
Doctoral Dissertation

Doctoral Program in Electrical, Electronics and Communications Engineering
(35thcycle)

Techniques and Optimization
Strategies for Efficient Hardware
Acceleration of Neural Networks

Tap-Wisely-Quantized Winograd Algorithm and
Capsule Networks

By

Beatrice Bussolino

Supervisor(s):
Prof. Maurizio Martina, Supervisor

Doctoral Examination Committee:
Prof. Francesca Palumbo. , Referee, Università degli Studi di Sassari
Prof. Stefania Perri, Referee, Università della Calabria
Dr. Renzo Andri, Computing Systems Lab, Huawei Zurich Research Center
Prof. Guido Masera, Politecnico di Torino
Dr. Riccardo Peloso, ST Microelectronics

Politecnico di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Beatrice Bussolino
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

I want to dedicate these lines to those who helped me to reach this goal and con-
tributed to my journey.

I want to thank, first of all, Professor Maurizio Martina, for the opportunity he
gave me and for his constant advice and support. I also would also like to express my
gratitude to Dr. Renzo Andri and Dr. Lukas Cavigelli for mentoring me during the
internship at the Zürich Huawei Research Center. Their supervision and collaboration
have profoundly enriched my knowledge and skills.

Ai miei genitori, per il loro incondizionato sostegno e per l’incessante interesse
dimostrato nei confronti del mio lavoro, malgrado la mia poca pazienza nello spiegare
di cosa mi occupi. A Massimiliano, che da sempre alleggerisce le ore di studio e
di lavoro, e che mi rende fiera ogni giorno. Ad Antonio, per aver arricchito questo
dottorato e per essere diventato un punto di riferimento nel lavoro come nella vita,
grazie alla sua straordinaria passione e dedizione. A Stefano, per aver sempre creduto
nella nostra amicizia, da sempre faro nei momenti più bui. A Giorgio, per amarmi
nonostante i miei limiti e per delicatamente spingermi sempre a superarli.

Abstract

The growing popularity of deep neural networks (DNNs) has intensified the demand
for efficient hardware accelerators to handle the complex computations required by
these models. This trend has led to increased research and development of domain-
specific hardware accelerators (DSAs) to achieve the high performance and energy
efficiency needed to support the deployment of DNNs in a wide range of applications.
The effective execution of a DNN on a hardware accelerator depends on the workload
presented by the model, the peak performance offered by the accelerator, and the
efficiency with which the accelerator’s resources are used.

With these three pillars in mind, in the first part of this thesis, we present a
technique to enable convolutional neural networks (CNNs) acceleration by com-
bining the Winograd algorithm for fast convolution and integer-only inference. A
novel tap-wise quantization method overcomes the numerical issues arising when
combining int-8 quantization and Winograd algorithm with larger tiles. Furthermore,
custom hardware units and a carefully-tailored dataflow allow the processing of the
Winograd transformations in a power- and area-efficient way. An extensive experi-
mental evaluation on a large set of state-of-the-art computer vision benchmarks is
conducted. This reveals that applying the tap-wisely-quantized Winograd algorithm
with 4×4 tiles leads to a negligible accuracy loss compared to FP32 baselines. A
domain-specific accelerator (DSA), enhanced with the Winograd custom hardware
units, achieves up to 1.85× gain in energy efficiency and up to 1.83× end-to-end
speed-up for state-of-the-art segmentation and detection networks.

In the second part of this thesis, we present our efforts to enhance the hardware-
friendliness of capsule networks, a novel DNN model, by utilizing quantization
methods and optimizing the model architecture in an HW-oriented fashion. This
work aims to facilitate the acceleration of capsule networks, improving their com-
putational efficiency and, in turn, enabling their deployment in resource-limited

viii

environments. First, we present a study on the quantization possibilities for capsule
networks and provide a framework for a fast generation of per-layer quantization
parameters. When tested on a deep capsule network model for the CIFAR10 dataset,
the proposed approach reduces the memory footprint by 6.2× with only a 0.15%
accuracy loss. Secondly, we present NASCaps, an automated framework for the
hardware-aware neural architecture search (NAS) of different types of DNNs, cov-
ering both traditional convolutional CNNs and capsule networks. The aim is to
optimize the network accuracy and hardware efficiency, expressed in terms of energy,
memory, and latency of a given hardware accelerator executing the DNN infer-
ence. The framework is tested on different datasets, generating various network
configurations, and demonstrating the tradeoffs between the different output metrics.

Overall, this thesis presents novel techniques to overcome the challenges of
CNNs and capsule networks and achieve efficient hardware acceleration. The re-
sults demonstrate that the proposed techniques improve the throughput and energy
efficiency of the neural networks, which can have a significant impact on the devel-
opment of efficient and accurate AI systems.

Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Background and State of the Art 3

1.2.1 Deep Neural Networks . 3

1.2.2 Hardware Acceleration of Deep Neural Networks 7

1.2.3 Hardware-Efficient Deep Neural Networks 14

1.3 Objectives and Contributions . 19

2 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference 23

2.1 Introduction and Motivation . 23

2.2 Background and Related Works 24

2.2.1 Winograd Minimal Filtering Algorithm 24

2.2.2 Winograd for Convolution 27

2.2.3 Related Works . 29

2.3 Tapwise Quantization . 32

2.3.1 Winograd-Aware Training 34

2.3.2 Power-of-Two Tapwise Quantization 35

x Contents

2.4 Hardware Acceleration . 36

2.4.1 Baseline Accelerator . 37

2.4.2 Winograd Transformation Engines 40

2.4.3 Winograd Operator . 44

2.5 Results . 49

2.5.1 Tap-wise Quantization Algorithm 49

2.5.2 System Evaluation . 55

2.6 Conclusion . 65

3 Hardware-Efficient Capsule Networks 67

3.1 Introduction and Motivation . 67

3.2 Background and Related Works 70

3.2.1 Capsule Networks . 70

3.2.2 Quantization . 72

3.2.3 Adversarial Attacks and Robust-NAS 74

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 76

3.3.1 Framework Overview . 76

3.3.2 Q-CapsNets step-by-step description 78

3.3.3 Results . 86

3.3.4 Conclusions . 93

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 94

3.4.1 NASCaps Overview . 94

3.4.2 Parametric Modeling of Capsule-Based Layers and Networks 96

3.4.3 Modeling of CapsNets Execution on Hardware Accelerators 97

3.4.4 The Multi-Objective NSGA-II Algorithm 100

3.4.5 Results . 103

3.4.6 Conclusions . 111

Contents xi

3.5 Neural Architecture Search for Robust Capsule Networks 111

3.5.1 Integration of Adversarial Robustness Evaluation in NASCaps112

3.5.2 Results . 113

3.5.3 Conclusions . 119

4 Conclusions and Future Works 121

References 125

List of Figures

1.1 Model of an artificial neuron. 3

1.2 Example of a generic neural network showing the disposition of
neurons into layers . 4

1.3 Example of a fully-connected layer (left) and of how it can be mod-
eled by a vector-matrix multiplication (right). 4

1.4 Graphical representation of the convolution operation in a convolu-
tional layer. A sub-tensor of iFM (red) is multiplied by a sub-tensor
of W and the results are accumulated to produce a single value (red)
of the oFM. 5

1.5 Peak performance vs. peak power for publicly announced AI accel-
erators. Source [1] . 8

1.6 Convolution lowering into a matrix-multiplication 10

1.7 General structure of an accelerator for AI applications. 11

1.8 Spatial and temporal mapping of the Multiply-and-Accumulate
(MACs) operations to the Processing Elements (PEs). 12

1.9 Loop tiling technique applied to the 7-nested loops representation of
the Conv layer . 13

2.1 FIR filter . 25

2.2 General multiplications reduction of 2D Winograd Fm,r w.r.t. the
standard filtering algorithm. 27

xiv List of Figures

2.3 Comparison between standard convolution and Winograd convolu-
tion for the single-input-single-output channel case 28

2.4 Winograd convolution for convolution with multiple input and output
channels. 29

2.5 Winograd Convolution mapping to MatMuls. 30

2.6 Weight Distribution in Winograd domain of G f GT taps for ResNet-
34 on ImageNet . 33

2.7 High-level overview of the inference accelerator with the proposed
extensions . 37

2.8 Cube Unit. 38

2.9 Fractal data layout. 38

2.10 Row-by-row engine in the slow (left) and fast (right) version. 41

2.11 Row-by-row engine with parallelization. 42

2.12 Tap-by-tap engine with parallelization. 42

2.13 (top) Bank conflict arising when using a traditional addressing
scheme. (bottom) Proposed diagonal access scheme. 47

2.14 Quantization error distribution for the weights in (a) spatial and (b)
Winograd domain on ResNet-34 using different strategies: layer-
wise quantization, channel-wise quantization, tap-wise quantization,
and channel- & tap-wise quantization. 54

2.15 Cycle Breakdown for im2col vs. Winograd F4. 59

2.16 Number of memory accesses (left) and energy breakdown (right) for
Winograd F4 w.r.t. im2col. 64

3.1 Energy consumption and area footprint for a fixed-point multiply-
and-accumulate unit (MAC) with different bitwidths. 68

3.2 Energy consumption and area footprint for fixed-point modules
performing (left) the squash and (right) the softmax with different
bitwidths. 69

3.3 ShallowCaps architecture for MNIST/Fashion-MNIST dataset. . . . 71

List of Figures xv

3.4 The operations to be computed for the dynamic routing. 71

3.5 DeepCaps architecture. 72

3.6 Comparison between truncation, round-to-nearest-even and stochas-
tic rounding operators. 73

3.7 High-level overview of Q-CapsNets framework 77

3.8 Flow of Q-CapsNets framework for quantizing capsule networks. . . 78

3.9 Quantization of a capsule layer with dynamic routing. Colored
bars show the tensors that are quantized. In green, the weights are
quantized with Qw bits. In blue, the activations are quantized with
Qa bits. In red, data are quantized more aggressively with QDR bits.
The precision is lowered before complex and compute-intensive
functions (squash, softmax). 81

3.10 Numerical distribution of the activations on which softmax and
squash functions are applied, at different iterations of the dynamic
routing algorithm. 82

3.11 Layers sorting by weights SQNR and grouping. 84

3.12 Experimental setup to test our Q-CapsNet framework. 87

3.13 Q-CapsNets-v1 example results of the ShallowCaps for the MNIST
dataset. 89

3.14 Q-CapsNet-v1 example results of the DeepCaps for the CIFAR10
dataset. 90

3.15 Q-CapsNets-v2 example results of the ShallowCaps for the MNIST
dataset. 90

3.16 Q-CapsNets-v2 example results of the DeepCaps [2] for the CI-
FAR10 [3] dataset. 91

3.17 Comparison between v1 and v2 of Q-CapsNets framework. Each box
corresponds to a test with certain accuracy tolerance and memory
budget constraints. The box is marked only if the framework is able
to return a model_satisfied for that test. 92

xvi List of Figures

3.18 Comparison between TRN, RTNE, and SR rounding methods. Each
box corresponds to a test with certain accuracy tolerance and memory
budget constraints. The box is marked only if the framework can
return a model_satisfied for that test. 93

3.19 Overview of our NASCaps framework, showing different compo-
nents and their interconnections defining the workflow. 95

3.20 Proposed structure of the genotype. 97

3.21 Architectural view of the CapsAcc accelerator. 98

3.22 Sorting of the population. 101

3.23 Example of crossover between two genotypes. 103

3.24 Setup and tool-flow for conducting our experiments. 104

3.25 Partially-Trained DNN NAS for (a) the MNIST dataset, and (b) the
CIFAR-10 dataset. The color shows in which generation the solution
occurs first. 107

3.26 Fully-trained DNN results for (a) the MNIST, (b) the Fashion-
MNIST, (c) the SVHN, and (d) CIFAR-10 datasets. 109

3.27 Variation of the NasCaps framework to add robustness to adversarial
attacks as a search objective . 112

3.28 Analysis of the DNN robustness under the PGD attack, with different
adversarial perturbation values, for MNIST, Fashion-MNIST, and
CIFAR10. 114

3.29 DNN robustness of partially-trained DNNs under PGD attack, show-
ing tradeoffs w.r.t. energy, latency, and memory footprint. (a) Results
for CIFAR10. (b) Results for Fashion-MNIST. (c) Results for MNIST.115

3.30 Robustness of fully-trained Pareto-optimal DNNs, showing tradeoffs
w.r.t. hardware efficiency. (a) Results for CIFAR10. (b) Results for
Fashion-MNIST. (c) Results for MNIST. 116

3.31 Evaluation of the modified framework, compared to other state-of-
the-art and NASCaps-discovered architectures. 117

List of Figures xvii

3.32 Evaluation of the modified framework with the Two EPS setting,
compared to other state-of-the-art and NASCaps-discovered archi-
tectures. 118

List of Tables

1.1 Comparison of different variable-bitwidth AI accelerators. 17

2.1 Performance and bandwidth requirements of the Winograd transfor-
mation engines. 44

2.2 Ablation study for ResNet-34 on ImageNet 50

2.3 SoA Winograd-aware quantization methods. 52

2.4 AI Core breakdown at 0.8 V and 500 MHz. Power consumptions
marked with ∗ refer to the Im2col kernel, or with † to the F4 Winograd
kernel. The cube TOp/s/W reported for the F4 Winograd kernel are
computed using the equivalent TOp in the spatial domain, i.e., 4×
the TOp of the CubeUnit. 57

2.5 Throughput of the Winograd operator normalized to the im2col
operator for different 3×3 Conv2D layers with stride equals to 1 and
padding same. H,W refers to the output resolution. 59

2.6 Comparison of NVDLA and our accelerator system. 60

2.7 Throughput and energy efficiency evaluation. Values in parentheses
refer only to the Winograd layers. The speed-up columns marked
with the symbol ∗ refer to a system with a higher external memory
bandwidth (1.5×). 62

3.1 Computational-intensity comparison between different DNN models. 68

3.2 Q-CapsNet-v1 accuracy results, weight (W) memory and activa-
tion (A) volume reduction for the ShallowCaps and for the DeepCaps
on MNIST, Fashion-MNIST, and CIFAR10 datasets. 89

xx List of Tables

3.3 Q-CapsNets-v2 accuracy results, weight (W) memory and activa-
tion (A) volume reduction for the ShallowCaps and for the DeepCaps
on MNIST [4], Fashion-MNIST and CIFAR10 datasets. 91

3.4 Equations for the operation-specific modeling of CapsNets. 99

3.5 Pearson correlation coefficient (PCC) and median cumulative train-
ing time expressed in seconds (MCTT) for the MNIST, Fashion-
MNIST (FMNIST), SVHN, and CIFAR-10 datasets. 106

3.6 Selected CIFAR-10 architectures after 300-epoch training. Note that
the accuracy reported for the DeepCaps and CapsNet do not 100%
match with the ones reported in the original papers [5, 2]. This can
be attributed to the differences in the training hyper-parameter setup,
as their papers do not disclose the complete in-depth information
about the training that can ensure the reproducibility of their results. 110

3.7 Highest-Accuracy DNNs found by the dataset-specific NAS, which
are then trained for the other datasets for 100 epochs. 110

3.8 Selected values of the adversarial perturbation ε for the NAS, for
MNIST, Fashion-MNIST, and CIFAR10. The table also reports the
values for εlow and εhigh for the Two EPS search. The One EPS
column denotes a search that uses only one value of ε , whereas the
Two EPS column denotes a search that uses both low and high values
of ε . Take into account that a simple dataset like the MNIST needs
a significant adversarial perturbation to have an effect on the DNN
robustness. On the other hand, a smaller perturbation is already
enough to incorrectly categorize a particular set of inputs on a more
complicated dataset like the CIFAR10. 114

Acronyms

AIC AI core. 37

BatchNorm batch normalization. 5, 6

BLAS basic linear algebra subroutines. 9

CapsNet capsule network. 2, 7, 20, 21, 67–70, 72, 75, 76, 78, 80, 81, 119, 122, 123

CNN convolutional neural network. 1, 2, 4, 6, 7, 19, 20, 23, 27, 31, 32, 37, 38, 67,
70, 74–76, 119, 123

Conv convolutional. 4–7, 9, 11

DFG dataflow graph. 40

DL deep learning. 1, 9, 10

DNN deep neural network. 1, 2, 9, 14, 18, 19, 21, 68, 69, 94–97, 100, 103, 105,
106, 108–111, 113–119, 123

DSA domain-specific accelerator. 2, 20, 37, 65, 122

FC fully-connected. 3, 4, 6

FFT fast Fourier transform. 10

FGSM fast gradient sign method. 75

FIR finite input response. 24

FLOPS floating-point operations per second. 19, 94

xxii Acronyms

FM feature map. 4

GPU graphics processing unit. 1, 7–9

HA-NAS hardware-aware NAS. 18, 19, 21

HW hardware. 2, 17, 121, 122

iFM input feature map. 4, 5, 10, 27, 34, 35, 38, 40, 45, 46, 48, 49, 58, 60, 64

IoT internet of things. 7, 119, 123

ISA instruction set architecture. 37

KD knowledge distillation. 14, 18, 36, 50, 51

MAC multiply–accumulate operation. 11, 12, 14, 20, 24, 29, 31, 35, 65, 68

MatMul matrix-matrix multiplication. 9, 14, 29, 36, 37, 39, 45–47, 63, 121

ML machine learning. 7–10

MTE memory transfer engine. 39

NAS neural architecture search. 7, 14, 16, 18–21, 75, 94, 107, 111–114, 123

NN neural network. 1, 7, 15–17

NoC network-on-chip. 10, 12, 13

NPU neural processing unit. 16

oFM output feature map. 5, 35, 40, 48, 56, 60, 64

PCC Person correlation coefficient. 105

PE processing element. 11–13, 16, 41–43, 46, 98–100

PGD projected gradient descent. 75, 112, 113, 115

PTQ post-training quantization. 15

Acronyms xxiii

QAT quantization-aware training. 15, 24

ReLU rectified linear unit. 3, 72, 98

RNS residue number system. 53

RTNE round to nereast even. 73, 74, 92

SQNR signal-to-quantization noise ratio. 84, 85, 90, 91

SR stochastic rounding. 73, 74, 92

TRN truncation. 73

VPU vector processing unit. 14

Chapter 1

Introduction

1.1 Context and Motivation

Deep neural networks (DNNs), born within the field of deep learning (DL), have
seen significant growth and advancement in recent years, leading to their widespread
adoption in a variety of fields including computer vision [6], natural language pro-
cessing [7], language modeling [8], and even playing games such as chess and
Go [9, 10]. The origins of DNNs can be traced back to the 1940s with Warren
McCulloch and Walter Pitts’ work on computational models of neurons. Still, it was
not until the 1980s that DNNs drew more interest due to advances in computer hard-
ware and the development of backpropagation, a training algorithm for DNNs [11].
However, only around 2010 DNNs began to see widespread success [12], thanks
to the availability of large amounts of labeled data. One of the most significant
milestones in the growth of DNNs was the development of convolutional neural
networks (CNNs), leading to the achievement of state-of-the-art performance on
tasks such as image classification [13].

One key challenge in the practical deployment of neural networks (NNs) is
the high computational cost of training and inference. This cost can be mitigated
through the use of hardware acceleration, which offloads computation to specialized
hardware devices such as graphics processing units (GPUs). GPUs are the real
workhorse for DL workloads in cloud infrastructures, thanks to their high parallelism
and ability to perform matrix operations efficiently. However, in the last years,
the growing popularity of DNNs but also the rising interest in edge computing for

2 Introduction

real-time intelligent applications has led to increased research and development
of domain-specific accelerators (DSAs) to achieve high performance and energy
efficiency.

How effectively a DNN can be executed by an hardware (HW) accelerator de-
pends on three factors [14]: the workload, the peak performance, and the efficiency.
For the same accuracy, a simpler model with a lower workload, i.e., number of
operations, always seems a favorable condition. For this reason, several efforts have
been put toward developing small and efficient models [15–17]. However, when
changing the workload, it is always crucial to consider the underlying hardware
architecture to evaluate the effective benefits. For example, this is the case for depth-
wise convolutions, which cannot be efficiently accelerated by architectures working
with channel-first data layout [18]. The peak performance, or throughput, of an
accelerator, determines how fast a neural network can be processed. Increasing area
and power consumption is a direct path to achieving higher peak performance, but it
may not be sustainable in certain scenarios. However, it is possible to increase peak
performance by acting at the algorithmic level, e.g., by simplifying the operations
to be performed. Quantization is a commonly adopted technique, as moving from
a 32-bit floating point to an 8-bit integer representation allows reducing area and
energy costs and model size, while increasing the throughput. Finally, efficiency is
determined by how well the computational resources are used, i.e., their utilization.
To take full advantage of an accelerator, one must achieve maximum utilization of
computational units, thus having a system that is always busy with computations
(compute bound) and not blocked by memories (memory bound). This goal can only
be achieved with a careful architecture design and dataflow mapping.

This thesis is based on the idea that all three aspects of workload, peak perfor-
mance, and efficiency must be considered to effectively accelerate DNNs and are
even more crucial when working with models that deviate from the well-established
CNNs. The thesis is divided into two parts covering two different topics. The first
part covers all three aspects of workload, peak performance, and efficiency when the
Winograd algorithm for fast convolution is applied to CNNs. The second part shows
how to increase the peak performance via quantization and careful model design of
an innovative class of neural networks known as capsule networks (CapsNets).

The rest of the chapter is organized as follows. Section 1.2 introduces the
background necessary to understand the presented works and pointers to state-of-

1.2 Background and State of the Art 3

the-art research. Section 1.3 presents the main objectives and contributions of this
dissertation.

1.2 Background and State of the Art

1.2.1 Deep Neural Networks

Neural Networks: Neurons and Layers

The basic element of neural networks is the neuron, a computational block conceived
to model the behavior of biological neurons. It has been modified over time [19, 20]
until reaching its modern shape, shown in Fig. 1.1. As described by Eq. (1.1), a
neuron receives a set of inputs of which it computes a weighted sum. The output,
also called activation, is then obtained by applying a non-linear function σ(·) to the
weighted sum (Eq. (1.2)). The non-linear function makes neural networks non-linear
systems, differentiating them from linear regression models. The most commonly
used functions are the rectified linear unit (ReLU), the sigmoid, the hyperbolic
tangent, and the softmax function.

...

y+

b

x0

x1

xn

w0

w1

wn

Fig. 1.1 Model of an artificial neuron.

g(x) =
N−1

∑
n=0

x[n]w[n] (1.1)

y = σ (g(x)+b) (1.2)

Neural networks are directed graphs with neurons as nodes. As shown in Fig. 1.2,
the neurons of a neural network are organized in layers. Each layer receives a set of
inputs from a previous layer and forwards its set of output activations to the following
layer. The first neural network for handwritten digit recognition, LeNet [4], was
composed of only five layers. Over time, thanks also to the increase of available
computational resources, the number of layers of neural networks has grown, leading
to the definition of deep neural networks [21].

The layers of a neural network can be differentiated by the connectivity they
implement. The first layer to be introduced is the fully-connected (FC) layer. Given

4 Introduction

Fig. 1.2 Example of a generic neural network showing the disposition of neurons into layers

a set of M inputs and N neurons forming the layer, each of the neurons will receive
and elaborate all of the M inputs. This can be expressed in equation form:

O[n] =
M−1

∑
m=0

W[n,m]I[m]+b[n]

0≤ n < N, 0≤ m < M

(1.3)

From Eq. (1.3) we see that an FC layer can be written as a vector-matrix multi-
plication (Fig. 1.3), where the input vector is formed by the M inputs, and the matrix
is built with the M×N weights of all the neurons.

x =
Input Neurons Output Neurons

Weight Matrix

Ci Co

Ci

Co

M

N

N
M

Fig. 1.3 Example of a fully-connected layer (left) and of how it can be modeled by a vector-
matrix multiplication (right).

The number of inputs M and outputs N can be high, making the number of
parameters of an FC layer potentially huge. Convolutional (Conv) layers alleviate
this problem by exploiting the fact that a neuron does not necessarily need to work
on all the outputs of the previous layer. Neural networks extensively adopting Conv
layers are also called CNNs. CNNs are particularly suited for computer vision tasks,
as Conv layers work on data arranged in a 2D grid, also called feature map (FM). A
neuron of a Conv layer only receives information from a sub-grid of the whole input
feature map (iFM), a receptive field of size ⟨Hk,Wk⟩. A single set of Hk ·Wk weights
is shared by all the neurons of a layer so that they are all detecting the same feature

1.2 Background and State of the Art 5

but on different portions of the feature map. A Conv layer has multiple channels,
specifically Ci input channels and Co output channels, to detect multiple features.
The computations performed in a Conv layer involve an iFM of size ⟨Ci,Hi,Wi⟩,
the weights W of size ⟨Ci,Co,Hk,Wk⟩, and a bias term b of size ⟨Co⟩. The result of
the computation is an output feature map (oFM) of size ⟨Co,Ho,Wo⟩, computed as
follows:

oFM[co,ho,wo] =
Ci−1

∑
ci=0

Hk−1

∑
hk=0

Wk−1

∑
wk=0

(
W[ci,co,hk,wk] · iFM[ci,Sho +hk,Swo +wk]+b[co]

)
0≤ co <Co, 0≤ ho < Ho, 0≤ wo <Wo (1.4)

0≤ hk < Hk, 0≤ wk <Wk

Ci

Co

Hk

Wk

Hi
Ho

Wi

Wo

Ci

Co

=

Ifm

OfmW

Fig. 1.4 Graphical representation of the convolution operation in a convolutional layer. A
sub-tensor of iFM (red) is multiplied by a sub-tensor of W and the results are accumulated
to produce a single value (red) of the oFM.

Conv layers are usually followed by a normalization operation that forces the
layer outputs to have a normal distribution, i.e., zero mean and unit variance. This
operation is beneficial because it maintains the numerical range constant for different
inputs and avoids early saturation of activations, possibly caused by saturating non-
linear functions like softmax or sigmoid. Moreover, normalization helps to speed
up model training as the layers don’t need to adapt to different distributions at
each training step. The most popular normalization method is batch normalization
(BatchNorm) [22], described by Eq. (1.5):

6 Introduction

y =
x−E[x]

Var[x]+ ε
· γ +β (1.5)

where E[x] and Var[x] are the mean and standard deviation of the input tensor
x, respectively. ε is a value necessary for numerical stability, and γ and β are
two trainable parameters for the integration of the BatchNorm layer in the training
process.

Another type of layer commonly found in CNNs is the pooling layer, which
is usually placed after a Conv layer. Pooling layers have receptive fields as Conv
layers, but differently, their neurons do not perform a weighted sum of their inputs,
but rather compute a statistic, such as the maximum or the average value. Pooling
layers have the double function of reducing the number of activations of a layer,
thus decreasing the number of computations of the following layers, and of making
networks invariant to small local translations by downsampling.

Evolution of Neural Networks over the Years

Over the years, many CNN models were proposed achieving ever-improving accu-
racy.

For computer vision, as mentioned in the above paragraphs, the first popular
CNN was LeNet [4], a model for handwritten digit recognition made of a simple
sequence of two Conv and three FC layers only. Initially, the trend for CNNs was
to stack more Conv layers: AlexNet [13], the first winner of the ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC-2012) [23] with super-human
accuracy on the ImageNet dataset [24], has the same structure of LeNet but with two
Conv layers more. Samely, VGG [25], stemming from AlexNet, brings the number
of layers up to 19.

Models such as ResNet [6] and GoogLeNet [26] further pushed the accuracy by
creating blocks in which features obtained at different levels are concatenated or
summed so that the following layers process richer information. Moreover, these
solutions help with the vanishing gradient problem [27] that started to arise with
the increasing number of layers stacked. Starting from the ResNet and GoogLeNet
models, several other architectures were proposed [28–32].

1.2 Background and State of the Art 7

Although (at least initially) increasing the number of layers seemed to be the eas-
iest way to improve the accuracy, with the advent of internet of things (IoT) and edge
processing, it also became necessary to focus on model efficiency. SqueezeNet [15]
was the first small model to reach competitive accuracies by using more efficient
blocks that reduce the network’s overall number of parameters and computations. A
similar idea is also present in MobileNet [16], which replaces expensive Conv layers
with depthwise-separable Conv layers. EfficientNet [17] is a scalable network that
allows the trade-off of computational intensity and accuracy, and that has outper-
formed all the older models on both fronts. MnasNet [33] is a model whose structure
is obtained via neural architecture search (NAS) (see Section 1.2.3). The first popular
network obtained with NAS is NASNet [34], and MnasNet differentiates from it as
it is obtained by searching for both an accurate and efficient network.

Over time, architectures that differ from standard CNNs have been proposed.
CapsNets [5, 2] were proposed to solve some of the problems of CNNs, such as the
loss of data introduced by the pooling layers or the high sensitivity to inputs shifts or
rotations (see Chapter 3). Recently, vision transformers emerged as a competitive
alternative to CNNs. Transformers [7] are currently the most popular architecture
for natural language processing and have been recently applied to computer vision
tasks [35–37] with outstanding results in terms of accuracy and efficiency.

1.2.2 Hardware Acceleration of Deep Neural Networks

Many recent developments in the field of machine learning (ML) and NNs go hand
in hand with advances in computational hardware, which have enabled these heavy
algorithms by supplying the computational power needed to process massive amounts
of data.

The most widely employed early architectures were general-purpose systems,
such as CPUs and GPUs, with the latter being preferred especially because of their
huge parallelism. However, many of the trends that sustained the advances in the
performance of these architectures are ending, such as Moore’s law or Denard’s
scaling. To further support the requirements of present and future ML algorithms,
there has been an explosion of new architectures and computing technologies in
recent years (see Fig. 1.5). These accelerators exploit a different trade-off between
functional flexibility and performance w.r.t. general-purpose architectures. They

8 Introduction

rely on specialized circuits for certain functions or operations characteristic of ML
algorithms in particular.

Fig. 1.5 Peak performance vs. peak power for publicly announced AI accelerators. Source [1]

In this crowded landscape, several classifications of the different architectures and
systems are possible [1]. A reasonable classification is by the intended applications,
which easily translates to power consumption, as shown in Fig. 1.5. On the plot,
we see very-low-power chips, with sub-Watt power consumption, mainly used for
edge computing nodes performing inference only; embedded solutions, with 1-10 W
power consumption, for those applications requiring high-performance inference
such as embedded cameras, small robots or UAV, etc.; chips with 10-100 W power
consumption are mainly intended for inference only on autonomous systems; finally,
above 100 W of power consumption, there are architectures for both inference and
training in data centers.

The accelerators can then be classified by their architecture. For a long time,
general-purpose architectures such as CPUs and GPUs have been used for ML
workloads. Another family of architectures that is now very popular is that of
dataflow processors, to which most of the specialized accelerators belong. Recently,
accelerators based on processing-in-memory technology have been proposed and
commercialized. All the solutions have in common that to accelerate ML algorithms
efficiently, one must exploit their inherent parallelism, i.e., many operations can be
executed in parallel since they do not have data dependencies.

1.2 Background and State of the Art 9

Temporal architectures

CPUs and GPUs are general-purpose architectures that have also been classified as
temporal architectures [38]. In temporal architectures, the computational resources
can only access data from the central memory hierarchy, and the control is centralized.
Both CPUs and GPUs allow exploiting data parallelism through single-instruction-
multiple-data (SIMD) and single-instruction-multiple-threads (SIMT) execution
models, respectively.

Despite these being general-purpose architectures, special attention has been paid
to ML in recent years. At the software level, Intel has added the AVX-512 vector
neural network instructions (AVX-512 VNNI) to the AVX-512 instruction set [39]
to accelerate DNNs. Among the various GPU manufacturers, Nvidia has put a lot
of emphasis on hardware and software optimization for DL. Most DL frameworks
support the execution on Nvidia GPUs, e.g., Pytorch [40], Tensorflow [41], or
Caffe [42]. One of the great advantages of Nvidia GPUs is cuDNN [43], a highly
optimized library of primitives for DNNs. In the latest high-end GPUs, Nvidia has
combined traditional CUDA Cores with Tensor Cores [44], which are optimized for
large matrix operations. Tensor Cores can also support mixed-precision operations.
In the new Nvidia A100, the Tensor Cores support a new format, the Tensor Format
(TF32), with which performance is 10x higher when compared to the performance
of the FP32 format on the V100 architecture [45]. In addition, Nvidia A100’s Tensor
Cores can also take advantage of the sparsity of tensors, very common in DNNs, to
achieve up to 2x higher performance.

Several libraries are available optimizing basic linear algebra subroutines (BLAS)
on both CPUs (e.g., AMD Core Math Library (ACML), Intel Math Kernel Library
(Intel MKL) or OpenBLAS) and GPUs (e.g., Nvidia cuBLAS or Intel cIBLAS).
Among the numerous subroutines implemented, the BLAS also include element-wise
matrix multiplication, matrix-vector multiplication and matrix-matrix multiplication,
also called general matrix-matrix multiplication (MatMul). For this reason, many
of the DL libraries execute Conv layers by lowering them into a MatMul with the
im2col algorithm [46, 47] as shown in Fig. 1.6. This method is very efficient since
the MatMul routine is highly optimized. However, it requires data to be duplicated
up to Hk ·Wk times, with the dimension of the input feature maps moving from
⟨Ci,Hi,Wi⟩ to ⟨CiHkWk,HoWo⟩. This approach, therefore, requires large memory
for temporary allocation. The MatMul method for convolution can be furtherly

10 Introduction

optimized by applying the Strassen algorithm [48, 49] that reduces the number of
necessary multiplications by partitioning the matrices. The multiplications are re-
duced by 1/8 at each partition at the cost of more additions. A different approach
consists of transforming both the iFMs and the weights from the space domain to the
frequency domain with the fast Fourier transform (FFT) algorithm [50]. In the fre-
quency domain, the convolution operation becomes an element-wise multiplication
of matrices. However, the FFT algorithm introduces a high computational overhead
for the domain change, and its efficiency has only been proven valid for large weight
kernels and unitary strides. Another approach often used is based on the Winograd
algorithm [51, 52] (see Chapter 2), which, unlike the FFT algorithm, is particularly
efficient for small kernels.

