇u · ∇η + χη) dxdt = 0,

for every η ∈ C∞
c (Q). Hence, to conclude, it is enough to show that

(3.15) χ = χ{u>0} a.e. in QR,

where QR is any cylinder such that Q2R ⊂ Q and R > 0.
To check (3.15), on the one hand we notice that if (x, t) ∈ {u > 0} ∩QR, then χ{uj>0}(x, t) = 1 for

j large enough, by uniform convergence. Therefore, χ = 1 in {u > 0} ∩ QR. On the other hand, we
claim that for any δ ∈ (0, R2/4), if (x, t) ∈ {u = 0} ∩QR with dist((x, t), {u > 0}) > δ, then

χ{uj>0}(x, t) = 0

for j large enough. Indeed, if we assume that this is not true, there exist {(xk, tk)}k∈N ⊂ QR with
dist((xk, tk), {u > 0}) > δ and (xk, tk) ∈ {uk > 0} for k ∈ N. Then, by our uniform non-degeneracy
estimate (3.6), we have

uk(zk, τk) = sup
Bδ/2(xk,tk)

uk ≥ cδ2,

for some (zk, τk) ∈ Bδ/2(xk, tk) and some c > 0 independent of k. Up to passing to a subsequence we

have that (xk, tk) → (x0, t0) and (zk, τk) → (z, τ) ∈ Bδ/2(x0, t0) ⊂⊂ {u > 0}c. Thus, u(x0, t0) = 0, but

this contradicts the fact that uk(zk, τk) → u(x0, t0) ≥ cδ2 (which follows from uniform convergence).
Consequently, the claim is proved and we conclude that χ = 0 in int({u = 0}) ∩ QR, where int(A)
denotes the interior of a set A.

Summing up, we have that u ∈ C(QR) is a weak solution to ∂tu−∆u = −χ in QR, where χ ∈ L∞(Q)
is nonnegative, χ = 1 in {u > 0} ∩ QR, and χ = 0 in int({u = 0}) ∩ QR (in particular, u fulfills the
assumptions of both Lemma 3.3 and Corollary 3.5 with f = χ).

To prove (3.15), it remains to show that ∂{u > 0} ∩ QR has zero measure, which is what we do
next, in the spirit of [35, Theorem 5.1].

Step 4: measure of the free boundary.
We first prove that for every (x, t) ∈ ∂{u > 0} ∩QR and every r ∈ (0, R/4), we have

(3.16)
L n+1({u > 0} ∩Qr(x, t))

L n+1(Qr(x, t))
≥ c⋆ > 0,

where L n+1 denotes the (n+ 1)-dimensional Lebesgue measure and c⋆ is a constant depending only
on n and KR := max{1, ∥u∥L∞(QR)}. To show (3.16), we notice that Lemma 3.3 yields the existence

of (y, τ) ∈ {u > 0} ∩Qr/2(x, t) such that

(3.17) u(y, τ) ≥ c◦
4 r

2,
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where c◦ > 0 depends only on n. Now, we claim that Qc̃r(y, τ) ⊂ {u > 0} ∩ Qr(x, t) if c̃ ∈ (0, 12)
is small enough depending only on n and KR. Indeed, given (z, θ) ∈ Qc̃r(y, τ), setting γ(s) :=
s(y, τ) + (1− s)(z, θ) for s ∈ [0, 1]. By Corollary 3.5 (applied with f = −χ and K = KR), we have

u(y, τ)− u(z, θ) =

� 1

0
(∇u(γ(s)), ∂tu(γ(s)) · (y − z, τ − θ) ds

≤ sup
s∈[0,1]

|∇u(γ(s))| · |y − z|+ sup
s∈[0,1]

|∂tu(γ(s))| · |τ − θ| ≤ Cr · c̃r + C · (c̃r)2

≤ 2Cc̃r2,

where C > 0 is the constant appearing in (3.10) and (3.11) and depends only on n and KR. Setting
c̃ := min{ c◦

16C ,
1
2} and combining the bound above with (3.17), we obtain

u(z, θ) ≥ ( c◦4 − 2Cc̃)r2 > 0,

and our claim is proved. The fact that Qc̃r(y, τ) ⊂ {u > 0} ∩Qr(x, t) readily implies (3.16).
Once (3.16) is established, let us show that the free boundary has zero measure. By contradiction,

we assume that L n+1(∂{u > 0} ∩ QR) > 0. Now, since the set ∂{u > 0} is measurable, χ∂{u>0} is
integrable in QR and thus, for almost every point (x, t) ∈ ∂{u > 0} ∩QR,

(3.18)
L n+1(∂{u > 0} ∩ Er(x, t))

L n+1(Er(x, t))
→ 1 as r ↓ 0,

where Er(x, t) := Br(x)× (t− r, t+ r). Let us take one of such points (x, t) (recall that this is allowed
by our assumption of L n+1(∂{u > 0}∩QR) being positive). Up to a translation, we may assume that
(x, t) = (0, 0). Let us also take r◦ > 0 such that, for r < r◦, L n+1(∂{u > 0}∩Er/2) ≥ L n+1(Er/2)/2.