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0
1
3
4

1
2
4
5

3
4
6
7

4
5
7
8

0 1 3 4
1 2 4 5
3 4 6 7
4 5 7 8

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3

0 1
2 3

0 1
2 3

0 1 2 3
0 1 2 3

Ci

Co

Weights
Input feature maps

Output feature maps

Co

* =

x =

Fig. 1.6 Convolution lowering into a matrix-multiplication

Dataflow architectures

Dataflow processors are custom-designed architectures that accelerate ML work-
loads, leveraging that training and inference computations can be deterministically
scheduled. These accelerators have also been defined spatial architectures [38],
with computational resources that may have some local control logic and memory,
and most importantly, can exchange data between each other via a network-on-chip
(NoC).

As shown in Fig. 1.7, the general structure of most DL accelerators consists of
a set of computational resources, on-chip memories, usually scratchpads, an NoC

1.2 Background and State of the Art 11

Compute Compute Compute

PeripheralsMemory Memory

...

...
Network on Chip

Mem

Mem

Mem

PE PE PE

PE PE PE

PE PE PE

Fig. 1.7 General structure of an accelerator for AI applications.

to connect the various components, and the necessary peripherals to communicate
with all off-chip resources, such as higher memory levels. Given the dominant
presence of Conv layers in neural networks, much effort has been put towards their
acceleration, with many hardware architectures proposed. The key operation of Conv
layers is the multiply–accumulate operation (MAC). Thus many of the accelerators
have as a basic component a processing element (PE) containing a multiplier and an
accumulator, plus, depending on the specifics of the system, some additional control
logic and registers for local storage.

In a convolution, every MAC operation requires three data elements from memory,
an input pixel, a weight, and a partial sum for accumulation. It produces one result
to be written back. Given the higher energy cost of a DRAM access w.r.t. a
MAC [53], the DRAM access energy component can easily become the highest
of the system [54, 55]. For this reason, accelerators are usually equipped with
smaller on-chip memories, SRAMs or register files, and possibly registers close to
the computational resources. Then, the mapping of the operations on the accelerator,
or dataflow, revolves around data reuse, i.e., the scheduling of the operations to
maximize the reuse of data stored in lower-level memories.

For example, a Conv layer has three different opportunities for data reuse. Since
the weight kernel is slid over the whole input feature map, there is an opportunity
for weight reuse since the same weight kernel is multiplied for multiple subsets of
the input feature maps. In particular, each of the Co kernels is reused Ho ·Wo times.
There is also an opportunity for an input reuse since the input feature maps are used
Co times to generate all the output feature maps. The last reuse opportunity is defined
as convolutional reuse [56]. It exploits the sliding window mechanism, i.e., when
computing two adjacent output pixels, there is usually an intersection between the
two subsets of pixels of the input feature map used. The width and height of the
intersection depend on the dimensions of the kernels (Hk,Wk) and the horizontal and

12 Introduction

vertical strides (sx,sy). Convolutional reuse combines both weight reuse and input
reuse.

Given an array of PEs and all the MACs between weights and input feature maps
that must be performed to calculate the output feature maps, each PE will execute a
subset of MACs, and a number of MACs equal to the number of PEs will be executed
in parallel. The MACs must, therefore, be spatially and temporally mapped to the
PEs array (Fig. 1.8). The mapping consequently defines how data must be loaded
and stored from/to the memory hierarchy of the accelerator and how the NoC must
be designed to correctly and efficiently deliver and collect the inputs, the weights,
and the partial sums. Chen et al. [56] introduced a taxonomy to classify existing
accelerators based on their dataflow and how they exploit data reuse, which will be
explained briefly in the following.

tim
e

MACs

PEs

spatial mapping temporal mapping

Fig. 1.8 Spatial and temporal mapping of the Multiply-and-Accumulate (MACs) operations
to the Processing Elements (PEs).

The weight stationary dataflow aims at exploiting mainly the weight reuse: a
subset of weights is read from the global memory (DRAM) and stored in the registers
of the PEs. Possibly, all the operations that involve a certain weight are then mapped
to the PE where it is stored, executed, and the weight can then be discarded and never
reread from the DRAM. Considering a 2D array of PEs, some solutions [57–59] map
the weights spatially on the PEs along the spatial dimensions of the weight kernel
Hk and Wh, and others along dimensions Ci and Co, as in the Tensor Processing
Unit (TPU) [60] developed at Google. In the latter case, the operations that must
be performed are equivalent to a vector-matrix multiplication, easily supported in
hardware by a 2D systolic array. Because of its flexibility, the systolic array is often
used in configurable architectures that must support various layer types [61, 62].
The output stationary dataflow minimizes the data movement necessary to store
and load the partial sums in the global memory. The PEs are modified to have
the possibility of locally accumulating the results of the MACs that they perform,
and each PE is therefore responsible for the computations necessary to obtain an
output pixel. To get an output stationary dataflow, it is possible to spatially map

1.2 Background and State of the Art 13

the Ho and Wo dimensions [63], but also the Hk, Wk and Co [64], or the Ho and Co

dimensions [65]. The row stationary dataflow is introduced in [56] and used by the
Eyeriss accelerator [66]. It aims to maximize the reuse of inputs, weights, and partial
sums altogether, in contrast to weight and output stationary dataflows focusing on
a single data reuse type. The no local reuse dataflow [67, 54, 68] maximizes the
area dedicated to storage by removing register files from the PEs and allocating all
the on-chip memory in a single global buffer, in the view that the memory elements
with higher energy efficiency are those with a low storage capacity, but they are less
efficient in terms of area occupation (area/bit). Having no local reuse in the PEs, the
traffic from and to the global memory on the NoC will be higher.

A critical aspect of the dataflow definition and accelerator design is the loop tiling
technique. Usually, the on-chip memory size is insufficient to fully contain the input
feature maps, kernel weights, and output feature maps. For this reason, it is necessary
to partition the larger tensors into smaller tensors that can be contained in the on-chip
memory. The for loops of the 7-nested loops representation of the convolutional
layer are therefore split into multiple loops, as shown in Fig. 1.9. The tiling factors
(TCo, TCi, T Ho, TWo) define the size of the innermost loops and consequently the
on-chip memory size required. In contrast, the permutations of the outermost loops
determine the off-chip memory accesses and how the data are reused. Many levels
of tiling can be applied, depending on the available number of levels in the memory
hierarchy.

for (n=0; n<N; n++)

Ofm[n][co][ho][wo] +=
Ifm[n][ci][ho+hk][wo+wk] * W[co][ci][hk][wk]

for (hk=0; hk<Hk; hk++)

for (wk=0; wk<Wk; wk++)

for (coe=0; coe<Co; coe+=TCo)

for (cie=0; cie<Ci; cie+=TCi)

for (hoe=0; hoe<Ho; hoe+=THo)

for (woe=0; woe<Wo; woe+=TWo)

for (co=coe; co<coe+TCo; co++)

for (ci=cie; ci<cie+TCi; ci++)

for (ho=hoe; ho<hoe+THo; ho++)

for (wo=woe; wo<woe+TWo; wo++)

On-chip computation

Off-chip memory
access pattern

Fig. 1.9 Loop tiling technique applied to the 7-nested loops representation of the Conv layer

The described solutions are all very specific to convolution and matrix multiplica-
tion acceleration. However, in neural networks, many other operations are involved,
for example, normalization or activation functions. For this reason, industrial-grade

14 Introduction

accelerators often integrate other computational resources, usually more flexible, in
addition to the main datapath used for convolution and matrix multiplication. This
is the case for Google TPU [60], Huawei Ascend [69], and Qualcomm cloud AI
100 [70] platforms. These architectures are all characterized by a massive computa-
tional core for convolution/MatMul, a set of on-chip memories, and also integrate
a vector processing unit (VPU) that can run activation functions, normalization,
quantization, and all element-wise operations. To effectively accelerate a workload,
it is very important to carefully plan the dataflow to achieve maximum utilization of
the compute resources and, thus, maximum throughput.

1.2.3 Hardware-Efficient Deep Neural Networks

Two orthogonal approaches can be applied to increase peak performance and ef-
ficiency by acting at the algorithmic level. It is possible to modify an existing
workload, e.g., with quantization, pruning, or knowledge distillation (KD), or to
create a new model from scratch, e.g., with NAS. In this section, we briefly detail
each of these methodologies.

Quantization

As discussed in the previous sections, one of the main obstacles to deploying DNNs
on edge devices is their large memory footprint, the high energy cost of memory
accesses, and the energy required for computations. Quantization is one of the
most popular methods for reducing memory and computation requirements. This
section provides the key concepts to understand the advantages and challenges of
quantization and references to SOTA works. For more in-depth analysis, we refer
the reader to [71].

Quantization is the process of mapping real values in floating point representation
to a lower precision range. Fixed-point/integer representation allows for memory and
energy saving, e.g., a MAC performed on 8-bit integer numbers consumes 20× lower
energy than a MAC on 32-bit floating-point numbers [53]. Moreover, a number
expressed on 8 bits has a memory footprint 4× smaller than one on 32-bits.

The most common and simple quantization function is defined by the following
expression:

1.2 Background and State of the Art 15

xintn = clamp
(

round
(x

s

)
− z,−2n−1,2n−1−1

)
(1.6)

where s is a scaling factor, z is an integer zero point, and n is the chosen number
of bits to represent the quantized value. The scaling factor s is computed as

s =
α−β

2n (1.7)

where α and β are the upper and lower bounds of the clipping range. If α = −β

and z = 0, the quantization is symmetric. The most straightforward choice is to
set the clipping range based on the min/max value of the signal, i.e., α = −β =

max(|xmin|, |xmax|). Eq. (1.6) leads to uniform quantization, that is, the steps and
levels of quantization are equispaced. Some works have also applied non-uniform
quantization schemes [72, 73], but these techniques will not be further investigated
here.

Methods to define the quantization parameters, i.e., the scaling factor and the
zero point, can be divided into two categories, post-training quantization (PTQ) and
quantization-aware training (QAT). PTQ is an easy solution as it does not require
further training and can be applied with limited data. However, its effects on the
accuracy degradations can be non-negligible. In PTQ [74–77], the weights and the
activations are quantized after the training. This is easily done for the weights that are
known and constant after the training, while for the activations a set of significative
inputs is necessary for calibration.

On the other hand, in QAT [78–80], the weights are quantized during the training
process so that the effect of quantization on the accuracy can be compensated. An ex-
ample of this technique is provided by the Ristretto framework [79], which identifies
the quantization parameters (bitwidth and scale factor) by running a statistical analy-
sis on the weights and activations. Then, the weights are furtherly fine-tuned with
a re-training step that takes quantization into account to recover the degraded NN
precision. Some works [81] also consider the quantization parameters (zero-point,
scaling factor) as learnable parameters and determine them at training time together
with the values of the weights. Overall, QAT has proven the possibility of quantizing
NNs with negligible accuracy loss. However, its main disadvantage is the higher
computational cost, as it requires re-training the model for possibly several epochs.

16 Introduction

Another important difference between quantization techniques is the granularity
at which it is applied. A NN has several weight sets and feature maps. It is, therefore,
possible to choose a single set of quantization parameters for the whole network.
However, this is often not the optimal choice considering that the distribution of
values can vary significantly throughout the model. Common options are layerwise,
groupwise, channelwise and subchannelwise quantization. In layerwise quantization,
quantization parameters are chosen independently for each layer’s tensor (weight
and activation). In channel-wise quantization, each channel of a tensor is quantized
independently, while in group-wise quantization, different channels can be grouped
to share quantization parameters. Finally, in sub-channel-wise quantization, values
belonging to the same channel can be quantized separately. The higher the quantiza-
tion granularity, the better different numerical distributions are captured, but also,
the higher the computational overhead.

Several works have extensively demonstrated that neural networks can be quan-
tized to 8-bit integer numbers for inference without significantly affecting the accu-
racy [79, 78, 82]. However, it is much more challenging to push the quantization to
lower bitwidths if the bitwidth is maintained fixed across the model. Mixed-precision
quantization addresses this problem. When also the bitwidth becomes a variable
parameter, the search space for the quantization parameters fastly explodes. The
space of possible solutions can be pruned based on heuristics [59, 83–85]. Several
works studied how to automatize the search. For example, in [86], reinforcement
learning is used to determine the optimal bitwidths per layer, while in [87], a NAS
approach is used.

The research on fine-grained bitwidth optimization is backed by the parallel devel-
opment of hardware accelerators that support flexible bitwidth arithmetic operations.
Some accelerators support mixed-precision for the weights and/or the activations
with bit-serial hardware [88–91]. In contrast, others have a spatial approach [92, 93],
with PEs combined according to the required bitwidth. Mix-GEMM [94] exploits
binary segmentation, a mathematical transformation. Tab. 1.1 reports a comparison
between these different proposed solutions. On the industrial front, in 2018, Apple
released the A12 Bionic chip with a neural processing unit (NPU) that supports
variable precision; Nvidia Turing Tensor Cores, available in the Nvidia Turing archi-
tecture, support operations from 32/16-bit floating-point down to 8/4-bit fixed-point;
the Imagination PowerVR Series2NX architecture has adjustable bitwidth from 16
to 4 bits.

1.2 Background and State of the Art 17

Table 1.1 Comparison of different variable-bitwidth AI accelerators.

Name Weights Activations Features Target
BISMO [88] 1-bit to 8-bit 1-bit to 8-bit Serial FPGA
Stripes[89] 16-bit 1-bit to 16-bit Serial ASIC
UNPU [90] 1-bit to 16-bit 16-bit Serial ASIC
Loom [91] 1-bit to 16-bit 1-bit to 16-bit Serial ASIC
Bit Fusion [92] 1,2,4,8,16-bit 1,2,4,8,16-bit Spatial ASIC
BitBlade [93] 1,2,4,8,16-bit 1,2,4,8,16-bit Spatial ASIC
Mix-GEMM [94] 2-bit to 8-bit 2-bit to 8-bit Binary segmentation ASIC
Turing TC 64,32,16,8,4-bit 64,32,16,8,4-bit GPU
PowerVR S2NX 16,8,4-bit 16,8,4-bit SoC

Pruning

Given the redundancy of the parameters in NNs, pruning consists of removing, i.e.,
set to zero, those parameters that do not affect the accuracy of the model. Pruning
was first explored in Optimal Brain Damage [95], where the weights with a lower
influence on the loss function during the training are pruned. A simpler method [96]
consists of pruning the weights with a small magnitude after the training and then
fine-tuning the remaining weights to recover possible accuracy losses. Pruning single
weights or neurons [97] is also referred to as unstructured pruning, oppositely to
structured pruning that acts at kernel or channel level [98]. W.r.t. to structured
pruning, unstructured pruning is more difficult to leverage to increase the throughput
or reduce the energy consumption. In fact, unstructured pruning raises the sparsity of
the computations, which requires dedicated strategies to be exploited. The pruning
process has been applied jointly in several works [80, 99–102], and some solutions
perform HW-aware pruning, where the pruning is guided by an estimate of the NN
acceleration energy consumption [103, 104]

Knowledge distillation

Higher accuracies are obtained with very deep models or ensembles of models whose
results are averaged. Using deep or several models at once requires considerable
computational effort. However, it is possible to transfer the knowledge of one or more
large models (teachers) into a smaller model (student). This process is commonly
known as knowledge distillation and has been introduced in [105] and [106] for
shallow and deep teacher models, respectively. In these works, the (trained) teacher
models receive and classify a dataset of unlabeled data, producing a synthetically-
labeled dataset. This dataset is then used to train the shallow student model, which,

18 Introduction

therefore, learns to mimic the classifying function of the teachers. The KD method
has shown promising results, and several variations have been proposed in subsequent
works [107–110].

Architectural choices

A research direction is the exploration of new architectures with fewer parameters
by construction. A basic idea is to replace a large kernel with a series of two or
more smaller kernels. In this way, an equivalent receptive field is obtained but with
fewer parameters. For example, a 5×5 kernel can be replaced by a series of two 3×3
kernels, reducing the number of weights from 25 to 18. In SqueezeNet [15], most of
the 3×3 kernels are substituted with 1×1 kernels with 9× fewer parameters, and the
input channels to the 3×3 convolutions are reduced. SqueezeNet achieves the same
accuracy as AlexNet with 50× fewer parameters. In MobileNet [16], a standard
convolution is divided into a depthwise convolution and a point-wise convolution.
The depthwise convolution applies a different kernel to each input channel, while
the point-wise convolution uses 1×1 kernels to combine the output channels of
the depthwise convolution. This factorization reduces the number of parameters.
Xception [111] adopts this same approach.

It is also possible to obtain smaller tensors from large tensors after training by
applying tensor decomposition, a low-rank factorization technique. The kernels of the
convolutional layers are 4D tensors, while the weights of the fully-connected layers
are organized in a 2D matrix. With tensor decomposition, these can be broken down
into tensors of lower dimensionality by canonical polyadic decomposition [112].
Since canonical polyadic decomposition is not numerically stable for tensors with
more than two dimensions, it is possible to adopt Tucker decomposition [113].

Hardware-Aware Neural Architecture Search

Traditional NAS algorithms [114–116] have aimed at finding highly accurate DNN
models for a given task, i.e., a DNN model which provides the highest accuracy on a
given dataset. For example, the ENAS algorithm [114] has generated a new architec-
ture with 55.6 perplexity on the Penn Treebank [117] dataset. Recently, the interest
in hardware efficiency has been growing, leading to the design of hardware-aware
NAS (HA-NAS) methodologies. The main difference between traditional NAS

1.3 Objectives and Contributions 19

and HA-NAS algorithms is that the latter also considers the hardware-deployment
efficiency of candidate models, e.g., in terms of energy consumption, latency, or
memory footprint. Among the related works, there exist mainly three types of
heuristic search algorithms for the HA-NAS, which are (1) evolutionary algorithms,
(2) reinforcement learning, and (3) differentiable NAS. APNAS [118], based on
reinforcement learning, extends the ENAS algorithm by including the performance
of DNNs executed in hardware in the optimization objectives of the NAS. Atten-
tiveNAS [119] jointly optimizes the DNNs’ accuracy and computational complexity
expressed in floating-point operations per second (FLOPS). MnasNet [33] takes
as an objective the inference latency and measures it by executing the candidate
models on mobile phones. In [120], an extended search space is used, including
architecture parameters, quantization, and hardware parameters, precisely the tiling
factors. The FNAS algorithm [121] targets the FPGA and uses an analytical model
to consider the latency only. HotNAS [122] targets energy efficiency by including
model compression in the search space and supporting hardware for compressed
models. SPOS [123] applies latency and FLOPS constraints during the candidate se-
lection. HURRICANE [124] generates a search space tailored to a specific hardware
platform, considering the FLOPS and the number of parameters and their effect on
the latency. The Differentiable NAS (DNAS) framework [125], in which a stochastic
super-net represents the search space, explores a layer-wise space where each layer of
the CNN corresponds to a different block, and the learning is conducted by training
the super-net.

1.3 Objectives and Contributions

This thesis explores different approaches to enable the hardware acceleration of
neural networks, and the main objectives can be summarized as follows:

• Enable the acceleration of CNNs with the combination of the Winograd algo-
rithm for fast convolution and 8-bit integer numerical representation, increasing
throughput and energy efficiency.

• Study for the first time the quantization possibilities for capsule networks to fa-
cilitate their deployment in constrained environments and provide a framework
for a fast generation of per-layer quantization parameters.

20 Introduction

• Advance the research on capsule networks by applying neural architecture
search to generate new, more accurate, and hardware-efficient models.

The thesis is divided into two main chapters, the first focusing on the quantized
Winograd algorithm hardware integration and the second covering the quantization
and NAS applied to capsule networks.

In Chapter 2, we show how to improve the throughput and energy efficiency of
CNNs with the Winograd algorithm for fast convolutions, that lowers the number
of MACs w.r.t. the standard algorithm, reducing the operation count by a factor of
2.25× for 3×3 convolutions when using the version with 2×2-sized tiles F2. Even
though the gain is significant, the Winograd algorithm with larger tile sizes, i.e.,
F4, offers even more potential in improving throughput and energy efficiency, as
it reduces the required MACs by 4×. Unfortunately, the Winograd algorithm with
larger tile sizes introduces numerical issues that prevent its use on integer DSAs. It
also has a higher computational overhead to transform input and output data between
spatial and Winograd domains. To unlock the full potential of Winograd F4, we
propose a novel tap-wise quantization method that overcomes the numerical issues
of using larger tiles, enabling integer-only inference. Moreover, we present custom
hardware units that process the Winograd transformations in a power- and area-
efficient way. We show how to integrate such custom modules in an industrial-grade,
programmable DSA. An extensive experimental evaluation on a large set of state-of-
the-art computer vision benchmarks reveals that the tap-wise quantization algorithm
makes the quantized Winograd F4 network almost as accurate as the FP32 baseline.
The Winograd-enhanced DSA achieves up to 1.85× gain in energy efficiency and
up to 1.83× end-to-end speed-up for state-of-the-art segmentation and detection
networks.

In Chapter 3, we show a set of orthogonal techniques to be applied to capsule
networks to address their present challenges. Capsule networks were proposed to
solve some of the problems of CNNs. Still, they require highly intense computations
and are difficult to be deployed in their original form on resource-constrained edge
devices. For this reason, we present a specialized quantization framework for Cap-
sNets to enable their efficient edge implementations. The framework is evaluated
on several benchmarks. On a deep CapsNet model for the CIFAR10 dataset, the
framework reduces the memory footprint by 6.2×, with only 0.15% accuracy loss.
Another critical aspect in the research field of capsule networks is that, despite

1.3 Objectives and Contributions 21

their promising initial results, few new models have been studied and proposed in
the literature. Thus, in the second part of Chapter 3, we propose NASCaps, an
automated framework for the HA-NAS of different types of DNNs, covering both
traditional convolutional DNNs and CapsNets. We study the efficacy of deploying a
multi-objective genetic algorithm based on the NSGA-II algorithm. Considering the
computational intensity of capsule networks, the proposed framework can jointly
optimize the network accuracy and the corresponding hardware efficiency, expressed
in terms of energy, memory, and latency of a given hardware accelerator executing
the DNN inference. Besides supporting the traditional DNN layers (such as con-
volutional and fully-connected), our framework is the first to model and support
the specialized capsule layers and dynamic routing in the NAS flow. We evaluate
our framework on different datasets, generating various network configurations, and
demonstrate the tradeoffs between the different output metrics. Moreover, we also
show how the framework can easily be extended to incorporate other objectives in
the search, e.g., robustness to adversarial attacks.

Finally, Chapter 4 summarizes the contributions discussed throughout the thesis.

Chapter 2

4x4-Tiles Winograd Convolutions:
Quantization and Efficient Inference

The work presented in this chapter was developed in the context of an internship at
the Huawei Zürich Research Center under the supervision of Dr. Renzo Andri and
Dr. Lukas Cavigelli and appears in [126].

2.1 Introduction and Motivation

As thoroughly discussed in Chapter 1, floating-point representation is typically used
for CNNs training and inference, even though floating-point datapaths are area- and
power-hungry because of the hardware necessary, for example, for large intermediate
values, exception handling, or re-normalization. Integer-based operations, on the
other hand, have higher energy efficiency and throughput [53]. This has motivated
extensive research towards int8 quantization and inference, made possible by the
intrinsic error tolerance of neural networks [127, 128].

Recently, several works have also explored algorithmic solutions to reduce the
number of operations and the memory footprint, exploiting sparsity [96], adopting
smaller convolutional kernel sizes [13], channel shuffling [129], using group con-
volutions [13, 30], and depthwise separable convolutions [16]. However, dense,
compute-heavy, 3×3 convolutional layers are still highly present in many state-of-
the-art computer vision models [130–132].

24 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

The Winograd convolution algorithm [51] is an interesting optimization opportu-
nity. It applies transformations to the input feature maps and weights using constant
transformation matrices. It lowers the 3×3 convolution into an element-wise matrix
multiplication with fewer general multiplications. Specifically, the Winograd algo-
rithm works on sub-tiles of the feature maps of dimension m×m, and the larger the
tiles (m ↑), the higher the operations count reduction (MACs ↓). However, increasing
m also causes higher sensitivity to numerical inaccuracies [133], decreasing the
overall accuracy of the networks. As a result, m ∈ {2,4} has received the majority
of attention in actual implementations, potentially reducing the number of MACs
by 2.25× for m = 2 and by 4× for m = 4. Unfortunately, a simple adoption of int8
operations is impossible for Winograd with m = 4 due to the resulting numerical
instability [52, 134, 135]. Moreover, the Winograd algorithm increases the hetero-
geneity of the compute operations that need to be mapped on the chosen hardware
accelerator, and some of these operations, i.e., the transformations, can not be effi-
ciently computed by the large 2D or 3D matrix-matrix multiplication engines that
are the cores of modern architectures. Our research aims to enable int8 Winograd
with m = 4 on domain-specific accelerators, with a new quantization algorithm that
falls in the class of QAT methodologies. This algorithm is combined with architec-
tural and micro-architectural design space exploration to facilitate efficient hardware
deployment.

This chapter will provide the background necessary to understand the Winograd
algorithm and how it can be used for convolutions, then a brief review of the related
works on the Winograd algorithm, quantization, and hardware accelerators (Sec-
tion 2.2). Next, it presents the proposed tap-wise quantization algorithm (Section 2.3)
and techniques for hardware acceleration (Section 2.4). Finally, the algorithm and
the system are extensively evaluated for several workloads (Section 2.5).

2.2 Background and Related Works

2.2.1 Winograd Minimal Filtering Algorithm

To compute m outputs, a discrete (r− 1)-order finite input response (FIR) filter
requires m ·r multiplications, as shown in Fig. 2.1. In [51], S. Winograd demonstrates
the possibility of a minimal filtering algorithm, hereon denoted and referred to as

2.2 Background and Related Works 25

y j =
r

∑
i=0

fi · x j−i

Fig. 2.1 FIR filter

Winograd Fm,r, requiring only m+ r−1 multiplications to compute m outputs, i.e.,
one multiplication per input.

For the case of F2,3, the algorithm documented in [51] is the following:

[
y0 y1

]
=

[
x0 x1 x2

x1 x2 x3

] f0

f1

f2

=

[
z1 + z2 + z3

z2− z3− z4

]
(2.1)

with

z1 = (x0− x2) f0

z4 = (x1− x3) f2

z2 = (x1 + x2)
f0 + f1 + f2

2

z3 = (x2− x1)
f0− f1 + f2

2

(2.2)

From Eq. (2.2), the number of general multiplications needed is 4, as expected
from m+r−1 = 2+3−1 = 4. However, the algorithm introduces 4 additions on the
input data x, 3 additions and 2 multiplications by a constant on the filter coefficients
f , and 4 additions to compute the output y. Nevertheless, additions and shifts are
much faster and less power-consuming than general multiplications [53].

26 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

The same algorithm can be rewritten in a more convenient matrix form as:

y = AT [(G f)⊙ (BT x)] (2.3)

where ⊙ is the symbol for Hadamard product, or element-wise multiplication, and
BT ∈ R(m+r−1)×(m+r−1), G ∈ R(m+r−1)×(r), and AT ∈ R(m)×(m+r−1) are constant
transformation matrices. In particular, for F2,3, the matrices assume the values:

BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 G =

1 0 0
1
2

1
2

1
2

1
2 −1

2
1
2

0 0 1

AT =

[
1 1 1 0
0 1 −1 −1

]
(2.4)

For Winograd F4,3, the number of general multiplications needed is 6, compared
to the 12 of the standard algorithm, and the transformation matrices are:

BT =

4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

G =

1
3

3/4 0 0
−1/2 −1/2 −1/2
−1/2 1/2 −1/2

1/8 1/4 1/2
1/8 −1/4 1/2
0 0 27

(2.5)

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

Inspecting Eq. (2.4) and Eq. (2.5), it can be seen that the transformation matrices

for F2,3 are relatively sparse, and the coefficients only require additions, subtractions,
and a division by 2, which is easily implemented in hardware with a right shift. On
the contrary, the F4,3 coefficients cover a broader numerical range and require a
higher computational effort. As demonstrated in [51], the complexity of the trans-
formation matrices grows for increasing m and r. Therefore, despite reducing the
general multiplications, the Winograd algorithm with a high m or r is not practically
deployable due to numerical instability problems. Thus, the focus of actual imple-

2.2 Background and Related Works 27

mentations has been mainly put towards m ∈ {2,4,6}, while r depends on the filter
characteristics and therefore determines the Winograd algorithm applicability.

2.2.2 Winograd for Convolution

The Winograd 1D algorithm can be nested to obtain higher-dimensional filters. For
2D filtering, Eq. (2.3) becomes:

y = AT [(G f GT)⊙ (BT xB)]A (2.6)

The input x, filter g and output y will be square tiles, with x ∈ R(m+r−1)×(m+r−1),
g ∈ R(r)×(r), and y ∈ R(m)×(m). While for the standard 2D filtering algorithm, the
number of required general multiplications is (m · r)2, for 2D Winograd filtering, it
goes down to (m+ r−1)2. Fig. 2.2 shows the arithmetic complexity reduction for
varying m and r = 3. In particular, the reduction is 2.25× for F2,3, and 4× for F4,3.

2 4 6 8 10 12
m

0

2

4

6

8

#M
ul

 re
du

ct
io

n

Fig. 2.2 General multiplications reduction of 2D Winograd Fm,r w.r.t. the standard filtering
algorithm.

2D Winograd algorithm can be applied to convolutional layers with kernels of
size r× r. Most Conv layers in SOTA CNNs have 3× 3 filters. Therefore, we
will focus on Winograd Fm,3, for simplicity denoted as Fm hereon. Let’s consider
a single-input-channel-single-output-channel convolution, with input feature map
iFM∈ RH×W and kernel w ∈ Rr×r. The iFM is divided in spatial tiles of size
(m+ r−1)× (m+ r−1), with a stride between the tiles of m, yielding to ⌈H

m⌉⌈
W
m ⌉

tiles in total. Each tile xh̃,w̃, where h̃ and w̃ are tile coordinates, is transformed to
the Winograd domain by applying BT xB, and the same for the kernel with GwGT .

28 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Once in the Winograd domain, each transformed input tile V ∈ R(m+r−1)×(m+r−1)

is element-wisely multiplied by the transformed weight tile U ∈ R(m+r−1)×(m+r−1)

and the resulting tiles are back-transformed to the spatial domain with ATYA. The
algorithm is described in Eq. (2.7) and Fig. 2.3.

yh̃,w̃ = f ∗ xh̃,w̃

= AT [(G f GT)⊙ (BT xh̃,w̃B)]A (2.7)

= AT [U⊙Vh̃,w̃]A

a) Direct Convolution b) Winograd F(mxm, rxr) Convolution

r

Hi

r

iFM
iFM

W

Wi

m+r-1
Hi

r m+r-1

m+r-1

m

Input trans.

Weights trans.

Output
trans.

iFM
oFM

W

m

Wi

Fig. 2.3 Comparison between standard convolution and Winograd convolution for the single-
input-single-output channel case

In the case of multiple input and output channels, the same operation described
above needs to be replicated for all the tiles along the input and output channels
(Eq. (2.9)). To amortize the cost of the back-transformation ATYA, the accumula-
tion along the input channel dimension can be moved into the Winograd domain
(Eq. (2.10)). Eq. (2.8) and Eq. (2.11) are depicted graphically in Fig. 2.4.

yco,h̃,w̃ =
Ci

∑
ci=0

fco,ci ∗ xci,h̃,w̃ (2.8)

=
Ci

∑
ci=0

AT [(G fco,ciG
T)⊙ (BT xci,h̃,w̃B)]A (2.9)

= AT [
Ci

∑
ci=0

(G fco,ciG
T)⊙ (BT xci,h̃,w̃B)]A (2.10)

= AT [
Ci

∑
ci=0

Uco,ci⊙Vci,h̃,w̃]A (2.11)

2.2 Background and Related Works 29

m+r-1
Hi

r m+r-1

m+r-1

m

Input trans.

Weights trans.

Output trans.

iFM
oFM

W

Wi

Fig. 2.4 Winograd convolution for convolution with multiple input and output channels.

If we examine only the Hadamard product in the square brackets of Eq. (2.11)
and consider one single element of the tiles, hereon denominated tap and identified
with the indexes (χ,ν), we obtain:

M(χ,ν)

co,h̃,w̃
=

Ci

∑
ci=0

U (χ,ν)
co,ci ·V

(χ,ν)

ci,h̃,w̃
(2.12)

By flattening the two dimensions h̃ and w̃ in a single dimension h̃w, Eq. (2.12)
can be seen as a matrix multiplication. In conclusion, once in the Winograd domain,
by working on the different taps independently, the convolution can be mapped to
a series of MatMuls, which, as seen in Chapter 1, are efficiently implemented in
hardware. The mapping of the Winograd Convolution to MatMuls is depicted in
Fig. 2.5.

2.2.3 Related Works

Winograd Algorithm. The original Winograd algorithm has been extended to work
on general 2D convolution in several works [52, 136, 137]. Its performance has been
improved by combining it with the Strassen algorithm [138] or by increasing its
numerical accuracy by using higher-order polynomials [135] and better polynomial
root points for m > 4 [133, 139]. Li et al. [140] merged the Winograd method with
AdderNet, which substitutes additions for all MAC operations by extracting features
using the ℓ1 norm rather than the ℓ2 norm. The proposed strategy, however, reduces
accuracy from 92.3% for the FP32 baseline to 91.6% for CIFAR-10/ResNet-20.

30 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 0 0

0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

35 35 35

35 35 35

35 35 35

35 35 35

0 1 35

1 35

0 1 35

0 1 35

1 350 0

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0

1

35

0

1

35

00

00

00

11

11

11

3535

3535

3535

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

iFM

oFM

W

Scattering

Scattering

Gathering

...

..
. ...

MatMuls

Fig. 2.5 Winograd Convolution mapping to MatMuls.

2.2 Background and Related Works 31

Sparsity has played a significant role in lowering CNN computational complexity.
Liu et al. [141], and Li et al. [142] suggested moving the ReLU activation after
the input transformation and pruning the weights once in the Winograd domain.
However, they only discuss the drop in MACs on FP32 networks. An intriguing area
for further research is the combination of pruning with tap-wise quantization and
evaluating its performance on hardware accelerators.

Quantized Winograd. Gong et al. [143] and Li et al. [144] proposed to quantize
F2 in the Winograd domain with a single scaling factor per transformation. The algo-
rithm was extended by Meng et al. [145] using complex root points and increasing
the number of valid root points for Winograd F4. Liu et al. [146] proposed to inte-
grate Winograd and Residue Number System (RNS), using 8 bit moduli 251,241,239
and Winograd F14. Fernandez et al. [134] proposed Winograd-aware training for
Quantized Neural Networks with gradients propagated through the Winograd Do-
main. In the case of F4, retraining of the transformation matrices (WA-flex) was
needed, making the transformation operation dense and introducing FP32 MACs.
Barabasz et al. [135] extended the work of Fernandez et al. [134] with Legendre
polynomial bases, requiring six additional sparse diagonal matrix multiplications.
LoWino [147] proposed to use FP32 feature maps and weights but quantizing them
in the Winograd domain. This way, the elementwise multiplication can be computed
in int8, while input and output transformations are performed in FP32.

Custom Winograd Accelerators. To speed up the Winograd algorithm, several
specialized FPGA-targeted accelerators were presented [148–150]. While they have
a spatial architecture that can only execute the Winograd algorithm, we provide a
method to incorporate Winograd support into a programmable AI accelerator based
on a high-throughput MatMul unit, the most popular ASIC accelerator architecture.
Wang et al. [151] suggested a RISC-V extension to handle Winograd transformations
effectively. The F2 Winograd operator was proposed to be mapped using Vector
Units on a general-purpose edge device by Xygkis et al [152]. WinDConv [153],
an accelerator based on NVDLA [154] that supports the F2 Winograd operator with
a fused datapath, is the solution that comes the closest to our research. A direct
comparison is unfortunately impossible because they focused on a mobile application
situation, provided a post-synthesis-only evaluation utilizing a much more recent
technical node, and ignored the impact of external memory on performance. In
contrast, our solution produces an average gain in the energy efficiency of 2.1× for
12 SOTA CNNs, whereas their Winograd extension increases energy efficiency over

32 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

their baseline of 1.82× in the optimal case, i.e., with 100% utilization. They also
quantize to 6 bits in the spatial domain, resulting in a greater accuracy loss [155]
than the tap-wise quantization flow we propose.

Winograd SW optimizations. For GPUs and CPUs, several effective SW im-
plementations of the Winograd algorithms have recently been developed [156–160].
These works use similar loop-level optimization techniques, like loop unrolling, par-
allelization, or vectorization, to maximize the performance of the targeted platforms,
which have very different limitations and features than ours.

2.3 Tapwise Quantization

As described in Chapter 1, moving from a floating-point to a fixed-point represen-
tation improves hardware and computation efficiency in terms of area occupation,
energy, and throughput.

To guarantee a lossless computation in the Winograd domain, it is necessary to
analyze the number of bits required to represent the values after the transformation.
Eq. (2.13) shows the unrolled BT xB operation for Winograd F2.

BT xB =
x0,0− x0,2− x2,0 + x2,2 x0,1 + x0,2− x2,1− x2,2 −x0,1 + x0,2 + x2,1− x2,2 x0,1− x0,3− x2,1 + x2,3

x1,0− x1,2 + x2,0− x2,2 x1,1 + x1,2 + x2,1 + x2,2 −x1,1 + x1,2− x2,1 + x2,2 x1,1− x1,3 + x2,1− x2,3

−x1,0 + x1,2 + x2,0− x2,2 −x1,1− x1,2 + x2,1 + x2,2 x1,1− x1,2− x2,1 + x2,2 −x1,1 + x1,3 + x2,1− x2,3

x1,0− x1,2− x3,0 + x3,2 x1,1 + x1,2− x3,1− x3,2 −x1,1 + x1,2 + x3,1− x3,2 x1,1− x1,3− x3,1 + x3,3

 (2.13)

In the worst case, BT xB requires only 2 extra bits, as the sum of k n-bit integer
values needs a ⌈log2(k(2

n−1)+1)⌉-bit integer to represent the result. By doing a
similar analysis, G f GT for F2 requires 3 extra bits. Nevertheless, because the weight
and activation value distributions in CNNs typically follow a Gaussian distribution
centered around zero, 8 bits are sufficient not to deteriorate the accuracy.

For Winograd F4, BT xB and G f GT transformations require 8 and 10 extra bits
respectively for a bit-true computation. This increased bitwidth would lead to a
significant rise in power and area costs in a hardware accelerator. At the same
time, quantizing the transformed tiles to int8 in a traditional fashion, i.e., using
the same scaling factor for all the taps, unacceptably degrades the accuracy of the
network [134].

2.3 Tapwise Quantization 33

0,
0

0,
1

0,
2

0,
3

0,
4

0,
5

1,
0

1,
1

1,
2

1,
3

1,
4

1,
5

2,
0

2,
1

2,
2

2,
3

2,
4

2,
5

3,
0

3,
1

3,
2

3,
3

3,
4

3,
5

4,
0

4,
1

4,
2

4,
3

4,
4

4,
5

5,
0

5,
1

5,
2

5,
3

5,
4

5,
5

Tap (y,x)

8

6

4

2

0

2

4

6

W
ei

gh
t D

is
tri

bu
tio

n
in

 W
in

og
ra

d
D

om
ai

n
 lo

g 2
(|(
G
fG

T)[
y,
x]

|)

Fig. 2.6 Weight Distribution in Winograd domain of G f GT taps for ResNet-34 on ImageNet

To this end, a tap-wise quantization algorithm is proposed, enabling int8 infer-
ence on Winograd F4 convolutional layers. Winograd transformations change the
dynamic range of the outputs, resulting in the necessity of a higher number of bits
to represent the values accurately. However, inspecting the numerical distribution
post-transformations, we see that the distribution heavily depends on the tap index.
An example of this behavior is provided in Fig. 2.6, where the value distribution of
each G f G tap is shown. Each tap needs ~8 bits to cover its dynamic range, while ~15
bits are required for the combined distribution of all the taps. Given these analyses,
we propose to quantize each tap independently with a different scaling factor.

With quantization, floating-point numbers are approximated as integers numbers:

xintn = clamp
(

round
(x

s

)
,−2n−1,2n−1−1

)
(2.14)

where s = xmax
2n−1 is a scaling factor and xmax is the largest representable value. Con-

sidering the 2D Winograd convolution equation (Eq. (2.9)), and applying standard
quantization, i.e., using a uniform scaling factor for all the values, we obtain:

y =
Ci

∑
ci=0

AT [
σG

⌈(
G fciG

T)/σG
⌉
intn⊙σB

⌈(
BT xciB

)
/σB

⌉
intn

]
A (2.15)

34 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

where σG and σB are scalar scaling factors for the transformed weights and iFMs
respectively. For a lighter notation, indexes co, h̃, and w̃ have been omitted w.r.t.
Eq. (2.9).

To quantize each tap independently, i.e., with a different scaling factor for
each tap, σG and σB need to be replaced with tap-wise scaling matrices ΣG,ΣB ∈
R(m+r−1)×(m+r−1) (Eq. (2.16)). By applying the distributivity law and rearranging
the linear operations, we obtain Eq. (2.17). After input and weight transformations,
the tiles are scaled and quantized to calculate the multiplications and accumulations
in the integer domain. Then, rescaling by ΣGB = ΣG⊙ΣB is performed only once
before transforming the tiles back into the spatial domain. In Eq. (2.16), Eq. (2.17),
and Eq. (2.18), the symbol ⊘ represents the inverse operation of the Hadamard
product, i.e., element-wise division.

y =

= AT

[
Ci

∑
ci=0

ΣG⊙
⌈(

G fciG
T)⊘ΣG

⌉
intb⊙ΣB⊙

⌈(
BT xciB

)
⊘ΣB

⌉
intb

]
A (2.16)

= AT

[
ΣG⊙ΣB⊙

Ci

∑
ci=0

⌈(
G fciG

T)⊘ΣG
⌉
intb⊙

⌈(
BT xciB

)
⊘ΣB

⌉
intb

]
A (2.17)

= AT

[
ΣGB⊙

Ci

∑
ci=0

⌈(
G fciG

T)⊘ΣG
⌉
intb⊙

⌈(
BT xciB

)
⊘ΣB

⌉
intb

]
A (2.18)

2.3.1 Winograd-Aware Training

The tested networks are trained with stochastic gradient descent. Standard convolu-
tional layers could be replaced with Winograd layers post-training, as it is simply
a different implementation of the same operations. However, to take into account
during training the slight numerical fluctuations introduced by Winograd transfor-
mations and, therefore, to improve the training accuracy when Winograd layers are
used, we also adopt the static Winograd-aware training method [134], propagating
the gradients through the Winograd domain:[

∂L
∂ f

=
∂ (AT [(G f GT)⊙ (BT xB)]A)

∂ f
∂L
∂Y

]
(2.19)

2.3 Tapwise Quantization 35

Since using a filter size with r > 3 leads to the same numerical problems discussed
for increasing m, we only implement as Winograd layers those with kernel size 3×3
and unitary stride. Although the Winograd algorithm can be used to produce strided
convolution [136, 137], the control and computation complexity predominate the
potential MACs reduction (i.e., stride-2 F4 leads only to a 1.8× MACs reduction
w.r.t. the 4× reduction of stride-1 F4).

2.3.2 Power-of-Two Tapwise Quantization

The scaling by ΣG, ΣB, and ΣGB introduce one floating-point multiplication per
transformation and tap, increasing the computational cost of the Winograd algorithm.
Thanks to data reuse strategies, the overall cost of the transformations and scaling
can be amortized, e.g., reusing the transformed iFMs for multiple oFMs. However,
limiting the scaling matrices to power-of-two values is advantageous, allowing both
the transformations and the rescaling to be carried out using simply shift-and-add
operations. We examine and combine three different methodologies to determine the
power-of-two scaling factors.

1. Straight-forward power-of-two quantization. The scaling factors, derived
from the calibrated maximum values, are rounded to the next power-of-two:

s̃i, j := 2⌈log2 si, j⌉ (2.20)

In this way, the quantized value becomes:

qintb(x) :=
⌊

x/2⌈log2 s⌉
⌉
intb

(2.21)

2. Learned power-of-two quantization. The scaling factors are learned during
training to find a better representation range, as, for example, enhancing the
precision of smaller values could be more crucial for the end-to-end accuracy
than having less clamped values. Since the quantization function is a step
function with derivative zero almost everywhere, thus preventing the gradient
backpropagation, straight-through estimator is applied [161]:

∂

∂x
⌈x⌉= ∂

∂x
⌈x⌋= ∂

∂x
⌊x⌋= 1 (2.22)

36 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

To better adapt to the power-of-two quantization, rather than training the scale
value s, we compute the gradient to the logarithm of log2 t, s.t. s = 2⌈log2 t⌉

[162]:

∂q(x)
∂ log2(t)

= s ln(2) · clamp
(⌊x

s

⌉
− x

s
,−2b−1,2b−1−1

)
(2.23)

We apply the Adam optimizer to the scale factors for faster convergence
and scale invariance, with its built-in gradient normalization (β1 = 0.9, β2 =

0.99) [163]. As for the other parameters, stochastic gradient descent with an
independent learning rate is used.

3. Knowledge distillation. KD consists in training a compact network (student)
by minimizing its distance to a larger network (teacher). In the proposed
training flow, we use the floating-point baseline model as the teacher network
and the power-of-two tap-wise quantized network as the student. We adopt
the Kullback-Leibler divergence loss and the tempered softmax activation
function [107].

2.4 Hardware Acceleration

Since a high-area and high-throughput datapath for MatMuls is the core component
of almost all modern accelerators [164, 69, 165], it is challenging to convert the
Winograd algorithm’s lower computational complexity into a wall-clock time speed-
up. As shown in Section 2.2.2, of all the steps of the Winograd algorithm, only the
element-wise multiplications can be effectively mapped to batched MatMuls. On
the other hand, a 2D or 3D MatMul engine can not process at high throughput the
input, output, and weight transformations, as they involve several tiny MatMuls and
data-layout rearrangements. Thus, executing a convolutional layer with the Winograd
algorithm rather than the standard approach, i.e., im2col, moves “ops” from cheap,
high-arithmetic intensity operations to more sparse, low-arithmetic intensity ones.

Moreover, the Winograd method increases the heterogeneity of the compute
operations by introducing a new class of operations, making the coordination of
data movements and computations and the balancing of memory bandwidth and
computing significantly more difficult. Additionally, compared to the standard
implementation, the Winograd algorithm reduces the computational complexity of

2.4 Hardware Acceleration 37

the Conv2D operation, but at the expense of significantly lowering the potential
for data reuse. Thus, the pressure on memory bandwidth is unavoidably increased,
calling for a careful dataflow construction.

To address these challenges, we provide a design space exploration of area- and
power-efficient custom hardwired modules to implement the low-arithmetic intensity
“ops” of the Winograd transformation operations. Next, we demonstrate how to
integrate Winograd transformation engines in an industrial-grade, programmable
AI accelerator and how to adjust the microarchitecture of such blocks to match the
throughput of data movement, Winograd transformation, and compute operations,
thereby maximizing overall compute efficiency.

2.4.1 Baseline Accelerator

The architecture of our baseline inference DSA, which includes two DaVinci-inspired
AI cores (AICs) [69] AIC0 and AIC1, is depicted in Fig. 2.7. Each core provides the
functionality required for processing CNN layers and exposes a custom instruction set
architecture (ISA). The datapath of the AI core consists of a Cube Unit for MatMuls,
and a Vector Unit and Scalar Unit for scalar and vector operations, respectively.

BU

AIC0 AIC1

DDR
CH1

DDR
CH0

UB
CUBE
AccumL0B

L0A
MTE1

IM2COL
TRANSFER

L0CL1
FixPipe

VU

BIUMTE2

MTE3 Front
End

Instr.
Dispatch

Event
Sync.

Cube Queue
VU Queue
MTE Queue

Instr.
Cache

IN_XFORM
OUT_XFORMWT_XFORM

Winograd extensionsAI Core

Fig. 2.7 High-level overview of the inference accelerator with the proposed extensions

The Cube Unit (Fig. 2.8) can work in int and float mode. In int mode, it
performs a MatMul between two int8 matrices of size [16×32] per cycle, producing
an int32 [16×16] output matrix which can be accumulated to a third input operand.
In float mode, the inputs are float16 [16× 16] matrices, and the output is a
float32 [16×16] matrix.

The data layout adopted for the feature maps, i.e., the fractal layout [166], is such
that it simplifies the memory access patterns. The reduction axis of the feature maps
(C) is split into a sub-dimension C0 and a super-dimension C1 = ⌈ C

C0
⌉, where C0 = 32

for int mode, and C0 = 16 for float mode. The elements along the sub-dimension

38 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

+ + + + + + + +
+ + + +

+ +
+

x x x x x x x x x x x x x x x x

Matrix A

Matrix B

CUBE Unit

PE

Fig. 2.8 Cube Unit.

C0 are stored contiguously in memory. With this format, the layout of a ⟨N,C,H,W ⟩
iFM becomes ⟨N,C1,H,W,C0⟩. Fig. 2.9 graphically shows the fractal layout.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

3

7

11

15

16 17 18 19

0 1 2 3
23

27

31

1932 Byte
sC

H

W

Data Volume Memory Mapping

Fig. 2.9 Fractal data layout.

The Vector Unit is 256B wide, with a peak throughput of 256 int8 and 128
float16 ops per cycle. It supports general arithmetic operations between vectors
and specialized operations often appearing in CNNs, such as ReLU or pairwise
reductions. It is also the unit responsible for data type conversions and data layout
transformations. For relevant CNNs workloads, the width of the Vector Unit assures
that its throughput matches the output data rate of the Cube Unit.

The on-chip memory is organized in a multi-level hierarchy. L1 is the second
level memory, L0C serves as input and output buffer to the Vector Unit, L0A and
L0B as input buffers for the Cube Unit, and L0C as its output. Data movements and

2.4 Hardware Acceleration 39

layout transformations throughout all the memory hierarchy levels are fully software
managed by the on-chip memory transfer engines (MTEs). In particular, the MTE2 is
responsible for the data transfer from the global memory (GM) to either the unified
buffer UB or L1, while vice-versa the MTE3 moves data from the UB to GM or L1.
The MTE1 moves data from L1 to L0A and L0B, and, in case of Conv operation, is
responsible for performing im2col transformation on the tiles to lower the operation
to a MatMul. The im2col engine within the MTE1 supports kernel sizes 3, 5, and
7, and strides 1 and 2. The possibility of transferring data from UB to L1 is needed
in case of multiple layers fusion, i.e., multiple layers can be computed without ever
needing to transfer data off-chip. For the same purpose, a FixPipe module within
the Vector Unit transfers the output of the Cube Unit from L0C to UB, performing
re-quantization on the fly if needed.

The size and number of banks of the on-chip memories are tailored to minimize
area while maintaining sufficient bandwidth and capacity to prevent computational
units from being blocked. In particular, L0A and L0B can both feed one operand per
cycle to the Cube Unit, i.e., a tile of 256B each, without any bank conflict. In the
same way, L0C sustains the rate of one read and write operation per cycle from the
Cube Unit, and it also has a read port towards the FixPipe module. L1 manages bank
conflicts at runtime through a complicated addressing system and multiple read and
write ports. Adopting data reuse in other memories allows the idle cycles introduced
by the bank conflicts to be excluded from the computational critical path.

The AI core uses an in-order scalar front-end to offload the instructions to the
different units. Each unit has a separate instruction queue, allowing the units to
run in parallel. To reduce the instruction dispatching overhead, the ISA of the core
allows setting a repetition factor for each instruction, together with the stride for
all the operators. The repetitions are then handled by each unit internally through a
µ-sequencer. To manage data dependencies, the different units are synchronized ex-
plicitly with an explicit token exchange mechanism [167], with a form of decoupled
access/execute strategy [168] that allows the programmer to handle the overlap of
compute operations and data movements.

40 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

2.4.2 Winograd Transformation Engines

The input, weights, and outputs Winograd transformations BT xB, G f GT , and ATYA
of Eq. (2.6) can be generalized as follows:

sw = T T × s×T = T T × s̃, (2.24)

where T is a generic constant transformation matrix of size [hT ×wT], s is a tile to
be transformed with shape [hT ×hT]. s could be a tile of the iFMs, oFMs, or of the
weights, depending on the transformation being performed. To transform all the
iFMs, weights, and oFMs volumes, the Winograd transformations in Eq. (2.24) need
to be repeated multiple times, specifically:

• H
m×

W
m×Cin/out for the iFMs;

• Cin×Cout for the weights;

• H
m×

W
m×Cin/out for the oFMs

To investigate the different area-throughput trade-offs and to design area- and
power-efficient Winograd transformation engines, we unroll the entire T T × s×T
operation into a flat dataflow graph (DFG). Then, we apply several techniques to
optimize the DFG furtherly, mainly the fact that the T matrix is a constant known at
design time:

• Taking advantage of the many common terms and symmetries in the transfor-
mation matrices, we apply common element subexpression or other algebraic
techniques to share computations and reuse results, reducing the number of
computational resources or the number of cycles needed.

• Most of the values in the transformation matrices are powers-of-two, which
allows us to avoid multipliers in favor of simpler shifters. When, rarely, non-
powers-of-two coefficients are present, the multiplication is carried out as a
series of shifts and adds, e.g., c = 5 ·a = (a << 2)+a.

• When possible, the bitwidth of intermediate results is kept to the minimum
to reduce the area and power consumption of the allocated computational
resources.

2.4 Hardware Acceleration 41

Based on this exploration and optimization, we propose two high-level design
strategies, which we refer to as row-by-row and tap-by-tap transformation engines.

The row-by-row transformation engine (Fig. 2.10) comes in two versions, slow
and fast, both based on the decomposition of the transformation operation into a
series of vector-matrix multiplications s[y, :]×T , mapped on a spatial processing
element (PE).

<< >>

+ +

<<

+

+

>>

>>

<< >>

+ +

<<

+

>>

>>

>>

+
>>

+
>>

+
>>

+

>>

+
>>

+
>>

+
>>

+

>>

+
>>

+
>>

+
>>

+

>>

+
>>

+
>>

+
>>

+

Compute
Datapath

Compute
Datapath

Fig. 2.10 Row-by-row engine in the slow (left) and fast (right) version.

In detail, the PE accesses one row of the matrix s per cycle. Therefore, the whole
operation s̃ = s×T is completed in hT cycles. Using only shifters and adders, the PE
hardcodes the vector-matrix multiplication with matrix T . The second step T T × s̃
of the Winograd transformation can be mapped and computed in two ways, either by
reusing the resources already instantiated in the PE (slow solution) or by allocating
additional resources in the PE (fast solution).

The slow solution exploits the fact that to map T T × s̃ on the same PEs imple-
menting the ×T matrix multiplication it is possible to manipulate the operation to
s̃T ×T , which only requires transposing the intermediate result s̃. For this purpose,
an additional set of hT ·wT registers is needed. This solution produces one row of
the output matrix per cycle (wT cycles needed) after an initial latency of hT cy-
cles. Overall, the slow solution saves computational resources at the cost of lower
throughput.

To avoid lowering the throughput, the fast solution requires adding wT ·wT lanes
to compute sw in an output-stationary fashion (Fig. 2.10). This solution produces the
entire output matrix in a single cycle, after an initial latency of hT cycles.

42 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

As shown in Fig. 2.11, to perform multiple transformations in parallel the PE can
be replicated. We denote the two factors controlling the transformations parallelism
as Pc and Ps, the former along the channels dimension, and the latter along the spatial
dimension. The parallelization strategy is not only constrained by the area budget
but also by the memory bandwidth and access pattern requirements. In particular,
the row-by-row engine needs enough memory bandwidth to read multiple rows of
several tiles along the spatial and channel dimension. Exploiting the overlap between
spatially adjacent tiles is possible to alleviate the memory bandwidth pressure.
Moreover, the elements of a spatial row need to be stored contiguously in memory.

PEPEPEPEPEPE

+

>> >>>>

+ +

PEPEPEPEPEPE

s

Tapwise

 >>

Fig. 2.11 Row-by-row engine with parallelization.

The tap-by-tap transformation engine (Fig. 2.12) is located at a different point in
the optimization space, with the DFG completely unrolled in time.

PEPEPEPEPEPE PEPEPEPEPEPE...

>>

+

>>

+

s

Tapwise

 >>

Fig. 2.12 Tap-by-tap engine with parallelization.

In this engine, the PE is very simple and consists only of a configurable shifter
to implement the multiplication, an adder/subtractor, and a register serving as an
accumulator. Therefore, the PE can implement one MAC per cycle, taking, in the
worst case, hT ·hT cycles to compute a single tap. However, to reduce the total
number of cycles, two properties of the transformation matrices can be exploited:

2.4 Hardware Acceleration 43

1. The actual number of cycles per tap is usually lower than hT ·hT cycles, thanks
to the sparsity of the transformation matrices.

2. Thanks to the symmetry of the transformation operation, some taps share a
sizeable portion of computations with other taps. Therefore, the result of a tap
can be reused as an operand for the computation of another tap if this reduces
the overall number of MACs. And if the taps computations are scheduled so
that the second tap is computed right after the one it shares the operations with,
the value to be reused can be simply kept stationary in the accumulator register
without the need for additional registers. An example of this technique is
provided in Eq. (2.25), taking as an example the operations needed to compute
to taps of the G f GT transformation for F4.

U1,1 =
1
4

f0,0 +
1
4

f0,1 +
1
4

f0,2 +
1
4

f1,0 +
1
4

f1,1 +
1
4

f1,2 +
1
4

f2,0 +
1
4

f2,1 +
1
4

f2,2

U2,1 =
1
4

f0,0 +
1
4

f0,1 +
1
4

f0,2−
1
4

f1,0−
1
4

f1,1−
1
4

f1,2 +
1
4

f2,0 +
1
4

f2,1 +
1
4

f2,2

U2,1 =U1,1 +−
1
2

f1,0−
1
2

f1,1−
1
2

f1,2 (2.25)

For the row-by-row engine too, a higher throughput is obtained by allocating
multiple PEs and using them to perform transformations in parallel along Pc and Ps.
We can also add a parallelization axis Pt , representing the number of taps computed
in parallel in a PE. By observing Eq. (2.25), we note that two different taps can be
computed from the same input data with different coefficients. Therefore, allocating
Pt = 2 lanes inside the PE makes it possible to compute two taps in half of the cycles
without doubling the necessary read bandwidth. Higher throughput can be achieved
by replicating the PEs to perform multiple transformations in parallel. Moreover,
Pt does not alter the output bandwidth requirements if the write-back is split into
multiple sub-writes.

We add an input or output stage with a programmable shifter and a rounding
module to the PE to accommodate tap-wise quantization. The number of parallel
taps produced or used during a cycle determines the necessary quantization stages.
The overall performance and requirements of the two proposed solutions are reported
in Tab. 2.1.

In the following section, we will describe the Winograd Operator’s data flow and
explain the rationale behind our specific design decisions.

44 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Table 2.1 Performance and bandwidth requirements of the Winograd transformation engines.

Cycles/Xform
[cycles]

Parallel
Xforms

RD BW
[B/cycle]

WR BW
[B/cycle]

Row-by-row

- slow hT +wT Pc ·Ps Pc ·Ps ·hT
Pc ·Ps ·hT

- fast hT Pc ·Ps ·wT ·wT

Tap-by-tap T dependent Pc ·Ps ·Pt Pc ·Ps Pc ·Ps

2.4.3 Winograd Operator

The Winograd operator can now be mapped onto the AI core leveraging the dedicated
engines to maximize throughput and minimize energy consumption. The proposed
dataflow of the Winograd operator for a 3×3 Conv2D layer is reported in Listing 2.1.

1 # WEIGHT Blocking
2 for wt_tile_gm in WT_GM[2*cout_tile_sz + block_id:...].get_next_tile(
3 cin_l0b_tile_sz, cout_l0b_tile_sz,
4 double_buffering=True):
5 mte2.transfer(wt_tile_gm, wt_tile_l0b)
6 mte1.weight_xform(wt_tile_l0b, wt_tile_l1[...])
7 # IFM L2 Blocking
8 for ifm_gm_tile in IFM_GM.get_next_tile(
9 batch_l2_tile_sz, h_out_l2_tile_sz,

10 w_out_l2_tile_sz, double_buffering=True):
11 mte2.transfer(ifm_gm_tile, ifm_l2_tile, broadcast=True)
12 #IFM L1 Blocking
13 for ifm_l1_tile in ifm_l2_tile.get_next_tile(
14 batch_l1_tile_sz, h_out_l1_tile_sz,
15 w_out_l1_tile_sz, double_buffering=True):
16 # IFM L0 Blocking
17 for ifm_l0_tile in ifm_l1_tile.get_next_tile(
18 bath_l0a_tile_sz, h_out_l0a_tile_sz,
19 w_out_l0a_tile_sz, chs_in_l0a_tile_sz,
20 double_buffering=True):
21 mte1.input_xform(ifm_l0_tile, ifm_l0a_tile)
22 cube.mmad(ifm_l0a_tile, wt_tile_l1[...],
23 out_l0c_tile[...])
24 vec_unit.out_xform(out_l0c_tile, out_prescale_ub_tile)
25 vec_unit.dconv(out_prescale_ub_tile, out_postscale_ub_tile, alpha_q)

2.4 Hardware Acceleration 45

26 mte3.write(out_postscale_ub_tile, OUT_GM[:])

Listing 2.1 Dataflow of the Winograd operator

First, a tile of weights is moved from GM to L1, with the transformation to the
Winograd domain performed on the fly (lines 2-6). The core parallelism is exploited
on the output channels dimension, i.e., each core works on a different subset of
output channels (line 2). The data transfer is carried out in tiles (line 5). Each tile
is stored in L0B, which is used as an intermediate buffer, and transformed to the
Winograd domain by the weight transformation engine of the MTE1. The resulting
tiles are stored in L1 (line 6). L0B is double-buffered to allow the overlap of data
transfers from GM to L0B, and weight transformations from L0B to L1. Once in
L1, the weights are kept stationary and reused for all the input feature maps. The
synchronization between the transfers handled by the MT2 and the MTE1 happens via
proper token exchange instructions. For clarity, these synchronization instructions
are not reported in the pseudocode.

Second, a tile of the input feature maps is transferred from GM to L1 by the
MTE2 (line 11). The transformation to the Winograd domain is performed by the
input transformation engines in the MTE1, fetching tiles from L1 and storing the
result in L0A (line 21). The element-wise multiplications, mapped to a sequence
of MatMuls as explained in Section 2.2, are then executed by the Cube Unit (line
22). When the Cube finishes the processing of a batch of tiles, the engines within the
Vector Unit are used to apply the output transformation (line 24). Finally, the Vector
Unit is also used to apply the final re-quantization (line 25), MTE3 writes the result
back to the GM (line 26).

To maximize the concurrency between data movement, compute, and Winograd
transformations, double-buffering is applied across the whole on-chip memory
hierarchy with three levels of loop blocking:

1. (lines 8-10): the transfer of the iFMs from the GM to L1 (line 11) is done
in parallel with all the core-level computations and data movements (lines
13-26).

2. (lines 16-25): the input feature maps transformations and the MatMuls in
the Cube Unit (lines 17-23) are overlapped with the output transformations,
re-quantization and the write-back to GM (lines 24-26).

46 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

3. (lines 17-20): the input transformations (line 21) and the batched MatMuls
(line 22) are overlapped.

Maximizing the Cube Unit utilization and thus the compute efficiency requires
matching the production and consumption rate of all the units of the AI core. The
primary requirement is to match the Cube Unit consumption rate with the produc-
tion rate of the input feature maps transformation engines, as any overhead in the
innermost loop would be multiplied by the total number of outer iterations (lines
17-20).

As described in Section 2.4.1, the iFMs are stored in L1 in the fractal data layout
⟨N,C1,H,W,C0⟩, and specifically ⟨N,C1,H,W,32⟩ when working in int8 format.
Therefore, 32 input channels and the spatial dimension W are contiguous in memory,
making the row-by-row engine the most suitable choice as the input transformation
engine. Considering the 512B read/write bandwidth of L1 and L0A respectively,
it is possible to replicate the PEs 32 times along the input channel dimension
Cin and two times along the W/4 dimension, performing 64 transformations in
parallel. In this way, the MTE1 input transformation engine has a production rate of
64 · 36

12(= 192)B/cycle, while the Cube unit has a consumption rate of 512B/cycle,
i.e., the Cube is 2.7× faster than the MT E1 transformation engines. Consequently,
to avoid stalling the Cube, at least 3×16 = 48 output channels must be computed per
inner loop (lines 21-22). Since in most networks the number of channels is a power
of 2, we build the dataflow and the system in such a way as to be able to compute
4×16 = 64 output channels per iteration, simplifying the tiling of the loops. This
also means that L0C has to store at least 4×36 tiles of 16×16 float32 elements
for a total L0C size of 288kB considering double-buffering.

It also has to be noted that the row-by-row engine introduces the need to slightly
modify the addressing capabilities of L0A. To sustain the consumption rate of the
Cube unit, L0A is organized into 16 banks, with a word length of 32B per bank. The
addresses of L0A need to be 512B-aligned. The row-by-row engine produces multiple
taps belonging to the same tile per cycle, and, with the current addressing scheme,
these taps can only be stored at the same address on different banks (Fig. 2.13). At
the same time, the Cube will need to read these taps in different cycles. To solve this
limitation, we propose to enhance the addressing capabilities of L0A so that different
rows of different banks can be accessed with a single memory operation, with a
diagonal write mode. This modification allows de-facto to perform data scattering

2.4 Hardware Acceleration 47

on-the-fly. As reported in Section 2.5.2, this change has a negligible area and power
overhead.

tile0, tap0 tile0, tap6 tile0, tap12 tile0, tap18

tile0, tap1 tile0, tap7 tile0, tap13 tile0, tap19

tile1, tap0 tile1, tap6 tile1, tap12 tile1, tap18

tile0, tap0

tile0, tap6

tile0, tap12

tile0, tap1

tile0, tap7

tile1, tap0

tile1, tap6

tile1, tap12

32Bytes

addr_0

addr_1

addr_2

addr_6

...