Now, we take a sequence rk → 0 such that 1/(2rk) ∈ N. For each of these rk (which from now on
we will denote simply by r), we decompose the cylinder Er/2 (up to a set of zero measure) into 1/r
disjoint parabolic cylinders Qr/2(0, ti) for some {ti}i. If r < r◦, then it is not difficult to see that the
number of cylinders Qr/2(0, ti) which intersect ∂{u > 0}, which we denote by N , satisfies N ≥ 1/r.
From such N cylinders, we can take another collection {Qr/2(0, tj)}j with cardinality at least N/4 and

such that the distance between each pair of cylinders in the collection is greater than r2. Thus, we
can build another collection of parabolic cylinders {Qr/2(zj , τj)}j , with the same cardinality, such that
(zj , τj) ∈ ∂{u > 0} ∩ Qr/2(0, tj). For each of these cylinders we can use the density property (3.16)
and, adding up (using that the cylinders are pairwise disjoint), we get

L n+1(∂{u > 0} ∩ Er) ≥
N/4∑
j=1

L n+1(∂{u > 0} ∩Qr/2(zj , τj)) ≥ c⋆
N

4
L n+1(Qr/2) ≥ c̄L n+1(Er),

for some constant c̄ > 0 depending only on n and KR. Note that in the last inequality we have used
that N ≥ 1/r. As a consequence,

L n+1(∂{u > 0} ∩ Er)
L n+1(Er)

≥ c̄ > 0,

which combined with (3.18) —recall that we assume (x, t) = (0, 0)— yields

lim
r↓0

L n+1({u > 0} ∩ Er)
L n+1(Er)

> 1,

a contradiction. □
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4. Extensions

In this final section, we explain how to modify the arguments above to construct strong solutions
to

(4.1)


∂tu−∆u = −fγ(u) in Ω× (0,∞),

u = 0 in ∂Ω× (0,∞),

u|t=0 = u0 in Ω,

where Ω ⊂ Rn is a bounded domain. Before starting with the proof, a couple of remarks:

• The notion of strong solution to (4.1) is exactly the one given in Definition 1.2, replacing Rn with
Ω, Q with Ω∞ := Ω× (0,∞), and H1(Rn) with H1

0 (Ω).

• As the reader will easily see, the argument below apply with small changes if we impose homogeneous
Neumann conditions on the parabolic boundary, instead of the Dirichlet ones (see also [5]).

Now, the idea we follow is basically the same as the one used in the above sections: we consider the
family of functionals

(4.2) Ẽε(w) :=
� ∞

0

e−t/ε

ε

(�
Ω
(ε|∂tw|2 + |∇w|2) dx+ 2

�
Ω
wγ+ dx

)
dt,

with ε ∈ (0, 1), and we seek for minimizers in the space

Ũ0 := {u ∈ Ũ : u|t=0 = u0 and u(·, t) = 0 on ∂Ω for a.e. t > 0},

where

Ũ :=
⋂
r>0

H1(Ω+
r ), with Ω+

r := Ω× (0, r2),

and the initial data satisfies

(4.3) u0 ∈ H1
0 (Ω) ∩ Lγ(Ω) and u0 ≥ 0 a.e. in Ω.

Exactly as above, since each element u ∈ Ũ has all (first) weak derivatives in L2(Ω+
r ) for every r > 0,

the equations u|t=0 = u0 and u(·, t) = 0 on ∂Ω for a.e. t > 0, appearing in the definition of Ũ0, must
be intended in the sense of traces.

Given these definitions, we may state and prove the following corollary of Theorem 1.3.

Corollary 4.1. Let n ≥ 1, γ ∈ [1, 2) , u0 as in (4.3), and fγ as in (1.2). Then there exist a sequence

of minimizers {uεj}j∈N of (4.2) in Ũ0 and a strong solution u ∈ Ũ0 to (4.1), continuous in Ω∞, such
that

uεj ⇀ u weakly in Ũ
uεj → u locally uniformly in Ω∞.

Proof. We summarize the proof in three remarks as follows.

• The methods used to prove Lemma 2.2 apply in this setting too, with minor changes: the assumptions
on u0 allow us to use it as competitor and obtain the estimate (2.3), while the proof of existence of
minimizers (for fixed ε ∈ (0, 1)) is the same, once we replace Br with Ω and Q+

r with Ω+
r .

• Also the energy estimates stated in Proposition 2.3 hold for minimizers of Ẽε in Ũ0 if we replace Rn
with Ω. Indeed, it is enough to replace Rn with Ω in the definitions of I and R, below formula (2.8).
The rest of the proof is exactly the same.
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• Finally, we notice that the proofs of Lemma 3.1, Lemma 3.2, Lemma 3.3, Lemma 3.4, and Corol-
lary 3.5 are purely local and do not depend on the boundary behavior of minimizers. Therefore,
minimizers of Ẽε in Ũ0 satisfy the same statements with Q replaced by Ω∞.

Putting such remarks together and proceeding as in the proof of Theorem 1.3, our statement
follows. □
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