...

...

...

...

...

...

...

bank_0 bank_1 bank_15

bank_0 bank_1 bank_15

addr_0

addr_1

addr_2

addr_6

tilex, tapy:
write cycle 0

tilex, tapy:
write cycle 1

tilex, tapy:
write cycle 6

read cycle
CONFLICT

read cycle
OK

Fig. 2.13 (top) Bank conflict arising when using a traditional addressing scheme. (bottom)
Proposed diagonal access scheme.

To keep the overall pipeline busy, the transformations and MatMuls on the input
tiles need to be done in parallel with the output transformation and re-quantization
of the previous tile (lines 16-25). For the output transformation engine, the selection
of the engine type is mostly driven by the necessity of reducing the number of
memory accesses to L0C, which are more power-needing because of the larger
size of the memory and the higher bitwidth of the values. Since the tap-by-tap
engine necessitates multiple accesses per data, it is not a feasible choice, leading
us to rely on the row-by-row engine. The available L0C bandwidth allows the
engines to simultaneously perform up to 16 transformations along the output channels
dimension. Therefore, a volume of Cout · H

4 ·
W
4 tiles in the Winograd domain will

be transformed back to the spatial domain in Cout
16 ·

H
4 ·

W
4 ·10 or Cout

16 ·
H
4 ·

W
4 ·6 cycles,

by the slow and fast version of the row-by-row engine respectively. At the same
time, the Cube produces the same amount of data in Cout

16 ·
Ci
32 ·

H
4 ·

W
4 ·

1
16 ·36 cycles. By

imposing the Cube production rate to be lower or equal to the output transformation
engines consumption rate, we obtain that at least 3 (Cin = 96) and 6 (Cin = 192)
fractal input channel tiles, for the fast and slow engines respectively. Since most of
the SOTA networks’ layers have less than 192 but more than 96 input channels, we
opt for the fast engine.

48 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

As for the L0A data scattering problem, the Cube Unit writes data in L0C with
the same taps of different tiles in contiguous locations. To perform the output
transformations, the output engine needs to access different taps of the same tiles,
which will be scattered across different locations in the memory. Thus, the addressing
logic is modified as in L0A to perform data gathering on the fly.

Lastly, the processing times of all core-level processes must match the load
and store operations from and to the GM. The weights transformation engine’s
throughput must match the external bandwidth, as it reads the weights from the GM
and transforms them on the fly (lines 2-6). Since the external bandwidth is much
lower than the in-core bandwidth, we choose for the weight transformations the
tap-by-tap engine. Beyond matching the bandwidth, the tap-by-tap engine produces
the output data with the data layout needed by the Cube, i.e., the taps are already
scattered. When reading the weights from the GM, the engine would need to perform
a gathering operation, which can however be avoided as the layout of the weights in
the GM can be reorganized offline without any overhead.

A single AI core needs to read at least 18 · 18 ·Cin B of iFMs and to write
16 ·16 ·64 B of oFMs to match the core throughput. With two available AI cores,
as in our system, this constraint doubles, resulting in a required GM bandwidth
of ≈ 2 · 72+ 7281

Cin
B/cycle assuming a peak compute efficiency for the core-level

operations (lines 13-26). This condition is hard to meet with an AI core clock
frequency in the order of hundreds of MHz. Thus we apply three dataflow and
system-level optimizations:

1. The necessary bandwidth can be almost halved by sharing the iFMs between
the two cores since they operate on different sets of output channels. To
achieve this, a Broadcast Unit (BU in Fig. 2.7) links the cores to the memory
controllers. The BU can either process broadcast requests in the form of a
streaming access pattern [169] or, in a traditional fashion, accept individual
memory requests from the MTEs of the two cores and forward them to the
memory controllers. In the case of two broadcast memory requests from the
cores, the BU operates as a DMA and broadcasts data from the GM to the
MTEs of the two cores. The BU has two separate queues for non-broadcast
and broadcast requests, with the latter being prioritized to prevent deadlocks.

2.5 Results 49

2. The iFMs volume to be moved can be reduced when the shape is larger than
18× 18 by leveraging the halo regions of the 3× 3 Conv2d operator with
unitary stride.

3. It is possible to decouple read and write operations and prioritize the more
critical read transfers by prefetching input tiles and allocating multiple output
buffers rather than just two for double buffering.

2.5 Results

2.5.1 Tap-wise Quantization Algorithm

Datasets and Baseline Networks

The datasets used to evaluate the proposed quantization flow are CIFAR-10 [3] and
ImageNet ILSVRC [23], two common image classification datasets. CIFAR-10
consists of 60k 32 × 32 RGB images divided into 10 classes, and ImageNet of 1.4M
224×224 RGB images divided into 1k classes. The datasets are divided into training
and validation sets with a split ratio of 90%-10%, respectively. The training set is
used for training, and the validation set is for learning rate scheduling. The test sets,
used for inference only, consist of 10k and 100k images for CIFAR-10 and ImageNet,
respectively. The preprocessing methods applied are random horizontal flip and
color normalization for CIFAR-10, and resize, random crop, and color normalization
for ImageNet.

For CIFAR-10, we re-implement ResNet-20 [6] and train it from scratch, achiev-
ing a baseline accuracy of (94.4%). We also test a light-version of VGG [170], also
used by Liu et al. [141] and Lance et al. [144], replacing all but the last dropout
layers with batch normalization layers and thus obtaining an accuracy of 92.2%. For
the ImageNet dataset, we benchmark ResNet-34 and ResNet-50 from the Torchvision
model zoo, with a 72.6%/ 75.5% Top-1 and 90.7%/92.6% Top-5 accuracy on the test
set.

The networks are trained in the PyTorch framework [40] applying the Winograd-
aware training [134], extended with the tap-wise quantization support.

50 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Tap-Wise Quantization Evaluation

Table 2.2 Ablation study for ResNet-34 on ImageNet

Alg. WA ⊙ 2x ∇log2 t KD intn Top-5 Top-1 ∆

im2col FP32 90.7 72.6 0.0
im2col 8 90.7 72.6 0.0

F2 ✓ 8 90.1 71.4 -1.2
F2 ✓ 8/10 90.7 72.6 0.0
F4 ✓ ✓ 8 81.6 59.0 -13.6
F4 ✓ ✓ 8/10 89.2 69.1 -3.5

F4 ✓ ✓ 8 90.1 71.4 -1.2
F4 ✓ ✓ 8/10 90.6 72.0 -0.6
F4 ✓ ✓ ✓ 8 90.7 72.5 -0.1

F4 ✓ ✓ ✓ 8 89.9 70.9 -1.7
F4 ✓ ✓ ✓ 8/10 90.6 72.1 -0.5
F4 ✓ ✓ ✓ ✓ 8 89.6 70.8 -1.8
F4 ✓ ✓ ✓ ✓ 8/10 90.4 71.8 -0.8
F4 ✓ ✓ ✓ ✓ 8 90.0 70.9 -1.7
F4 ✓ ✓ ✓ ✓ 8/10 90.7 72.2 -0.4
F4 ✓ ✓ ✓ ✓ ✓ 8 90.0 71.1 -1.5
F4 ✓ ✓ ✓ ✓ ✓ 8/10 90.7 72.3 -0.3

⊙: tap-wise quantization, 2x: power-of-two quant., ∇log2 t training, KD: knowledge distillation, WA:
Winograd-aware training.

Tab. 2.2 gives an overview of the accuracy of ResNet-34 on the ImageNet dataset
when different training and quantization methods are applied. Starting from the
FP32 baseline, we retrain and quantize the network in int8 format, with the weights
and feature maps quantized as shown in Eq. (2.14). As with most neural networks,
quantizing to int8 has no or negligible effect on the overall accuracy. Applying the
static Winograd-aware algorithm (Section 2.3.1), we train the Winograd F2 ResNet34
on ImageNet and achieve 71.4% (-1.2% drop) with 8-bit quantization. Increasing the
precision of both weights and feature maps to 10-bit in the Winograd domain only
(8/10 notation in the table) restores the full accuracy of the network, as expected,
since just 3 bits are required for a bit-true calculation (Section 2.3). On the contrary,
training the Winograd F4 version with the Winograd-aware method and KD leads
to an accuracy drop of 13.6% w.r.t. the FP32 baseline. Adding two extra bits in the
Winograd domain anyway drops the accuracy at least by 3.5%.

The second section of Tab. 2.2 reports the accuracy of the network when tap-wise
quantization is applied with unrestricted quantization scaling factors, i.e., they are
represented with FP32 precision and can assume any value. With Winograd-aware

2.5 Results 51

static training and straightforward threshold calibration, the accuracy loss is much
lower (-1.2%) w.r.t. the accuracy of the network without tap-wise quantization
(-13.6%). The accuracy degradation further improves when relaxing the numerical
pressure and allowing 10-bits precision in the Winograd domain, and the best result
is obtained when also KD is applied.

As explained in Section 2.3.2, constraining the scaling factors to be power-of-two
is preferred, as the re-quantization and de-quantization in the Winograd domain
become simple shift operations. The third section of Tab. 2.2 summarizes the
accuracy results when the scaling factors are limited to power-of-two values. Simply
applying the Winograd-aware algorithm with power-of-two tap-wise quantization
leads to a 1.7/0.5% drop with int8 and int8/10. Applying knowledge distillation
to this scheme brings little or no improvement. Applying log2 gradients has no
positive effect on the accuracy; in fact, a worse performance than the straightforward
calibration method is observed due to convergence issues. However, adding KD
to log2 gradients leads to the best results, with an accuracy of 71.1% (-1.5%) for
int8 and 72.3% (-0.3%) for int8/10. This result is due to the stabilizing effect of
knowledge distillation, which acts as an implicit regularizer [171].

By furtherly investigating the values learned by the network for the tap-wise
scaling factors, we see that the feature maps are right-shifted in a range from 1 to
5 bits, (i.e., s ∈ {2,22, . . . ,25}) and the weights from 2 to 10 bits. The wide range
assumed by the scaling factors clearly demonstrates why quantizing with a single
scalar for all the taps leads to a huge accuracy drop.

Comparison with Other SOTA Winograd-Aware Quantization Methods

There have been a variety of Winograd-aware quantization methods recently pre-
sented. Tab. 2.3 gives a full overview of the main methods and a comparison with
our solution. In the table, together with the accuracy of the Winograd quantized
networks, we also report the baseline accuracy. We will then compare the relative
accuracy drop to consider the differences in training and implementation of the
different works. The results reported for our solution are obtained by applying the
Winograd-aware training method, the powers-of-two tapwise quantization, the log2

gradients, and knowledge distillation.

52 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Table 2.3 SoA Winograd-aware quantization methods.

CIFAR-10/ResNet-20 intn Top-1 Ref. ∆

[172] Legendre (static) F4 8 85.0 92.3 -7.3
[172] Legendre (static) F4 8/9 89.4 92.3 -2.9
[172] Legendre (flex) F4 8 91.8 92.3 -0.5
[172] Legendre (flex) F4 8/9 92.3 92.3 0.0
[134] Winograd-Aware (s) F4 8 84.31 93.2 -8.9
[134] Winograd-Aware (f) F4 8 92.5 93.2 -0.7
[140] Winograd AdderNet F2 8 91.6 92.3 -0.7
(ours) Tapwise Quant. F4 8 93.8 94.4 -0.6
(ours) Tapwise Quant. F4 8/9 94.4 94.4 0.0

CIFAR-10/VGG-nagadomi intn Top-1 Ref. ∆

[141] Sparse F2 FP32 93.4 93.3 0.1
[144] Quant. Winograd F2 8 90.3 90.4 -0.1
(ours) Tapwise Quant. (static) F4 8 90.8 92.0 -1.2
(ours) Tapwise Quant. (static) F4 8/9 91.9 92.0 -0.1
(ours) Tapwise Quant. (static) F4 8/10 92.0 92.0 0.0

ImageNet/ResNet-50 intn Top-1 Ref. ∆

[145] Complex Numbers F4 8 73.2 73.3 -0.1
[146] Residue Numbers F14 8 75.1 76.1 -1.0
[147] LoWino F4 FP32/8 75.5 76.1 -0.6
(ours) Tapwise Quant. (static) F4 8 75.2 75.5 -0.3
(ours) Tapwise Quant. (static) F4 8/10 75.5 75.5 0.0

1Not reported. Reproduced with the open-source code [134].

The first part of Tab. 2.3 reports the results of ResNet-20 on CIFAR-10. Without
adding any computational overhead, we improve the accuracy of the static Winograd-
aware (WA) method [134] from 84.3% to 94.4%, i.e., the same accuracy of the
baseline FP32 model. In [134], a flex methodology is also proposed, with which
the transformation matrices are included in the set of trainable parameters. We
outperform the flex WA method [134] by 1.9%. Moreover, it has to be noted
that, with this technique, the transformation matrices to be used for each layer at
inference time are different. If designing a custom HW accelerator, this prevents
exploiting the fact that the transformation matrices are known a priori to create
efficient transformation engines, as in Section 2.4.2. [172] proposes to perform the
Winograd transformations in Legendre polynomial base instead of canonical base.
Then they apply the same static and flex quantization methodology proposed in [134].
We outperform the Legendre-F4 method 2.1%. It has to be noted that, to move from

2.5 Results 53

canonical to Legendre polynomial base, the number of transformations doubles,
making the methodology not HW-friendly.

The second part of the table shows the results for the light version of VGG
(VGG-nagadomi [170]) trained on the CIFAR-10 dataset. Our baseline network
achieves a 92.0% accuracy, and the tap-wise powers-of-two quantized F4 shows
a drop of 1.2%, 0.1% and no drop for int8, int8/9, and int8/10 respectively.
No previous work reports the accuracy for a F4 implementation for this particular
network, so we will compare to the F2 results. To reduce the computational intensity
further, Liu et al. [141] adopt a technique orthogonal to quantization pruning the
weights in the Winograd domain and obtaining a zero drop on their baseline accuracy
in FP32 precision. Li et al. [144] propose to execute the Winograd transformations in
FP32 precision and then quantize to int8 once in the Winograd domain, achieving a
0.1% accuracy reduction. While keeping part of the operations in FP32 precision
clearly helps to reduce accuracy loss, it deviates from the main goal of making
quantized-Winograd HW-friendly.

Finally, the last section of the table reports the results for ResNet-50 trained on
ImageNet. We achieve 75.2%/92.3% (-0.3%/-0.3%) with 8 bits and 75.5%/92.5%
(0.0%/-0.1%) when extending the precision in the Winograd domain to 10 bits
(int8/10). On this benchmark, we can compare to Meng et al. [145], Liu et
al. [146], and LoWino [147]. Meng et al. [145] uses complex root points to obtain
numerically more stable but complex transformation matrices that quantized to int8
lead to a small accuracy drop (-0.1%, but with a lower baseline accuracy). Liu et
al. [146] uses the residue number system (RNS) and very large tile size, i.e., 14×14,
to compensate for the transformation overhead introduced. The accuracy decreases
by 1% from a 76.1% baseline accuracy, even though the RNS could perform the
int8 operations losslessly (transformations and elementwise multiplications). This
may be due to the quantization of the transformation matrices and the high numerical
error introduced by the larger tile size [139, 52]. In LoWino [147], the weights
and feature maps are kept in FP32 representation but quantized linearly to 8 bits
before and after the elementwise multiplication in the Winograd domain. They
achieve an identical accuracy of 75.5% as our method with int8/10, although with an
accuracy drop of 0.6% instead of 0% as they start from a higher baseline. Moreover,
while obtaining the same reduction in operation count, LoWino requires a 4× higher
bandwidth than our solution, eliminating any benefit of the Winograd F4 approach as

54 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

shown in Section 2.5.2. Notably, only our solution with int8/10 can obtain zero
accuracy drop with ResNet-50 on the ImageNet dataset.

Tap-wise vs. Channel-wise Quantization

Previous studies have demonstrated that the accuracy of quantized networks can
be considerably increased using fine-grain quantization methods, notably (output)
channel-wise quantization [173, 174]. Therefore, we discuss the differences between
the tap-wise and channel-wise quantization strategies in this section. We evaluate the
quantization error on the weights of a pre-trained ResNet-34 from the Torchvision
model zoo, although a similar trend can also be observed for the feature maps.

The scaling factors s are determined as follows:

γ̂ = argmin
γ

∑
f
|Quantµ,s(f)− f |/| f |, s = γσ/2n−1, (2.26)

where Quants,µ(x) = µ + s⌊(x−µ)/s⌉intn, the mean µ , the standard deviation
σ , and the optimized scaling factor γ̂ are obtained per layer (uniform quantization
strategy), per channel, or per tap.

Fig. 2.14a shows the distribution of relative quantization error (in log2 scale) of
all layers with kernel size 3×3 for a uniform and for a channel-wise quantization
strategy in the spatial domain for n = 8 bits. Channel-wise quantization reduces the
mean relative error from 2−6.01 to 2−6.72 (1.7× reduction).

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
log2(|Quants, (f) f |/f)

0.00

0.05

0.10

0.15

0.20

Va
lu

e
D

is
tr

ib
ut

io
n

Layerwise Quant.
Channelwise Quant.

(a) Spatial Quantization

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
log2(|G 1Quants, (GfGT)G T f |/f)

0.00

0.05

0.10

0.15

0.20

Va
lu

e
D

is
tr

ib
ut

io
n

Layerwise Quant.
Channelwise Quant.
Tapwise Quant.
Ch.&Tap Quant.

(b) Quantization in Winograd domain

Fig. 2.14 Quantization error distribution for the weights in (a) spatial and (b) Winograd
domain on ResNet-34 using different strategies: layer-wise quantization, channel-wise
quantization, tap-wise quantization, and channel- & tap-wise quantization.

Fig. 2.14b shows the error distribution for layer-wise, channel-wise, and tap-wise
quantization in the Winograd domain. To compare the error caused by the quanti-

2.5 Results 55

zation, we quantize in the Winograd domain (Quant(G f GT)). Then we transform
the data back to the spatial domain by calculating the Moore-Penrose inverse of
the transformation matrices based on singular value decomposition (SVD). In this
situation, the channel-wise quantization reduces the mean relative error significantly
less, from 2−5.58 to 2−5.62. On the other hand, tap-wise quantization shows much
better performance with a 2.3× reduction of the mean error. The channel-wise and
tap-wise quantization combination further improves the average error by 1.06×
but at the cost of a much more complicated computational phase. Therefore, this
combined quantization strategy may be worthy only for networks with significantly
spread channel distribution.

2.5.2 System Evaluation

Experimental Setup

Area and Power. We developed the RTL of the components of the AI core that are
most impacted by the Winograd extensions, namely the Cube Unit, the MTE1, and
the FixPipe module, to evaluate the area and power consumption of the accelerator.

The design is implemented with a high-k metal gate (HKMG) 28 nm CMOS
technology, a corresponding multi-VT standard cell library, and a supply voltage
of 0.8 V in typical corner. We have synthesized, placed, and routed the design,
closing it at a clock frequency of 500 MHz in typical operating conditions. We used
an industrial-grade memory compiler for the SRAM and register file macros. For
the timing-annotated (standard delay format, SDF) post-place & route gate-level
simulations, we have picked input data segments from the first 3×3 layer of a ResNet-
34, quantized with our flow. Lastly, the power consumption is estimated based on
the extracted switching activities (value change dump, VCD).

Performance Profiling. To profile the overall system on a wider set of bench-
marks, we designed an event-based simulator [175]. The simulator models the timing
behavior to estimate the throughput of the system, and also the data movements
and the computations to check the correctness of the results. The simulator was
validated by micro-benchmarking it against the parts of the system developed in RTL.
Precisely, we compared the number of cycles estimated by the simulator with that

56 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

obtained from the RTL simulator, obtaining a 5% worst-case difference on several
small and medium-sized Conv2D operations.

The simulator adopts a simple model for the DRAM subsystem that serves
memory requests in order. The completion time of a memory request depends on
the maximum bandwidth (81.2B/cycle), which corresponds to ≈ 0.8 · 51.2GB/s
given the clock frequency of the core, and on a fixed average latency (150 AI
core cycles) with a jitter extracted from a zero-mean Gaussian distribution with a
variance of 5 cycles. The memory bandwidth and latency characteristics are chosen
to meet the expected performance of an LPDDR4x-3200 memory with two channels
[176, 177]. Not using a detailed model of all the DRAM resources (e.g., bank and
row-buffer conflicts, channel bandwidth, command scheduling) has minimal effect
on the performance of the cases under analysis [175], as the memory accesses are
regular and follow a streaming pattern.

To model the energy consumption in the simulator, we project the power consump-
tion of the memories and the computational units obtained from the back-annotated
gate-level simulations. To take into account the additional logic in L1 needed to
handle bank conflicts and arbitration of read and write ports, we multiply the values
obtained from the memory compiler for L1 area and energy cost by a 1.5× factor.

Workloads. To evaluate the system performance, we adopt two sets of bench-
marks:

1. A synthetic benchmark suite of 63 3×3 Conv2D layers with common values
for batch size (B), number of input and output channels (Cin, Cout), height (H),
and width (W) of the oFMs.

2. A benchmark suite with the Conv2D layers of 7 state-of-the-art CNN networks
to evaluate the energy savings and the speed-up on models having different
architectures.

ResNet-34 and ResNet-50 [6] are taken as representative of computationally
intensive networks for the classification tasks; UNet [132] for high-resolution se-
mantic segmentation tasks; RetinaNet-ResNet50-fpn [178], YOLOv3 [131], and
SSD-VGG16 [130] for object detection tasks. The networks were taken from the
Torchvision Python model zoo.

2.5 Results 57

Area and Power Analysis

Table 2.4 AI Core breakdown at 0.8 V and 500 MHz. Power consumptions marked with ∗

refer to the Im2col kernel, or with † to the F4 Winograd kernel. The cube TOp/s/W reported
for the F4 Winograd kernel are computed using the equivalent TOp in the spatial domain,
i.e., 4× the TOp of the CubeUnit.

Unit Area Peak Power TOp/s/W

Cube 2.04mm2 (19.2%)
∗1521 mW ∗5.39
†1923 mW +17.04

MTE1
Im2col 0.03mm2 (0.3%) 30 mW
IN_XFORM 0.23mm2 (2.2%) 145 mW 5.3
WT_XFORM 0.32mm2 (3.0%) 228 mW 1.6

FIX_PIPE OUT_XFORM 0.10mm2 (0.9%) 114 mW 2.3

Memory Size Area Rd Cost Wr Cost

L0A 64 kB 0.32mm2 (3.1%) 0.22 pJ/B 0.24 pJ/B
L0B 64 kB 0.32mm2 (3.1%) 0.22 pJ/B 0.24 pJ/B
L0C - PortA

288 kB 1.24mm2 (11.7%)
0.23 pJ/B 0.29 pJ/B

L0C - PortB
∗0.31 pJ/B -
+0.69 pJ/B -

L1 1248 kB 5.97 mm2 (56.1%) 0.92 pJ/B 0.68 pJ/B

L0A L0B

L0C

MTE1 IM2COL IN_XFORM WT_XFORM

OUT_XFORMFIX_PIPECUBE

Tab. 2.4 provides information on the physical layout of the implemented hardware
extensions, as well as the area and power breakdown of the AI core. As expected, the
Cube Unit dominates both the area and the power consumption of the computational

58 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

modules, being at least 6.4× bigger and 6.7× more power-demanding than a single
Winograd engine.

Overall, just 6.1% of the core area is taken up by all of the Winograd transforma-
tion engines. When analyzing the reported power costs, it has to be noted that most
of the time, only the input and output transformation engines are simultaneously
active, while the power cost of the weight transformation engine is amortized over
the computations of all activations. Therefore, the Winograd extension adds ≈ 17×
of power overhead to the Cube Unit, but it also reduces its number of active cycles
to one-fourth compared to the im2col.

Tab. 2.4 reports two different power consumptions of the Cube Unit and of the
L0C-Port B, as they respectively increase for the Winograd kernel by 1.26× and
2.22×. This is due to the higher switching power consumption caused by the lower
sparsity of weights and activations in the Winograd domain [141]. Nevertheless,
utilizing the Winograd kernel rather than the im2col results in a compute datapath
that is ≈ 3× more energy-efficient.

On the memory side, both the energy per access and the area are highly related
to the memory size. Despite its more complex addressing logic and access pattern
(Section 2.4.3), L0A has a negligible area and energy access cost overhead w.r.t. L0B.
On the other hand, the rotation logic required on the output port (PortB) of L0C has
a significant effect on power consumption. However, in practice, the average access
cost to L0C is much less expensive, as the (PortB) of L0C is on average less used
than (PortA).

Throughput Analysis

Tab. 2.5 shows the speed-up of the Winograd operator compared to the im2col for
3×3 Conv2D layer configurations, from which we can identify two macro trends.

Larger resolution or batch size→ higher speed-up. As explained in Section 2.4.3,
the weights are reused for all the iFMs in a weight stationary fashion. As a result,
when weight reuse is low, the performance is constrained by the weights transfer.
For example, with 256 input and output channels and batch size equal to 1, the
speed-up increases from 1.98× to 3.30× when the resolution increases from 32×32
to 128×128. When changing the batch size from 1 to 8 at iso-resolution (32×32) it
increases from 1.98× to 3.18× .

2.5 Results 59

Table 2.5 Throughput of the Winograd operator normalized to the im2col operator for
different 3×3 Conv2D layers with stride equals to 1 and padding same. H,W refers to the
output resolution.

B 1 8

Cin 64 128 192 256 512 64 128 192 256 512

Cout 64 128 128 192 256 384 256 512 512 64 128 128 192 256 384 256 512 512

16 0.99 1.00 1.03 1.13 1.13 1.26 1.03 1.12 0.99 1.30 1.69 2.11 1.77 2.02 2.27 2.38 2.34 2.00

H,W 32 1.15 1.27 1.70 2.08 2.21 2.37 1.98 2.02 1.59 1.31 1.84 2.62 2.24 2.59 2.93 3.18 3.16 2.48

64 1.34 1.73 2.50 2.12 2.44 2.75 2.96 2.93 2.29 1.28 1.87 2.66 2.27 2.65 3.07 3.37 3.36 2.65

128 1.27 1.84 2.64 2.25 2.62 3.02 3.30 3.29 2.59 1.25 1.84 2.68 2.29 2.68 3.11 3.42 3.42 2.69
0

1

2

3

4

Fig. 2.15 displays the cycle usage breakdown of the critical path of the Winograd
operator normalized to the im2col (hatched bar) to more clearly illustrate the bottle-
necks for various workloads. In particular, looking at the first and the third workload
in Fig. 2.15, The normalized percentage of cycles spent in the weight transfer and
weight transformations falls from 13% to 2% when the batch size goes from 1 to
8. It should be noted that the weight transformation engine’s throughput has been
adjusted to match external weight transfers while taking up the least amount of area.
By eliminating the weight transformation engine’s contribution, another important
path will emerge where the weight data transfer replaces the transformations. This
analysis also demonstrates the necessity for on-the-fly weight transformation rather
than reading the transformed weights from the external memory. The load overhead
would be substantially higher and more challenging to amortize due to the Winograd
domain’s 4× weights expansion factor.

0.00 0.25 0.50 0.75 1.00

Normalized Time

1, 32, 128, 128
1, 32, 256, 256
8, 32, 128, 128
8, 32, 256, 256

W
or

kl
oa

d
[B

at
ch

,
H

W
,

C
in

,
C

ou
t]

75%

91%

96%

99%

8% 4% 4% 5%

19%

23%

24%

25%

10%

13%

15%

6%

5%

3%

4%

4%

3%

IM2COL
CUBE
IM2COL/IN XFORM

WINOGRAD
WT XFORM
IN LOAD

WT LOAD
VECTOR
OUT STORE

Fig. 2.15 Cycle Breakdown for im2col vs. Winograd F4.

60 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Larger number of input channels→ higher speed-up. The output reuse oppor-
tunity within the core is higher with a larger number of input channels, having the
effect of reducing the bandwidth occupied by the store operations of the oFMs. As
a result of the data reuse, more bandwidth is available for the transfer of the iFMs,
which has a notable impact on the performance since the iFMs are broadcasted to
the two cores. For example, with batch size equal to 8, spatial resolution equal to
32×32, and output channels equal to 256, increasing the number of input channels
from 128 to 256 leads to a speed-up increase from 2.62× to 3.18×. In Fig. 2.15, the
higher bandwidth to dedicate for the iFMs transfer translates to a reduction of the
cycles occupied by the MTE2 from 5% to 2% for the first two workloads and from
15% to 6% for the last ones. In fact, the main reason why the F4 Winograd operator
fails to deliver the expected 4× speed-up on our system is bandwidth limitation. The
input and output transformation engines, as seen in Fig. 2.15, never constitute the
operator’s bottleneck because their throughput is sized to precisely match the input
and output data rate of the Cube Unit.

Comparison with NVDLA

Table 2.6 Comparison of NVDLA and our accelerator system.

8× F2 NVDLA 8× F2 NVDLA F4 OURS
Bandwidth1 128 Gword/s 42.7 Gword/s 41 Gword/s

Peak Throughput 8 TOp/s 8 TOp/s 8 TOp/s

B, H, W, Cin, Cout t [µs] SU [×] t [µs] SU [×] t [µs] SU [×]

8, 32, 32, 128, 128 79.1 2.03 106.2 1.74 59.8 2.62
8, 32, 32, 128, 256 144.7 2.13 175.8 1.89 118.7 2.59
8, 32, 32, 256, 512 574.6 2.09 1736.5 0.72 383.7 3.16

1Word-bandwidth to external memory: 1 word is 2 Bytes for FP16 (NVDLA) and
1 Byte for INT8 (ours). We compare NVDLA with quasi-infinite bandwidth (i.e.,
256 GB/s) and iso-word-bandwidth.

In Tab. 2.6, we compare our accelerator to the open-source NVDLA accelerator
v1, supporting direct convolution (in FP16 and INT8) and Winograd F2 convolution
(FP16 only) with an on-chip memory of 512 kB per engine [154]. We modified the
Linux driver used in the virtual platform in order to write out the sequence of reads

2.5 Results 61

and writes from/to the control and status registers of the accelerator, which we then
use to simulate the RTL for performance benchmarking. This is because NVDLA
does not provide any tools to convert a model that can be used with its compiler into
a format accepted by its verification infrastructure. The results are compared with
the expected values to verify the functional correctness.

The results are summarized in Tab. 2.6. A single NVDLA core has a peak
throughput of 1 TOp/s at 1 GHz, therefore, to match the peak throughput of our sys-
tem (8 TOp/s), we use 8 NVDLA engines. We consider two different configurations
for the NVDLA-based system: the column on the left in Tab. 2.6 describes a system
with quasi-infinite bandwidth, while the system referred to by the middle column
has 42.7 Gword/s, i.e., 85.4 GB/s in FP16, to match the more realistic bandwidth
constraints of our system, i.e., 41 Gword/s (41 GB/s with INT8 for our system,
82 GB/s with fp16 for NVDLA). As the public NVLDA version only supports FP16,
we utilize words rather than bytes for the iso-bandwidth evaluation because it is
reasonable to assume that performance scales with word width. Our accelerator
surpasses NVDLA by 21 to 50%, even if NVDLA with quasi-infinite bandwidth
comes close to the theoretical 2.25× speed-up. Winograd convolutional algorithm
on NVDLA becomes substantially memory-bound in the more realistic case of the
system with constrained external bandwidth, significantly lowering its advantages
over the direct convolutional approach. One of the causes of this degradation is that
NVDLA requires offline weight transformation, which raises the volume of trans-
ferred weight by 42/32 = 1.78×. Furthermore, the Winograd kernel performs even
worse than the direct convolution in situations when the input feature maps of a single
layer must be repeatedly transferred from external memory because they cannot be
entirely kept on-chip. Overall, leveraging Winograd F4 vs. F2, on-the-fly weight
translation, and higher utilization, our accelerator system performs between 1.5 and
3.3× faster than NVDLA at the same peak throughput and external bandwidth.

Full Network Evaluation

Tab. 2.7 reports the evaluation of various state-of-the-art CNNs run on the proposed
system. The throughput of the 3×3 compute-heavy Conv2D layers increases by
1.9× on average and up to 2.60× when the F4 Winograd operator is used. The
improvement in network throughput is dependent on the particular architecture. In
fact, compared to networks dominated by 3×3 convolutions, like U-Net or YOLOv3,

62 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

Table 2.7 Throughput and energy efficiency evaluation. Values in parentheses refer only to
the Winograd layers. The speed-up columns marked with the symbol ∗ refer to a system with
a higher external memory bandwidth (1.5×).

Throughput [Imgs/s] Energy
Eff.[Inf/J]

Network Batch Res. im2col F2 F4 F2 vs. im2col F4 vs. im2col F4 vs. F2
∗F2 vs. im2col ∗F4 vs. im2col ∗F4 vs. F2 F4 vs. im2col

ResNet-34 1 224 921 950 985 1.03x (1.29x) 1.07x (1.39x) 1.04x (1.08x) 1.07x (1.15x) 1.10x (1.52x) 1.03x (1.32x) 1.15x (1.79x)
ResNet-50 1 224 669 676 684 1.01x (1.29x) 1.02x (1.37x) 1.01x (1.06x) 1.02x (1.14x) 1.03x (1.51x) 1.01x (1.32x) 1.05x (1.79x)
RetinaNet-R-50 1 800 38 51 57 1.34x (1.73x) 1.49x (2.18x) 1.11x (1.26x) 1.40x (1.79x) 1.60x (2.43x) 1.14x (1.36x) 1.51x (2.00x)
SSD-VGG-16 1 300 162 243 252 1.50x (1.59x) 1.55x (1.89x) 1.03x (1.19x) 1.58x (1.75x) 1.71x (2.05x) 1.08x (1.17x) 1.70x (2.03x)
UNet 1 572 46 75 81 1.62x (1.71x) 1.74x (2.18x) 1.07x (1.27x) 1.75x (1.85x) 2.00x (2.49x) 1.14x (1.35x) 1.85x (2.28x)
YOLOv3 1 256 317 349 358 1.10x (1.34x) 1.13x (1.46x) 1.03x (1.09x) 1.15x (1.47x) 1.16x (1.41x) 1.01x (0.96x) 1.43x (2.23x)
YOLOv3 1 416 154 188 195 1.22x (1.66x) 1.27x (1.85x) 1.04x (1.11x) 1.27x (1.77x) 1.35x (1.83x) 1.06x (1.03x) 1.35x (1.92x)
SSD-VGG-16 8 300 176 304 328 1.68x (1.71x) 1.83x (1.97x) 1.09x (1.15x) 1.74x (1.77x) 2.06x (2.26x) 1.18x (1.28x) 1.78x (1.90x)
YOLOv3 8 256 496 664 680 1.33x (1.72x) 1.37x (2.40x) 1.03x (1.40x) 1.42x (1.87x) 1.51x (2.32x) 1.06x (1.24x) 1.50x (2.57x)
ResNet-34 16 224 1472 1776 2000 1.22x (1.73x) 1.36x (1.93x) 1.11x (1.12x) 1.24x (1.52x) 1.46x (2.29x) 1.18x (1.51x) 1.40x (2.03x)
ResNet-50 16 224 816 848 880 1.05x (1.73x) 1.07x (1.90x) 1.02x (1.10x) 1.06x (1.51x) 1.10x (2.25x) 1.04x (1.49x) 1.13x (2.02x)
YOLOv3 16 256 480 672 672 1.38x (1.92x) 1.38x (2.60x) 1.00x (1.35x) 1.44x (2.01x) 1.51x (2.46x) 1.05x (1.22x) 1.51x (2.59x)

the Winograd algorithm’s advantages are less significant for networks with a lot
of 1×1 convolutions, like ResNet-50. The Winograd algorithm, however, excels
when the batch size or input resolution are increased. In the case of ResNet-34, for
instance, utilizing a batch size of 16 instead of 1 results in a speedup that is increased
from 1.07× to 1.36×. The speedup on SSD-VGG-16 goes from 1.55× to 1.83×
when the batch size is increased, which is even more impressive.

In Tab. 2.7, we also provide throughput information for the F2 Winograd operator,
which was constructed using the same methods as F4 in Section 2.4.2 and the same
dataflow as F4 in Listing 2.1. F2 and F4 yield comparable performance when the
2.25× computational reduction introduced by the F2 operator makes the workloads of
the layers memory-bound, though the F4 configuration always beats the F2. However,
F4 enhances the throughput compared to F2 by up to 1.4× when the batch size or
input resolution are increased, especially for particularly compute-intensive networks
like SSD-VGG-16, YOLOv3, and UNet. Tab. 2.7 additionally displays the speed-up
relative to the im2col algorithm for a system with a greater bandwidth in order to
illustrate the advantages of the Winograd F4 algorithm (1.5×, i.e., the ratio between
a DDR5 and a DDR4 memory). In this scenario, whereas Winograd F2 reaches
a speed-up plateau of about ≈ 1.8×, Winograd F4 takes use of the extra external
memory bandwidth to double end-to-end throughput in comparison to the baseline.

2.5 Results 63

Winograd F4 generally outperforms im2col and F2, even if the gains over F2 are
not always significant and heavily reliant on the shapes of the individual network
layers. In particular, the introduction of the Winograd transformation engines limits
the possibility of applying loop transformations, e.g., blocking and reordering, to the
outer loops of the convolution operation, beyond constraining the dataflow within a
single AI core. Additionally, the spatial resolution of the output activation tiles must
be a multiple of 4, which restricts the available tiling factors and, in some circum-
stances, introduces the necessity of zero-padding and adds inefficient computations.
These extra limitations have an impact on how often data is reused in the core and
how frequently external memory is accessed, further highlighting the bandwidth
constraints. Further proof is given by the layer-wise analysis in Tab. 2.7, which
reveals that not the same layers of the network are mapped either on Winograd F2 or
on Winograd F4 depending on the available extension. For example, for YOLOv3
with an input resolution of 256 and batch size 1, the Winograd F2 outperforms
Winograd F4 because it is used to process the deep layers of the network where the
small spatial resolution (≤ 16×16) makes the Winograd F4 perform worse than the
im2col algorithm. However, for the YOLOv3 with an input resolution of 256 and
batch size 8, Winograd F4 results in a 1.4× higher throughput than Winograd F2 (i.e.,
with DDR4)

Even if the throughput increase may be lower than the theoretical 4×, Winograd
F4 nevertheless decreases the use of the MatMul engine, which is typically the
most power-hungry computing resource. As a result, the overall energy efficiency
increases, as examined in the paragraphs that follow. Therefore, accelerator designers
can use the methodology described in Section 2.4.2 to develop the transformation
engines for Winograd F2 and integrate them with the Winograd F4 ones, depending
on the application use cases and the area budget. This will enable the compiler to
choose the best computational kernel for each layer of the network.

Fig. 2.16 reports, on the left, the average number of read and write accesses and,
on the right, the average energy breakdown of the Winograd F4 operator for the
Winograd layers of the networks analyzed in Tab. 2.7. All values are normalized
to the im2col Conv2D operator. Since the weights are transformed on the fly in
the core, the number of read accesses to the weights in GM remains unchanged.
On the other hand, the weights expansion factor (m+2)2

9 =4 caused by the Winograd
transformation has the effect of increasing the write accesses to L1. In the new
system, the Cube Unit directly accesses the weights from L1 rather than using L0B

64 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference

GM
FM

GM
Wt

L1
FM

L1
Wt

L0A L0B L0C

0

1

2

3

4

5

6

7
N

or
m

a
li

ze
d

A
cc

es
s

C
o

u
n

t

1
.2

1
.0

0
.9

7
.1

0
.3

0
.0

2
.7

1
.0

0
.0

1
.2

4
.0

0
.3

0
.2

2
.7

Read
Write

0%

25%

50%

N
or

m
a

li
ze

d
E

n
er

g
y

B
re

a
k

d
ow

n

37%

OFM-XFRM
IFM-XFRM
WT-XFRM
CUBE
L0C
L0B
L0A
L1

Fig. 2.16 Number of memory accesses (left) and energy breakdown (right) for Winograd F4
w.r.t. im2col.

as a buffer as the im2col operator. Therefore we witness a significant increase in
the read accesses to the weights in L1. However, since the F4 Winograd algorithm
reduces by one-fourth the total number of weight reads and the L1 energy access
cost is only 3× higher than that of L0B, the overall energy consumption is lower.
The accesses to L0B are only performed when transforming the weights, so their
cost is highly amortized over time. Because of the lower output channel reuse factor
(64), the read accesses to the iFMs in GM and samely the iFMs write accesses to L1
slightly increase. The read accesses to the iFMs in L1 and the write accesses to L0A
decrease since the Winograd transformation increases the volume of the iFMs only
by a factor of (m+2)2

m2 =2.25 for m = 4, while the im2col has an expansion factor 9 for
the 3×3 convolution. The number of read accesses to L0A decreases proportionally
to the reduction of the Cube Unit active cycles. Since the oFMs are in the Winograd
domain, the number of read and write accesses to L0C is higher.

Overall, the energy the memory subsystem uses is comparable between F4

Winograd and the im2col operator. Still, the Winograd F4 algorithm uses less energy
overall by more than 2× thanks to its reduction of the active cycles of Cube Unit,
which, as can be seen in Fig. 2.16, accounts for the majority of the core’s energy
usage.

This analysis reveals yet another significant benefit of the Winograd F4 algorithm
over the im2col and the Winograd F2 algorithm: even though the theoretical 4×

2.6 Conclusion 65

MACs reduction may not always translate into an equivalent wall-clock time speed-
up, it guarantees higher energy efficiency, making it an ideal fit for inference DSAs.

2.6 Conclusion

This chapter focused on the tap-wise quantization algorithm to enable efficient
quantized F4 Winograd convolution. With 8-bits integers for feature maps and
weights in the spatial domain and 10-bits integers in the Winograd domain, ResNet-
20, VGG-nagadomi, and ResNet-50, with Winograd F4 Conv layers achieve the
same accuracy as the FP32 baselines, on CIFAR-10 and ImageNet respectively.
The proposed solution outperforms SOTA integer-only and F4-aware quantization
techniques on all evaluated networks and tasks. Moreover, we introduced custom HW
extensions integrated into ad industrial-grade AI accelerator to efficiently process
integer Winograd F4 layers. Thanks to the higher computational reduction of F4,
the higher resources utilization obtained with the optimized dataflow, and the tuned
bandwidth requirements for the on-the-fly transformations, our proposed system
outperforms NVDLA and its Winograd F2 extension by 1.5 to 3.3× for the same
compute throughput and bandwidth constraints. The hardware extensions have
a small area (6.1% of the core area) and power (17% compared to the MatMul
engine) overhead over the baseline architecture and achieve up to 3.42× speed-up
on compute-intensive convolutional layers. An exhaustive analysis of numerous
cutting-edge computer-vision benchmarks showed up to 1.83× faster end-to-end
inference and 1.85× better energy efficiency.

Chapter 3

Hardware-Efficient Capsule Networks

Part of the work described and of the figures appearing in this chapter has been
previously published in [179–181].

3.1 Introduction and Motivation

In the pursuit of improving the learning capabilities and accuracy of CNNs, a novel
architecture called capsule network (CapsNet) was introduced [5]. Hereon, we
will use the term CapsNet to identify any capsule network and ShallowCaps for the
specific architecture proposed in [5]. These networks aim to learn the hierarchical and
spatial information of the input features similarly to the human brain’s functionality,
according to our current understanding. Single neurons are substituted with capsules,
i.e., vectors of neurons, that encode an entity’s instantiation probability and its main
features. To overcome the loss of information introduced by pooling layers, the
pooling operation is substituted by a dynamic routing process between the capsules
of adjacent layers.

The drawback of capsule networks is that they create an additional dimension
w.r.t. the tensors of the convolutional and fully connected layers of traditional convo-
lutional neural networks. This makes them more challenging in terms of memory
requirement, memory bandwidth, and computational workload, putting more pres-
sure on the underlying hardware used for deployment [182]. As a demonstration,
Tab. 3.1 reports the computational intensity measured by the ratio between MAC
operations and weights memory for three networks, LeNet [4], AlexNet [13], and

68 Hardware-Efficient Capsule Networks

ShallowCaps [5]. The compute-intensive nature of ShallowCaps is evident, and it is
attributed to the larger dimension of the constituent elements of the CapsNets and
the high computational effort required to dynamically route the capsules.

Table 3.1 Computational-intensity comparison between different DNN models.

Architecture MAC/Mem Ratio

LeNet [4] 5.68
AlexNet [13] 19.40
CapsNet [5] 31.93

In addition to the analysis of Tab. 3.1, which measures the compute intensity in
terms of multiplications and additions, it is also necessary to consider the impact of
the more complex activation functions used in capsule networks, i.e., the squash and
softmax. To demonstrate the impact of these functions, we perform a detailed analysis
of the energy consumption and area footprint of a MAC unit, which is the basic
block of DNNs accelerators, and of the specialized hardware blocks that perform the
squash and softmax operations. We design different versions of a MAC unit, a squash
module, and a softmax module, varying their bitwidth, and we synthesize them in a
UMC 65nm CMOS technology with the Synopsys Design Compiler tool to measure
their area and energy consumption. In order to quantify the energy consumption,
RTL simulations with randomized inputs generated from a uniform distribution are
performed. These simulations generate a Switching Activity Interchange Format
(SAIF) file, which is subsequently utilized within the Synopsys Design Compiler tool
for energy estimation. Fig. 3.1 and 3.2 show how the area and energy consumption
of MAC, squash, and softmax units diminish with decreasing bitwidth. As expected,
the squash and the softmax functions require more energy and area than a simple
MAC operation.

4bit 8bit 12bit 16bit 20bit 24bit 28bit 32bit
0.0

0.7

1.4

En
er

gy
 (p

J)

0

5400

10800

Ar
ea

 (
m

2)

Energy
Area

Fig. 3.1 Energy consumption and area footprint for a fixed-point multiply-and-accumulate
unit (MAC) with different bitwidths.

3.1 Introduction and Motivation 69

2 3 4 5 6 7 8
Fractional bits

0
2
4

En
er

gy
 (p

J) Squash

0
3500
7000

2 3 4 5 6 7 8
Fractional bits

0
2
4

Softmax

0
3500
7000

Ar
ea

 (
m

2)

Fig. 3.2 Energy consumption and area footprint for fixed-point modules performing (left) the
squash and (right) the softmax with different bitwidths.

Despite the promising results of capsule networks in terms of accuracy, their
architectural and computational complexity has been a deterrent to both the devel-
opment of new models and their hardware deployment. Therefore, our overarching
goal is to push the exploration of new hardware-efficient capsule network models
with a set of orthogonal techniques, i.e., quantization and hardware-oriented neural
architecture search. A reduction of the bitwidths of the weights and activations
of CapsNets by quantization not only lightens the memory storage requirements
but has a significant impact on the energy consumption of the computational units,
as demonstrated in Fig. 3.2. However, a too low numerical precision implies a
decrease in accuracy, which is typically an undesired outcome from the end-user
perspective. To find an efficient trade-off between the memory footprint, the en-
ergy consumption, and the classification accuracy, we propose a novel specialized
framework, Q-CapsNets, which explores different layer-wise and operation-wise
arithmetic precisions applying post-training quantization to obtaine the quantized
version of a given CapsNet, with a specific focus on the dynamic routing process.

As presented in Chapter 1, neural architecture search is a method recently em-
ployed to discover novel DNN architectures in an automatized way. Targeting
specifically the exploration of new capsule network models, we develop a neural
architecture search framework named NASCaps. This framework not only incor-
porates the most common types of layers used in DNNs, such as convolutional and
fully-connected, but also different types of capsule layers. Given the limitation that
capsule networks pose with their computational complexity, NASCaps also takes
into account different hardware efficiency parameters, such as memory usage, energy
consumption, and latency, that are crucial for embedded DNN inference accelerators.
Moreover, the structure of the framework is very flexible and allows us to integrate
new objectives into the search easily. As a proof of concept, we propose an extended
version of the NASCaps framework that searches for CapsNet models robust to

70 Hardware-Efficient Capsule Networks

adversarial attacks, a critical aspect that has gained more and more importance
recently.

The rest of the chapter is organized as follows. Section 3.2 presents the necessary
background and the related works, Section 3.3 describes the framework Q-CapsNets
for capsule networks quantization, Section 3.4 and Section 3.5 show the details of
the NASCaps framework and its modification to support robustness to adversarial
attacks.

3.2 Background and Related Works

3.2.1 Capsule Networks

Capsule networks were first introduced by Hinton et al. [5] in 2017. The two main
characteristics differentiating capsule networks from CNNs are (1) the replacement
of neurons with a scalar value as output with capsules returning a vector and (2)
the replacement of pooling operation with a dynamic routing process. An output
vector of a capsule is related to an entity rather than to a feature as in CNNs, and
its length, i.e., its Euclidean Norm, is the instantiation probability of this entity,
while the individual elements of the vector encode different spatial information,
like width, skew, or rotation. Dynamic routing, or routing by agreement, makes
capsule networks equivariant by modeling and learning the part-whole hierarchical
relationships between entities.

The architecture of the CapsNet proposed in [5], hereon referred to as Shallow-
Caps, is reported in Fig. 3.3. Since we focus on the CapsNet inference, we do not
discuss the layers and algorithms only involved in the training process (e.g., decoder
and reconstruction loss).

ShallowCaps is composed of the following three layers:

1. (L1) Conv Layer: 9x9 convolutional layer with 256 output channels;

2. (L2) PrimaryCaps: convolutional layer with 256 output channels. These
channels are divided into 32 8-dimensional (8D) capsules (32 8D vectors of
neurons). The squash nonlinear function forces the length of the capsule’s
vector to be in the range of [0:1].

3.2 Background and Related Works 71

20

20

6

6

32

10

16

8

25
6x

1x
9x

9

32
x2

56
x9

x9
x8

11
52

x1
0

x1
6x

8

25
6

28

28

Conv Layer PrimaryCaps DigitCaps

9x9 9x9

||
 ||

CapsNet Output

Dynamic
Routing

10

Fig. 3.3 ShallowCaps architecture for MNIST/Fashion-MNIST dataset.

3. (L3) DigitCaps: fully-connected layer with 16D output capsules. The number
of capsules depends on the number of classes of the dataset (e.g., 10 for
MNIST and FashionMNIST). Between PrimaryCaps and DigitCaps, the so-
called dynamic routing algorithm is applied, as shown in Fig. 3.4.

Routing Iteration (RI)

SMSQ

(RI)

ui

sj vj

aij bij
cij

Wij

ûj|i

Wij

El
em

en
t-

W
is

e

P
ro

d
u

ct

Squash So�max

Scalar
Product

...
...

Fig. 3.4 The operations to be computed for the dynamic routing.

Dynamic routing (see Fig. 3.4) is an iterative algorithm that measures the
agreement between capsules in a lower layer. Each capsule is assigned a routing
coefficient. If many capsules point in the same direction with high intensity (length),
they all get a high coefficient. Hence, a capsule j in a higher layer is connected to all
the capsules i in the lower layer that mostly agree with each other. The computations
are the following:

1. Votes û j|i =Wi j×ui

2. Logits initialization bi j = 0

3. Coupling coefficients ci j = softmax(bi j) =
ebi j

∑k ebik
(3.1)

4. Preactivation s j = ∑i ci jû j|i

72 Hardware-Efficient Capsule Networks

5. Activation v j = squash(s j) =
||s j||2

1+||s j||2
s j
||s j|| (3.2)

6. Agreement ai j = v j · û j|i

7. Logits update bi j = bi j +ai j

The dynamic routing consists of iterating steps 3-7 for a defined number of times
(e.g., 3 iterations in [5]).

Recently, a novel deep CapsNet architecture, DeepCaps [2], has been proposed
(see Fig. 3.5). It introduces convolutional layers of capsules (ConvCaps). After the
first convolutional layer with the ReLU activation function, the network features
12 ConvCaps layers. Every three sequential ConvCaps layers have an additional
ConvCaps layer that operates in parallel as a skip connection. The last parallel
ConvCaps layer performs dynamic routing, while the other ConvCaps layers apply
the squash function. The output layer of the DeepCaps architecture is a fully-
connected capsule layer with dynamic routing.

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

4

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

4

CONV2D CAPS
3X3, C=32, N=4

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

4

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

CONV2D CAPS
3X3, C=32, N=8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

CONV2D CAPS
3X3, C=32, N=8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

CONV3D CAPS
3X3, C=32, N=8

C
O

N
V

2D
 C

A
P

S
3X

3,
 C

=
32

, N
=

8

C
O

N
V

2D
3X

3,
 1

28

F
C

 C
A

P
S

C
=

10
, N

=
32

ReLU Squash Dynamic Routing

In
pu

t

O
ut

pu
t

L1
B2 B3 B4 B5

L6

Fig. 3.5 DeepCaps architecture.

Despite the promising early results obtained by capsule networks, not many novel
capsule-based architectures have been proposed in the literature [183, 184]. Most
research has focused on presenting variations of the dynamic routing algorithm [185–
188] and applying the models to real-world use cases, as extensively discussed
in [183].

3.2.2 Quantization

As described in Section 1.2.3, a floating-point number can be converted to a fixed-
point representation applying Eq. (3.3), where n is the number of bits used for the
fixed-point value, and s= xmax

2n−1 is a scaling factor with xmax as the largest representable

3.2 Background and Related Works 73

value. The advantages of fixed-point over floating-point values have been discussed
in detail in the previous sections and will not be furtherly examined.

xintn = ⌊
x
s
⌉intn = clamp

(
round

(x
s

)
,−2n−1,2n−1−1

)
(3.3)

The rounding operator determines how the discarded fractional part influences
the quantized result. Truncation (TRN) is the simplest method, as it just removes
the fractional part after scaling by s. Hereon, we will denote this fractional part as ε .
Round to nereast even (RTNE) sets the rule for approximating those values falling
exactly halfway between two representable numbers. In particular, these numbers
are rounded to the nearest even integer. Stochastic rounding (SR) operates as in
Eq. (3.4). ⌊x/s⌋ if P≥ x/s−⌊x/s⌋

ε

⌊x/s+ ε

2⌋ if P < x/s−⌊x/s⌋
ε

(3.4)

In Eq. (3.4), P ∈ [0,1) is a random number with uniform distribution and deter-
mines the probability of a number being rounded up or down. Fig. 3.6 shows the
behavior of these three rounding operators graphically.

ro
u
n
d
ed

(
)

Fig. 3.6 Comparison between truncation, round-to-nearest-even and stochastic rounding
operators.

A crucial characteristic of a rounding operator is the average quantization error,
or bias, it introduces, with the quantization error computed as errintn = s · xintn− x.
The error of the three discussed methods is also shown in Fig. 3.6, from which we
see that truncation introduces a negative bias, while RTNE and SR are unbiased.

74 Hardware-Efficient Capsule Networks

Between RTNE and SR, the latter introduces a higher absolute error and is the more
demanding from the hardware perspective as it requires generating random numbers.

Capsule Networks Quantization

At the time of the Q-CapsNets framework for capsule networks quantization de-
velopment, no other works had been published on the subject. Recently, Costa
et al. [189] showed how to run capsule networks at the edge on Arm Cortex-M
and RISC-V MCUs. The inference is run with int8 values, thus, the authors also
perform post-training quantization from float32 to int8 format. Differently from
our work, they do not explore the possibility of quantizing capsule networks in a
fine-grained layer-wise fashion and do not focus on furtherly reducing the precision
of the activations involved in the dynamic routing process, which is beneficial when
designing custom hardware modules.

3.2.3 Adversarial Attacks and Robust-NAS

Despite their excellent performances, CNNs have serious security problems be-
cause adversarial attacks can trick them with slight input disturbances [190]. Stud-
ies [191, 192] have demonstrated that CNNs can be deceived by cleverly constructed
inputs, and their output can be entirely altered by the addition of very minor, barely
detectable perturbations to the data. To avoid being detected, the attacker must limit
the added adversarial perturbation.

Formally, given a CNN model m() and an input x with target classification label
c, the generation of an adversarial example x∗ can be formulated as a constrained
optimization problem [192]:

x∗ = argmin
x∗

D(x,x∗),

s.t. m(x) = c, m(x∗) = c∗, c ̸= c∗
(3.5)

where D is the distance between two images and the optimization objective is to
minimize the adversarial perturbation to make it undetectable. x∗ is considered as an
adversarial example if and only if the perturbation is bounded (D(x,x∗)< ε , where
ε ⩾ 0) and m(x) ̸= m(x∗).

3.2 Background and Related Works 75

Goodfellow et al. [193] introduced the fast gradient sign method (FGSM) to
generate adversarial examples, using the gradient of the model with respect to the
input images in the highest loss direction. Madry et al. [194] and Kurakin et al. [195]
presented two versions of the projected gradient descent (PGD) attack, an iterative
implementation of the FGSM that introduces a perturbation α to multiple smaller
steps. The PGD keeps the perturbation size minimal by projecting the generated
image onto a sphere with radius ε after each iteration. It is a white-box attack with
both targeted and untargeted versions. An iteration of the algorithm is the following:

x∗i = x∗i−1− pro jε(α · sign(∇xloss(θ ,x, t))) (3.6)

Another research direction is the search for defense methods against adversarial
attacks, i.e., adversarial deferences.

Recent works propose to increase the CNNs robustness against adversarial at-
tacks using approximate computing [196] and hash-based deep compression [197],
both of which come with a large hardware design overhead. Additionally, NAS
approaches have been presented in recent publications to achieve high robustness
against adversarial attacks. In [198], a supernet including all of the search space’s
potential architectures is trained. Subnetworks are then sampled from the supernet
and assessed for accuracy and resistance to adversarial attacks. In [199], the search
space is extended to include specific layer combinations that have been shown to be
exceptionally strong defenses against adversarial attacks. However, the hardware
efficiency issues have not yet been taken into account as conjoint optimization objec-
tives in any of the research that focuses on NAS for adversarial attacks. Additionally,
these works do not support CapsNets because they are primarily targeting CNN
models.

Several surveys [190, 192] provide further details on other types of adversarial
attacks and defenses.

76 Hardware-Efficient Capsule Networks

3.3 Q-CapsNets: Framework for Capsule Networks
Quantization

As discussed in the introduction to this chapter, applying quantization to capsule
networks is particularly beneficial given their high computational cost and memory
footprint. With this motivation, we introduce a specialized quantization framework,
named Q-CapsNets, for systematically quantizing CapsNets, given a certain memory
budget and accuracy reduction tolerance. Moreover, since an expensive part of
CapsNets is the dynamic routing process, we add a special focus on the search for
the minimal numerical precision of the activations involved in its computations. The
main intent of the proposed framework is to support specialized hardware accelerator
designers in having accurate estimates of (1) the minimum memory required for the
weights of capsule networks and (2) the required bitwidth for custom hardware units
for non-linear functions such as squash and softmax.

In the rest of the chapter, we describe the details of the proposed framework
(Section 3.3.1, Section 3.3.2) and provide the results of its application to two net-
works [5, 2] for three datasets [4, 200, 3] (Section 3.3.3).

3.3.1 Framework Overview

The proposed Q-CapsNets framework aims to quantize CapsNets models post-
training in a fine-grained fashion, where the numerical precision of weights and
activations is progressively reduced until finding a trade-off between network accu-
racy and bitwidth, and consequently memory occupation. To speed up the process,
the search space can be pruned by applying different heuristics. The framework
first applies traditional techniques that can also be applied to conventional CNNs,
then puts a special focus on operations characteristic of CapsNets, i.e., squash and
softmax operations in the dynamic routing.

The framework (Fig. 3.7) takes as inputs:

• The CapsNet architecture to be quantized, together with the training and
testing datasets and the necessary hyperparameters, e.g., learning rate value,
schedule, and optimizer. If the network has been previously trained, it is
possible to provide the pre-trained weights only.

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 77

CapsNet
Dataset

XY.Z%
Accuracy
Tolerance

T
R
N

R
T
N

S
RRounding

Operators

Quantized
CapsNet

P
R

O
P

O
S

E
D

 M
E

T
H

O
D

O
L

O
G

Y FP32 Training

n Mb
Memory
Budget

Dynamic Routing
Quantization
for CapsNets

Layer-Uniform
quantization

Layer-Wise
quantization

Fig. 3.7 High-level overview of Q-CapsNets framework

• A library of rounding operators that can be adopted to quantize the data. It is
possible to provide single or multiple rounding operators. In the latter case, the
framework will select the operator yielding the best result. It has to be noted
that the same rounding operator will be used for all the layers of the network.

• An accuracy tolerance accTOL, i.e., the accepted tolerance on the accuracy
loss. Considering that lowering the numerical precision is a lossy operation,
the user can set a margin for quantizing the network, with which the minimum
target accuracy is computed as:

acctarget = accFP32 · (1−accTOL) (3.7)

• A maximum memory budget available to store the weights and biases of the
network.

The goal of the framework is to satisfy both the accuracy and memory footprint
requirements. For the latter, the weights and biases must be quantized, aggressively if
the memory budget is low. Once the parameters of the network have been quantized,
there may still be some margin on the acceptable accuracy loss that allows also
the reduction of the precision of the activations, to improve the energy efficiency
during inference. In this situation, the framework can satisfy both accuracy and
memory constraints and returns a model_satisfied. After quantizing the weights
to satisfy the memory budget, it may happen that the overall accuracy drops below
the tolerated margin. In this case, being impossible to satisfy all the requirements,
the framework returns two sub-optimal solutions:

78 Hardware-Efficient Capsule Networks

1. model_accuracy: a quantized CapsNet model that satisfies the target accu-
racy and with the minimum possible memory occupation, which is, however,
higher than the one requested by the user.

2. model_memory: a quantized CapsNet model respecting the memory budget
and achieving the highest possible accuracy, which is, however, lower than the
one required by the user.

These two models can then be used as an insight to run a second iteration with more
realistic constraints for the network.

3.3.2 Q-CapsNets step-by-step description

In the attempt to find a model_satisfied, or alternately two models model_accuracy
and model_memory, the framework we propose performs several steps, as shown
in Fig. 3.8. In this section, we will explain these steps at a high level. The specific
implementation of each of the stages is flexible. We then propose two different
versions of the framework in which some of the steps adopt different approaches, the
first based on the findings of [84] and the second on the analysis of [85]. Therefore,
the implementation details of these steps will be provided in the next two subsections.

Layer-Uniform
Quantization
WEIGHTS

ACTIVATIONS

Memory
Requirements

Fulfillment

Layer-Wise
Quantization

ACTIVATIONS

Dynamic Routing
Quantization

Layer-Uniform
Layer-Wise

Quantization
WEIGHTS

(Satisfy accuracy loss)

accuracy

model_memory

model_accuracy

m
o
d
e
l
_
s
a
t
i
s
f
i
e
d

1

2 3A 4A

3B

TR
A

IN
ED

 C
A

PS
N

ET

Q
U

A
N

TI
ZE

D
 C

A
PS

N
ET

S

Fig. 3.8 Flow of Q-CapsNets framework for quantizing capsule networks.

As a preliminary stage, not shown in Fig. 3.8, the CapsNet provided in input
to the framework is trained in full precision, i.e., FP32 format, if necessary. The
resulting accuracy accFP32 is used together with the input accuracy tolerance accTOL,

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 79

to compute the target accuracy acctarget as in Eq. (3.7). Then, the steps followed by
the framework (see Fig. 3.8 and Alg. 1) are the following:

1 Layer-uniform quantization (weights+activations): first, all the weights and
activations are converted to fixed-point representation, with the methodology
explained in Section 3.2.2, using the same number of bits Q = 32 across
the entire network. Then, the precision of both weights and activations is
uniformly reduced across the network, i.e., Qw = Qa for all the layers. The
quantization in this stage can only consume 5% of the available accTOL. To
speed up the search of the minimum number of bits satisfying this constraint,
we adopt a binary search algorithm (lines 5-6). Both versions of the framework
execute this stage in the same way.

2 Memory requirements fullfillment: in this step, we focus only on the quan-
tization of the weights to fulfill the memory budget requirement. Given the
memory budget and the number of weights in the model, we compute the quan-
tization bits for the weights of each layer with the function WeightsCmptFnc
(line 9). This function depends on the heuristic we decide to apply and will
be further discussed in the subsections dedicated to the implementations of
the two proposed framework versions. The model with these bitwidths for
the weights fulfills the memory requirements and is therefore denoted as
model_memory. Its accuracy is accmm (line 10), and we compare it with the
target accuracy acctarget . From the result of this comparison, we decide which
direction to take. If accmm is higher than acctarget , it means we still have a

margin to quantize the activations and continue on branch 3A . Otherwise, we
jump to branch 3B .

3A Layer-wise quantization of activations: in this stage, we quantize the acti-
vations of the model with a different number of bits for each layer, starting
from the number of bits Qa,s1 set in step 1 (line 7). As for the quantization
of the weights, the methodology used for the activations (LayerWiseFcn, line
14) depends on the chosen heuristic and will be furtherly discussed in the next
paragraphs.

4A Dynamic routing quantization: as described in Section 3.1, squash and
softmax are computationally intensive functions, that to be executed efficiently
require the design of dedicated hardware. To minimize the cost, in terms of

80 Hardware-Efficient Capsule Networks

Algorithm 1 : Pseudo-Code of Q-CapsNets
Require: CapsNet, accTOL, memory_budget

1: ▷ Full Precision training
2: model, accFP32← train(CapsNet)
3: acctarget = accFP32(1−accTOL)

4: ▷ Step 1)
5: accstep1 = accFP32(1−accTOL ·0.05)
6: model, Q ← BinarySearch(model, (model.weights, model.act), Qinit = 32, accmin =

accstep1)
7: Qw,s1 = Qa,s1 = [Q for ℓ in model.num_layers]

8: ▷ Step 2)
9: Qw,mm = WeightsCmptFnc(model.weights, memory_budget)

10: model, accmm← test(quant(model, weights_quant=Qw,mm, act_quant=Qa,s1))
11: model_memory = model

12: if accmm > acctarget then
13: ▷ Step 3A)
14: model, Qa ← LayerWiseFnc(model, model.act, Qinit = Qa,s1, accmin = acctarget +

0.5(accmm−acctarget))
15: ▷ Step4A)
16: Qadr = []
17: for ℓ in model.num_DR_layers do
18: Qadr.append(Qa[ℓ])
19: model_satisfied, (Qadr)[ℓ] ← DRquantFcn(model, model.DRact[ℓ], Qinit =

Qadr[ℓ], accmin = acctarget)
20: end for
21: return model_satisfied

22: else
23: ▷ Step3B)
24: model, Qw← BinarySearch(model, model.weights, Qinit = Qw,s1, accmin = acctarget)
25: model_accuracy, Qw← LayerWiseFcn(model, model.weights, Qinit = Qw, accmin =

acctarget

26: return model_memory, model_accuracy
27: end if

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 81

area and power, of the extra hardware, it is crucial to reduce the bitwidth of
the activations involved in these computations. To tackle this problem, this
step focuses on quantizing only the data on which squash and softmax will be
applied (see Fig. 3.9).

Routing Iteration (RI)

SMSQ

(RI)

ui

sj vj

aij bij cij

Wij

ûj|i

Fig. 3.9 Quantization of a capsule layer with dynamic routing. Colored bars show the tensors
that are quantized. In green, the weights are quantized with Qw bits. In blue, the activations
are quantized with Qa bits. In red, data are quantized more aggressively with QDR bits. The
precision is lowered before complex and compute-intensive functions (squash, softmax).

Since the number of layers with dynamic routing in CapsNets is usually low, it
is possible to do a layer-by-layer finetuning of the bitwidths of the activations
involved in the dynamic routing (lines 17-20). In line 19, DRQuantFcn scales
down the bitwidth of the dynamic routing activations linearly, until reaching
the minimum possible accuracy.

As discussed in Section 3.2.1, dynamic routing is an iterative voting process
where the strength of the votes, i.e., their magnitude, increases with the pro-
gression of iterations. As shown in Fig. 3.10, the numerical distributions of
the activations on which softmax and squash are applied change significantly
between iterations. For this reason, it is crucial to do loop unrolling of the dy-
namic routing and to define and set the proper scaling factor in the quantization
process of different iterations.

3B Layer-uniform and layer-wise quantization of weights: this step is exe-
cuted if the framework is not able to satisfy both the memory and accuracy
requirements. Therefore, it aims to return a model satisfying the accuracy
but with the lowest memory footprint possible. Thus, we reduce the number
of bits of the weights only, first uniformly across the layers, then in a layer-
wise fashion as in step 3A, until reaching acctarget . The resulting model is
labeled model_accuracy and returned as the framework output together with
model_memory generated at step 2.

82 Hardware-Efficient Capsule Networks

10 0 10
Numerical range

10 7

10 5

10 3

10 1

No
rm

al
ize

d
va

lu
es

 d
ist

rib
ut

io
n MNIST - pre-softmax FM

iter1
iter2
iter3

2.5 0.0 2.5
Numerical range

10 6

10 5

10 4

10 3

10 2

10 1

No
rm

al
ize

d
va

lu
es

 d
ist

rib
ut

io
n MNIST - pre-squash FM

iter0
iter1
iter2

10 0 10
Numerical range

10 7

10 5

10 3

10 1

No
rm

al
ize

d
va

lu
es

 d
ist

rib
ut

io
n FMNIST - pre-softmax FM

iter1
iter2
iter3

5 0 5
Numerical range

10 6

10 5

10 4

10 3

10 2

10 1

No
rm

al
ize

d
va

lu
es

 d
ist

rib
ut

io
n FMNIST - pre-squash FM

iter0
iter1
iter2

Fig. 3.10 Numerical distribution of the activations on which softmax and squash functions
are applied, at different iterations of the dynamic routing algorithm.

Q-CapsNets-v1 details

As explained in the previous paragraphs, the functions to quantize in a layer-wise
fashion the weights and the activations can be implemented following different
heuristics. For v1 of the framework, we follow the idea of Raghu et al. [84]. Ac-
cording to [84], the quantization error introduced in the final layers can be higher
than in the earlier layers, as the error will propagate through fewer layers and be
less amplified. Based on this intuition, we implement the functions to determine the
number of bits per layer so that the final layers of the network use fewer bits than the
earlier layers, creating a staircase pattern.

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 83

Specifically, the number of bits for the weights is determined statically by know-
ing the memory budget and the number of weights per layer. For each layer ℓ we
set the number of bits for the weights to Qw[ℓ] so that Qw[ℓ] = Qw[ℓ−1]−1. With
this condition set, we can compute Qw for each layer as the maximum integer that
satisfies Eq. (3.8), where L is the total number of layers and P[ℓ] is the number of
weights of layer ℓ:

L−1

∑
ℓ=0

(P[ℓ] · (Qw[0]− ℓ))≤memory_budget (3.8)

To quantize the activations, having no specific constraints, we try to reduce the
bitwidth across all layers as much as possible by proceeding as shown in Alg. 2.
We start from an initial number of bits Qa, obtained, for example, in step 1. Then
we select all the layers of the network except the first one and lower Qa for all
the selected layers until possible, i.e., until the accuracy remains higher than the
minimum accuracy of the stage accmin. Then, we fix the bitwidth used for the
activations of the first two layers and repeat the Qa reduction step for all the remaining
layers until all the bitwidths are fixed.

Algorithm 2 : Algorithm for Layer-wise Activations Quantization - v1
1: Given: Qinit initial number of quantization bits to start the algorithm, accmin minimum

value of accuracy that can be reached.
Require: model, Qinit , accmin

2: L = model.num_layers
3: Q = [Qinit for ℓ in model.num_layers]
4: start_ℓ= 1
5: while start_ℓ <L do
6: acc = inf
7: while acc≥ accmin do
8: Q[ℓ] -= 1 for ℓ in [start_ℓ, ..., L]
9: model, acc← test(quant(model, act_quant=Q))

10: end while
11: Q[ℓ] += 1 for ℓ in [start_ℓ, ..., L]
12: start_ℓ += 1
13: end while
14: return quant(model, params← Q), Q

84 Hardware-Efficient Capsule Networks

Q-CapsNets-v2 details

For v2 of the framework, we consider the analysis of [85], where the effect of the
quantization on the accuracy of neural networks is measured with the signal-to-
quantization noise ratio (SQNR). The key finding in [85] is that "all the quantization
steps contribute equally to the overall SQNR of the output, regardless if it’s the
quantization of weights, activations, or input, and irrespective of where it happens
(at the top or bottom of the network)".

In step 2, to compute the bitwidth of the weights in each layer satisfying the
memory budget, we first characterize the weights in terms of SQNR, then sort the
layers from highest to lowest SQNR as shown in Fig. 3.11. We divide the sorted
layers into three groups and compute the total number of weights Pg for each group.
Then, we set as a constraint to use more bits for the low-SQNR layers, and fewer bits
for the high-SQNR layers, as in Eq. (3.9). With Eq. (3.9), we determine the number
of bits Qw that satisfies the memory budget.

l0 l1 l2 l3 l4 l5 l0l1l2 l3 l4 l5

Low SQNR

High SQNR

Sort

Fig. 3.11 Layers sorting by weights SQNR and grouping.

3

∑
g=0

(Pg · (Qw +g))≤memory_budget (3.9)

The model obtained after this operation is denoted as model_memory. If, after
this step, the model still satisfies the accuracy requirement, the framework proceeds
directly to step 3A to quantize the activations furtherly. If, on the contrary, the
accuracy is too low, Qw is increased until the accuracy requirement is met again (and
the memory budget is not). Then, iteratively, one layer is popped from the SQNR-
sorted list and its weights bitwidth Qw[ℓ] is lowered until the accuracy requirement
is not met anymore. The iterations on the sorted list stop if and when the memory
budget is satisfied. In this case, the framework proceeds with step 3A. If, on the
contrary, the algorithm iterates through all the layers and, in the end, the memory
budget is not satisfied, it means that the framework can not satisfy both accuracy and
memory requirements, and it jumps to step 3B.

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 85

Algorithm 3 : Algorithm for Layer-wise Activations Quantization - v2
Require: model, memory_budget, accmin

1: Qw← Eq. (3.9)
2: model, acc← test(quant(model, weight_quant=Qw))
3: if acc≥ accmin then
4: return model, Qw

5: else
6: while acc < accmin do
7: Qw += 1
8: model, acc← test(quant(model, weight_quant=Qw))
9: end while

10: Qw = [Qw for i in model.num_layers]
11: SQNR_list = [(ℓ, ℓ.SQNR) for ℓ in model.layers]
12: sort_by_SQNR(SQNR_list)
13: for ℓ in SQNR_list do
14: while acc > accmin do
15: Qw[ℓ] -= 1
16: model, acc← test(quant(model, weight_quant=Qw))
17: end while
18: Qw[ℓ] += 1
19: if Eq. (3.9)[Qw] is satisfied then
20: return model, Qw, take_branch_A
21: end if
22: end for
23: return model, Qw, take_branch_B
24: end if

For what concerns the activations quantization, a similar method is applied
(Alg. 3). As explained for v1 of the framework, there is no constraint on the acti-
vations bitwidth. Therefore, the aim is to reduce it as much as possible. In a very
fine-grained way, we could apply the same algorithm used for the weights, i.e., sort
the layers by activations SQNR and tune the bitwidth layer-by-layer. However, hav-
ing no constraints, the process is necessarily carried out for all the layers, requiring a
very long time. To increase the speed of the framework, we reduce the granularity of
the activations quantization by sorting the layers by activations SQNR and dividing
them into 4 groups. The bitwidths of the activations of all the layers within a group
are then tuned together, i.e., the activations will have the same number of bits. The
number of groups used is a hyperparameter of the framework and can be set to
trade-off between speed and granularity.

86 Hardware-Efficient Capsule Networks

Rounding Operator Selection

If multiple rounding operators are provided in input, a quantized model is generated
for each of them. Note that for different rounding operators, the framework could
take different paths, i.e., path A or B, because of varying rounding errors. Depending
on whether the algorithm followed Path A or not, the best rounding operator is
selected using the following criteria.

A) There are some models generated from Path A:

1) Models from Path B are discarded.

2) The model with lower memory is selected.

3) With the same memory, the model with fewer bits used to represent
activations is selected.

4) With the same memory and bits for the activations, the model with the
simplest rounding operator is selected, e.g., with our examples, in order,
truncation, round-to-nearest-even, and stochastic rounding. Note, while
the first one simply requires the deletion of the LSBs, the last one requires
more complex operations to decide the orientation of the rounding.

B) There are models only from Path B:

1) In this case, two models are returned. Selecting from memory_model,
the model with the highest-possible accuracy is returned.

2) Selecting from accuracy_model, the model with the lowest-possible
memory is returned.

3) If more than one model has the same highest accuracy and the lowest
memory occupancy, the simplest rounding operator is preferred to break
the tie.

3.3.3 Results

Experimental Setup

We implement the Q-CapsNets framework (see Fig. 3.12) in PyTorch [40], and we
run it on two Nvidia GTX 1080 Ti GPUs. We test it on the ShallowCaps model [5],

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 87

Q-CapsNets
Framework

Nvidia GTX 1080 Ti

Quantized
CapsNet

CapsNet
Dataset

Hyperparameters
Rouding schemes
Memory budget
Accuracy tolerance

GPU

Fig. 3.12 Experimental setup to test our Q-CapsNet framework.

on MNIST [4] and FashionMNIST [200] datasets, and on the DeepCaps model [2]
on the MNIST, FashionMNIST and CIFAR10 [3] datasets. The MNIST database is
a collection of 28x28 grayscale handwritten digits, from 0 to 9, with 60,000 training
samples and 10,000 testing samples. The FashionMNIST is a collection of 28x28
grayscale images representing Zalando’s articles associated with 10 classes. It is
composed of 60,000 training samples and 10,000 testing samples. The CIFAR10
is a collection of 32x32 color images organized into 10 different classes, with the
training set composed of 50,000 samples and the testing set of 10,000 samples. For
full precision training, data augmentation is applied as follows:

• MNIST: images are randomly shifted by a maximum of two pixels and rotated
by 2 degrees;

• FashionMNIST: images are randomly shifted of 2 pixels and horizontally
flipped with a probability of 0.2;

• CIFAR10: images are resized to 64x641, randomly shifted of 5 pixels, rotated
of 2 degrees and horizontally flipped with a probability of 0.5.

No data augmentation is applied to the test set images.

Q-CapsNets-v1 Results

All the results discussed in this section have been obtained with the RTNE rounding
method, which, as shown later, is the best-performing one among the tested rounding
operators.

For the MNIST dataset, the ShallowCaps architecture [5] is trained in full preci-
sion (FP32), for 100 epochs and with a batch size equal to 100. We use an exponential

1The original images of size 32x32 are resized to 64x64 by bilinear interpolation, to allow deeper
networks, as reported in the original paper [2].

88 Hardware-Efficient Capsule Networks

decay learning policy, with an initial learning rate of 0.001, 2000 decay steps, and a
0.96 decay rate. Its achieved test accuracy is 99.67%.

Since the framework has a conditional path, for clarity, we present two examples
corresponding to the execution of the different branches of the algorithm.

Test of the Path A: For the first set of experiments, we test the Path A of the
framework, i.e. when both the memory and accuracy constraints are satisfied. Since
the memory requirement at FP32 is 25.6MB, we set an accuracy tolerance of 0.2%
and a memory reduction of 5×, i.e., a memory budget of 5.12MB. The result in
Fig. 3.13 [Q1] shows that the model_satisfied reduces the memory footprint
of the weights by 5.53× compared to the FP32 model, with an accuracy equal
to 98.71%, thus satisfying all the requirements. Along with the reduction of the
memory occupied by the weights (W mem), we report the reduction of the volume of
activations (A vol) as a metric to evaluate the bitwidth reduction and, consequently,
the computational savings. For model_satisfied, this volume is reduced by 5.33×,
and only 3 bits are necessary for the activations involved in the dynamic routing
operations.

Test of the Path B: Since our framework executes Path B if it cannot find a
solution that satisfies both memory and accuracy requirements, for its testing purpose,
we provide as input a very low memory budget, requiring an 8× memory reduction
and a 0.2% accuracy tolerance. The result of the experiment, shown in Fig 3.13,
indicates that to satisfy the memory requirements, the weights of model_memory
[Q2] are set to very low bitwidths, causing a too-high reduction of accuracy. To
satisfy the accuracy requirements in memory_accuracy [Q3], weights are reduced
to the minimum possible bitwidth. From 3.13, we can also see that in model_memory
and model_accuracy no optimizations are performed on the activations bitwidths,
and appreciate the descending staircase behavior determined by the chosen heuristic.

Similar sequences of tests are performed on the same ShallowCaps model for the
FashionMNIST dataset, whose floating-point accuracy is 92.79%. Two illustrative
results from our experiments are reported in Tab. 3.2.

As for the ShallowCaps architecture, several tests are run on the DeepCaps model
for the MNIST, FashionMNIST, and CIFAR10 datasets. Fig. 3.14 reports graphically
some key results obtained with the Q-CapsNets framework on the DeepCaps for the
CIFAR10 dataset, where [Q4] identifies a model_satisfied solution, while [Q5]
and [Q6] the model_memory and model_accuracy solutions respectively. It has

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 89

L1 L2 L3
0
8

16
24
32

Nu
m

be
r o

f b
its

Weights

L1 L2 L3

Activations

acc=99.67%
acc=98.71%, W mem reduction=5.53x, A mem reduction = 5.33x [Q1]
acc=90.97%, W mem reduction=8.45x, A mem reduction = 4.00x [Q2]
acc=99.54%, W mem reduction=5.53x, A mem reduction = 4.00x [Q3]

L1 L2 L3

Dynamic R.

Fig. 3.13 Q-CapsNets-v1 example results of the ShallowCaps for the MNIST dataset.

Table 3.2 Q-CapsNet-v1 accuracy results, weight (W) memory and activation (A) volume
reduction for the ShallowCaps and for the DeepCaps on MNIST, Fashion-MNIST, and
CIFAR10 datasets.

Model Dataset Accuracy W mem red. A vol red. DR bits
ShallowCaps MNIST 99.31% 6.69x 4.57x (6, 4)
ShallowCaps MNIST 98.71% 5.33x 5.33x (3, 3)
ShallowCaps FMNIST 92.65% 3.27x 3.56x (8, 6)
ShallowCaps FMNIST 91.98% 4.11x 4.00x (6, 6)
DeepCaps MNIST 99.47% 10.74x 4.93x (4, 4)
DeepCaps MNIST 99.65% 4.01x 4.93x (3, 3)
DeepCaps FMNIST 94.24% 8.04x 3.81x (9, 4)
DeepCaps FMNIST 94.28% 3.21x 4.29x (3, 3)
DeepCaps CIFAR10 91.18% 3.01x 2.61x (11, 6)
DeepCaps CIFAR10 90.62% 4.20x 3.28x (7, 4)

to be noted that the layers within a CapsBlock are grouped and tuned in parallel,
i.e., their activations ad weights will have the same bitwidth, reducing thus the time
required for search. Therefore, in Fig. 3.14, the labels beginning with B refer to a
CapsBlock. Some key results are reported in Tab. 3.2 as well.

QCapsNets-V2 Results

The same set of tests described for v1 of the framework has also been conducted with
v2. In particular, in Fig. 3.15, we see the Path A [Q7]/Path B [Q8][Q9] test on the
ShallowCaps model for the MNIST dataset. Interestingly, we see that the bitwidths
of the weights still follow a descending staircase pattern, as in v1 of the framework.

90 Hardware-Efficient Capsule Networks

L1 B2 B3 B4 B5 B6
0
8

16
24
32

Nu
m

be
r o

f b
its

Weights

L1 B2 B3 B4 B5 B6

Activations

acc=91.26%
acc=90.62%, W mem reduction=4.20x, A mem reduction = 3.28x [Q4]
acc=43.54%, W mem reduction=8.84x, A mem reduction = 1.68x [Q5]
acc=91.23%, W mem reduction=5.11x, A mem reduction = 1.68x [Q6]

L1 B2 B3 B4 B5 B6

Dynamic R.

Fig. 3.14 Q-CapsNet-v1 example results of the DeepCaps for the CIFAR10 dataset.

This is due to the values of the SQNRs of the weights that show this behavior for this
specific model. On the contrary, on the activations, we see an opposite trend. In v1
as in v2, the bitwidths of the activations of model_memory and model_accuracy
are not furtherly tuned after step 1 if Path B is followed.

L1 L2 L3
0
8

16
24
32

Nu
m

be
r o

f b
its

Weights

L1 L2 L3

Activations

acc=99.67%
acc=98.90%, W mem reduction=4.11x, A mem reduction = 7.83x [Q7]
acc=90.97%, W mem reduction=8.45x, A mem reduction = 4.00x [Q8]
acc=99.54%, W mem reduction=5.75x, A mem reduction = 4.00x [Q9]

L1 L2 L3

Dynamic R.

Fig. 3.15 Q-CapsNets-v2 example results of the ShallowCaps for the MNIST dataset.

The framework’s difference between v1 and v2 is more visible in Fig. 3.16 since
the DeepCaps architecture, here tested on the CIFAR10 dataset, has more layers.
Here we see that both the weights and activations bitwidths don’t follow a specific
pattern since the extent to which they are reduced depends on the SQNR of each
layer. Some key results for all the combinations of networks and datasets are reported
in Tab. 3.3.

To evaluate the better-performing version between the two proposed, we conduct
the same set of tests with both v1 and v2, swiping on three accuracy tolerance
constraints and eight memory reduction requirements. Fig. 3.17 shows how the two

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 91

L1 B2 B3 B4 B5 B6
0
8

16
24
32

Nu
m

be
r o

f b
its

Weights

L1 B2 B3 B4 B5 B6

Activations

acc=91.26%
acc=90.42%, W mem reduction=3.04x, A mem reduction = 3.23x [Q10]
acc=10.00%, W mem reduction=9.11x, A mem reduction = 1.68x [Q11]
acc=91.17%, W mem reduction=5.42x, A mem reduction = 1.68x [Q12]

L1 B2 B3 B4 B5 B6

Dynamic R.

Fig. 3.16 Q-CapsNets-v2 example results of the DeepCaps [2] for the CIFAR10 [3] dataset.

Table 3.3 Q-CapsNets-v2 accuracy results, weight (W) memory and activation (A) volume
reduction for the ShallowCaps and for the DeepCaps on MNIST [4], Fashion-MNIST and
CIFAR10 datasets.

Model Dataset Accuracy W mem red. A vol red. DR bits
ShallowCaps MNIST 98.74% 7.99x 4.52x (5, 5)
ShallowCaps MNIST 99.20% 3.27x 7.68x (5, 3)
ShallowCaps FMNIST 92.65% 4.57x 4.41x (6, 6)
ShallowCaps FMNIST 91.88% 7.20x 3.92x (11, 8)
DeepCaps MNIST 99.35% 11.20x 3.29x (2, 3)
DeepCaps MNIST 99.67% 5.25x 4.83x (2, 5)
DeepCaps FMNIST 94.24% 3.24x 4.51x (3, 3)
DeepCaps FMNIST 94.35% 10.73x 3.75x (5, 4)
DeepCaps CIFAR10 90.49% 2.06x 3.33x (8, 4)
DeepCaps CIFAR10 91.13% 5.42x 1.97x (11, 6)

versions perform on all the combinations of networks and datasets. Specifically,
each box corresponds to a test with certain accuracy tolerance and memory budget
constraints, and it is marked if the framework can return a model_satisfied for
these requirements. The orange triangle is the marker for v1, and the purple dot
is for v2. The dashed lines help visualize the most stringent constraints that each
framework version can satisfy, and we easily see that v2 always outperforms v1.
The motivation behind this result can be found in many works, such as [201, 202],
that exhaustively analyze the effect of the quantization of each individual layer on
the overall accuracy of the network. The outcome is that the first and last layers
are often the worst offenders. While the SQNR analysis (v2) intrinsically takes

92 Hardware-Efficient Capsule Networks

into account this characteristic, v1 of the framework blindly applies a staircase
quantization pattern with which the last layers are the most strongly quantized.

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

ShallowCaps - MNIST ShallowCaps - FMNIST

DeepCaps - MNIST DeepCaps - FMNIST

DeepCaps - CIFAR10
v1

v2

11 12 11

Fig. 3.17 Comparison between v1 and v2 of Q-CapsNets framework. Each box corresponds
to a test with certain accuracy tolerance and memory budget constraints. The box is marked
only if the framework is able to return a model_satisfied for that test.

Rounding Operators Comparison

Fig. 3.18 shows the results of comparing the three rounding operators described in
Section 3.2.2 for all combinations of networks and datasets. As for the comparison
between v1 and v2 of the framework, each box identifies a test with specific accuracy
tolerance and memory budget constraints. All the tests are performed three times,
each time providing a single rounding operator as input of the framework. A box is
marked if the framework can return a model_satisfied for the corresponding test.
The figure shows that truncation is the worst-performing method in all situations,
as expected, given the bias it introduces. On the contrary, RTNE and SR have
comparable performances, with RTNE still slightly outperforming SR, as anticipated
by the higher absolute error that SR introduces. RTNE is the preferable method for
the results it achieves and its simple hardware implementation.

3.3 Q-CapsNets: Framework for Capsule Networks Quantization 93

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

2 3 4 5 6 7 8 10

1

0.5

0.2

Acc.
Tol.

W Mem
Red

ShallowCaps - MNIST ShallowCaps - FMNIST

DeepCaps - MNIST DeepCaps - FMNIST

DeepCaps - CIFAR10
RTNE

SR

11 12 11

TRN

Fig. 3.18 Comparison between TRN, RTNE, and SR rounding methods. Each box corre-
sponds to a test with certain accuracy tolerance and memory budget constraints. The box is
marked only if the framework can return a model_satisfied for that test.

3.3.4 Conclusions

With the Q-CapsNets framework we demonstrate how with quantization it is possible
to greatly reduce the numerical precision used for both the weights and activations
of capsule networks by switching from a float format to an int format. With the
proposed approach, the memory footprint of the two studied models can be reduced
up to 11×, depending on the specific network-dataset combination. Moreover,
we pay particular attention to the activations involved in the squash and softmax
operations of dynamic routing, managing to reduce their bitwidth down to 3 bits.
Such extreme reduction is a great benefit in case one wants to integrate custom units
for these operations into a dedicated accelerator. The purpose of this framework is to
be a fast tool to get a lower-bound estimate of how much capsule network models
can be quantized, with quantization applied post-training without any fine-tuning.
As a future development, one can further push the limits of quantization of capsule
networks by applying more advanced, though slower, techniques, such as precisely
fine-tuning post-quantization or quantization-aware training.

94 Hardware-Efficient Capsule Networks

3.4 Neural Architecture Search for Hardware Effi-
cient Capsule Networks

NAS is a widely adopted technique to automatize the exploration of new DNN
models, mostly focusing on their accuracy [203, 34]. Recently, given the popularity
of specialized hardware accelerators, evaluations on hardware efficiency have been
introduced in NAS algorithms [204–207], thus expressing the quality of a DNN not
only in terms of accuracy but also of memory footprint or required FLOPS. To the
best of our knowledge, none of them include the possibility of employing capsule
layers and dynamic routing in the design space, which are fundamental blocks of
CapsNets.

To fill this gap, we present NASCaps, a framework for the NAS of DNNs
that not only includes the most popular DNN layer types (such as convolutional
and fully-connected) but also, for the first time, the various capsule layer types.
Our framework is multi-objective since it evaluates network accuracy and several
hardware-efficiency metrics essential for embedded DNN inference accelerators,
such as memory utilization, energy consumption, and latency. However, the search
space can be extremely vast because of the many possible configurations. In the time
required to explore and evaluate candidate networks, one must consider the time
required for DNNs training, which can be very long [208], and for the precise post-
synthesis hardware measurements. To overcome these challenges, we use a genetic
algorithm to efficiently explore the entire search space (Section 3.4.4). Moreover,
we avoid full training of networks by proposing a technique based on Pearson’s
correlation coefficient [209], with which we estimate the accuracy of partially trained
networks (Section 3.4.5). Finally, we show how to model the execution of the
candidate networks given an accelerator architecture, making precise post-synthesis
measurements unnecessary (Section 3.4.3).

3.4.1 NASCaps Overview

By performing a multi-objective NAS to find a set of accurate yet resource-efficient
DNN models, our multi-objective NASCaps framework generates and evaluates
convolutional- and capsule-based DNNs. This is done by jointly taking into account
the DNN validation accuracy, energy consumption, latency, and memory footprint.

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 95

The search is based on a specialization of the genetic NSGA-II [210] algorithm to
enable a multi-objective comparison and selection among the generated candidate
DNNs.

Random DNNs
(initial)

Full training

Fully-trained
inference

Set of accuracy-energy-memory-latency
Pareto optimal DNNs

NSGA-II

Layer library HW accelerator Dataset

HW model
DNN Training
with Limited

Epochs

Evaluate
Accuracy

Evaluate
HW efficiency

Generate Q
offsprings

(crossover, mutation)

Termination
conditions

Select P best
individuals

QP ∪

P

Fig. 3.19 Overview of our NASCaps framework, showing different components and their
interconnections defining the workflow.

Fig. 3.19 depicts the general structure and workflow of the NASCaps framework.
It receives in input a set of potential types of layers that can be used to create various
candidate DNNs, as well as the configuration of the underlying hardware accelerator,
which would execute the resulting DNN in a real-world scenario. Convolutional
layers, capsule layers (as described in [5]), and the CapsCell and FlatCaps layers
described in [2] are all included in the layer library we first constructed. Due to
the modular design of our framework, we anticipate that future versions will be
able to easily incorporate additional types of layers to broaden the search space.
This is also possible because we use a straightforward modular representation of the
candidate networks that relies on combining single-layer descriptors, as discussed in
Section 3.4.2.

96 Hardware-Efficient Capsule Networks

N randomly generated DNNs are used as the input for the automated search to
start the evolutionary process. At each iteration of the evolutionary process, the
candidate DNNs are only partially trained. As we will see in Section 3.4.5, this
optimization is intended to lower the computational cost and time necessary for the
search while maintaining a high level of correlation to the full-training accuracy, as
evaluated by the Pearson correlation coefficient. The partially-trained DNNs are
then characterized in terms of accuracy, memory footprint, energy consumption, and
latency. After the evaluation stage, the evolutionary algorithm determines a new
Pareto-frontier, and the top potential DNN solutions are used as inputs for the next
iteration.

At the end of the evolutive process, the Pareto-optimal DNN solutions are fully
trained2 to assess their accuracy precisely. We go into full detail on the core aspects
of our system in the following subsections.

3.4.2 Parametric Modeling of Capsule-Based Layers and Net-
works

For the compact description of candidate DNNs architectures, the NasCaps frame-
work relies on an explicit position-based representation. Each layer is defined by a
layer descriptor, and a whole network is built by stacking these descriptors. Each
descriptor encodes all the information required to uniquely describe a layer in a
concise form, with a 9-element position-based structure. The elements of the layers
descriptor are:

(1) type of layer

(2) size of the input feature maps nin

(3) number of input channels chin

(4) size of input capsules capsin

(5) kernel size kernelsize

(6) stride size stridesize

2A complete training up to the 100th epoch for the MNIST, Fashion-MNIST, and SVHN datasets,
and up to the 300th epoch for the CIFAR-10 dataset is conducted.

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 97

(7) size of the output feature maps nout

(8) number of output channels chout

(9) size of output capsules capsout

This representation is modular, enables the description of any candidate DNN, and
is flexible, as it allows the description of complex structures by simply defining a
new layer type. For example, a repeating structure such as the CapsBlock of the
DeepCaps architecture can be defined with a single layer descriptor. In this way,
the whole DeepCaps architecture is described with six descriptors, one for the first
convolutional layer, four for the CapsBlocks, and one for the final capsule layer.

A DNN architecture is described by stacking the proper layer descriptors. It is
completed by a skip-connection field to encode the position of skip connections if
present and a resize flag explicitly indicating the need for input resizing. Fig. 3.20
shows the format of the proposed layer descriptor and the description format of a
generic DNN architecture, from now on referred to as genotype.

Genotype

type nin
kernel

size stride

Layer 0 Layer 1 Layer i Layer N-1 Skip
connection

Layer descriptor

Resize
flag... ...

chin capsin nout chout capsout

Output shapeInput shape

Fig. 3.20 Proposed structure of the genotype.

3.4.3 Modeling of CapsNets Execution on Hardware Accelera-
tors

One of the NASCaps framework inputs is the hardware accelerator structure targeted
for the inference of the DNN. To model the execution of any candidate DNN on the
input accelerator, it is first necessary to extract the layer-specific parameters for each
supported layer type. Second, from the RTL-level description of the accelerator, we
have to extract and model the micro-architectural configuration at a higher abstraction
level, condensing the information in some global parameters, which will be used in
the evolutive process.

98 Hardware-Efficient Capsule Networks

For illustration, we showcase the modeling of the CapsAcc [182] accelerator,
as it supports the execution of capsule layers. The array of processing elements
(PEs) that constitute the CapsAcc computing core is followed by an accumulator
that properly adds the partial sums. The accumulator output is then processed by an
activation unit that may apply ReLU, softmax, or squash functions. Three buffers are
employed throughout computation to maximize data reuse and decrease access to
larger memories. The activations and weights are stored in data and weight memories,
respectively, and the partial outputs of the dynamic routing iterations are stored in a
routing buffer. A control unit determines the paths for the mapping of various layers
onto the PE array.

Activation Accumulator

D
at

a
M

em
or

y

D
at

a
B

uf
fe

r

16x16
Neural
PE Array

Routing Buffer Weight Buffer

...

...

...
PE

8

25
258

8

8 8

8 8

8

W
ei

gh
t M

em
or

y

8

C
on

tr
ol

 U
ni

t

Fig. 3.21 Architectural view of the CapsAcc accelerator.

Layer-specific modeling

The needed layer-specific parameters to be extracted for each layer are the following:

• weights: the number of weights of the layer,

• sums_per_out: number of terms to be accumulated to compute one output
value,

• data_per_weight: number of feature maps multiplied by the same weight.

The equations used to compute these layer-specific parameters depend on the layer
type, as shown in Tab. 3.4. It has to be noted that if the parameters capsin and
capsout are set to 1, the ConvCaps and ClassCaps layers become standard Conv and
fully-connected layers, respectively.

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 99

Table 3.4 Equations for the operation-specific modeling of CapsNets.

Operation weights sums_per_out data_per_weight

ConvCaps layer (chin · kernel2
size +1) · chout · capsout · capsin (kernel2

size +1) · chin · capsin (nout)
2 · chin · capsin

ConvCaps3D layer (chin · kernel3
size +1) · chout · capsout · capsin (kernel3

size +1) · chin · capsin (nout)
2 · chin · capsin

ClassCaps layer (chin ·n2
in +1) · chout · capsout · capsin (n2

in +1) · chin · capsin 1
Dynamic Routing chin · kernel2

size · chout capsin 1

Global parameter modeling

The modeling needs to estimate the memory footprint, latency, and energy consump-
tion of the inference of a CapsNet on the given hardware accelerator. While the
memory footprint can simply be computed as the sum of the number of weights
of each layer, the estimation of the latency and energy consumption needs micro-
architectural information on the hardware being used. In the case of the CapsAcc,
considering the available bandwidth, hardware resources, and a weight stationary
dataflow, the modeling happens as follows.

Regarding dataflow, the weights are first loaded on-chip in the PEs array registers,
where they are reused for all the needed iterations. This loop is repeated until all the
output feature maps of a layer are computed for all the layers.

The CapsAcc architectural parameters are the following:

• w_load_cycles: the number of cycles to load a group of weights on-chip,
equal to 16 given the PEs array dimension,

• enmem: the energy consumption of single memory access,

• pwrPEA: the average power consumption of the PEs array.

Given these architectural parameters, the number of groups of weights loaded
on-chip for each layer is computed as:

w_loads =
⌈

weights
16 ·min(16,sums_per_out)

⌉
(3.10)

and the number of cycles per layer as:

cycles(l) = w_load_cycles ·w_loads+data_per_weight (3.11)

100 Hardware-Efficient Capsule Networks

The overall latency of the whole DNN is the sum of the contributions of all the
layers:

latency = ∑
l∈L

cycles(l) ·T (3.12)

where T is the clock period.

To compute the number of memory accesses ma, it is necessary to distinguish
whether the layer is convolutional. As shown in Eq. (3.13), this can be done by
analyzing the value of data_per_weight, which is higher than 1 in the case of Conv
layers.

ma =

256, if data_per_weight = 1

16 ·max(sums_per_out−15,1), otherwise
(3.13)

The energy consumption of the accelerator is then estimated considering both
the memory accesses and PEs array contributions:

energy =
⌈

ma ·8
128

⌉
· enmem +∑

l∈L
cycles(l) ·T · pwrPEA (3.14)

3.4.4 The Multi-Objective NSGA-II Algorithm

The core of the NASCaps framework for selecting the Pareto-optimal solutions is
based on the NSGA-II evolutionary algorithm [210], reported in Alg. 4. The main
loop (lined 2-14) represents a single generation of the complete evolution process
of an initial population P1. The initial population P1 of N solutions is randomly
generated (line 1). This set is the initial parent generation and the first iteration’s
input.

For each iteration, mutations and crossover among solutions of the parent popu-
lation Pg generate a new set of offspring solutions Qg (line 3). The whole population
Pg∪Qg is evaluated (line 4) and sorted according to a non-domination criterion to
select the N best individuals that will populate Pg+1 (lines 5-15). Iteratively, the
solutions of the whole population are grouped in different Pareto-fronts Fi, where F1

represents the best-found solutions, while the subsequent fronts Fi are constructed
by removing from the population the solutions belonging to the preceding fronts
F1,...,i−1. The extraction of Pareto-solutions goes on until having filled the next

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 101

Algorithm 4 : The genetic NSGA-II algorithm used in our NASCaps framework.
Require: search space S, sizes of population |P|, |Q|, number of generations G

1: P1← RandomCon f igurations(|P|)
2: for g = 1 . . .G do
3: Qg←CrossoverAndMutate(Pg, |Q|)
4: Tg← EstimateParameters(Pg∪Qg)
5: Pg+1← /0
6: i = 1
7: while |Pg+1|< |P| do
8: Fi = PickPareto(Tg)
9: if |Pg+1|+ |Fi| ≤ |P| then

10: Pg+1← Pg+1∪Fi

11: else
12: Pg+1← Pg+1∪DistanceCrowding(Fi, |P|− |Pg+1|)
13: end if
14: i+= 1
15: end while
16: end for
17: return PickPareto(Pg)

generation Pg+1 with N solutions. To have exactly N individuals, the solutions of
the last front are sorted using a crowded distance comparison approach (line 11).
With this method, the solutions of the front are sorted according to each objective
function in ascending order. Overall, at the end of the selection process, only half of
the Pg∪Qg population will be selected to be part of the Pg+1 parent individuals of
the next generation. The algorithm is also graphically shown in Fig. 3.22.

Fig. 3.22 Sorting of the population.

102 Hardware-Efficient Capsule Networks

The steps just described are repeated for a number of g generations. Alg. 4
reports the complete pseudocode, and the following procedures are used:

• RandomCon f igurations(N): returns N randomly-generated configurations
sampled in the search space.

• CrossoverAndMutate(X ,N): applies crossover and mutation (Section 3.4.4),
N offsprings are generated from the parents Pg.

• PickPareto(X): given a set X , the Pareto-solutions are identified and returned.
These solutions are also removed from the set X .

• DistanceCrowding(X ,N): given a set X , sorts the solutions by applying
crowded distance comparison and returns the N best solutions.

The advantage of this multi-objective genetic algorithm is that the Pareto-fronts are
re-constructed at each generation, aiming to cover all the possible solutions and
return a non-dominated set of solutions.

Crossover and mutation

The two operations used in the genetic algorithm evolution are crossover and muta-
tion. Single-point crossover generates two offsprings solutions Qa and Qb from two
parents Pa and Pb, randomly picked among all the parents solutions. The two parents’
genotypes are split into two parts, where the splitting points are randomly picked.
Then, solution Qa is formed by appending the tail of the Pb genotype to the head of
Pa genotype, and vice versa for Qb. Since the splitting points are randomly chosen,
it is necessary to check the validity of the two generated solutions. In particular,
we verify that all solutions have at least one initial convolutional layer and two
capsule layers and that no standard convolutional layer is inserted between capsule
layers. The reason behind the second check is that the purpose of capsule layers is to
work at a higher level of abstraction w.r.t. standard convolutional layers. Fig. 3.23
graphically shows the crossover operation.

The second key operation, i.e., mutation, is implemented by randomly choosing
one of the layer descriptors from the genotype of a solution in the P set and one of
the parameters in it, and randomly modifying it with probability pm. The parameters

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 103

L 0 L 1 L 2 L 3 L 4 SC RF L 0 L 1 L 2 L 3 L 4 L 5 L 6 SC RF

L 3 L 4 L 5 SC RFL 0 L 1 L 2 SC RFL 0 L 1 L 2 L 3 L 4 L 5

Parent A Parent B

Offspring A Offspring B

Splitting
point A

Splitting
point B

Fig. 3.23 Example of crossover between two genotypes.

that can be mutated are the stride, the kernel size, the number of output capsules, or
the position of the skip connections.

After applying cross-over and mutation, a final correcting step is performed,
during which offsprings solutions are fixed by properly adjusting the input and
output tensors dimensions of layers if necessary.

3.4.5 Results

Experimental setup

Fig. 3.24 shows our experimental setup and flow. The candidate DNNs have been
implemented with the Tensorflow library [41]. All the training and validations
have been performed on GPU-HPC computing nodes equipped with four NVIDIA
Tesla V100-SXM2 GPUs. The framework has been tested on the MNIST [4],
FashionMNIST [200], SVHN [211], and CIFAR10 [3] datasets. The hardware
metrics, i.e., energy efficiency and latency, have been evaluated using the open-
source CapsAcc [182] accelerator as a reference HW platform. The core processing
elements of the accelerator have been synthesized using Synopsys Design Compiler,
a 45nm technological node, and a clock period T = 3ns.

Three different sets of experiments have been conducted. (I) A basic random
search has been performed to study the number of epochs necessary to train and
evaluate the candidate DNNs. (II) To find Pareto-optimal DNNs for memory, energy,
latency, and accuracy, the genetic search algorithm has been executed. (III) The
resulting DNNs have been fully-trained. To study the transferability of the selected
DNNs model for a certain dataset, the training is also conducted on the other datasets.

104 Hardware-Efficient Capsule Networks

GPU-HPC with 4 Nvidia Tesla V100-SXM2

Design Compiler (DC)

HW Accelerator
RTL Description

HW Accelerator
Model

Candidate
DNN

DNN Training with
Limited Epochs

Partially-Trained
DNN

Fully-Trained
DNN

Fully-Trained
Inference

Partially-Trained
Inference DNN Training with

Full Epochs

Energy, memory,
latency for a

single operation

Energy, memory,
latency for the
complete DNN

Required
Operations

Partially-Trained
Accuracy

Fully-Trained
Accuracy

Fig. 3.24 Setup and tool-flow for conducting our experiments.

To perform the experiments, the following settings have been used:

• |P|= 10 as initial parent population size,

• |Q|= 10 as offspring population size,

• g = 20 as the maximum number of generations per genetic loop,

• pm = 10% as mutation probability,

• kernelsize ∈ {3×3,5×5,9×9}

• stridesize ∈ {1,2}

• chout ∈ {1,2, . . . ,64}

• capsout ∈ {1,2, . . . ,64}

These numbers, along with the training hyper-parameters (such as batch sizes,
number of epochs, and learning rate), were chosen after executing a number of early
experiments and taking into account realistic runtimes.

Results for Reduced Training Epochs for Full-Training Accuracy Estimation

The high computational cost of the exploration process is one of the crucial aspects of
NAS. This problem is caused by the population’s vast number of candidate networks

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 105

and the expensive training process required to assess their accuracy. We present a
two-stage evaluation strategy to reduce the amount of time required to complete the
search and, as a result, its computational cost.

The initial randomly generated DNNs and all the candidate DNNs generated
during the evolutionary process are trained only for a short number of epochs, thus
forming a set of DNNs that are only partially trained. The accuracy evaluation of the
Pareto-fronts in the NSGA-II method, as presented in Section 3.4.4, is done on these
partially-trained DNNs. The number of epochs to be used for the partial training has
been carefully chosen by studying the effect of this new hyperparameter on the final
achieved accuracy of the candidate networks. Only the selected candidates are fully
trained and validated at the end of the evolutionary process.

This method enables the prediction of the DNNs’ full-training accuracy using a
smaller number of training epochs. It was evaluated utilizing 66 randomly generated
DNNs (along with the ShallowCaps and DeepCaps architectures) and performing
full training on each of them while also logging the obtained validation accuracy at
each training epoch. The accuracy of the fully trained DNNs and the accuracy of the
same DNNs at the intermediate training steps have been compared using the Person
correlation coefficient (PCC) [209].

Tab. 3.5 shows the values of the PCC between the accuracy of the DNNs after n
training epochs and after the full training, together with the median cumulative time
needed to perform an n-epochs training. This study made it possible to establish that,
as expected, more complex datasets require a higher number of training epochs to
accurately identify the most promising networks among all the candidate solutions.
5 epochs are adequate in the case of the MNIST dataset to achieve a PPC of 0.9999.
Instead, such a high confidence level is never obtained within the first few epochs
for the CIFAR-10 dataset. In this case, 10 training epochs are chosen, ensuring a
PCC of 0.9334. The correlation coefficient and the time needed for training are
trade-offs in this decision. Naturally, more training epochs can be chosen, but doing
so would significantly extend the exploration time owing to the consequently higher
DNN training time — an important factor to take into account when the NASCaps
framework explores huge populations and/or an elevated number of generations is
used. On the other hand, the selection process carried out after 10 training epochs
rather than 5 enables more Pareto-dominated candidate networks to be discarded.

106 Hardware-Efficient Capsule Networks

Table 3.5 Pearson correlation coefficient (PCC) and median cumulative training time ex-
pressed in seconds (MCTT) for the MNIST, Fashion-MNIST (FMNIST), SVHN, and CIFAR-
10 datasets.

Epoch n. 1 3 5 10 15 20

MNIST PCC 0.8407 0.9998 0.9999 1.0000 1.0000 1.0000
MCTT 55.4 166.2 277.0 554.0 831.0 1108.0

FMNIST PCC 0.8306 0.8963 0.9013 0.9935 0.9989 0.9998
MCTT 86.2 258.7 431.1 862.3 1293.4 1724.6

SVHN PCC 0.6812 0.8733 0.9518 0.9531 0.9667 0.9876
MCTT 128.3 385.0 641.6 1283.3 1924.9 2666.6

CIFAR-10 PCC 0.2969 0.4259 0.7279 0.9334 0.9518 0.9879
MCTT 61.6 184.7 307.9 615.8 923.6 1231.5

NASCaps Results for Partially-Trained DNNs

The MNIST dataset is first used to test the effectiveness and proper functioning of our
NASCaps framework. The number of generations is set at 20, although a maximum
time-out of 12 hours has been enforced for the MNIST and Fashion-MNIST datasets
and 24 hours for the CIFAR10 and SVHN datasets.

For the MNIST-NAS, the search lasted 20 complete generations, with each
candidate network trained for five epochs. 210 DNNs were trained and evaluated
using this technique. The selected solutions are compared to the two reference
SOTA models, i.e., the ShallowCaps and DeepCaps architectures. In Fig. 3.25a, the
performance of each DNN is shown in terms of accuracy, energy, memory footprint,
and latency, i.e., the four objectives of the search.

The Fashion-MNIST search was completed in 19 generations (12 hours), and
200 candidate architectures were assessed. It took 12 generations to complete the
search for the SVHN dataset, and 130 architectures could be evaluated. With 150
different models investigated, the search for the CIFAR-10 dataset has reached the
14th generation.

The progression of the evolutionary search algorithm for the MNIST and CIFAR-
10 datasets is depicted in Fig. 3.25. Notice that the red dots, i.e., the candidate
models of generation 0 (see pointer 1 in Fig. 3.25a), represent randomly generated
DNNs. In the following iterations, when our evolutionary method discovers better
candidate DNN structures by iteratively utilizing crossover and mutation operations,
the objectives considerably increase (see pointer 2).

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 107

1 1 1

2 2 2

ShallowCaps

(a)

3

ShallowCaps

(b)

Fig. 3.25 Partially-Trained DNN NAS for (a) the MNIST dataset, and (b) the CIFAR-10
dataset. The color shows in which generation the solution occurs first.

A significant number of candidate networks (almost 700 designs) based on
convolutional and capsule layers were evaluated thanks to the reduced-epoch training.
This technique produced several candidate architectures with accuracy levels up to
30.86% higher than the partially-trained SOTA solutions, i.e., within the constraints
of a significantly shorter training period. For instance, the DeepCaps architecture
only managed to achieve a network accuracy of 45.60% during the same training
time as one of the networks found by the NAS for the CIFAR-10 dataset (see pointer
3 in Fig. 3.25b). This supports the idea that, when constrained to a shorter training
time, our NASCaps framework can produce networks with higher accuracy than
DeepCaps-like structures.

108 Hardware-Efficient Capsule Networks

NASCaps Results for the Selected Fully-Trained DNNs

After the evolutionary search, the candidate DNNs from the Pareto-optimal subsets
have been fully trained to assess their final accuracy. The Pareto-optimal solutions at
the end of the full training process are shown in Fig. 3.26.

NASCaps for the MNIST Dataset. In 93 training epochs, the highest-accuracy
architecture (pointer 4 in Fig. 3.26a) discovered during the MNIST search achieved
an accuracy of 99.65%. However, compared to the CapsNet model, it uses 2.8×
as much energy, 2.5× as much time, and 2.4× as much memory. The red front
(see pointer 5) also draws attention to other intriguing solutions that are part of the
derived Pareto-optimal front. These solutions have slightly lower accuracy but up to
a couple of orders of magnitude lower energy, memory, and latency.

NASCaps for the Fashion-MNIST Dataset. In 51 epochs, one of the best
solutions (pointer 6 in Fig. 3.26b) achieves an accuracy of 92.15%. In comparison
to both the CapsNet and DeepCaps architectures, this solution reduced latency (-
79.38%), energy (-88.43%), and memory footprint (-63.05%) while maintaining
nearly the same accuracy (93.94%).

NASCaps for the SVHN Dataset. In 56 training epochs, the set of experiments
for the SVHN dataset generated a solution (see pointer 7 in Fig. 3.26c) that achieved
an accuracy of 93.17%, i.e., 3.52% less than the DeepCaps. However, compared to
DeepCaps, this method drastically lowered energy by 97.05% and latency by 29.56%,
but it uses 1.6× more memory. As opposed to the DeepCaps, another interesting
model (see pointer 8) achieved a 92.53% accuracy while using 30.59% less energy,
59.63% less delay, and 62.70% less memory.

NASCaps for the CIFAR-10 Dataset. After 300 training epochs, a solution
discovered by the CIFAR10-NAS (see pointer 9 in Fig. 3.26d) outperformed the
DeepCaps architecture in all the objectives and reached an accuracy of 85.99%. In
comparison to the DeepCaps run on the CapsAcc accelerator, this solution (NASCaps-
C10-best in Tab. 3.6) lowered energy usage by 52.12%, latency by 64.34%, and
memory footprint by 30.19%, while experiencing a modest accuracy drop of roughly
1% using the same training settings. Tab. 3.6) lists additional Pareto-optimal DNN
architectures for the CIFAR-10 dataset that our NASCaps framework identified.

Transferability of the Selected DNNs Across Different Datasets. The dataset-
specific identified DNNs have also been trained and tested on the other datasets

3.4 Neural Architecture Search for Hardware Efficient Capsule Networks 109

4 4
5 5 5

4

ShallowCaps

(a)

6 6 6

ShallowCaps

(b)

87 7 78 8

ShallowCaps

(c)

9 9 9

ShallowCaps

(d)

Fig. 3.26 Fully-trained DNN results for (a) the MNIST, (b) the Fashion-MNIST, (c) the
SVHN, and (d) CIFAR-10 datasets.

under investigation to assess the transferability of the DNN solutions discovered by

110 Hardware-Efficient Capsule Networks

Table 3.6 Selected CIFAR-10 architectures after 300-epoch training. Note that the accuracy
reported for the DeepCaps and CapsNet do not 100% match with the ones reported in the
original papers [5, 2]. This can be attributed to the differences in the training hyper-parameter
setup, as their papers do not disclose the complete in-depth information about the training
that can ensure the reproducibility of their results.

Architecture Accuracy Energy Latency Memory

DeepCaps [2] 87.10% 36.30 mJ 4.29 ms 9,052 kiB
NASCaps-C10-best 9 85.99% 17.38 mJ 1.53 ms 6,319 kiB
NASCaps-C10-a0d 74.11% 4.53 mJ 1.12 ms 1,718 kiB
NASCaps-C10-9fd 74.00% 5.11 mJ 0.36 ms 713 kiB
NASCaps-C10-658 73.91% 5.06 mJ 1.54 ms 5,573 kiB
CapsNet [5] 55.85% 88.80 mJ 1.82 ms 8,573 kiB

our NASCaps methodology. The matrix of solutions with the maximum accuracy, as
determined by this transferability analysis, is reported in Tab. 3.7.

Table 3.7 Highest-Accuracy DNNs found by the dataset-specific NAS, which are then trained
for the other datasets for 100 epochs.

Architecture MNIST FMNIST SVHN CIFAR-10

NASCaps-MNIST-best 4 99.65% 93.34% 96.36% 71.44%
NASCaps-FMNIST-best 6 99.49% 92.15% 93.12% 68.34%
NASCaps-SVHN-best 7 99.51% 91.43% 93.17% 63.72 %
NASCaps-C10-best 9 99.72% 93.87% 96.59% 76.46%

For the other datasets, the NASCaps-C10-best architecture of Tab. 3.6 turned
out to be especially accurate. It outperformed the MNIST-NAS solutions with an
accuracy of 99.72% for the MNIST dataset after 37 training epochs. It achieved
an accuracy of 93.87% for the Fashion-MNIST dataset after 32 epochs of training,
which is higher than the DeepCaps accuracy after 100 epochs. It outperformed the
highest-accuracy DNN discovered during the SVNH-NAS and achieved an accuracy
of 96.59% when tested on the SVHN dataset. Like DeepCaps, the NASCaps-C10-
best design contains two initial convolutional layers and three CapsCell blocks but
no skip connections. The MNIST-NAS highest-accuracy architecture also proved
effective with the Fashion-NMIST dataset, achieving an accuracy of 93.34% after 91
training epochs.

3.5 Neural Architecture Search for Robust Capsule Networks 111

The findings presented in Tab. 3.7 demonstrate that the NASCaps-C10 solution
is the best overall architecture discovered during the four searches. This is due
to several factors, including the fact that the evolutionary process was based on a
randomly selected beginning parent population that was generated anew at each
search. Furthermore, it’s possible that the initial parent population’s modest size
prevented the four dataset-specific searches from converging. Also, at the conclusion
of the experiments, not all four searches had arrived at the same generation.

3.4.6 Conclusions

NASCpas is a NAS framework that for the first time also explores capsule network
architectures. Moreover, the framework does not only focus on accuracy but jointly
searches for hardware-efficient models, potentially easing the deployment of DNNs
based on capsule layers on resource-constrained IoT/edge devices. For example, one
of the CapsNets discovered for the CIFAR10 dataset has an 86.0% accuracy, with an
energy consumption per inference of 38.63mJ, a memory footprint of 11.85MB, and
a latency of 4.47ms.

3.5 Neural Architecture Search for Robust Capsule
Networks

NASCaps is a very flexible framework that easily allows the integration of new
objectives in the search. As a proof of concept, we show how to integrate robustness
to adversarial attacks to NASCaps. The security of DNNs classifiers has recently
become a major concern since small and invisible to the naked eye perturbations can
be added to the inputs [190] and completely change the classification result. This is
a dangerous threat to safety-critical applications [212]. Usually, the robustness of
DNNs to adversarial attacks is evaluated a posteriori once the model has already been
designed. By integrating robustness to adversarial attacks in the search objectives of
NASCaps, we enable a conjoint search of accurate, HW-efficient, and robust models.

112 Hardware-Efficient Capsule Networks

3.5.1 Integration of Adversarial Robustness Evaluation in NASCaps

Integrating new objectives in the NASCaps framework is easy, as shown in Fig. 3.27.
It is simply necessary to add a metric when evaluating the candidate solutions and,
consequently, an objective when extracting the Pareto-fronts. In the discussed case,
the new metric is the robustness to adversarial attacks.

Random DNNs
(initial)

Full training

Fully-trained
inference

Set of accuracy-energy-memory-latency-robustness
Pareto optimal DNNs

NSGA-II

Layer library HW accelerator Dataset

HW model
DNN Training
with Limited

Epochs

Evaluate
Accuracy

Evaluate
HW efficiency

Generate Q
offsprings

(crossover, mutation)

Termination
conditions

Select P best
individuals

QP ∪

P

Adversarial Attack
Algorithm

Evaluate
Adversarial
Robustness

Adversarial
Perturbation

Selection

Fig. 3.27 Variation of the NasCaps framework to add robustness to adversarial attacks as a
search objective

Since the design space can explode by taking into account many types and
strengths of adversarial perturbations, its size is limited by automatically choosing
the value of adversarial perturbations to be employed in the NAS for a particular
dataset. The proposed method is summarized in Alg. 5. The PGD algorithm [194]
generates an adversarial example for each item of the testing dataset (line 5). Note
that additional adversarial attack algorithms may be incorporated into our system,
PGD is used here for demonstrative purposes.

The amount of adversarial perturbation is determined by the parameter ε . As
shown in Section 3.5.2, when looking at the variation of the accuracy w.r.t. ε , there is
a region where the accuracy drop is higher, i.e., it has a steep slope. The region with
the highest slope is around half of the clean accuracy, i.e., Acc0

2 . By taking advantage

3.5 Neural Architecture Search for Robust Capsule Networks 113

of this understanding, we determine εNAS as the adversarial perturbation value that
yields an accuracy as close as possible to the Acc0

2 . The One EPS search, which
optimizes for the robustness against one value of perturbation, uses the chosen value
of εNAS. The Two EPS search is also set up to cover a wider adversarial perturbation
range. After choosing εlow and εhigh (lines 10–11), the NAS is carried out while
optimizing for the adversarial accuracy with both values.

Algorithm 5 : Adversarial Perturbation Selection.
Require: Deep Neural Network: N; Test Dataset: D =

⋃
j

X j;

1: Adversarial Perturbation Budget: εi ∈ E = [εMIN ,εMAX];
2: Acc0 = Accuracy(N(D))
3: for i ∈< E > do
4: for j ∈< D > do
5: X ′i j = PGD(N,εi,X j)
6: end for
7: D ′i =

⋃
j

X ′i j

8: Acci = Accuracy(N(D ′i))
9: end for

10: εNAS = εi : Acci ≈ Acc0
2

11: εlow ≈ εNAS
10

12: εhigh ≈ 3 · εNAS

13: return εNAS,εlow,εhigh

3.5.2 Results

The setup used for the experiments is the same as shown in Section 3.4.5. As in
the previous section, we present three sets of results: we first show the outcomes of
selecting the adversarial perturbation values, then the results for the partially-trained
DNNs, and finally those for the fully-trained selected DNNs.

Selection of the Adversarial Perturbation for the NAS

One important factor to be considered when running the NAS is the level of adver-
sarial perturbation. The Pareto-optimal DNNs of the NASCaps library have been
tested under the PGD attack using various values of the adversarial perturbation

114 Hardware-Efficient Capsule Networks

ε , according to the methodology outlined in Section 3.5.1. The results shown in
Fig. 3.28 demonstrate that the accuracy of DNNs decreases as ε increases. Tab. 3.8
reports the values selected for the NAS.

10 7 10 4 10 1

PGD attack level ()

0

20

40

60

80

100

Ac
cu

ra
cy

 a
fte

r a
tta

ck
 [%

] MNIST

10 7 10 4 10 1

PGD attack level ()

FMNIST

10 7 10 4 10 1

PGD attack level ()

CIFAR10

Fig. 3.28 Analysis of the DNN robustness under the PGD attack, with different adversarial
perturbation values, for MNIST, Fashion-MNIST, and CIFAR10.

Table 3.8 Selected values of the adversarial perturbation ε for the NAS, for MNIST, Fashion-
MNIST, and CIFAR10. The table also reports the values for εlow and εhigh for the Two EPS
search. The One EPS column denotes a search that uses only one value of ε , whereas the
Two EPS column denotes a search that uses both low and high values of ε . Take into account
that a simple dataset like the MNIST needs a significant adversarial perturbation to have an
effect on the DNN robustness. On the other hand, a smaller perturbation is already enough
to incorrectly categorize a particular set of inputs on a more complicated dataset like the
CIFAR10.

Two EPS εlow One EPS ε Two EPS εhigh

MNIST 3e-3 3e-2 1e-1
FMNIST 1e-3 1e-2 3e-2
CIFAR10 3e-5 3e-4 1e-3

Results on partially-trained DNNs

As discussed in Section 3.4.5, during the NAS iterations the models are only partially
trained to reduce the overall exploration time. The approach and setting are the same
as in Section 3.4.5, and therefore not furtherly discussed.

Fig. 3.29 reports the results of the NAS with fast robustness evaluation. The
Pareto-optimal solutions are discovered in the latest generations of the algorithm,
whereas the earliest generate sub-optimal DNN solutions. It should be noted that the

3.5 Neural Architecture Search for Robust Capsule Networks 115

latest DNN generations for the CIFAR10 dataset are less robust to the PGD attack
but still fall within the Pareto-frontier because of their low energy consumption (see
pointer 1). The Pareto-frontier selection automatically eliminates some candidate
DNNs discovered in the initial generations since they are very vulnerable to the PGD
attack, as pointed out by pointer 2 .

1

2

2 2 2

2 2 2

22

Energy [mJ] Latency [s] Memory footprint [B]

M
N

IS
T

ac
cu

ra
cy

F-
M

N
IS

T
ac

cu
ra

cy
C

IF
A

R
-1

0
 a

cc
u

ra
cy

(b)

(c)

(a)

Fig. 3.29 DNN robustness of partially-trained DNNs under PGD attack, showing tradeoffs
w.r.t. energy, latency, and memory footprint. (a) Results for CIFAR10. (b) Results for
Fashion-MNIST. (c) Results for MNIST.

Results on fully-trained DNNs

The Pareto-optimal DNNs that were selected in the previous step have been fully
trained to get an accurate robustness evaluation. The DNNs targeting the MNIST
and Fashion-MNIST datasets have been trained for 100 epochs, while the DNNs
for the CIFAR10 dataset have been trained for 300 epochs. Tradeoffs between the
design objectives are evident in the findings shown in Fig. 3.30.

As shown by pointer 1 , the framework’s Pareto-optimal solution for the CI-
FAR10 dataset achieves 86.07% accuracy while using 38.63 mJ of energy, 11.85 MB
of memory, and 4.47 ms of latency. The Fashion-MNIST dataset solution pointed

116 Hardware-Efficient Capsule Networks

ShallowCapsOne EPS Two EPS DeepCaps

ShallowCapsOne EPS Two EPS DeepCaps

ShallowCapsOne EPS Two EPS DeepCaps

Fig. 3.30 Robustness of fully-trained Pareto-optimal DNNs, showing tradeoffs w.r.t. hardware
efficiency. (a) Results for CIFAR10. (b) Results for Fashion-MNIST. (c) Results for MNIST.

out in 2 achieves an accuracy of 93.40% while requiring 6.40 ms of latency, 61.19
mJ of energy, and 16.82 MB of memory. It should be noted that while the One EPS
search discovers more interesting low-energy solutions (see pointer 4), the Two EPS
search finds Pareto-optimal solutions in the middle range of energy (see pointer 3).
By leveraging trade-offs between many objectives, the Pareto-optimal DNNs’ search
for MNIST spans a more diversified range of values (see pointer 5).

In Fig. 3.31, we compare the discovered solutions (One EPS setting) with the
ShallowCaps model, the DeepCaps model, and the models found with the origi-

3.5 Neural Architecture Search for Robust Capsule Networks 117

nal NASCaps framework of Section 3.4, i.e., without adversarial robustness as an
objective.

ShallowCaps

ShallowCaps

Fig. 3.31 Evaluation of the modified framework, compared to other state-of-the-art and
NASCaps-discovered architectures.

The Pareto-optimal solutions produced for the MNIST dataset using the re-
designed framework are very resilient across a wide range of perturbation ε (see
pointer 1). In fact, the accuracy begins to decline at an ε that is almost one order of
magnitude greater than for the original NASCaps (see pointer 2). The robustness
of the Pareto-optimal DNNs chosen with the framework for the Fashion-MNIST is
very similar to that of the ShallowCaps architecture. For the CIFAR10 dataset, the

118 Hardware-Efficient Capsule Networks

discovered Pareto-optimal DNNs behave similarly to the DeepCaps for low values of
ε (see pointer 3). However, one particular Pareto-optimal solution provides notable
robustness also with stronger adversarial perturbation (see pointer 4).

Fig. 3.32 shows the comparison of the modified framework with the original
NASCaps framework, the ShallowCaps, and the DeepCaps models when the Two
EPS setting is used. Especially for the MNIST and Fashion-MNIST datasets (see
pointer 1 in Fig. 3.32), w.r.t. the One EPS setting, the framework returns wider
levels of robustness.

ShallowCaps

ShallowCaps

Fig. 3.32 Evaluation of the modified framework with the Two EPS setting, compared to other
state-of-the-art and NASCaps-discovered architectures.

3.5 Neural Architecture Search for Robust Capsule Networks 119

3.5.3 Conclusions

The strategy proposed in this section allows jointly optimizing traditional CNNs
and CapsNets for hardware efficiency (latency, energy, and memory footprint) and
robustness against adversarial attacks. Our optimizations for reducing the search
space and the exploration time allow finding a set of networks that are Pareto-optimal
w.r.t. the above-discussed objectives, in a fast fashion. In our experiments, 900
different DNN models have been evaluated, using 2,000 GPU hours with our fast
training settings. Thanks to this NASCaps version, the deployment of robust DNNs
in resource-constrained IoT/neuromorphic edge devices is made possible.

Chapter 4

Conclusions and Future Works

This thesis shows how the three aspects of workload, peak performance, and ef-
ficiency are crucial for HW acceleration of neural networks, taking Winograd’s
algorithm for convolutions and capsule networks as practical cases.

Chapter 2 presented a novel quantization technique to deploy quantized Winograd
convolutions on 4× 4 tiles, and an investigation on how to integrate the algorithm
in an industrial HW accelerator for AI applications. The first part of the chapter
presented the tap-wise quantization algorithm to enable efficient quantized Winograd
on 4× 4 tiles F4. Using 8-bits integers for the feature maps and weights and 10-
bits integers in the Winograd domain, the F4 Winograd network achieves the same
accuracy as the FP32 baseline for ResNet-20 and VGG-nagadomi on the CIFAR-10
benchmark and for ResNet-50 on the ImageNet classification task. The proposed
method outperforms the state-of-the-art integer-only and F4-aware quantization
methods on all the tested networks and tasks. Furthermore, the second part of the
chapter presents a custom HW extension to process F4 integer Winograd layers
efficiently and its integration into an industrial-grade AI accelerator. Our proposed
system outperforms NVDLA with its Winograd F2 extension by 1.5 to 3.3× at
the same compute throughput and bandwidth constraints. This is achieved with
the higher computational reduction from F4, optimized bandwidth requirements by
on-the-fly transformations, and higher utilization thanks to the optimized dataflow.
The proposed hardware extensions have a small area (6.1% of the core area) and
power (17% compared to the MatMul engine) overhead over the baseline architecture
while achieving up to 3.42× speed-up on compute-intensive convolutional layers.

122 Conclusions and Future Works

An extensive evaluation over several state-of-the-art computer-vision benchmarks
revealed up to 1.83× end-to-end inference speed-up and 1.85× energy efficiency
improvement.
One potential direction for future research is to investigate the combination of
quantization with orthogonal techniques, such as pruning, to achieve an even greater
reduction of the overall computational workload. It is worth noting that throughout
the exploration of these techniques and methodologies, it is essential to always ensure
that the theoretical gains in, e.g., computational reduction, can effectively translate
into speed-up or energy savings when executed on an HW accelerator. A significant
critical issue faced was the long time it took to develop custom HW units for the
algorithm under study and to integrate them into the accelerator, two steps necessary
to evaluate performances on different layers and networks then. Part of this problem
was solved by developing a simulator, which allows design-space-exploration and
makes architectural choices much faster and possible before starting the whole HW
design flow. However, this does not detract from the time-consuming development
and integration of dedicated units. Moreover, integrating additional resources for
each algorithm risks leading to an unsustainable area explosion. Therefore, from a
future perspective, we believe it is crucial to focus on developing new architectures
for DSAs that are more flexible, with easily programmable or reconfigurable units
based on the requirements of each algorithm or workload.

Chapter 3 focused on our efforts to push forward the research field on capsule net-
works, making them more HW-efficient and finding new capsule-based models. The
first part of the chapter describes a specialized framework for quantizing CapsNets,
called Q-CapsNets. We exploited the peculiar features of CapsNets, occurring during
the dynamic routing, for designing a quantization methodology that enables further
precision reduction of the wordlength while a certain accuracy loss is tolerated. Our
Q-CapsNets framework produces compact yet accurate quantized CapsNet models.
Hence, it represents the first step towards designing energy-efficient CapsNets, and
could potentially open new avenues towards the large-scale adoption of CapsNets
for inference in a resource-constrained scenario. As described in detail in Chapter 3,
the purpose of the proposed quantization framework is to enable quick exploration
of CapsNets quantization-accuracy tradeoffs to drive the design of HW architectures.
With this in mind, it was decided to use a simple post-training quantization approach
with a search in a pruned exploration space. As an extension of the framework, the
more complex quantization-aware training could be applied. At the cost of more

123

computational resources and training time, it could guarantee a higher wordlength
reduction for the same accuracy. Note that, at the time of the project, machine
learning frameworks such as PyTorch and Tensorflow had no support for quantized
inference or training.
The second part of Chapter 3 presents NASCaps, a framework for the NAS of
convolutional CapsNets. The optimization goals of our framework are network accu-
racy and hardware efficiency, expressed in terms of energy consumption, memory
footprint, and latency, when executed on the specialized hardware accelerators. We
performed a large-scale NAS using GPU-HPC nodes with multiple Tesla V100 GPUs
and found interesting DNN solutions that are hardware-efficient yet highly accurate
when compared to SOTA solutions. Our framework is even more beneficial when
the design times are short, training resources at the design center are limited, and
the DNN design is subjected to short training durations. Our NASCaps framework
can ease the deployment of DNNs based on capsule layers in resource-constrained
IoT/edge devices.
It is worth noting that despite the initial surge in popularity, capsule networks have
not been able to establish themselves as direct substitutes or competitors to the more
traditional CNNs. Therefore, a significant contribution to this research area would
involve primarily exploring applications where the unique structure of capsule net-
works can offer a competitive advantage. By identifying specific domains or problem
spaces where the inherent properties of CapsNets, such as hierarchical representation
and dynamic routing, can be leveraged effectively, researchers can uncover the true
potential and advantages of this alternative architecture. This exploration could
involve investigating scenarios where capturing spatial relationships, pose estimation,
or viewpoint invariance play pivotal roles. Demonstrating the superiority of capsule
networks in such application areas would enhance their standing and facilitate their
adoption as viable alternatives to CNNs.

References

[1] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth
Samsi, and Jeremy Kepner. AI and ML accelerator survey and trends. In IEEE
High Performance Extreme Computing Conference, HPEC 2022, Waltham,
MA, USA, September 19-23, 2022, pages 1–10. IEEE, 2022.

[2] Jathushan Rajasegaran et al. Deepcaps: Going deeper with capsule networks.
In CVPR, 2019.

[3] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. 2009.

[4] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 1998.

[5] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing
between capsules. In NIPS, 2017.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Proc. IEEE CVPR, pages 770–778, 2015.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008, 2017.

[8] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic
language model. Advances in neural information processing systems, 13,
2000.

[9] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

126 References

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

[11] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[12] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and
trends® in Machine Learning, 2(1):1–127, 2009.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet Classifica-
tion With Deep Convolutional Neural Networks. In Adv. NIPS, 2012.

[14] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang.
Software-hardware codesign for efficient neural network acceleration. IEEE
Micro, 37(2):18–25, 2017.

[15] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR, abs/1602.07360,
2016.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[17] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Research, pages 6105–6114.
PMLR, 2019.

[18] Pramod Udupa, Gopinath Mahale, Kiran Kolar Chandrasekharan, and Sehwan
Lee. Accelerating depthwise convolution and pooling operations on z-first
storage cnn architectures. In 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1–5. IEEE, 2020.

[19] Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[20] Frank Rosenblatt. The Perceptron: A Perceiving and Recognizing Automaton
(Project PARA). Report No. 85-460-1. Cornell Aeronautical Laboratory, 1957.

[21] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends
in Machine Learning, 2(1):1–127, 2009.

References 127

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 115(3):211–252, 2015.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[26] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, 2015.

[27] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al.
Gradient flow in recurrent nets: the difficulty of learning long-term dependen-
cies, 2001.

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vi-
sion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818–2826. IEEE
Computer Society, 2016.

[29] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 4278–4284. AAAI Press, 2017.

[30] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
1492–1500, 2017.

[31] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin
Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander J.
Smola. Resnest: Split-attention networks. CoRR, abs/2004.08955, 2020.

128 References

[32] Tal Ridnik, Hussam Lawen, Asaf Noy, and Itamar Friedman. Tresnet: High
performance gpu-dedicated architecture. CoRR, abs/2003.13630, 2020.

[33] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le.
Mnasnet: Platform-aware neural architecture search for mobile. In CVPR,
2019.

[34] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning
transferable architectures for scalable image recognition. In CVPR, 2018.

[35] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-
formers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part I, volume 12346 of
Lecture Notes in Computer Science, pages 213–229. Springer, 2020.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[37] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David
Luan, and Ilya Sutskever. Generative pretraining from pixels. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 1691–1703. PMLR, 2020.

[38] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proc. IEEE,
105(12):2295–2329, 2017.

[39] R James. Intel avx-512 instructions. Intel, 06 2017.

[40] Adam Paszke et al. Automatic differentiation in pytorch. 2017.

[41] Martin Abadi et al. Tensorflow: A system for large-scale machine learning.
In OSDI, 2016.

[42] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Kien A. Hua, Yong
Rui, Ralf Steinmetz, Alan Hanjalic, Apostol Natsev, and Wenwu Zhu, editors,
Proceedings of the ACM International Conference on Multimedia, MM ’14,
Orlando, FL, USA, November 03 - 07, 2014, pages 675–678. ACM, 2014.

[43] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. CoRR, abs/1410.0759, 2014.

References 129

[44] NVIDIA TESLA V100 GPU ARCHITECTURE, 2017.

[45] NVIDIA A100 Tensor Core GPU Architecture, 2020.

[46] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High Performance Con-
volutional Neural Networks for Document Processing. In Guy Lorette,
editor, Tenth International Workshop on Frontiers in Handwriting Recog-
nition, La Baule (France), Oct 2006. Université de Rennes 1, Suvisoft.
http://www.suvisoft.com.

[47] A. Vasudevan, A. Anderson, and D. Gregg. Parallel multi channel convolution
using general matrix multiplication. In 2017 IEEE 28th International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP),
pages 19–24, 2017.

[48] Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,
13(4):354–356, aug 1969.

[49] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional
neural networks. In Stefan Wermter, Cornelius Weber, Wlodzislaw Duch,
Timo Honkela, Petia D. Koprinkova-Hristova, Sven Magg, Günther Palm,
and Alessandro E. P. Villa, editors, Artificial Neural Networks and Machine
Learning - ICANN 2014 - 24th International Conference on Artificial Neural
Networks, Hamburg, Germany, September 15-19, 2014. Proceedings, volume
8681 of Lecture Notes in Computer Science, pages 281–290. Springer, 2014.

[50] Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolu-
tional networks through ffts. In Yoshua Bengio and Yann LeCun, editors, 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[51] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam,
1980.

[52] Andrew Lavin and Scott Gray. Fast Algorithms for Convolutional Neural
Networks. In Proc. IEEE CVPR, pages 4013–4021, 2016.

[53] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pages 10–14. IEEE, 2014.

[54] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. International Conference on
Architectural Support for Programming Languages and Operating Systems -
ASPLOS, 49:269–284, 02 2014.

[55] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
Cambricon-x: An accelerator for sparse neural networks. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12, Oct 2016.

130 References

[56] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Using dataflow to optimize
energy efficiency of deep neural network accelerators. IEEE Micro, 37:12–21,
2017.

[57] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello. A 240 g-ops/s
mobile coprocessor for deep neural networks. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 696–701, June
2014.

[58] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk. Towards an embedded biologically-
inspired machine vision processor. In 2010 International Conference on
Field-Programmable Technology, pages 273–278, Dec 2010.

[59] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf. A massively parallel coprocessor for convo-
lutional neural networks. In 2009 20th IEEE International Conference on
Application-specific Systems, Architectures and Processors, pages 53–60, July
2009.

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, and et al. In-datacenter performance analysis of a tensor process-
ing unit. SIGARCH Comput. Archit. News, 45(2):1–12, jun 2017.

[61] Ananda Samajdar, Yuhao Zhu, Paul N. Whatmough, Matthew Mattina, and
Tushar Krishna. Scale-sim: Systolic CNN accelerator simulator. CoRR,
abs/1811.02883, 2019.

[62] C. Luo, Y. Wang, W. Cao, P. H. W. Leong, and L. Wang. Rna: An accurate
residual network accelerator for quantized and reconstructed deep neural
networks. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 60–603, 2018.

[63] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. Shidiannao: Shifting vision processing closer to the sensor.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pages 92–104, June 2015.

[64] L. Cavigelli and L. Benini. Origami: A 803-gop/s/w convolutional network
accelerator. IEEE Transactions on Circuits and Systems for Video Technology,
27(11):2461–2475, Nov 2017.

[65] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal. Memory-centric
accelerator design for convolutional neural networks. In 2013 IEEE 31st
International Conference on Computer Design (ICCD), pages 13–19, Oct
2013.

[66] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE
Journal of Solid-State Circuits, 52(1):127–138, Jan 2017.

References 131

[67] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’15, page 161–170, New York,
NY, USA, 2015. Association for Computing Machinery.

[68] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 609–622, Dec 2014.

[69] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. Davinci: A scalable
architecture for neural network computing. In Hot Chips Symposium, pages
1–44, 2019.

[70] Karam Chatha. Qualcomm® cloud al 100 : 12tops/w scalable, high perfor-
mance and low latency deep learning inference accelerator. In IEEE Hot
Chips 33 Symposium, HCS 2021, Palo Alto, CA, USA, August 22-24, 2021,
pages 1–19. IEEE, 2021.

[71] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. A survey of quantization methods for efficient neural
network inference. CoRR, abs/2103.13630, 2021.

[72] Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural
networks using logarithmic data representation. CoRR, abs/1603.01025, 2016.

[73] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing
deep convolutional networks using vector quantization. CoRR, abs/1412.6115,
2014.

[74] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Ac-
curate post training quantization with small calibration sets. In International
Conference on Machine Learning, pages 4466–4475. PMLR, 2021.

[75] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quanti-
zation of convolutional networks for rapid-deployment. Advances in Neural
Information Processing Systems, 32, 2019.

[76] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quanti-
zation of neural networks for efficient inference. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision Workshop (ICCVW), pages 3009–3018.
IEEE, 2019.

[77] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Im-
proving neural network quantization without retraining using outlier channel
splitting. In International conference on machine learning, pages 7543–7552.
PMLR, 2019.

132 References

[78] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only infer-
ence. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018.

[79] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi. Ristretto: A framework
for empirical study of resource-efficient inference in convolutional neural
networks. IEEE Transactions on Neural Networks and Learning Systems,
29(11):5784–5789, 2018.

[80] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[81] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parame-
terized clipping activation for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018.

[82] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed
of neural networks on cpus. In Deep Learning and Unsupervised Feature
Learning Workshop, NIPS 2011, 2011.

[83] Charbel Sakr and Naresh Shanbhag. Per-tensor fixed-point quantization of
the back-propagation algorithm. In ICLR, 2019.

[84] Maithra Raghu et al. On the expressive power of deep neural networks. In
ICML, 2017.

[85] Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed
point quantization of deep convolutional networks. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 2849–2858. JMLR.org, 2016.

[86] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware auto-
mated quantization with mixed precision. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8604–8612, 2019.

[87] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and
Kurt Keutzer. Mixed precision quantization of convnets via differentiable
neural architecture search. arXiv preprint arXiv:1812.00090, 2018.

[88] Y. Umuroglu, L. Rasnayake, and M. Själander. Bismo: A scalable bit-serial
matrix multiplication overlay for reconfigurable computing. In 2018 28th

References 133

International Conference on Field Programmable Logic and Applications
(FPL), pages 307–3077, 2018.

[89] P. Judd, J. Albericio, and A. Moshovos. Stripes: Bit-serial deep neural network
computing. IEEE Computer Architecture Letters, 16(1):80–83, 2017.

[90] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo. Unpu: An energy-
efficient deep neural network accelerator with fully variable weight bit preci-
sion. IEEE Journal of Solid-State Circuits, 54(1):173–185, 2019.

[91] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos. Loom: Exploiting
weight and activation precisions to accelerate convolutional neural networks.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages
1–6, 2018.

[92] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh. Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 764–775, 2018.

[93] S. Ryu, H. Kim, W. Yi, and J. Kim. Bitblade: Area and energy-efficient
precision-scalable neural network accelerator with bitwise summation. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6,
2019.

[94] Enrico Reggiani, Alessandro Pappalardo, Max Doblas, Miquel Moreto, Mauro
Olivieri, Osman Sabri Unsal, and Adrián Cristal. Mix-gemm: An efficient
hw-sw architecture for mixed-precision quantized deep neural networks in-
ference on edge devices. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 1085–1098, 2023.

[95] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In
D. S. Touretzky, editor, Advances in Neural Information Processing Systems
2, pages 598–605. Morgan-Kaufmann, 1990.

[96] Song Han, Jeff Pool, m john Tran, William J Dally, John Tran, William J Dally,
m john Tran, and William J Dally. Learning Both Weights and Connections
for Efficient Neural Networks. NIPS, 2015.

[97] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for deep
neural networks. In Xianghua Xie, Mark W. Jones, and Gary K. L. Tam,
editors, Proceedings of the British Machine Vision Conference 2015, BMVC
2015, Swansea, UK, September 7-10, 2015, pages 31.1–31.12. BMVA Press,
2015.

[98] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep
neural networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 1398–1406, 2017.

134 References

[99] F. Tung and G. Mori. Clip-q: Deep network compression learning by in-
parallel pruning-quantization. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7873–7882, 2018.

[100] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In Vitto-
rio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision – ECCV 2018, pages 815–832, Cham, 2018. Springer Inter-
national Publishing.

[101] H. Cai, J. Lin, Y. Lin, Z. Liu, K. Wang, T. Wang, L. Zhu, and S. Han.
Automl for architecting efficient and specialized neural networks. IEEE
Micro, 40(1):75–82, 2020.

[102] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han. Apq:
Joint search for network architecture, pruning and quantization policy. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2075–2084, 2020.

[103] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6071–6079, 2017.

[104] Haichuan Yang, Yuhao Zhu, and Ji Liu. ECC: platform-independent energy-
constrained deep neural network compression via a bilinear regression model.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 11206–11215. Computer
Vision Foundation / IEEE, 2019.

[105] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-
pression. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’06, page 535–541, New
York, NY, USA, 2006. Association for Computing Machinery.

[106] L.J. Ba and R. Caruana. Do deep nets really need to be deep? Advances in
Neural Information Processing Systems, 3:2654–2662, 01 2014.

[107] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network. arXiv preprint arXiv:1503.02531, 2015.

[108] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[109] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In 2017 IEEE

References 135

Conference on Computer Vision and Pattern Recognition (CVPR), pages
7130–7138, 2017.

[110] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep mutual learning. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4320–4328, 2018.

[111] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1800–1807, 2017.

[112] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and
Victor S. Lempitsky. Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[113] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. Compression of deep convolutional neural networks for fast
and low power mobile applications. In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[114] Hieu Pham et al. Efficient neural architecture search via parameter sharing.
In ICML, 2018.

[115] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[116] Dimitrios Stamoulis et al. Single-path NAS: designing hardware-efficient
convnets in less than 4 hours. In ECML/PKDD, 2019.

[117] Mitchell P. Marcus et al. Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 1993.

[118] P. Achararit et al. Apnas: Accuracy-and-performance-aware neural architec-
ture search for neural hardware accelerators. IEEE Access, 2020.

[119] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas:
Improving neural architecture search via attentive sampling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6418–6427, 2021.

[120] Qing Lu et al. On neural architecture search for resource-constrained hardware
platforms. CoRR, abs/1911.00105, 2019.

[121] Weiwen Jiang et al. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. In DAC, 2019.

136 References

[122] Weiwen Jiang et al. Standing on the shoulders of giants: Hardware and neural
architecture co-search with hot start. IEEE TCAD, 2020.

[123] Zichao Guo et al. Single path one-shot neural architecture search with uniform
sampling. In ECCV, 2020.

[124] Li Lyna Zhang et al. Hardware-aware one-shot neural architecture search in
coordinate ascent framework. CoRR, abs/1910.11609, 2019.

[125] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10734–10742, 2019.

[126] Renzo Andri, Beatrice Bussolino, Antonio Cipolletta, Lukas Cavigelli, and
Zhe Wang. Going further with winograd convolutions: Tap-wise quantization
for efficient inference on 4x4 tiles. IEEE Micro, 2022.

[127] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong
Li, Xiuqi Yang, and Junjie Yan. Towards unified int8 training for convolutional
neural network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1969–1979, 2020.

[128] Yunhui Guo. A survey on methods and theories of quantized neural networks.
arXiv preprint arXiv:1808.04752, 2018.

[129] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 6848–6856, 2018.

[130] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Com-
puter Vision – ECCV 2016, pages 21–37, Cham, 2016. Springer International
Publishing.

[131] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
arXiv:1804.02767, 2018.

[132] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Nassir Navab, Joachim
Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages
234–241, Cham, 2015. Springer International Publishing.

[133] Barbara Barabasz, Andrew Anderson, Kirk M Soodhalter, and David Gregg.
Error analysis and improving the accuracy of Winograd convolution for deep
neural networks. ACM Transactions on Mathematical Software (TOMS),
46(4):1–33, 2020.

References 137

[134] Javier Fernandez-Marques, Paul N Whatmough, Andrew Mundy, and Matthew
Mattina. Searching for winograd-aware quantized networks. MLSys, 2021.

[135] Barbara Barabasz and David Gregg. Winograd Convolution for DNNs: Be-
yond Linear Polynomials. In Mario Alviano, Gianluigi Greco, and Francesco
Scarcello, editors, AI*IA 2019 – Advances in Artificial Intelligence, pages
307–320, Cham, 2019. Springer International Publishing.

[136] Juan Yepez and Seok-Bum Ko. Stride 2 1-D, 2-D, and 3-D winograd for
convolutional neural networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(4):853–863, 2020.

[137] Chen Yang, Yizhou Wang, Xiaoli Wang, and Li Geng. A stride-based con-
volution decomposition method to stretch CNN acceleration algorithms for
efficient and flexible hardware implementation. IEEE Transactions on Circuits
and Systems I: Regular Papers, 67(9):3007–3020, 2020.

[138] Yulin Zhao, Donghui Wang, Leiou Wang, and Peng Liu. A faster algorithm
for reducing the computational complexity of convolutional neural networks.
Algorithms, 11(10):159, 2018.

[139] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and David Gregg.
Winograd Convolution for Deep Neural Networks: Efficient Point Selection.
arXiv preprint arXiv:2201.10369, 2022.

[140] Wenshuo Li, Hanting Chen, Mingqiang Huang, Xinghao Chen, Chunjing
Xu, and Yunhe Wang. Winograd Algorithm for AdderNet. In International
Conference on Machine Learning, pages 6307–6315. PMLR, 2021.

[141] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Efficient sparse-
winograd convolutional neural networks. arXiv preprint arXiv:1802.06367,
2018.

[142] Sheng Li, Jongsoo Park, and Ping Tak Peter Tang. Enabling sparse winograd
convolution by native pruning. arXiv preprint arXiv:1702.08597, 2017.

[143] Jiong Gong, Haihao SHEN, Xiao Dong Lin, and Xiaoli Liu. Method and
apparatus for keeping statistical inference accuracy with 8-bit winograd con-
volution, 2018.

[144] Guangli Li, Lei Liu, Xueying Wang, Xiu Ma, and Xiaobing Feng. Lance:
efficient low-precision quantized winograd convolution for neural networks
based on graphics processing units. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3842–3846. IEEE, 2020.

[145] Lingchuan Meng and John Brothers. Efficient winograd convolution via
integer arithmetic. arXiv preprint arXiv:1901.01965, 2019.

138 References

[146] Zhi-Gang Liu and Matthew Mattina. Efficient Residue Number System Based
Winograd Convolution. In European Conference on Computer Vision, pages
53–68. Springer, 2020.

[147] Guangli Li, Zhen Jia, Xiaobing Feng, and Yida Wang. LoWino: Towards
Efficient Low-Precision Winograd Convolutions on Modern CPUs. In 50th
International Conference on Parallel Processing, pages 1–11, 2021.

[148] Xinheng Liu, Yao Chen, Cong Hao, Ashutosh Dhar, and Deming Chen.
WinoCNN: Kernel sharing Winograd systolic array for efficient convolutional
neural network acceleration on FPGAs. In 2021 IEEE 32nd International
Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 258–265. IEEE, 2021.

[149] Liqiang Lu and Yun Liang. SpWA: An efficient sparse winograd convolutional
neural networks accelerator on FPGAs. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[150] Tao Yang, Zhezhi He, Tengchuan Kou, Qingzheng Li, Qi Han, Haibao Yu,
Fangxin Liu, Yun Liang, and Li Jiang. BISWSRBS: A Winograd-based CNN
Accelerator with a Fine-grained Regular Sparsity Pattern and Mixed Precision
Quantization. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 14(4):1–28, 2021.

[151] Shihang Wang, Jianghan Zhu, Qi Wang, Can He, and Terry Tao Ye. Cus-
tomized Instruction on RISC-V for Winograd-Based Convolution Accelera-
tion. In 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 65–68. IEEE, 2021.

[152] Athanasios Xygkis, Dimitrios Soudris, Lazaros Papadopoulos, Sofiane Yous,
and David Moloney. Efficient winograd-based convolution kernel implemen-
tation on edge devices. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2018.

[153] Gopinath Mahale, Pramod Udupa, Kiran Kolar Chandrasekharan, and Sehwan
Lee. WinDConv: A Fused Datapath CNN Accelerator for Power-Efficient
Edge Devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):4278–4289, 2020.

[154] NVIDIA. Nvdla primer - nvdla documentation.

[155] Prateeth Nayak, David Zhang, and Sek Chai. Bit efficient quantization for
deep neural networks. In 2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pages
52–56. IEEE, 2019.

[156] Junhong Liu, Dongxu Yang, and Junjie Lai. Optimizing Winograd-Based
Convolution with Tensor Cores. In 50th International Conference on Parallel
Processing, pages 1–10, 2021.

References 139

[157] Roberto L Castro, Diego Andrade, and Basilio B Fraguela. OpenCNN: A
Winograd Minimal Filtering Algorithm Implementation in CUDA. Mathemat-
ics, 9(17):2033, 2021.

[158] Sumin Kim, Gunju Park, and Youngmin Yi. Performance Evaluation of INT8
Quantized Inference on Mobile GPUs. IEEE Access, 9:164245–164255, 2021.

[159] Dongsheng Li, Dan Huang, Zhiguang Chen, and Yutong Lu. Optimizing
Massively Parallel Winograd Convolution on ARM Processor. In 50th Inter-
national Conference on Parallel Processing, pages 1–12, 2021.

[160] Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse Beu, Matthew Mattina,
and Robert Mullins. Efficient winograd or cook-toom convolution kernel
implementation on widely used mobile cpus. In 2019 2nd Workshop on
Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), pages 1–5. IEEE, 2019.

[161] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv:1308.3432, 2013.

[162] Sambhav R Jain, Albert Gural, Michael Wu, and Chris H Dick. Trained
quantization thresholds for accurate and efficient fixed-point inference of deep
neural networks. arXiv preprint arXiv:1903.08066, 2019.

[163] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[164] Norm Jouppi. Google supercharges machine learning tasks with TPU custom
chip, 2016.

[165] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. Nvidia a100 tensor core gpu: Performance and innovation. IEEE
Micro, 41(2):29–35, 2021.

[166] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Opti-
mizing CNN model inference on CPUs. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 1025–1040, Renton, WA, July 2019.
USENIX Association.

[167] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin
Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. A hardware–software blueprint for flexible deep learning
specialization. IEEE Micro, 39(5):8–16, 2019.

[168] James E. Smith. Decoupled access/execute computer architectures. In Pro-
ceedings of the 9th Annual Symposium on Computer Architecture, ISCA ’82,
page 112–119, Washington, DC, USA, 1982. IEEE Computer Society Press.

140 References

[169] Zhengrong Wang and Tony Nowatzki. Stream-based memory access spe-
cialization for general purpose processors. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), pages 736–749,
2019.

[170] Nagadomi. kaggle-cifar10-torch7. 2014.

[171] Luca Saglietti and Lenka Zdeborová. Solvable model for inheriting the
regularization through knowledge distillation. In Mathematical and Scientific
Machine Learning, pages 809–846. PMLR, 2022.

[172] Barbara Barabasz. Quantized Winograd/Toom-Cook Convolution for DNNs:
Beyond Canonical Polynomials Base. arXiv preprint arXiv:2004.11077, 2020.

[173] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for
efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[174] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing, 461:370–403, 2021.

[175] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish
Chatterjee, Nan Jiang, and David Nellans. Need for speed: Experiences
building a trustworthy system-level gpu simulator. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 868–
880, 2021.

[176] Lukas Steiner, Matthias Jung, and Norbert Wehn. Exploration of ddr5 with
the open-source simulator dramsys. In MBMV 2021; 24th Workshop, pages
1–11. VDE, 2021.

[177] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. An energy efficiency feature survey of the
intel haswell processor. In 2015 IEEE international parallel and distributed
processing symposium workshop, pages 896–904. IEEE, 2015.

[178] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[179] Alberto Marchisio, Beatrice Bussolino, Alessio Colucci, Maurizio Martina,
Guido Masera, and Muhammad Shafique. Q-capsnets: A specialized frame-
work for quantizing capsule networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2020.

[180] Alberto Marchisio, Andrea Massa, Vojtech Mrazek, Beatrice Bussolino, Mau-
rizio Martina, and Muhammad Shafique. Nascaps: A framework for neural
architecture search to optimize the accuracy and hardware efficiency of con-
volutional capsule networks. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9, 2020.

References 141

[181] Alberto Marchisio, Vojtech Mrazek, Andrea Massa, Beatrice Bussolino, Mau-
rizio Martina, and Muhammad Shafique. Rohnas: A neural architecture
search framework with conjoint optimization for adversarial robustness and
hardware efficiency of convolutional and capsule networks. IEEE Access,
10:109043–109055, 2022.

[182] Alberto Marchisio, Muhammad Abdullah Hanif, and Muhammad Shafique.
Capsacc: An efficient hardware accelerator for capsulenets with data reuse.
In DATE, 2019.

[183] Patrick Kwabena Mensah, Adebayo Felix Adekoya, Mighty Abra Ayidzoe,
and Edward Y. Baagyire. Capsule networks - A survey. J. King Saud Univ.
Comput. Inf. Sci., 34(1):1295–1310, 2022.

[184] Jiawei Li, Qichen Zhao, Nan Li, Lin Ma, Xuan Xia, Xiaoguang Zhang, Ning
Ding, and Nannan Li. A survey on capsule networks: Evolution, applica-
tion, and future development. In 2021 International Conference on High
Performance Big Data and Intelligent Systems (HPBD&IS), pages 177–185,
2021.

[185] Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with
EM routing. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

[186] Dilin Wang and Qiang Liu. An optimization view on dynamic routing between
capsules. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings. OpenReview.net, 2018.

[187] Sameera Ramasinghe, C. D. Athuraliya, and Salman H. Khan. A context-
aware capsule network for multi-label classification. In Laura Leal-Taixé and
Stefan Roth, editors, Computer Vision - ECCV 2018 Workshops - Munich,
Germany, September 8-14, 2018, Proceedings, Part III, volume 11131 of
Lecture Notes in Computer Science, pages 546–554. Springer, 2018.

[188] Liheng Zhang, Marzieh Edraki, and Guo-Jun Qi. Cappronet: Deep feature
learning via orthogonal projections onto capsule subspaces. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5819–
5828, 2018.

[189] Miguel Costa, Diogo Costa, Tiago Gomes, and Sandro Pinto. Shifting capsule
networks from the cloud to the deep edge. CoRR, abs/2110.02911, 2021.

[190] M. Shafique et al. Robust machine learning systems: Challenges,current
trends, perspectives, and the road ahead. IEEE Design & Test, 2020.

142 References

[191] Christian Szegedy et al. Intriguing properties of neural networks. In ICLR,
2014.

[192] Xiaoyong Yuan et al. Adversarial examples: Attacks and defenses for deep
learning. IEEE Trans. on Neural Networks and Learning Systems, 2019.

[193] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In ICLR, 2015.

[194] Aleksander Madry et al. Towards deep learning models resistant to adversarial
attacks. In ICLR, 2018.

[195] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples
in the physical world. ICLR (Workshop), 2017.

[196] Amira Guesmi, Ihsen Alouani, Khaled N. Khasawneh, Mouna Baklouti, Tarek
Frikha, Mohamed Abid, and Nael B. Abu-Ghazaleh. Defensive approximation:
securing cnns using approximate computing. In Tim Sherwood, Emery D.
Berger, and Christos Kozyrakis, editors, ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Virtual Event, USA, April 19-23, 2021, pages 990–1003.
ACM, 2021.

[197] Qi Liu, Tao Liu, Zihao Liu, Yanzhi Wang, Yier Jin, and Wujie Wen. Security
analysis and enhancement of model compressed deep learning systems under
adversarial attacks. In Youngsoo Shin, editor, 23rd Asia and South Pacific
Design Automation Conference, ASP-DAC 2018, Jeju, Korea (South), January
22-25, 2018, pages 721–726. IEEE, 2018.

[198] Minghao Guo, Yuzhe Yang, Rui Xu, and Z. Liu. When nas meets robustness:
In search of robust architectures against adversarial attacks. In CVPR, 2020.

[199] Danilo Vasconcellos Vargas and Shashank Kotyan. Evolving robust neural
architectures to defend from adversarial attacks. CoRR, abs/1906.11667,
2019.

[200] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. ArXiv, 2017.

[201] Shachar Gluska and Mark Grobman. Exploring neural networks quantization
via layer-wise quantization analysis. arXiv preprint arXiv:2012.08420, 2020.

[202] Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and
Wenwu Zhu. Mixed-precision neural network quantization via learned layer-
wise importance. arXiv preprint arXiv:2203.08368, 2022.

[203] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. Automatically
designing cnn architectures using genetic algorithm for image classification.
IEEE transactions on cybernetics, 2020.

References 143

[204] Weiwen Jiang et al. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. In DAC, 2019.

[205] W. Jiang et al. Device-circuit-architecture co-exploration for computing-in-
memory neural accelerators. IEEE Transactions on Computers, 2020.

[206] Zhichao Lu, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Muxconv: Infor-
mation multiplexing in convolutional neural networks. ArXiv, 2020.

[207] Dimitrios Stamoulis et al. Single-path nas: Designing hardware-efficient
convnets in less than 4 hours. In ECML/PKDD, 2019.

[208] Aaron Harlap et al. Pipedream: Fast and efficient pipeline parallel dnn training.
ArXiv, 2018.

[209] Karl Pearson. Note on regression and inheritance in the case of two parents.
Proceedings of the Royal Society of London, 1895.

[210] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 2002.

[211] Yuval Netzer et al. Reading digits in natural images with unsupervised feature
learning. NIPS, 2011.

[212] Chih-Hong Cheng, Frederik Diehl, Gereon Hinz, Yassine Hamza, Georg
Nührenberg, Markus Rickert, Harald Ruess, and Michael Truong-Le. Neu-
ral networks for safety-critical applications—challenges, experiments and
perspectives. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1005–1006. IEEE, 2018.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Background and State of the Art
	1.2.1 Deep Neural Networks
	1.2.2 Hardware Acceleration of Deep Neural Networks
	1.2.3 Hardware-Efficient Deep Neural Networks

	1.3 Objectives and Contributions

	2 4x4-Tiles Winograd Convolutions: Quantization and Efficient Inference
	2.1 Introduction and Motivation
	2.2 Background and Related Works
	2.2.1 Winograd Minimal Filtering Algorithm
	2.2.2 Winograd for Convolution
	2.2.3 Related Works

	2.3 Tapwise Quantization
	2.3.1 Winograd-Aware Training
	2.3.2 Power-of-Two Tapwise Quantization

	2.4 Hardware Acceleration
	2.4.1 Baseline Accelerator
	2.4.2 Winograd Transformation Engines
	2.4.3 Winograd Operator

	2.5 Results
	2.5.1 Tap-wise Quantization Algorithm
	2.5.2 System Evaluation

	2.6 Conclusion

	3 Hardware-Efficient Capsule Networks
	3.1 Introduction and Motivation
	3.2 Background and Related Works
	3.2.1 Capsule Networks
	3.2.2 Quantization
	3.2.3 Adversarial Attacks and Robust-NAS

	3.3 Q-CapsNets: Framework for Capsule Networks Quantization
	3.3.1 Framework Overview
	3.3.2 Q-CapsNets step-by-step description
	3.3.3 Results
	3.3.4 Conclusions

	3.4 Neural Architecture Search for Hardware Efficient Capsule Networks
	3.4.1 NASCaps Overview
	3.4.2 Parametric Modeling of Capsule-Based Layers and Networks
	3.4.3 Modeling of CapsNets Execution on Hardware Accelerators
	3.4.4 The Multi-Objective NSGA-II Algorithm
	3.4.5 Results
	3.4.6 Conclusions

	3.5 Neural Architecture Search for Robust Capsule Networks
	3.5.1 Integration of Adversarial Robustness Evaluation in NASCaps
	3.5.2 Results
	3.5.3 Conclusions

	4 Conclusions and Future Works
	References

